卡方检验及SPSS分析

合集下载

医学统计学之卡方检验SPSS操作

医学统计学之卡方检验SPSS操作

医学统计学之卡方检验SPSS操作卡方检验(Chi-Square Test)是一种常用的统计方法,用于比较两个或多个分类变量的分布是否存在差异。

该方法主要用于处理分类数据,例如比较男女性别和吸烟与否对癌症发生的关系。

在SPSS(Statistical Package for the Social Sciences)软件中,进行卡方检验的操作主要分为数据准备、假设设定和计算步骤。

第一步:数据准备首先,需要在SPSS中导入数据。

假设我们需要在一个样本中比较男女性别和吸烟与否的关系,我们可以将性别和吸烟状况作为两个分类变量,分别用“Male”和“Female”表示性别,“Smoker”和“Non-smoker”表示吸烟状况。

将这些数据输入到SPSS中的一个数据表中。

第二步:假设设定接下来,需要设置假设。

在卡方检验中,我们通常有一个原假设和一个备择假设:-原假设(H0):两个或多个分类变量之间没有显著差异。

-备择假设(H1):两个或多个分类变量之间存在显著差异。

在本例中,原假设可以是“性别和吸烟状况之间没有显著差异”,备择假设可以是“性别和吸烟状况之间存在显著差异”。

第三步:计算步骤进行卡方检验的计算步骤如下:1.打开SPSS软件并导入数据。

2. 选择“分析(Analyse)”菜单,然后选择“非参数检验(Nonparametric Tests)”子菜单,最后选择“卡方(Chi-Square)”选项。

3.在弹出的对话框中选择两个分类变量(性别和吸烟状况),并将它们添加到变量列表中。

4.点击“确定(OK)”按钮,开始进行卡方检验的计算。

5.SPSS将计算卡方统计量的值和相关的P值。

如果P值小于指定的显著性水平(通常为0.05),则可以拒绝原假设,接受备择假设。

这样,就完成了卡方检验的SPSS操作。

需要注意的是,卡方检验是一种只能说明变量之间是否存在关系的方法,不能用于确定因果关系。

此外,在进行卡方检验之前,需要确保样本符合一些假设,例如每个单元格的期望频数应该大于5、如果不满足这些假设,可以考虑使用其他适用的统计方法。

卡方检验与秩和检验的SPSS操作过程

卡方检验与秩和检验的SPSS操作过程

b. G rouping V ariable: 组别
20
例10-6
某医院用3种方法治疗478例慢性喉炎,资料见表。问3种方法治疗慢性 喉炎的疗效有无差别?
疗效等级 (1)
无效 好转 显效 痊愈
甲法 (2)
24 26 72 186
乙法 (3)
20 16 24 32
丙法 (4)
20 22 14 22
合计 (5)
T est Statistics a
M ann-Whitney U
营养状况 544.000
Wilcoxon W
1534.000
Z
-3.215
A sy mp. Sig. (2-tailed)
.001
a. Grouping V ariable: 季 节
16
多组独立样本资料秩和检验SPSS操作过程
17
例10-5
用x表示状况: x=1、2、3 用group表示季节:group=1、2 用freq表示人数
14
例10-4 变量参数的确定
15
例10-4分析结果输出
Ra nk s
季节 营 养 状夏 况季
冬季 Total
N Mean RSaunm k of Ranks 40 50.90 2036.00 44 34.86 1534.00 84
92 196.41 78 169.60 478
Te st Statistics a,b
C hi-S quare df A sy mp. S ig.
疗效等 级 51.388 2 .000
a. Kruskal Wallis Test
b. Grouping V ariable: 治 疗 方 法

SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。

它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。

卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。

卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。

卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。

二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。

原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。

2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。

3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。

4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。

5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。

6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。

三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。

下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。

我们想要检验性别与吸烟习惯之间是否存在关联。

1.打开SPSS软件,导入数据。

2.选择"分析"菜单,点击"拟合度优度检验"。

3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。

4.点击"统计"按钮,勾选"卡方拟合度"。

卡方检验SPSS操作

卡方检验SPSS操作
要想获得卡方值,我们需用到非参数检验中的非参数配对检 验中的McNemar检验(其实也是常用的配对卡方检验)
16
三、行×列表资料的x2检验 第8题,P440
17
其 (SPSS的操作步骤与四格表相同)
步骤一: 定义变量
步骤二: 输入数据
步骤三:对数据按频数进行加权
步骤四:对数据作X2分析
步骤五:分析结果
配对卡方检验专用
药物 A B
T o ta l
药 物 * 药 效 Cross tabulation
Count % within 药 物 Count % within 药 物 Count % within 药 物
药效
有效
无效
73
9
89.0%
11.0%
52
22
70.3%
29.7%
125
31
80.1%
19.9%
无1/5的格子 的理论数大于 1小于5或有 T<1。故不用 合并或改用确 切概率法。直 接选择结果
练习题:
P440: 4、7、8题
23
⑵是否需要校正? 四格表资料检验条件: (1)当n≥40且所有T≥5,用普通X2检验 (2)当n≥40,但1≤T<5时, 用校正的X2检验 (3)当n<40 或 T ≤ 1时,用四格表资料的确切概率法。 2. SPSS不会自动做两两比较
2
卡方检验SPSS操作要领
计数资料(频数表):都是行列表 数据结构: r,c,f(行、列、频数)
.006
Exact Sig. Exact Sig. (2-sided) (1-sided)
Likelihood Ratio
8.758
1

卡方检验SPSS操作

卡方检验SPSS操作

卡方检验SPSS操作卡方检验是一种统计方法,用于比较观察频数与期望频数之间的差异是否显著。

它适用于比较两个或多个分类变量之间的关系,并确定这些变量是否相互独立。

在SPSS中,可以使用交叉表和卡方检验命令来执行卡方检验。

首先,打开SPSS软件并导入待分析的数据文件。

然后,选择“数据”菜单中的“交叉表”选项。

在弹出的交叉表对话框中,将要分析的变量拖拽到“行”和“列”的方框中。

假设我们要比较性别和喜好电影类型之间的关系,那么将性别拖拽到“行”,将电影类型拖拽到“列”。

接下来,在交叉表对话框中,点击“统计”按钮。

在弹出的统计对话框中,选择“卡方”选项,并点击“继续”按钮。

然后,点击“确定”按钮生成交叉表。

SPSS将显示交叉表的结果,包括观察频数、期望频数、卡方值和p值等。

在卡方检验中,我们通过观察频数和期望频数之间的差异来判断两个变量是否相关。

如果差异较大,卡方值较大,p值较小,则说明两个变量之间存在显著关系。

不管是使用交叉表还是描述统计方法进行卡方检验,都需要注意以下几点:1.样本数据应该是随机抽取的,并且足够大。

2.对于交叉表中的每个单元格,期望频数应当大于等于5,以确保卡方检验的可靠性。

3.卡方检验只能检验两个或多个分类变量之间的关系,不能用于比较连续变量。

4.如果卡方检验结果显著,表明两个变量之间存在关联,但不能确定关联的性质或因果关系。

卡方检验在数据分析中有着广泛的应用,可以用于医学研究、市场调查、社会科学等领域。

通过SPSS软件的操作,可以便捷地进行卡方检验,并获取检验结果。

卡方检验spss步骤

卡方检验spss步骤

卡方检验spss步骤咱先来说说啥是卡方检验吧。

卡方检验就是一种统计方法,用来分析两个分类变量之间有没有关系。

比如说,你想知道男生和女生对某种颜色的喜好有没有差别呀,就可以用这个卡方检验。

那在SPSS里怎么做呢?一、数据准备你得先把数据都整理好。

就像你要去旅行,得先把行李收拾好一样。

数据得是那种每个观测值对应着不同变量的情况。

比如说你有一个变量是性别,男或者女,还有一个变量是对颜色的喜好,红、蓝、绿啥的。

这些数据要整整齐齐地放在SPSS的数据视图里。

如果数据乱七八糟的,那卡方检验可就没法好好做啦。

二、打开分析菜单在SPSS的界面里呢,你要找到“分析”这个菜单。

这个菜单就像是一个装满了各种工具的魔法盒子,卡方检验这个小魔法就在里面呢。

你轻轻一点这个“分析”菜单,就会看到好多选项冒出来。

三、选择描述统计里的交叉表在这个分析菜单里,有个叫“描述统计”的部分,在那里你能找到“交叉表”这个选项。

这就像是在一堆糖果里找到你最爱的那一颗一样。

点了“交叉表”之后,会弹出一个新的窗口。

四、设置变量在这个新窗口里呀,你要把你的两个分类变量分别放到行和列里面。

比如说,你把性别放到行里,把颜色喜好放到列里。

这就像是给每个小玩具找到它该待的小格子一样。

这个步骤很重要哦,要是放错了地方,结果可就不对啦。

五、点击统计量按钮在这个交叉表的窗口里,你能看到一个叫“统计量”的按钮。

点这个按钮就像是打开一个神秘的小盒子,里面藏着卡方检验这个宝贝呢。

在统计量的选项里,你要找到“卡方”这个选项,然后把它勾上。

就像你在菜单里点了你最爱吃的菜一样。

六、确定并查看结果勾好卡方检验之后呢,你就可以点“确定”按钮啦。

然后SPSS 就会像个勤劳的小蜜蜂一样,开始计算结果。

结果出来之后呢,你要看一个叫“卡方检验”的表格。

这个表格里会告诉你卡方值、自由度还有显著性水平这些东西。

如果显著性水平小于0.05,那就说明这两个分类变量之间是有关系的哦。

如果大于0.05呢,那可能就没什么关系啦。

SPSS知识6:卡方检验(无序变量)

SPSS知识6:卡方检验(无序变量)

SPSS知识6:卡方检验(无序变量)卡方检验定义:卡方检验用作分类计数的假设检验方法:检验两个或多个样本率或构成比之间的差别是否有统计学意义→从而推断两个或多个总体率或构成比之间的差别是否有统计学意义。

一、行*列卡方检验(只需要判断最小理论频数即可)SPSS操作:第一步:建立数据文件(group:横标目,type:纵标目-无序变量,f→共3列数据);第二步:对频数f加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→横标目group调入rows,纵标目types调入columns→点击statistics…→激活Chi-square→continue→点击cells…→激活row行百分数→continue→OK);第四步:判断结果(结果有2个图表,根据最小理论频数与5的比较和总例数与40的比较,判断是选用pearson Chi-square还是其他指标,读取对应P值,若P<0.05,则有差异,需要利用行*列分割进行22比较,检验水准也需要变化,因为扩大了第一类错误)。

第五步:两两比较(对group横标目设不同的missing value值后进行行*列分割计算。

)Missing value→重复analyze操作。

二、四格表卡方检验(要根据N和T判断选用四格表卡方专用公式、校正公式、确切概率法?)SPSS操作:第一步:建立数据文件(group:横标目,effect:纵标目-无序变量,f,频数→共计3列数据);第二步:对频数加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→group调入rows,effect调入columns →点击statistics…→激活chi-square→continue→点击cells…→激活rows 百分数→continue→OK);第四步:判断结果(根据N和T判断选用公式→判断P值)。

SPSS中的卡方检验、t检验和方差分析

SPSS中的卡方检验、t检验和方差分析

SPSS中的卡⽅检验、t检验和⽅差分析
⾸先要明⽩两个概念:
计数资料和计量资料
(1)计数资料⼜称为定性资料:是分类型的,统计每个类型有多少数量。

(2)计量资料⼜称为定量资料:⽐如年龄,是有具体的数值。

根据数据的类型,使⽤不同的⽅法:
(1)对于计量资料。

秩和检验在国内的⽂章中很少见到。

当数据只有两组进⾏对⽐的时候,使⽤t检验和⽅差分析都可以。

但是有两组或者两组以上的时候,使⽤⽅差检验。

(2)对于计数资料,使⽤卡⽅分析,卡⽅分析⽤于⽐较,不同组之间,不同数量是否有差异。

⽐如,⽐较两组,男⽣⼈数和⼥⽣⼈数是否有差距。

独⽴样本t检验:两独⽴样本t检验就是根据样本数据对两个样本来⾃的两独⽴总体的均值是否有显著差异进⾏推断;进⾏两独⽴样本t检验的条件是,两样本的总体相互独⽴且符合正态分布;
⽐如:A组和B组,⽐较A组⼈的⾝⾼和B组⼈的⾝⾼是否有差异。

配对样本t检验-:配对样本是指对同⼀样本进⾏两次测试所获得的两组数据,或对两个完全的样本在不同条件下进⾏测试所得到的两组数据;两独⽴样本t检验就是根据样本数据对两个配对样本来⾃的两配对总体的均值是否有显著差异进⾏推断;两配对样本t检验的前提条件:两样本是配对的(数量⼀样,顺序不能变),服从正态分布。

⽐如:实验组A组中,实验前后,变化的对⽐。

卡方检验(2x2)-SPSS教程

卡方检验(2x2)-SPSS教程

卡方检验(2x2)-SPSS教程一、问题与数据学了这么多连续变量的统计分析,那么对于计数资料可咋整。

小伙伴会问了:如果我想看不同患者人群的术后复发率有没有差异,怎么办?这时候就需要欢迎我们的统计小助手——卡方检验闪亮登场啦!卡方检验可是一位重量级选手,凡是涉及到计数资料分布的比较都需要他的帮忙。

和t检验一样,卡方检验也会用在成组和配对设计资料分析中,本期我们一起聊聊独立样本四格表的χ2检验。

用药物A治疗急性心肌梗死患者198例,24小时内死亡11例,病死率为5.56%,另42例治疗时采用药物B,24小时内死亡6例,病死率为14.29%,提问:两组病死率有无差别?表1. 两种药物急性心肌梗塞患者治疗后24小时内死亡情况二、对问题分析“生存”,还是“死亡”,这是个问题,但更是一个典型的二分类结局指标,我们关注的重点是两种药物治疗后“生存”和“死亡”的分布(或者说病死率)有无差别,由此组成的2*2列联表就是χ2检验中经典的“四格表”(如表1)。

下面一起看看SPSS怎样搞定χ2检验。

三、SPSS操作1. 数据录入(1) 变量视图(2) 数据视图2. 加权个案:选择Data→weight cases→勾选Weight cases by,将频数放入Frequency Variable→OK。

因为本例中数据库每一行代表多个观测对象,所以需要对其进行加权处理。

当然,如果数据是以单个观测对象的形式,即每一行代表1个观测对象,则无需加权(如下图)。

3. 选择Analyze→Descriptive Statistics→Crosstabs4. 选项设置(1) 主对话框设置:将分组变量Drug放入Row(s)框中→将指标变量Outcome 放入Column(s)框中(实际上χ2检验是关注实际和理论频数是否一致,这里Row(s)框和Column(s)框内变量也可以颠倒放,并不影响最终结果)。

(2) Statistics设置:勾选Chi-square,确定使用成组计数资料的卡方检验→Continue(3) Cells设置:Counts中勾选Observed和Expected,输出实际观测频数和理论频数;Percentages中勾选Row,输出每组转归百分比→Continue→OK四、结果解释表2 统计汇总表2中不仅有服用两种药物后患者实际转归(生存/死亡)的频数和相应百分比,还输出了相应的理论频数(所在行列合计数乘积/总例数)。

(完整word版)卡方检验的spss操作

(完整word版)卡方检验的spss操作

卡方检验在教育实证研究中,经常遇到以下问题不同文化程度的人对某一政策的态度或工作业绩是否相关?不同专业背景的学生与他们对某一问题的看法否相关?不同家庭经济背景毕业生与其择业岗位是否相关?上述问题称为品质相关问题,其特征是每个个体至少有两个特征(变量).每个特征(变量)的取值,可以使顺序型,只能比较大小,不能作加减运算;也可以是名义型的,连大小都不能比较,只是区别所取的“值”是不同的。

解决此类问题一般采用卡方检验.一、一般卡方检验本次调查为了了解四川省青川县教师在信息技术问题上花费的时间对提高应用信息技术能力的作用,为此做实证研究,抽样调查138名教师平时在技术问题上花费的时间和在教学过程中应用信息技术的能力情况,如表1所示,问时间与技术应用能力之间的关系是否有显著差异?表1 教师在技术问题上花费的时间与信息技术应用能力情况建立数据库取名为“教师培训。

sav”,如图2所示.图1 数据文件统计分析过程图2 选择命令图3 交叉表对话框图4 交叉表:统计量对话框图5 交叉表:单元显示对话框图6 交叉表:表格格式对话框结果表2 观测量统计结果表3 分层统计结果表4 检验结果如果理论频数小于5的cells(格子)比例超过20%,你就不能使用ASYMP.sig的结果,此时应该在SPSS卡方检验中选择使用Exact Test(确切概率法),以Exact Test的结果为准(软件也同时显示ASYMP.sig的结果)。

二、配对卡方的一致性检验把每一份样本平均分成两份,分别用两种方法进行化验,比较此两种化验方法的结果(两类计数资料)是否有本质的不同;或者分别采用甲、乙两种方法对同一批病人进行检查,比较此两种检查方法的结果(两类计数资料)是否有本质的不同,此时要用配对卡方检验.操作方法:单击【Statistics钮】,在弹出的Statistics对话框中选择McNemanr复选框,进行McNemanr检验。

即配对卡方检验,只能针对方形表格进行。

SPSS数据分析—卡方检验

SPSS数据分析—卡方检验

SPSS数据分析—卡方检验卡方统计量是基于卡方分布的一种检验方法,根据频数值来构造统计量,是一种非参数检验方法。

SPSS中在交叉表和非参数检验中,都可调用卡方检验。

卡方检验的主要有两类应用一、拟合度检验1.检验单个无序分类变量各分类的实际观察次数和理论次数是否一致此类问题为单变量检验,首先要明确理论次数,这个理论次数是根据专业或经验已知的,原假设为观察次数与理论次数一致例】:随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人,问对分科的意见是否有显著的差异。

分析:如果意见没有差异,那么赞成反对的人数应该各半,即30次,因此理论次数为30例】:一周内各日患忧郁症的人数漫衍如下表所示,请检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1例】:一个骰子投掷120次,记录掷得每个点数的次数,问该骰子是否存在问题如果骰子是正常的,那么每个点数掷得的概率应该相等,操作方法和前面一样,也使用非参数检验过程,选择默认的所有类别相等卡方检验主要用于分类变量,但是也可以用于对连续变量的拟合度检验上,此类问题的基本思想是:将总体X的取值范围分成k个互不重叠的小区间A1.A2.Ak,把落入第i个小区间的样本值个数作为实际频数,所有实际频数之和等于样本容量,根据理论分布,可以算出总体X的值落入每个小区间Ai的概率Pi,于是nPi就是落入Ai的样本值的理论频数。

有了实际频数和理论频数,就可以计算卡方统计量并进行卡方检验了。

二、独立性检验独立性检验分析两变量之间是否相互独立或有无分歧,也可以在控制某种因素之后,分析两变量之间是否相互独立或有无分歧。

原假设为两变量相互独立或两变量间的相互作用没有分歧。

对于两变量一般采用列联表的形式记录观察数据,分为四格表和R*C列联表,根据卡方统计量和分类变量的类型,又衍生出一些相关系数,这在相关分析中已经讲过。

例】:为了解男女在公开场合禁烟上的态度,随机调查100名男性和80名女性。

卡方检验检验SPSS实现

卡方检验检验SPSS实现

结果解释
数据准备
定义变量名4个(store: sex: 1=男性,2=女性; contact:1=寻求,2=不寻求;freq ,) 加权频数( Data菜单选Weight Cases,点击 Freq使之进入Frequency Variable框)
统计分析
分析 描述统计 交叉表 sex进入行框, contact进入列框, Store进入分层框 选择统计量(cochran’and MantelHaenszel ) 确定
轻度
5
中度
2
重度
0
合计
31
轻度
中度 重度
4
1 1
18
3 2
2
18 5
1
2 12
25
24 20
合计
302827Fra bibliotek15100
练习五
月份 新病例数
63 78 140 117
某地收集了 5年中各月份 的脊髓灰质炎 新病例数资料 见表,,问发 病各月有无差 别?
1 2 3 4
5
6 7
105
101 144
8
9
127
79
10
11 12
87
58 48
定义变量名3个(顾问1:1=差,2=中, 3=好; 顾问2: 1=差,2=中, 3=好;freq ,) 加权频数( Data菜单选Weight Cases,点击 Freq使之进入Frequency Variable框)
统计分析
分析 描述统计 交叉表 顾问1进入行框,顾问2进入列框 选择统计量(Kappa) 确定
结果解释
Chi-Square过程
主要功能
调用此过程可对样本数据的分布进行卡 方检验。主要用于分析实际频数与某理 论频数是否相符。

SPSS学习之——相关分析(Pearson、Spearman、卡方检验

SPSS学习之——相关分析(Pearson、Spearman、卡方检验

SPSS学习笔记之——相关分析(Pearson、Spearman、卡方检验一、相关分析方法的选择及指标体系(一)两个连续变量的相关分析1、Pearson相关系数最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。

该系数的计算和检验为参数方法,适用条件如下:(1)两变量呈直线相关关系,如果是曲线相关可能不准确。

(2)极端值会对结果造成较大的影响(3)两变量符合双变量联合正态分布。

2、Spearman秩相关系数对原始变量的分布不做要求,适用范围较Pearson相关系数广,即使是等级资料,也可适用。

但其属于非参数方法,检验效能较Pearson系数低。

(二)有序分类变量的相关分析有序分类变量的相关性又称为一致性,即行变量等级高的列变量等级也高,如果行变量等级高而列变量等级低,则称为不一致。

常用的统计量有:Gamma、Kendall的tau-b、Kendall的tau-c等。

(三)无序分类变量的相关分析最常用的为卡方检验,用于评价两个无序分类变量的相关性。

根据卡方值衍生出来的指标还有列联系数、Phi、Cramer的V、Lambda系数、不确定系数等。

OR、RR也是衡量两变量之间的相关程度的指标。

二、SPSS相关操作SPSS的相关分析散布在交叉表和相关分析两个模块中。

(1)交叉表过程如下图:以上的指标很全面,解释如下:(1)“卡方”复选框:为常用的卡方检验,适用于两个无序分类变量的检验。

(2)“相关性”复选框:适用于两个连续性变量的相关分析,给出两变量的Pearson相关系数和Spearman相关系数。

(3)“有序”复选框组:包含了一组反映有序分类变量一致性的指标,只能用于两变量均为有序分类变量的情况。

(4)“名义”复选框组:包含一组分类变量相关性的指标,有序和无序分类时都可使用,但变量为有序时,检验效能没有“有序”复选框组中的统计量高。

(5)Kappa:为内部一致性系数。

(6)风险:给出OR或RR值。

卡方拟合优度检验spss

卡方拟合优度检验spss

卡方拟合优度检验spss从统计学的角度来看,卡方拟合优度检验(Goodness-of-Fit Test)是一种统计技术,它利用卡方检验的方式来检验拟合数据的优度和精度。

这种统计技术在多种研究领域有着广泛的应用,包括社会科学、管理科学和生物学等。

本文将介绍卡方拟合优度检验(GFT),并论述其在SPSS(西班牙统计软件)中的应用情况。

一、什么是卡方拟合优度检验(GFT)卡方拟合优度检验(GFT)是一种统计技术,用来判断模型假设的可信度,也就是检验拟合数据的优度和精度。

它的原理是检验一组观察数据是否严格符合一个模型的假设,即“拟合优度”(GOF)。

通过分析模型与观察数据之间的关系,它可以检测在一定精度下模型能否描述样本数据,即拟合性。

二、SPSS中卡方拟合优度检验的应用SPSS(Statistical Package for the Social Sciences)是一种多功能的统计分析软件,用于收集、分析、处理数据。

它的应用非常广泛,涉及社会科学、管理科学、心理学等众多领域。

卡方拟合优度检验(GFT)是其中一种常用的统计技术。

SPSS中,可以通过两种方式来执行卡方拟合优度检验:一种是使用卡方分析;另一种是使用多项分布检验。

1.使用卡方分析使用卡方分析,可以对一组观察数据进行卡方拟合优度检验。

卡方分析的步骤如下:首先,将观察数据转换为表格;然后,打开SPSS中的“卡方拟合优度检验”(goodness-of-fit test),并在表格中输入数据;最后,单击“确定”按钮,开始执行卡方拟合优度检验,查看拟合优度指标。

2.使用多项分布检验多项分布检验是一种测试离散数据的统计技术,可以用来检验模型的拟合优度。

在SPSS中,可以使用多项分布检验来完成卡方拟合优度检验。

具体的步骤如下:首先,在SPSS中打开“多项分布检验”,并输入模型要求和观察数据;其次,选择“卡方拟合优度检验”,单击“确定”按钮,开始执行检验,最后查看检验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行变量 列变量
计算统计量
卡方统计量
Kappa系数 风险度
配对四格表 McNemar检验
实际频数 理论频数
Crosstabs过程详解
• 界面说明 -[行Rows框]用于选择行×列表中的行变量。 -[列Columns框]用于选择行×列表中的列变量。 -[层Layer框]指定分层变量,即控制变量。如果要指定不同的分层变量做分析,则
校正公式:
2
( A T 2 n
(a b)(c d )(a c)(b d )

SPSS操作过程
• ①建立数据文件:例1.sav
数据格式:包括4行3列的频数格式,3个变量即行变量(group)、列变量(effect)和频数变量 (freq)。
计算理论频数
x2 检验基本步骤
2. 计算 x2 统计量
3. 确定P值,作出推论
龋患率(%) 35.00 45.00 38.33
• 四格表 检验的2条件:

1) n 40且T 5, 用不校正的 2公式;
2) n 40且至少1个格子1 T 5, 用校正的 2公式; 3) n 40或T 1,需用确切概率法
龋患率(%) 35.00 45.00 38.33
一、2 检验的基本思想
2是一种用途较广的计数资料的假设检验方法,属于非参数检验 的范畴。 根本思想:在于比较理论频数和实际频数的吻合程度或拟合优度 问题。
• x2检验:以x2分布为方法的理论基础
2 检验的基本公式
使用含氟牙膏与一般牙膏儿童的龋患率
• 交叉表(Crosstabs)过程 (一)四格表(fourfold data)资料的x2检验 (二)配对(paired data)资料的x2检验 (三)R×C表资料的x2检验 (四)两分类变量有无关联分析及列联系数C
• 卡方(Chi-Square)过程 (五)拟合问题-比较样本与已知总体的分布
第一节
牙膏类型
患龋齿人数 未患龋齿人数
含氟牙膏
70
一般牙膏
45
130 55
合计
115
185
• A为实际频数(actual frequency),T为理论频数(theoretical frequency)
调查人数 200 100 300
• nR是行和,nC是列和,n是四格数之和 • 2表示观察值与期望值之间的偏离程度。
• 1900年由英国统计学家Karl Pearson首次提出,故被称为Pearson 2 。
8
*例1:四格表资料的x2检验
使用含氟牙膏与一般牙膏儿童的龋患率
牙膏类型 含氟牙膏 一般牙膏 合计
患龋齿人数 70 45
115
未患龋齿人数 130 55 185
调查人数 200 100 300
1. 建立检验假设 H0 : 两总体龋患率相等 H1 : 两总体龋患率不等
将其选入Layer框,并用Previous和Next钮设为不同层。 -[Display clustered bar charts 复选框]:显示复式条图 -[Suppress table复选框]:不在输出结果中给出行×列表。
Crosstabs过程详解
• 界面说明 精确(Exact)子对话框:针对2×2以上的行×列表设计计算确切概率
*****指定加权变量(weight cases)
在实际的统计中,经常需要计算数据的加权平均数。 例如,希望了解不用牙膏使用者的平均患龋量。 如果仅以各种牙膏的患龋量的平均数作为平均患龋量是不合理的 还应考虑到各牙膏使用者的患龋量对平均患龋量的影响。 因此,以各牙膏使用者的患龋量作为权重计算各牙膏患龋率的加权 平均数,才是我们需要求的数据。
• 界面说明 -Kappa复选框:计算Kappa值,即内部一致性系数,介于0~0.7071之间; -Risk复选框:计算比数比OR值、RR值; -McNemanr复选框:进行配对卡方检验的McNemanr检验(一种非参
数检验) -CXo2cChMrHa,n’s可a在nd下M方an输te出l-HHa0e假ns设zel的stOatRis值tic,s复默选认框为:1。计算X2M-H统计量、
2
四格表资料的 检验 x2 test of fourfold data
目的:推断两个总体率(构成比)是否有差 别
要求:两样本的两分类个体数排列成四格表
资料
牙膏类型 含氟牙膏 一般牙膏 合计
使用含氟牙膏与一般牙膏儿童的龋患率
患龋齿人数 70 45
115
未患龋齿人数 130 55 185
调查人数 200 100 300
卡方检验
Chi-Square Test
预防医学教研室 张杰
课程内容
第一节:四格表(fourfold data)资料的x2检验** 第二节:配对(paired data)资料的x2检验** 第三节:R×C表资料的x2检验* 第四节:分层卡方检验 第五节:多个样本率间的多重比较 课程小结
SPSS统计分析
的方法。 统计量(Statistics)子对话框:用于定义所需计算的统计量 -Chi-square 复选框:计算pearson卡方值,对四格表资料自动给出校正卡
方检验和确切概率法结果。 -Correlations复选框:计算行列变量的pearson相关系数和Spearman等级相
关系数。
Crosstabs过程详解
• ②说明频数变量:数据 加权个案
Data Weight Cases
• ③ x2检验:从菜单选择 分析 描述统计 交叉表
Analyze Descriptive Statistics Crosstabs • 结合例1数据演示操作过程。
首先建立数据文件,如下。
注意:由于上表给出的不是原始数据,而是频数表数据,应该进行预处理。
在SPSS处理中就需要将各牙膏的患龋量作为加权变量。
“Weight Cases”对话

频数变量
不设置权重 设置权重
交叉表(Crosstabs)过程
• Crosstabs过程用于对分类资料和有序分类资料进行统计描述和统计 推断。
• 统计描述过程可以产生2维至n 维列联表,并计算相应的百分数指标。 • 统料计的推确断切包概括率了 (F常is用he的r’sxE2检xac验t T、esKt)ap值pa。值,分层X2(X2M-H),以及四格表资
相关文档
最新文档