2017年中考数学 考前小题狂做 专题2 实数(无理数,平方根,立方根)(含解析)
2017年中考真题分类解析 数的开方和二次根式
一、选择题1. (2017山东滨州,4,3分)下列计算:(1)()2=2,(2)=2,(3)(-)2=12,(4)1=-,其中结果正确的个数为(2.3. 4.古p =12答案:B ,解析:∵a =2,b =3,c =4,∴p =2a b c ++=2342++=92,得4.5. (2017四川成都,3x 的取值范围是A.x≥1B.x>1 C.x≤1D.x<1答案:A,解析:由x-1≥0得.x≥1.10+的值应在()6.(2017重庆,5,4分)估计1A.3和4之间B.4和5之间C.5和6之间D.6和7之间答案:B解析:先找出与10相邻的两个完全平方数,然后开方,可以确定10在被夹的这两个数之间,7.8.9.10.A B C D答案:A12中含有开得尽方的因数42a中含有开得尽方的因式2a的被开方数1a 中含有分母a ,不是最简二次根式.11. (2017山东潍坊,9,3分)若代数式12--x x 有意义,则实数x 的取值范围是( )A .x ≥1B .x ≥2C .x >1D .x >2 答案:B ,解析:由题意,得⎩⎨⎧>-≥-,01,02x x 解得x ≥2.12. 4.(2017浙江温州,4,4分)下列选项中的整数,与最接近的是A .3B .4C .5D .6答案:B ,解析: ∵4.1<<4.2, ∴ 最接近的是4.13. 3.(2017甘肃酒泉,3,3分)4的平方根是( )A.16B.2C.2±D.2± 答案:C ,解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根.此题中,∵(±2)2=4,∴4的平方根是±2.故选C .14. 7.(2017湖北黄冈,7,3分)16的算术平方根是 .答案:4,解析:16的算术平方根是164=.15. 2.(2017湖北荆门,2,3分)在函数y =25x -中,自变量x 的取值范围是( ) A .x >5 B .x ≥5 C .x ≠5 D .x <5答案:A ,解析:这里自变量的取值范围应满足:(1)分母不为0;(2)被开方数不能是负数.所以x -5>.解得x >5.故选A .16.1.(2017江苏泰州,1,3分)2的算术平方根是( )A.2±B.2C.2-D.2答案:B ,解析:根据算术平方根的定义可知,22.17. 6.(2017山东烟台,6,3分)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为( )A. 12B. 132C. 172D. 252答案:C ,解析:此题实际是计算:23(3)642-+=172. 18. 6.(2017天津,3分)估计38的值在A .4和5之间B .5和6之间C .6和7之间D .7和8之间答案:C ,解析:由36<38<49,可得6<38<7,故选C .19. (2017湖南邵阳,1,3分)25 的算术平方根是( )A . 5B . ±5C .-5D .25答案:A ,解析:根据算术平方根的概念做出判断. 如果正数x 的平方等于a (a >0),则正数x 就是a 的算术平方根,由此即可解决问题.20. (2017湖南邵阳,5,3分)函数 y =5-x 中,自变量 x 的取值范围在数轴上表示正确的是( )A .B .C .D .答案:B ,解析:二次根式的被开方数必须为非负数,所以x -5≥0;解不等式x -5≥0,得x ≥5,所以,在数轴上从5向右画,并且用实心点,故选B .21. 11.(2017呼和浩特,31-2x有意义的x 的取值范围为_______________. 答案:x <12,解析:根据1-2x >0,解得,x <12。
【中考真题分类汇编】2017年数学-专题 2 实数
中考数学真题分类汇编实数考点一、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点二、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
±”。
正数a的平方根记做“a2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a≥0)0a≥a2;注意a的双重非负性:==a3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点三、科学记数法和近似数 (3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
考点四、实数大小的比较 (3分)1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
中考数学 抢分训练之“小题狂做”实数(含解析)
实 数一、选择题(本大题共7小题,每小题3分,共21分) 1.下列四个数中,是负数的是( )A .|-2|B .(-2)2C .-2D.(-2)2 2.式子x -1在实数范围内有意义,则x 的取值范围是( ) A .x <1 B .x >1 C .x ≤1D .x ≥13.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( ) A .3 B .-3 C .1 D .-1 4.已知m =(-33)×(-221),则有( ) A .5<m <6 B .4<m <5C .-5<m <-4 D .-6<m <-5 5.已知,y =2x -5+5-2x +3,则xy的值为( ) A.152 B .-215 C.56D -65 6. 12的负的平方根介于( )A. -5与-4之间B. -4与-3之间C. -3与-2之间D. -2与-1之间7. 已知实数x ,y 满足|x -4|+y -8=0,则以x ,y 的值为两边长的等腰三角形的周长是( ) A. 20或16 B. 20C. 16 D. 以上答案均不正确 二、填空题(本大题共6小题,每小题3分,共18分) 8.计算:412-8=______. 9.使式子m -2有意义的最小整数m 是________. 10.当x =-4时,6-3x 的值是______.11.已知a (a -3)<0,若b =2-a ,则b 的取值范围是______.12. 实数a 、b 在数轴上的位置如图所示,则(a +b )2+a 的化简结果为________.13. 写出一个比4小的正无理数:________. 三、解答题(本大题共3小题,共21分)14.(7分)计算:(3-2)0+4sin 60°-|2-23|.15.(7分)计算:|-2|+(-1)2 012×(π-3)0-8+(-2)-2.16.(7分)计算:-12 012-|1-2cos 45°|+(-2)2×(12)-2+(π-1.4)0.参考答案1. C 解析:负数小于0,A 中|-2|=2>0,B 中(-2)2=4>0,D 中(-2)2=2>0,C 中-2<0,故选C.2. D 解析:由二次根式的定义得x -1≥0,即x ≥1.3. A 解析:由非负数的定义可知x -2=0,y +1=0,从而得x =2,y =-1,所以x -y =3,故选A.4. A 解析:m =(-33)×(-221)=2363=(23)2×63=49×63=28,∵25<28<36,∴5<28<6,即5<m <6.5. C 解析:由2x -5≥0且5-2x ≥0得x =52,所以y =3,所以x y =523=56.6. B 解析:12介于9和16之间,故12的负的平方根介于-4和-3之间.7. B 解析:因为|x -4|≥0,y -8≥0,而|x -4|+y -8=0,所以|x -4|=0,y -8=0,故x =4,y =8,所以以x ,y 的值为两边长的等腰三角形的三边长可能为4,4,8或4,8,8,而第一种情况不满足三角形的三边关系,所以等腰三角形的三边长应是4,8,8,周长是20,故应选B.8. 0 解析:原式=16×12-8=8-8=0.9. 2 解析:欲使m -2有意义,则有m -2≥0,即m ≥2,所以满足题意的最小整数m 是2.10. 32 解析:当x =-4,时,原式=6-3×(-4)=18=32. 11. 2-3<b <2 解析:∵a (a -3)<0,∴a >0,a -3<0,解得a >0,且a <3,∴0<a <3,∴2-3<2-a <2,即b 的取值范围为2-3<b <2.12. -b 解析:从数轴上看,a >0,b <0,|a |<|b |,所以(a +b )2+a =-a -b +a =-b .13. 答案不唯一,如2、π等 解析:此题答案不唯一,只要无理数在0~4之间即可.14. 解:原式=1+4×32-[-(2-23)](3分)=1+23+2-23(5分)=3.(7分)15. 解:原式=2+1×1-22+14(3分)=2+1-22+14(5分)=134-22.(7分)16. 解:原式=-1-|1-2×22|+2×4+1(3分)=-1-0+8+1(5分)=8.(7分)。
全国各地中考数学试题分类汇编专题(第3期) 专题2 实数(无理数,平方根,立方根)Word版含解析
实数(无理数,平方根,立方根)一.选择题1.(2019•湖北省荆门市•3分)﹣的倒数的平方是()A.2 B.C.﹣2 D.﹣【分析】根据倒数,平方的定义以及二次根式的性质化简即可.【解答】解:﹣的倒数的平方为:.故选:B.【点评】本题考查了倒数的定义、平方的定义以及二次根式的性质,是基础题,熟记概念是解题的关键.2.(2019•湖北省仙桃市•3分)下列各数中,是无理数的是()A.3.1415 B.C.D.【分析】根据无理数的定义:无限不循环小数进行判断,=2是有理数;【解答】解:=2是有理数,是无理数,故选:D.【点评】本题考查无理数的定义;能够准确辨识无理数是解题的关键.3.(2019•湖北省咸宁市•3分)下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数【分析】直接利用有理数、无理数、正负数的定义分析得出答案.【解答】解:0既不是正数也不是负数,0是有理数.故选:C.【点评】此题主要考查了实数,正确把握实数有关定义是解题关键.4.(2019•四川省绵阳市•3分)若=2,则a的值为()A. B. 4 C. D.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.5.(2019•四川省绵阳市•3分)已知x是整数,当|x-|取最小值时,x的值是()A.5B. 6C. 7D. 8【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.6. (2019•广东广州•3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7. (2019•黑龙江省绥化市•3分)下列计算正确的是()A.9=±3 B.(﹣1)0=0 C.2+3=5D.38=2答案:D考点:整式的运算。
中考数学真题分类汇编第三期专题2实数无理数,平方根,立方根试题含解析
实数( 无理数, 平方根, 立方根)一. 选择题1.(2018·广西贺州·3 分)在﹣1.1. 、2 这四个数中,最小的数是()A.﹣1 B.1 C.D.2【解答】解:在实数﹣1,1,,2 中,最小的数是﹣1.故选:A.2. (2018·广西贺州·3 分)4 的平方根是()A.2 B.﹣2 C.± 2 D.16【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.3. (2018·湖北江汉·3 分)点A,B 在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b| <2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到的取值范围,结合绝对值的含义推知|b| 、|a| 的数量关系.【解答】解: A. 如图所示,|b| <2<|a| ,故本选项不符合题意;B.如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C.如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D.如图所示,a<﹣2<b<2 且|a| >2,|b| <2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.4. (2018·四川省攀枝花· 3 分)下列实数中,无理数是()A.0 B.﹣2 C.D.解:0,﹣2,是有理数,是无理数.故选C.5.(2018·四川省攀枝花· 3 分)如图,实数﹣、在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q1解:∵实数﹣3,x,3,y 在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.6. (2018·云南省昆明·4 分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1 的值()A.在和之间B .在和之间C.在和之间D.在和之间【分析】根据≈,可得答案.【解答】解:∵≈,∴﹣1≈,故选:B.【点评】本题考查了估算无理数的大小,利用≈是解题关键.7. (2018·浙江省台州·4分)估计+1 的值在()A.2 和3 之间B.3 和4 之间C.4 和5 之间D.5 和6 之间【分析】直接利用2<<3,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.(2018·辽宁省沈阳市)(分)下列各数中是有理数的是()A.πB.0 C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A. π是无限不循环小数,属于无理数,故本选项错误;是有理数,故本选项正确;C. 是无理数,故本选项错误;D. 无理数,故本选项错误;故选:B.【点评】本题考查了有理数,有限小数或无限循环小数是有理数.9.(2018·重庆市B 卷)(分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是02【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为 1 和0;算术平方根等于本身的数为 1 和0 进行分析即可.【解答】解:A. 如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B.如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C.如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选:A.【点评】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10. (2018?莱芜?3 分)无理数2 ﹣3 在()A.2 和3 之间B.3 和4 之间C.4 和5 之间D.5 和6 之间【分析】首先得出 2 的取值范围进而得出答案.【解答】解:∵ 2 = ,∴6<<7,∴无理数 2 ﹣3 在3 和4 之间.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.11. (2018?乐山?3 分)估计+1 的值,应在()A.1 和2 之间B.2 和3 之间C.3 和4 之间D.4和 5 之间解:∵≈,∴+1≈.故选C.12.(2018·江苏常州·2 分)已知a 为整数,且,则a 等于()A.1 B.2 C.3 D.4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a 为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.二. 填空题1.(2018·重庆市B 卷)(分)计算:| ﹣1|+2 0= 2 .【分析】本题涉及零指数幂、绝对值 2 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:| ﹣1|+2=1+1=2.3故答案为:2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值等考点的运算.2.(2018·辽宁省盘锦市)计算:﹣= .【解答】解:原式=3 ﹣2= .故答案为:.3. (2018·湖北荆州·3 分)计算:| ﹣2| ﹣+()﹣1+tan45° = .【解答】解:| ﹣2| ﹣+()﹣1+tan45°=2﹣2+2+1=3.故答案为:3.4. (2018?莱芜?4 分)计算:(π﹣)0+2cos60° = 2 .【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=1+2×=1+1=2,故答案为: 2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5. (2018?陕西?3 分)比较大小:3_________ ( 填<,>或=) .【答案】<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3< ,故答案为:<.6. (2018·湖北咸宁·3 分)写出一个比2 大比3 小的无理数(用含根号的式子表示)_____.【答案】【解析】【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【详解】∵4<5<9,∴2<<3,即为比 2 大比 3 小的无理数.故答案为:.【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.47.(2018·江苏镇江·2 分)计算:= 2 .【解答】解:原式= = =2.故答案为: 28.(2018·吉林长春·3 分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3= ,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.三. 解答题1. (2018·云南省曲靖·5 分)计算﹣(﹣2)+(π﹣) 0+ +(﹣)0+ +(﹣)﹣1【解答】解:原式=2+1+3﹣3=3.2. (2018·云南省·6 分)计算:﹣2cos45°﹣()﹣1 0 ﹣(π﹣1)【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3 ﹣2×﹣3﹣1=2 ﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.3. (2018·浙江省台州·8 分)计算:| ﹣2| +(﹣1)×(﹣3)【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4. (2018·广西贺州·6 分)计算:(﹣1) 2018+| ﹣| ﹣(﹣π)2018+| ﹣| ﹣(﹣π)0﹣2sin60 °.【解答】解:原式=1+ ﹣1﹣2×=1+ ﹣1﹣=0.55. (2018· 广西梧州· 6 分)计算: ﹣2 ÷ 23+| ﹣1| × 5﹣(π﹣ ) 0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的乘法法则、5零指数幂的性质进行计算,最后,再进行加减计算即可.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3.【点评】本题主要考查的是实数的运算,熟练掌握运算法则是解题的关键.6. 2018 ·湖北十堰·5 分)计算:| ﹣| ﹣2﹣1+【分析】原式利用绝对值的代数意义,负整数指数幂法则,以及二次根式性质计算即可求出值.【解答】解:原式= ﹣+2 =3 ﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.﹣ 2 7.(2018·辽宁省沈阳市)(分)计算:2tan45°﹣| ﹣3|+ ()﹣(4﹣π)0 .【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=2×1﹣(3﹣)+4﹣1=2﹣3+ +4﹣1=2+ .【点评】此题主要考查了实数运算,正确化简各数是解题关键.8. (2018?呼和浩特?10 分)计算(1)计算:2﹣2+(3 ﹣)÷﹣3sin45 °;(2)解方程:+1= .解:(1)原式=﹣+(9 ﹣)÷﹣3×=﹣+ + ﹣=3 ;(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:x=1 时,x﹣2=﹣1≠0,所以分式方程的解为x=1.9. (2018?乐山?9 分)计算:4cos45°+(π﹣2018)0 ﹣解:原式=4×+1﹣2 =1.10. (2018?广安?5 分)计算:()﹣2+| ﹣2| ﹣+6cos30°+(π﹣)0 .﹣2+| ﹣2| ﹣+6cos30°+(π﹣)6【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=9+2﹣﹣2 +6×+1=12.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11. (2018?陕西?6 分)计算:( -) ×( -) +| -1| +(5 -2π)【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0 次幂的计算,然后再按运算顺序进行计算即可.【详解】(-) ×( -) +| -1| +(5 -2π)=3 +-1+1=4 .【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.12. (2018·湖北咸宁·8 分)(1)计算:+| ﹣2| ;【答案】(1).【分析】(1)按顺序先化简二次根式、计算立方根、去绝对值符号,然后再按运算顺序进行计算即可得;【详解】(1)+| ﹣2|=2 ﹣2+2﹣= ;【点睛】本题考查了实数的混合运算,熟练掌握各运算的运算顺序以及运算法则是解题的关键.13. (2018·辽宁大连·9 分)计算:(+2 ) 2 ﹣2﹣+2解:原式=3+4 +4﹣4 + = .7。
2017全国中考数学真题分类之实数的有关概念和性质(选择题+填空题)解析版
2017全国中考数学真题分类知识点01实数的有关概念和性质(选择题+填空题解析版)一、选择题1. (2017四川广安,1,3分)2的相反数是( )A .2B .12C .-12D .-2答案:D ,解析:∵只有符号不同的两个数互为相反数, “2”与“-2”只有符号不同,∴2的相反数是-2.故选D .2. (2017浙江丽水·1·3分)在数1,0,-1,-2中,最大的数是( )A .-2B .-1C .0D .1答案:D .解析:根据“负数小于0,正数大于0,正数大于负数”,所以这四个数中最大的数是1,故选D . 3. (2017四川泸州,1,3分)-7的绝对值为( )A .7B .-7C .17D .-17答案:A ,解析:正数的绝对值是它本身,负数的绝对值是它的相反数,所以-7的相反数是-(-7)=7. 4. (2017浙江金华,1,3分)下列各组数中,把两数相乘,积为1的是 A .2和-2B .-2和21C .3和33D .3和-3答案:C ,解析:(1)根据“有理数乘法的运算法则”,2×(-2) =-4;(2)根据“有理数乘法的运算法则”, -2×21=-1;(3)根据“二次根式乘法的运算法则”, 3×33=1;(4)根据“二次根式乘法的运算法则”, 3×(-3)=-3.5. (2017重庆,1,4分)在实数-3,2,0,-4中,最大的数是( )A . -3B .2C .0D .-4答案:B 解析:∵2是正数,-3,-4是负数,根据“正数大于一切负数”和“正数都大于0”知-4<-3<0<2,故选B .6.(2017安徽中考·1.4分)12的相反数是( ) A .12B .12C .2D .-2答案:B .解析:根据相反数的概念,12的相反数是-12,故选B .7. (2017浙江衢州,1,3分)-2的倒数是( )A .-12B .12C .-2D .2答案:A ,解析:由于(-2)×(-12)=1,根据倒数的概念,-2的倒数是-12. 8. (2017山东济宁,1,3分)16的倒数是A .6B .-6C .16D .-16答案:A ,解析:根据“乘积为1的两个数互为倒数”可得,11=66÷,所以16的倒数是6.9. (2017山东德州,1,3分)-2的倒数是( ) A .21-B .21C .-2D .2 答案:A ,解析:乘积为1的两个数互为倒数,故-2的倒数为1÷(-2)= 21-. 10. (2017山东菏泽,1,3分)(13)-2的相反数是( ).A .9B .-9C .19D .19-答案:B ,解析: 根据负整数指数的法则可知(13)-2=9,因为9的相反数是-9,所以(13)-2的相反数是-9.11. .(2017年四川南充,1,3分)如果a +3=0,那么a 的值为( )A .3B .-3C .13D .-13答案:B 解析:根据等式的性质,将原式两边减去3,得a =-3.故选B . 12. (2017重庆B ,1,4分)5的相反数是 A .-5B .5C .51-D .51 答案:A ,解析:根据相反数的定义可得:5的相反数是-5.13. (2017浙江舟山,1,3分)-2的绝对值为( )A . 2B .-2C .21 D .-21 答案:A ,解析:根据“一个数的绝对值是它的相反数”可知, -2的绝对值为2. 14. 1.(2017江苏盐城,1,3分)-2的绝对值等于A .2B .-2C .12 D .12-答案:A ,解析:根据“负数的绝对值等于它的相反数”可知,-2的绝对值等于2.15. (2017年四川内江,1,3分)下面四个数中比-5小的数是 A .1 B.0 C .-4 D .-6答案:D ,解析:根据“正数和0都大于负数”,得1>-5,0>-5;根据“两个负数,绝对值大的反而小”,得―4>―5,―6<―5.16.(2017山东临沂,1,3分)12007-的相反数是( ) A .12007 B .12007- C .2017 D .2017- 答案:A解析:根据a 与-a 互为相反数可得出12007-的相反数是12007.17. (2017山东泰安,1,3分)下列四个数:﹣3,﹣π,﹣1,其中最小的数是A .﹣πB .﹣3C .﹣1D 答案:A ,解析:比较负数大小,根据绝对值越大,负数越小.只要比较它们绝对值得大小即可.因1-<3-<-3<π-,所以-π最小.18. (2017江苏连云港,1,3分)2的绝对值是A .-2B .2C .12D .12答案:B ,解析:根据“正数的绝对值是本身”可知2的绝对值是2.19. (2017四川达州1,3分)-2的倒数是( )A .2B .2-C .12D .12- 答案:D ,解析:由于积为1的两个数它们互为倒数,而-2⨯(-12)=1,所以-2的倒数为12-,故本题选D .20. 1.(2017四川德阳,1,3分)6的相反数是 A .-6B .-61C .6D .61 答案:A ,解析:考查相反数的概念.A 的相反数为-A ,6的相反数即为-6,选择A .21. 1.(2017四川眉山,1,3分)下列四个数中,比-3小的数是A .0B .1C .-1D .-5答案:D ,解析:根据“正数大于0,负数小于0,正数大于负数;两个负数,绝对值大的反而小”,因为-3的绝对值是3,而-5的绝对值是5,-1的绝对值1,所以比-3小的数是-5.22. 3.(2017四川眉山,3,3分)某微生物的直径为0.000005035m,用科学记数法表示该数为A.5.035×10-6B.50.35×10-5C.5.035×106D.5.035×10-5答案:A,解析:用科学记数法表示一个数,就是把一个数写成a×10n的形式(其中1≤a<10,n为整数),首先把0.000005035的小数点向右移动6位变成5.035,也就是0.000005035=5.035×0.000 001,最后写成5.035×10-6.23. 1.(2017江苏淮安,1,3分)-2的相反数是()A.2B.-2C.12D.-12答案:A,解析:根据“符号不同,绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数”可知,-2的相反数是2.24. 1.(2017江苏无锡,1,3分)-5的倒数是( )A.15B.±5C.5D.-15答案:D.解析:如果ab=1,则a,b互为倒数,∵-5×(-15)=1,∴-5的倒数是-15.25.(2017山东潍坊,5,3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B答案:A,解析:由按键顺序可知计算结果为-2,∵-4<-2<-1,即-2<-2<-1,∴显示的结果在数轴上对应点的位置介于B与C之间.26. 1.(2017浙江温州,1,4分)-6的相反数是A.6B.1C.0D.-6答案:A,解析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数.27. 1.(2017四川宜宾,1,3分)9的算术平方根是()A.3B.﹣3C.±3D答案:A,解析:一个正数x的平方等于a,则这个正数x叫a的算术平方根,记作x32=9,3.28. 1.(2017山东滨州,1,3分)下列各数中无理数为( ) A .2 B .0 C .12017D .-1 答案:A ,解析:略.29. (2017湖南岳阳,1,3分)6的相反数是 A .-6B .61 C .6 D .±6答案:A ,解析:考察相反数概念,只有符号不同的两个数互为相反数,因此6和-6互为相反数.30. 1.(2017江苏扬州,,3分)若数轴上表示-1和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是 A .-4 B .-2 C .2D .4【答案】D【解析】根据绝对值的几何意义结合点的位置,AB=13-+=4或AB =3(1)--=4.31. 2.(2017甘肃酒泉,2,3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度,393000用科学记数法可以表示为( ) A.439.310B.83.9310C.63.9310D.60.39310答案:B ,解析:根据科学计数法的定义:把一个数字记为的形式(1≤|a |<10,n 为整数),这种记数法叫做科学记数法。
2017年湖南中考数学复习资料(湘教版)
2017年中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:正整数整数零有理数负整数有限小数或无限循环小数实数正分数分数负分数正无理数无理数无限不循环小数负无理数1、有理数:任何一个有理数总可以写成p的形式,其中 p、q 是q互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如 2 、34 ;特定结构的不限环无限小数,如1.101001000100001,, ;特定意义的数,如π、 sin 45 °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数 a 的相反数是 -a ;(2)a 和 b 互为相反数 a+b=0 2、倒数:(1)实数 a(a≠0)的倒数是1;(2)a 和 b 互为倒数ab 1 ;a(3)注意 0 没有倒数3、绝对值:(1)一个数 a 的绝对值有以下三种情况:a, a 0a 0, a 0a, a 0(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝1对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设 a≥0,称 a 叫 a 的平方根, a 叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数; 0 的平方根是 0;负数没有平方根。
(3)立方根: 3 a 叫实数 a 的立方根。
(4)一个正数有一个正的立方根; 0 的立方根是 0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
2019年全国各地中考数学试题分类汇编之专题2 实数(无理数,平方根,立方根)(含解析)
实数(无理数,平方根,立方根)一.选择题1. (2019•江苏连云港•3分)64的立方根为.2.(2019•浙江嘉兴•3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1 C.0 D.12019 3.(2019•浙江嘉兴•3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>4. (2019•湖北十堰•3分)下列实数中,是无理数的是()A.0 B.﹣3 C.D.5 (2019•甘肃武威•3分)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.0 B.1 C.2 D.36.(2019▪广西池河▪3分)下列式子中,为最简二次根式的是()A.B.C.D.7. (2019•湖南怀化•4分)下列实数中,哪个数是负数()A.0 B.3 C.D.﹣18. (2019•湖南邵阳•3分)下列各数中,属于无理数的是()A.B.1.414 C.D.9.(2019,山东淄博,4分)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.B.2 C.2D.610. (2019•湖南岳阳•4分)分别写有数字、、﹣1.0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是.11. (2019•甘肃武威•3分)下列整数中,与最接近的整数是( ) A .3B .4C .5D .612. (2019•广东•3分)实数A.b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a >bB .|a | < |b |C .a +b >0D .ba <013. (2019•甘肃•3分)在0,2,﹣3,﹣这四个数中,最小的数是( ) A .0B .2C .﹣3D .﹣14. (2019•湖北天门•3分)下列各数中,是无理数的是( ) A .3.1415B .C .D .15 (2019•湖北武汉•3分)实数2019的相反数是( ) A .2019B .﹣2019C .D .16. (2019•山东省滨州市 •3分)下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .x 3÷x 2=xD .(2x 2)3=6x 617 (2019•山东省德州市 •4分)下列运算正确的是( ) A .(﹣2a )2=﹣4a 2 B .(a +b )2=a 2+b 2C .(a 5)2=a 7D .(﹣a +2)(﹣a ﹣2)=a 2﹣418. (2019甘肃省陇南市)(3分)下列整数中,与最接近的整数是( )A .3B .4C .5D .619. (2019•山东省聊城市•3分)下列计算正确的是( ) A .a 6+a 6=2a 12B .2﹣2÷20×23=32C .(﹣ab 2)•(﹣2a 2b )3=a 3b 3D .a 3•(﹣a )5•a 12=﹣a 2020 (2019•山东省滨州市 •3分)若8x m y 与6x 3y n 的和是单项式,则(m +n )3的平方根为( ) A .4 B .8 C .±4 D .±8二.填空题1. (2019•山东省济宁市 •6分)计算:6sin 60°﹣+()0+|﹣2018|2. (2019•广东•4分)计算20190+(31)﹣1=____________. 3. (2019•湖南长沙•3分)式子在实数范围内有意义,则实数x 的取值范围是 .4 .(2019,四川成都,4分)估算: 7.37 .(结果精确到1) 5.(2019•浙江宁波•4分)请写出一个小于4的无理数: . 6.(2019•浙江金华•6分)计算:|-3|-2tan 60°+ +( )-1三.解答题1.(2019•浙江衢州•6分)计算:|-3|+(π-3)0- +tan 45°2 (2019▪贵州毕节▪8分)计算:|﹣|+(﹣1)2019+2﹣1﹣(2﹣)0+2cos 45°.3.(2019▪广西池河▪6分)计算:30+﹣()﹣2+|﹣3|.4.(2019▪贵州黔东▪8分)计算:|﹣|+(﹣1)2019+2﹣1﹣(2﹣)0+2cos45°.5.(2019▪湖北黄石▪7分)计算:(2019﹣π)0+|﹣1|﹣2sin45°+()﹣1.6.(2019•浙江绍兴•4分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.7. (2019•湖北十堰•5分)计算:(﹣1)3+|1﹣|+.8. (2019•湖北孝感•6分)计算:|﹣1|﹣2sin60°+()﹣1+.9. (2019•湖南衡阳•6分)()﹣3+|﹣2|+tan60°﹣(﹣2019)010. ( 2019甘肃省兰州市)(本题5分)计算:|-2|-(3+1)0+(-2)2-tan450 .11. (2019甘肃省陇南市)(6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)012. (2019甘肃省天水市)(1)计算:(-2)3+-2sin30°+(2019-π)0+|-4|(2)先化简,再求值:(-1)÷,其中x的值从不等式组的整数解中选取.13. (2019•江苏苏州• 5分)计算:()()2322π+---14. (2019•湖南长沙•6分)计算:|﹣|+()﹣1﹣÷﹣2cos 60°.15. (2019•湖南怀化•8分)计算:(π﹣2019)0+4sin 60°﹣+|﹣3|16. (2019•湖南邵阳•8分)计第:﹣()﹣1+|﹣2|cos 60°17.(2019,山西,5分)计算:02)2(60tan 3)21(27-+︒--+-π18 .(2019,四川成都,6分)计算:|31|1630cos 2)2(0-+-︒--π.19. (2019•湖南湘西州•6分)计算:+2sin 30°﹣(3.14﹣π)020 (2019•湖南岳阳•6分)计算:(﹣1)0﹣2sin 30°+()﹣1+(﹣1)201921. (2019•江苏泰州•12分)(1)计算:(﹣)×;22 (2019•湖南株洲•6分)计算:|﹣|+π0﹣2cos 30°.23. (2019•江苏连云港•6分)计算(﹣1)×2++()﹣1.24. (2019•甘肃武威•6分)计算:(﹣2)2﹣|﹣2|﹣2cos 45°+(3﹣π)025. (2019•甘肃•4分)计算:(﹣)﹣2+(2019﹣π)0﹣tan 60°﹣|﹣3|.26. (2019•广东深圳•5分)计算:01)14.3()81(60cos 2-9-++︒-π27. (2019•广西贵港•10分)(1)计算:﹣(﹣3)0+()﹣2﹣4sin30°;(2)解不等式组:,并在数轴上表示该不等式组的解集.实数(无理数,平方根,立方根)一.选择题1. (2019•江苏连云港•3分)64的立方根为4.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.2.(2019•浙江嘉兴•3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1 C.0 D.12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解答】解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.【点评】此题主要考查了实数运算,正确化简各数是解题关键.3.(2019•浙江嘉兴•3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>【分析】直接利用等式的基本性质分别化简得出答案.【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键.4. (2019•湖北十堰•3分)下列实数中,是无理数的是()A.0 B.﹣3 C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A.0是有理数,故A错误;B.﹣3是有理数,故B错误;C.是有理数,故C错误;D.是无理数,故D正确;故选:D.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.5 (2019•甘肃武威•3分)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.0 B.1 C.2 D.3【分析】直接利用数轴结合A,B点位置进而得出答案.【解答】解:∵数轴的单位长度为1,如果点A表示的数是﹣1,∴点B表示的数是:3.故选:D.【点评】此题主要考查了实数轴,正确应用数形结合分析是解题关键.6.(2019▪广西池河▪3分)下列式子中,为最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A.原式=,不符合题意;B.是最简二次根式,符合题意;C.原式=2,不符合题意;D.原式=2,不符合题意;故选:B.【点评】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.7. (2019•湖南怀化•4分)下列实数中,哪个数是负数()A.0 B.3 C.D.﹣1【分析】根据小于零的数是负数,可得答案.【解答】解:A.0既不是正数也不是负数,故A错误;B.3是正实数,故B错误;C.是正实数,故C错误;D.﹣1是负实数,故D正确;故选:D.【点评】本题考查了实数,小于零的数是负数,属于基础题型.8. (2019•湖南邵阳•3分)下列各数中,属于无理数的是()A.B.1.414 C.D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】解:=2是有理数;是无理数;故选:C.【点评】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.9.(2019,山东淄博,4分)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.B.2 C.2D.6【分析】根据图形可以求得图中阴影部分的面积,本题得以解决.【解答】解:由题意可得,大正方形的边长为=2,小正方形的边长为,∴图中阴影部分的面积为:×(2﹣)=2,故选:B.【点评】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.10. (2019•湖南岳阳•4分)分别写有数字、、﹣1.0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是.【分析】直接利用无理数的定义结合概率求法得出答案. 【解答】解:∵写有数字、、﹣1.0、π的五张大小和质地均相同的卡片,、π是无理数,∴从中任意抽取一张,抽到无理数的概率是:. 故答案为:.【点评】此题主要考查了概率公式以及无理数的定义,正确把握相关定义是解题关键. 11. (2019•甘肃武威•3分)下列整数中,与最接近的整数是( ) A .3B .4C .5D .6【分析】由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.【解答】解:∵32=9,42=16, ∴3<<4,10与9的距离小于16与10的距离, ∴与最接近的是3.故选:A .【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.12. (2019•广东•3分)实数A.b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a >bB .|a | < |b |C .a +b >0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负. 【考点】数与代数式的大小比较,数轴的认识13. (2019•甘肃•3分)在0,2,﹣3,﹣这四个数中,最小的数是( )A.0 B.2 C.﹣3 D.﹣【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3<﹣<0<2,所以最小的数是﹣3.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.14. (2019•湖北天门•3分)下列各数中,是无理数的是()A.3.1415 B.C.D.【分析】根据无理数的定义:无限不循环小数进行判断,=2是有理数;【解答】解:=2是有理数,是无理数,故选:D.【点评】本题考查无理数的定义;能够准确辨识无理数是解题的关键.15 (2019•湖北武汉•3分)实数2019的相反数是()A.2019 B.﹣2019 C.D.【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:﹣2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.16. (2019•山东省滨州市•3分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x3÷x2=x D.(2x2)3=6x6【考点】合并同类项法则以及同底数幂的除法【分析】分别利用合并同类项法则以及同底数幂的除法运算法则和积的乘方运算法则等知识分别化简得出即可.【解答】解:A.x2+x3不能合并,错误;B.x2•x3=x5,错误;C.x3÷x2=x,正确;D.(2x2)3=8x6,错误;故选:C.【点评】此题主要考查了合并同类项法则以及同底数幂的除法运算法则和积的乘方运算法则等知识,正确掌握运算法则是解题关键.17 (2019•山东省德州市•4分)下列运算正确的是()A.(﹣2a)2=﹣4a2B.(a+b)2=a2+b2C.(a5)2=a7D.(﹣a+2)(﹣a﹣2)=a2﹣4【考点】积的乘方【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【解答】解:(﹣2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(﹣a+2)(﹣a﹣2)=a2﹣4,故选项D符合题意.故选:D.【点评】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.18. (2019甘肃省陇南市)(3分)下列整数中,与最接近的整数是()A.3 B.4 C.5 D.6【分析】由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.【解答】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.19. (2019•山东省聊城市•3分)下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a20【考点】合并同类项法则以及同底数幂的除法【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.【解答】解:A.a6+a6=2a6,故此选项错误;B.2﹣2÷20×23=2,故此选项错误;C.(﹣ab2)•(﹣2a2b)3=(﹣ab2)•(﹣8a6b3)=4a7b5,故此选项错误;D.a3•(﹣a)5•a12=﹣a20,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.20 (2019•山东省滨州市•3分)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为()A.4 B.8 C.±4 D.±8【考点】同类项【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.【解答】解:由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.二.填空题1. (2019•山东省济宁市 •6分)计算:6sin 60°﹣+()0+|﹣2018|【考点】实数的运算【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:原式=6×,=2019.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 2. (2019•广东•4分)计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算 3. (2019•湖南长沙•3分)式子在实数范围内有意义,则实数x 的取值范围是 x ≥5 .【分析】直接利用二次根式有意义的条件进而得出答案. 【解答】解:式子在实数范围内有意义,则x ﹣5≥0,故实数x 的取值范围是:x ≥5. 故答案为:x ≥5.【点评】此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键. 4 .(2019,四川成都,4分)估算: 7.37 .(结果精确到1) 【解析】7.37比36大一点,故答案为65.(2019•浙江宁波•4分)请写出一个小于4的无理数: . 【分析】由于15<16,则<4. 【解答】解:∵15<16, ∴<4, 即为小于4的无理数. 故答案为.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.6.(2019•浙江金华•6分)计算:|-3|-2tan 60°+ +()-1【答案】 解:原式=3-2+2+3=6.【考点】实数的运算,负整数指数幂的运算性质,特殊角的三角函数值,实数的绝对值【解析】【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.三.解答题1.(2019•浙江衢州•6分)计算:|-3|+(π-3)0- +tan45°【答案】解:原式=3+1-2+1 =3【考点】算术平方根,实数的运算,0指数幂的运算性质,特殊角的三角函数值,实数的绝对值【解析】【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.2 (2019▪贵州毕节▪8分)计算:|﹣|+(﹣1)2019+2﹣1﹣(2﹣)0+2cos45°.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=﹣1+﹣1+2×=﹣1【点评】此题主要考查了实数运算,正确化简各数是解题关键.3.(2019▪广西池河▪6分)计算:30+﹣()﹣2+|﹣3|.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.【解答】解:原式=1+2﹣4+3=2【点评】此题主要考查了实数运算,正确化简各数是解题关键.4.(2019▪贵州黔东▪8分)计算:|﹣|+(﹣1)2019+2﹣1﹣(2﹣)0+2cos45°.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=﹣1+﹣1+2×=﹣1【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2019▪湖北黄石▪7分)计算:(2019﹣π)0+|﹣1|﹣2sin45°+()﹣1.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1+﹣1﹣2×+3=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键..6.(2019•浙江绍兴•4分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.【分析】(1)根据实数运算法则解答;【解答】解:(1)原式=4×+1﹣4﹣2=﹣3;7. (2019•湖北十堰•5分)计算:(﹣1)3+|1﹣|+.【分析】原式利用乘方的意义,绝对值的代数意义,以及立方根定义计算即可求出值.【解答】解:原式=﹣1+﹣1+2=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8. (2019•湖北孝感•6分)计算:|﹣1|﹣2sin60°+()﹣1+.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9. (2019•湖南衡阳•6分)()﹣3+|﹣2|+tan60°﹣(﹣2019)0【分析】直接利用特殊角的三角函数值以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=8+2﹣+﹣1=9.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10. ( 2019甘肃省兰州市)(本题5分)计算:|-2|-(3+1)0+(-2)2-tan450 .【答案】4.【考点】实数的计算.【考察能力】运算求解能力.【难度】简单.【解析】解:原式=2-1+4-1=4.11. (2019甘肃省陇南市)(6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)0【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)0,=4﹣(2﹣)﹣2×+1,=4﹣2+﹣+1,=3.【点评】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.12. (2019甘肃省天水市)(1)计算:(-2)3+-2sin30°+(2019-π)0+|-4|(2)先化简,再求值:(-1)÷,其中x的值从不等式组的整数解中选取.【答案】解:(1)原式=-8+4-2×+1+4-=-8+4-1+1+4-=-;(2)原式=•=-•=,解不等式组得-1≤x<3,则不等式组的整数解为-1.0、1.2,∵x≠±1,x≠0,∴x =2, 则原式==-2.【解析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出其整数解,再选取使分式有意义的x 的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式和实数的混合运算顺序和运算法则及解一元一次不等式组的能力.13. (2019•江苏苏州• 5分)计算:()()2322π+---【解答】解:321=+-原式4=14. (2019•湖南长沙•6分)计算:|﹣|+()﹣1﹣÷﹣2cos 60°.【分析】根据绝对值的意义、二次根式的除法法则、负整数指数幂的意义和特殊角的三角函数值进行计算. 【解答】解:原式=+2﹣﹣2×=+2﹣﹣1=1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 15. (2019•湖南怀化•8分)计算:(π﹣2019)0+4sin 60°﹣+|﹣3|【分析】先计算零指数幂、代入三角函数值、化简二次根式、取绝对值符号,再计算乘法,最后计算加减可得. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.【点评】本题主要考查实数的运算,解题的关键是掌握零指数幂的规定、熟记特殊锐角三角函数值及二次根式与绝对值的性质.16. (2019•湖南邵阳•8分)计第:﹣()﹣1+|﹣2|cos 60° 【分析】分别化简每一项,再进行运算即可;【解答】解:﹣()﹣1+|﹣2|cos 60°=3﹣3+2×=1; 【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.17.(2019,山西,5分)计算:02)2(60tan 3)21(27-+︒--+-π【解析】原式=5133433=+-+18 .(2019,四川成都,6分)计算:|31|1630cos 2)2(0-+-︒--π. 413431)13(4232-1-=-+--=-+-⨯=解:原式 19. (2019•湖南湘西州•6分)计算:+2sin 30°﹣(3.14﹣π)0 【分析】直接利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简得出答案.【解答】解:原式=5+2×﹣1=5+1﹣1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20 (2019•湖南岳阳•6分)计算:(﹣1)0﹣2sin 30°+()﹣1+(﹣1)2019 【分析】直接利用特殊角的三角函数值以及负指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2×+3﹣1=1﹣1+3﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21. (2019•江苏泰州•12分)(1)计算:(﹣)×;【分析】(1)利用二次根式的乘法法则运算;【解答】解:(1)原式=﹣=4﹣=3;【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22 (2019•湖南株洲•6分)计算:|﹣|+π0﹣2cos30°.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=+1﹣2×=+1﹣=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23. (2019•江苏连云港•6分)计算(﹣1)×2++()﹣1.【分析】分别根据有理数乘法的法则、二次根式的性质以及负整数指数幂化简即可求解.【解答】解:原式=﹣2+2+3=3.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的化简以及负整数指数幂.24. (2019•甘肃武威•6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)0【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)0,=4﹣(2﹣)﹣2×+1,=4﹣2+﹣+1,=3.【点评】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.25. (2019•甘肃•4分)计算:(﹣)﹣2+(2019﹣π)0﹣tan 60°﹣|﹣3|.【分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4+1﹣, =1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.26. (2019•广东深圳•5分)计算:01)14.3()81(60cos 2-9-++︒-π 【答案】解:原式=3-1+8+1=11【考点】实数运算27. (2019•广西贵港•10分)(1)计算:﹣(﹣3)0+()﹣2﹣4sin 30°; (2)解不等式组:,并在数轴上表示该不等式组的解集.【分析】(1)先计算算术平方根、零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2﹣1+4﹣4×=2﹣1+4﹣2=3;(2)解不等式6x ﹣2>2(x ﹣4),得:x >﹣,解不等式﹣≤﹣,得:x ≤1,则不等式组的解集为﹣<x ≤1,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
2017年全国中考数学真题分类 实数的运算(含二次根式 三角函数特殊值的运算) 2017(选择题)
2017年全国中考数学真题分类实数的运算(含二次根式 三角函数特殊值的运算)选择题一、选择题1.(2017山东滨州,1,3分)计算-(-1)+|-1|,结果为A .-2B .2C .0D .-1答案:B ,解析:根据“负负得正”可知,-(-1)=1;根据“负数的绝对值等于它的相反数”可得,|-1|=1,所以原式=1+1=2.2. (2017山东枣庄1,3分)下列计算,正确的是A B .13222-=-C D .-1122=()答案:D A 错误;13222-=,B ,C 错误;-1122=(),D 正确.故本题选D . 3. (2017山东威海,4,3分)计算-( 2 )2+( 2 +π)0+(-12)-2的结果是( ) A . 1 B .2 C . 114 D .3答案:D ,解析:原式=-2+1+4=3.4. (2017四川自贡,1,3分)计算(-1)2017的结果( )A .-1B .1C .-2017D .2017 答案:A ,解析:(-1)2017表示2017个-1相乘,故(-1)2017=-1.5. (2017江苏苏州,1,3分)(—21)÷7的结果是A .3B .—3C . 13D .13- 答案:B ,解析:根据有理数除法法则,同号得正,异号得负;除以一个不为0的数等于乘以其倒数.)-2的结果是( )6. 8.(2017湖北荆门,8,3分)4(12A.28 B.0 C.-.-8答案:C,解析:原式=4-4=-C.7.(2017山西,1,3分)计算-1+2的结果是()[www^.#z&zstep*.@com]A.-3 B.-1 C.1 D.3答案:C,解析:异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,所以-1+2=+(2-1)=1..8. 1.(2017天津,3分)计算(-3)+5的结果等于A.2 B.-2 C.8 D.-8答案:A,解析:根据有理数的加法法则“绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
中考数学真题分类汇编(第一期)专题2实数(无理数,平方根,立方根)试题(含解析)
实数(无理数,平方根,立方根)一、选择题1.(2018•山东淄博•4分)与最接近的整数是()A.5 B.6 C.7 D.8【考点】2B:估算无理数的大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.【点评】此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.2.(2018•山东枣庄•3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.3. (2018•山东菏泽•3分)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【考点】26:无理数;22:算术平方根.【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.(2018·山东潍坊·3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣【分析】直接利用绝对值的性质化简得出答案.【解答】解:|1﹣|=﹣1.故选:B.【点评】此题主要考查了实数的性质,正确掌握绝对值的性质是解题关键.5. (2018•株洲市•3分)9的算术平方根是( )A. 3B. 9C. ±3D. ±9【答案】A【解析】分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.详解:∵32=9,∴9的算术平方根是3.故选:A.点睛:此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.6. (2018年江苏省南京市•2分)的值等于()A.B.﹣ C.± D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.7. (2018年江苏省南京市•2分)下列无理数中,与4最接近的是()A. B. C. D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵ =4,∴与4最接近的是:.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.8. (2018年江苏省泰州市•3分)下列运算正确的是()A. +=B. =2C.•=D.÷=2【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9. (2018·四川自贡·4分)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.x+2y=3xy C. D.(﹣a3)2=﹣a6【分析】根据相关的运算法则即可求出答案.【解答】解:(A)原式=a2﹣2ab+b2,故A错误;(B)原式=x+2y,故B错误;(D)原式=a6,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.10.(2018•湖北荆门•3分)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C .【点评】本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.11.(2018•湖北黄石•3分)下列各数是无理数的是( )A .1B .﹣0.6C .﹣6D .π【分析】依据无理数的三种常见类型进行判断即可.【解答】解:A 、1是整数,为有理数;B 、﹣0.6是有限小数,即分数,属于有理数;C 、﹣6是整数,属于有理数;D 、π是无理数;故选:D .【点评】本题主要考查的是无理数的定义,熟练掌握无理数的三种常见类型是解题的关键.12.(2018•湖北恩施•3分)64的立方根为( )A .8B .﹣8C .4D .﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C .【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.13.(2018·浙江临安·3分)化简的结果是( ) A .﹣2 B .±2 C .2D .4 【考点】二次根式的化简【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案.【解答】解:==2. 故选:C .【点评】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.14.(2018·重庆(A )·4分)估计(1230246的值应在 A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间【考点】二次根式的混合运算及估算无理数的大小【分析】先将原式化简,再进行判断.()11123024=23024=252666-⋅⨯-⨯-,而25=45=20⨯,20在4到5之间,所以252-在2到3之间【点评】此题主要考查二次根式的混合运算及估算无理数的大小,属于中考当中的简单题。
江苏2017年中考真题《1.2实数的运算及大小比较》练习含解析
第一章数与式第2课时实数的运算及大小比较江苏近4年中考真题精选(2013~2016)命题点1 平方根、算术平方根、立方根(2016年5次,2015年3次,2014年4次,2013年4次)1.(2015南京7题2分)4的平方根是________;4的算术平方根是________.2.(2013镇江5题2分)若x3=8,则x=________.命题点2 实数的大小比较(2016年3次,2015年2次,2014年扬州1题,2013年3次)3.(2014扬州1题3分)下列各数比-2小的是 ( )A. -3B. -1C. 0D. 14.(2016淮安1题3分)下列四个数中最大的数是 ( )A. -2B. -1C. 0D. 15.(2013盐城1题3分)-2、0、1、-3四个数中,最小的数是 ( )A. -2B. 0C. 1D. -36.(2013连云港6题3分)如图,数轴上的点A、B分别对应实数a、b,下列结论正确的是( )第6题图A. A>bB. |a|>|b|C. -a<bD. a+b<07.(2015常州6题2分)已知a=22,b=33,c=55,则下列大小关系正确的是( )A. a>b>cB. c>b>aC. b>a>cD. a>c>b8.(2015镇江7题2分)数轴上实数b的对应点的位置如图所示,比较大小:12b+1________0(用“<”或“>”填空).第8题图9.(2016南京10题2分)比较大小:5-3________5-22.(填“>”“<”或“=”号)命题点3 实数的运算(2016年13次,2015年13次,2014年14次,2013年14次)10.(2016常州2题2分)计算3-(-1)的结果是 ( )A. -4B. -2C. 2D. 411.(2013南京1题2分)计算12-7×(-4)+8÷(-2)的结果是 ( )A. -24B. -20C. 6D. 3612.2014镇江2题2分)计算:(-13)×3________. 13.(2016镇江2题2分)计算:(-2)3=________.14.(2013南京16题3分)计算(1-12-13-14-15)(12+13+14+15+16)-(1-12-13-14-15-16)(12+13+14+15)的结果是________. 15.(2015淮安19(1)题6分)计算:|-4|+23+3×(-5).16.(2016淮安19(1)题5分)计算:(3+1)0+|-2|-3-1.17.(2016扬州19(1)题4分)计算:(-13)-2-12+6cos30°.18.(2016徐州19(1)题5分)计算:(-1)2016+π0-(13)-1+38.19.(2014南通19(1)题5分)计算:(-2)2+(2-32)0-4-(12)-1.20.(2015宿迁17题6分)计算:cos60°-2-1+(-2)2-(π-3)0.21.(2014泰州17(1)题6分)计算:-24-12+|1-4sin60°|+(π-23)0.答案1. ±2,2 【解析】根据平方根的定义和算术平方根的定义可知:4的平方根为±2,算术平方根为2.2. 2 【解析】∵2的立方等于8,∴8的立方根等于2.3. A 【解析】比-2小的数是负数,且绝对值大于2.分析选项,只有A 符合.4. D 【解析】∵正数>0>负数,∴1最大.5. D 【解析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.-2、0、1、-3四个数中,最小的数是-3.故选D.6. C 【解析】根据数轴可知,a <0<b ,且|a |<|b |,故A 、B 、D 错误,C 正确.7. A 【解析】∵a =22=15230=45030,b =33=10330=30030,c =55=6530=18030,又∵450>300>180,∴a >b >c .8. > 【解析】由数轴可知,-2<b ,∴12b >-1,∴12b +1>0. 9. < 【解析】∵5-3=25-62,且25-62和5-22的分母都是2,∴只需比较分子25-6和5-2的大小即可,∵(25-6)-(5-2)=5-4=5-16<0, ∴5-3<5-22. 10. D 【解析】本题考查了有理数的减法运算.3-(-1)=3+1=4.11. D 【解析】可依据实数运算律,先乘除后加减,再从左向右依次进行.即12-7×(-4)+8÷(-2)=12-(-28)+(-4)=12+28-4=36. 12. -1 【解析】本题考查有理数的乘法.两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0.∴(-13)×3=-(13×3)=-1. 13. -8 【解析】本题主要考查了幂的运算.即(-2)3=(-2)×(-2)×(-2)=-8. 14. 16 【解析】原式=(1-12-13-14-15)(12+13+14+15)+16(1-12-13-14-15)-(12+13+14+15)(1-12-13-14-15)+16(12+13+14+15)=16(1-12-13-14-15)+16(12+13+14+15)=16. 15. 解:原式=4+8-15=-3.16. 解:原式=1+2-13=83. 17. 解:原式=9-23+6×32=9-23+33=9+ 3. 18. 解:原式=1+1-3+2=1.19. 解:原式=4+1-2-2=1.20. 解:原式=12-12+2-1=1. 21. 解:原式=-16-23+|1-4×32|+1=-16-23+23-1+1 =-16.。
2017年中考数学真题分类汇编 实数
实数一、选择题1.(2017·河北)下列运算结果为正数的是( )A .2(3)-B .32-÷C .0(2017)⨯-D .23-【答案】A.【解析】试题分析:因为负数的偶数次方是正数,异号两数相除商为负,零乘以任何数都等于0,较小的数减去较大的数差为负数,故答案选A.考点:乘方,有理数的除法,有理数的乘法,有理数的减法.2.(2017·河北)把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.13【答案】D. 【解析】试题分析:科学记数法中,a 的整数位数是一位,故答案选D. 考点:科学记数法.3.(2017·河北)如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分【答案】B.考点:绝对值,倒数,相反数,立方根,平均数.4.(2017·江苏南京)计算12+(-18)÷(-6)-(-3)×2的结果是( ) A . 7 B . 8 C . 21 D .36 【答案】C考点:有理数的混合运算 5.(2017·江苏南京)计算的结果是( )A .B .C .D . 【答案】C 【解析】试题分析:根据乘方的意义及幂的乘方,可知=.故选:C考点:同底数幂相乘除()3624101010⨯÷310710810910623410(10)10⨯÷664810101010⨯÷=6.(2017·河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+-=B .004446++= C .34446++= D .14446-÷+= 【答案】D.考点:算术平方根,立方根,0指数幂,负数指数幂.7.(2017·安徽)12的相反数是( )A .12-B .12-C .2D .-2【答案】B【解析】只有符号不同的两个数称互为相反数.故选答案B. 【考点】 相反数的定义.8.(2017·安徽)计算32()a -的结果是( )A .6aB .6a -C .5a -D .5a【答案】A 【解析】考点: 幂的乘方的计算法则.9.(2017·安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯D .120.1610⨯ 【答案】C【解析】试题分析:1600亿=811160010=1.610⨯⨯.故选答案C.考点: 科学记数法的书写规则.10.(2017·山西)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨 【答案】C .【解析】试题分析:将186亿用科学记数法表示为:101.8610⨯.故选C . 考点:科学记数法—表示较大的数.11. (2017·江苏南京)若,则下列结论中正确的是 ( )A .B . C. D . 【答案】B 【解析】试题分析:根据二次根式的近似值可知,而,可得1<a < 4. 故选:B考点:二次根式的近似值12.(2017·江苏南京)若方程的两根为和,且,则下列结论中正确的是 ( )A .是19的算术平方根 B.是19的平方根 C.是19的算术平方根 D .是19的平方根 【答案】C考点:平方根13.(2017·北京)实数在数轴上的对应点的位置如图所示,则正确的结论是( )310a <<13a <<14a <<23a <<24a <<134=2<<3=9104<<()2519x -=a b a b >a b 5a -5b +,,,a b c dA .B . C. D . 【答案】C.考点:实数与数轴14.(2017·重庆A 卷)在实数﹣3,2,0,﹣4中,最大的数是( ) A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.15.(2017·重庆A 卷)计算x 6÷x 2正确的解果是( ) A .3 B .x 3 C .x 4 D .x 8 【答案】C.【解析】试题解析:x 6÷x 24.故选C . 考点:同底数幂的除法.16.(2017·重庆A 卷)估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间4a >-0bd >a b >0b c +>【答案】B . 【解析】试题解析:∵3<10<4, ∴4<10+1<5. 故选B .考点:无理数的估算.17.(2017·重庆B 卷)5的相反数是( )A .﹣5B .5C .D . 【答案】A . 【解析】试题分析:5的相反数是﹣5,故选A . 考点:相反数.18.(2017·重庆B 卷)计算结果正确的是( ) A . B . C . D . 【答案】B . 【解析】试题分析:=.故选B . 考点:同底数幂的除法.19.(2017·重庆B 卷)估计的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 【答案】C .15-1553a a ÷a 2a 3a 4a 53a a ÷2a 131+【解析】试题分析:∵3<<4,∴4<<5,即在4和5之间,故选C .考点:估算无理数的大小.20.(2017·浙江金华)下列各组数中,把两数相乘,积为的是( ) A .和 B .和 C .和D .和【答案】C. 【解析】试题分析:选项A ,2×(-2)4,该选项错误;选项B ,-2×1,该选项错误; 选项C ,=1,故该选项正确;选项D , 3,该选项错误;故选C.21.(2017·浙江金华)在下列的计算中,正确的是( ) A . B. C. D . 【答案】B.22.(2017·山东青岛)的相反数是( ).13131+131+122-2-1233333-12333⨯3(3)⨯-325m m m +=623÷=m m m ()3326m m =()2211m m +=+A.8B.C.D.【答案】C【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:的相反数是.故选:C考点:相反数定义23.(2017·山东青岛)计算的结果为().A.B.C.D.【答案】D【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:故选:D考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算24.(2017·广西贵港)7的相反数是()A.7 B.﹣7 C.D.﹣【答案】B.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【考点】相反数.25.(2017·广西贵港)下列二次根式中,最简二次根式是()A.B.C.D.【答案】A【解答】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.【考点】最简二次根式.26.(2017·湖北荆州)下列根式是最简二次根式的是()A.B.C. D.【考点】74:最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.27.(2017·广西贵港)下列运算正确的是()A.3a23a3 B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【答案】D【解答】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.A.3a2与a不是同类项,不能合并,所以A错误; B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.28.(2017·甘肃)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定6﹣1=5.【解答】解:393000=3.93×105.故选:B.29.(2017·甘肃)4的平方根是()A.16 B.2 C.±2 D.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.30.(2017·甘肃)下列计算正确的是()A.x224B.x8÷x24 C.x2•x36D.(﹣x)2﹣x2=0【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式6,故B不正确;(C)原式5,故C不正确;(D)原式2﹣x2=0,故D正确;故选(D)31.(2017·贵州黔东南州)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0, ∴|﹣22. 故选B .32.(2017·河南)下列各数中比1大的数是( ) A .2 B .0 C .-1 D .-3 【答案】A【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A. 考点:有理数的大小比较.33.(2017·河南)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为( )A .B .C .D . 【答案】B.考点:科学记数法.[来源34.(2017·湖南湘潭)函数2y x =+中,自变量x 的取值范围是( ) A .2x ≥- B .2x <- C. 0x ≥ D .2x ≠- 【答案】A 【解析】试题分析:2+x 中,2≥2,∴2x ≥-故选C1274.410⨯137.4410⨯1374.410⨯147.4410⨯考点:二次根式35.(2017·辽宁沈阳)7的相反数是( ) A.-7B.47-C.17D.7【答案】A. 【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A. 考点:相反数.36.(2017·辽宁沈阳)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
《实数(无理数,平方根,立方根)》中考专练附答案 (2)
=﹣1;
〔2〕原式= ﹣
=
=
=a+1.
【考点】:有理数的计算,因式分解,分式化简,三角函数
5.〔2 019·江苏盐城·6分〕计算:|﹣2|+〔sin36°﹣ 〕0﹣ +tan45°.
解:原式=2+1﹣2+1=2.
【考点】实数的运算;零指数幂;特殊角的三角函数值.
6.〔2021•江西•6分〕〔1〕计算:﹣〔﹣1〕+|﹣2|+〔 ﹣2〕0;
实数(无理数,平方根,立方根)
一.选择题
1.〔2021•天津•3分〕估计 的值在
和3之间和4之间和5之间和6之间
【答案】D
【解析】因为 ,所以 ,应选D.
2.〔2021•江苏扬州•3分〕以下个数中,小于-2的数是〔A〕
A.﹣ B.﹣ C.﹣ D.﹣1
【考点】:数的比拟大小,无理数
【解析】:根据二次根式的定义确定四个选项与-2的大小关系,
【解答】〔1〕|﹣ |+〔﹣1〕2021+2sin30°+〔 ﹣ 〕0
= +〔﹣1〕+2× +1
= +〔﹣1〕+1+1
= .
2.〔2021•江苏无锡•8分〕计算:
〔1〕|﹣3|+〔 〕﹣1﹣〔 〕0;
〔2〕2a3•a3﹣〔a2〕3.
【分析】〔1〕直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;
〔2〕直接利用幂的乘方运算法那么以及单项式乘以单项式运算法那么分别化简得出答案.
【解答】解:〔1〕原式=3+2﹣1=4;
〔2〕原式=2a6﹣a6=a6.
【点评】此题主要考查了幂的乘方运算以及单项式乘以单项式运算、实数运算,正确掌握相关运算法那么是解题关键.
2017年中考数学试题(含答案解析) (2)
鄂州市2017年中考数学试卷数学试题注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-错误!未找到引用源。
1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109错误!未找到引用源。
C.23⨯107错误!未找到引用源。
D.2.3⨯109错误!未找到引用源。
3.下列运算正确的是()A. 5x -3x =2B. 错误!未找到引用源。
(x -1)2= x2 -1C. 错误!未找到引用源。
(-2x2)3= -6x6D. x6÷x2= x4错误!未找到引用源。
4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x x x x ⎧--⎪⎨⎪-<-⎩≤下列说法正确的是( )A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x ≤76C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC =EA , 若∠CAE =30°,则∠BAF =( ) A. 30° B. 40°C. 50°D. 60°7.已知二次函数y = (x +m )2 - n 的图象如图所示,则一次函数y = mx + n 与反比例函数mny x=的图象可能是( )(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min 小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y (单位:m )与小东打完电话后的步行时间t (单位:min )之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m ; (2)小东与妈妈相遇后,妈妈回家速度是50m/min ; (3)小东打完电话后,经过27min 到达学校; (4)小东家离学校的距离为2900m. 其中正确的个数是( ) A .1个B .2个C .3个D .4个9.如图抛物线2y ax bx c =++错误!未找到引用源。
2017年全国中考数学真题《二次根式》分类汇编解析
2017年全国中考数学真题《二次根式》分类汇编解析二次根式二次根式是指含有二次根号“√”的式子,其中被开方数a必须是非负数。
最简二次根式是指被开方数的因数是整数、因式是整式,且被开方数中不含能开得尽方的因数或因式的二次根式。
化二次根式为最简二次根式的方法和步骤:1.如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
2.如果被开方数是整数或整式,先将它们分解因数或因式,然后把能开得尽方的因数或因式开出来。
同类二次根式是指几个二次根式化成最简二次根式以后,它们的被开方数相同。
二次根式的性质:1.√(a^2) = a,其中a必须是非负数。
2.√a = ±a,其中a可以是任意实数。
3.√(ab) = √a * √b,其中a和b必须是非负数。
4.√(a/b) = √a / √b,其中a和b必须是非负数。
二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
选择题:1.同类二次根式是(C)。
2.计算3√(8)的结果是(B)。
3.下列计算正确的是(C)。
4.若二次根式有意义,则a的取值范围是(A)。
5.在函数y = (x-3)/(x-4)中,自变量x的取值范围是(B)。
6.下列计算正确的是(D)。
7.运算结果正确的概率是(B)。
8.要使式子有意义,则x的取值范围是(C)。
9.下列计算结果正确的是(无法判断)。
1.选D。
2+2=4,不等于2;是一个数字,不等于2;-2a+a+1=-a+1,不等于a+1;只有选项D符合等式。
2.选A。
|a|表示a的绝对值,所以|a|=a或|a|=-a,因此|a|+|b|=a+b或|a|-b=a-b,化简后得到-2a+b。
3.选A。
a^2*a^5=a^7,不等于a^10;a^3^4=a^12,等于a^12;-a^3^4=-a^12,等于a^12;a^1^0=(a^5)^2,不等于a^12.二、填空题1.x≠1,-∞<x<1.2.x≥-2.3.-16/3.4.x≥0.5.-√6.6.2/3.7.(x-1)(x+3)=0,解得x=1或x=-3.8.1/2.三、解答题1.计算过程:2+2017-|-2|+1=2018.答案为2018.2.计算过程:(1/2)-(1/2)-sin45°+2=3/2-√2.答案为3/2-√2.3.计算过程:(-1)-2*sin60°-(-2)=(-1)-√3-(-2)=1-√3.答案为1-√3.4.计算过程:|-3|+3*(-3)-8-(2017-π)+tan30°=3*(-3)-2014+√3/3=-2015+√3/3.答案为-2015+√3/3.5.计算过程:(1/2)-(1/2)-[(1/2)-1]^2=1/2-1/4=1/4.答案为1/4.6.(1) 计算过程:p=(5+6+9)/2=10,S=sqrt(10*(10-5)*(10-6)*(10-9))=sqrt(120)=2sqrt(30)。
2017全国中考数学真题分类-数的开方和二次根式(选择题+填空题+解答题)解析版
2017全国中考数学真题分类知识点06数的开方和二次根式(选择题+填空题+解答题)解析版一、选择题1. (2017山东滨州,4,3分)下列计算:(1)()2=2,(2)=2,(3)(-)2=12,(4)1=-,其中结果正确的个数为A .1B .2C .3D .4答案:D ,解析:(1)根据“2a =”可知2=2成立;(2a =2成立;(3)根据“(ab )2=a 2b 2”可知,计算(-2,可将-2(4)根据“(a +b )(a -b )=a 2-b 2”,=22-=2-3=-1.2. (2017四川广安,5,3分)要使二次根式2x -4 在实数范围内有意义,则x 的取值范围是( )A .x >2B .x ≥2C .x <2D .x =2答案:B ,解析:∵二次根式42-x 有意义,∴2x -4≥0,解得x ≥2.故选B .3. (2017山东枣庄4,3分)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是A .-2a +bB .2a -bC .-bD .b答案:A ,解析:如图所示: a <0,a -b <0,则|a |a -(a -b )=-2a +b .故选A .4. (2017四川泸州,9,3分)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾进行过深入研究.古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S p =2a b c ++;我国南宋时期数学家秦九韶(约1202—1261)曾利用三角形的三边求其面积的秦九韶公式S =12.若一个三角形的三边长分别为2,3,4,则其面积是( )A .8B .4C .2D .2答案:B ,解析:∵a =2,b =3,c =4,∴p =2a b c ++=2342++=92,得4.5. (2017四川成都,3x 的取值范围是A .x ≥1B .x >1C .x ≤1D .x <1答案:A ,解析:由x -1≥0得.x ≥1. 6. (2017重庆,5,4分)估计110+的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 答案:B 解析:先找出与10相邻的两个完全平方数,然后开方,可以确定10在被夹的这两个数之间,之后再利用不等式性质①确定出110+的取值范围.∵9<9<10,∴16109<<,则3<10<4 ,∴3+1<110+<4+1,即4<110+<5,故110+在4与5之间,故选择B .7. (2017山东济宁,6,31在实数范围内有意义,则x 满足的条件是A .12x ≥B .12x ≤C .12x =D .12x ≠答案:C ,解析:根据“a ≥0”,所以2x -1≥0,1-2x ≥0,由此可得12x =. 8. (2017重庆B ,5,4分)估计113+的值在A .2到3之间B .3到4之间C .4到5之间D .5到6之间 答案:C ,解析:∵3<13<4,∴4<13+1<5,故答案为C .9. 6.(2017江苏连云港,6,3A B 26C .228±=D 3答案:D ,解析:根据“实数与数轴上的点是一一对应”,A 错误;8表示8的算术平方根,化简结果为228=故B 、 C 选项错误;∵2.8<8<2.93,因此D 选项正确.10. 5.(2017江苏淮安,5,3分)下列式子为最简二次根式的是( )AB C D答案:A ,解析:根据最简二次根式的定义可知,5是最简二次根式;12的被开方数12中含有开得尽方的因数4,不是最简二次根式;2a 的被开方数2a 中含有开得尽方的因式2a ,不是最简二次根式;1a 的被开方数1a 中含有分母a ,不是最简二次根式.11. (2017山东潍坊,9,3分)若代数式12--x x 有意义,则实数x 的取值范围是( ) A .x ≥1 B .x ≥2 C .x >1 D .x >2答案:B ,解析:由题意,得⎩⎨⎧>-≥-,01,02x x 解得x ≥2.12. 4.(2017浙江温州,4,4分)下列选项中的整数,与最接近的是A .3B .4C .5D .6答案:B ,解析: ∵4.1<<4.2, ∴ 最接近的是4.13. 3.(2017甘肃酒泉,3,3分)4的平方根是( )A.16B.2C.2D.2 答案:C ,解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根.此题中,∵(±2)2=4,∴4的平方根是±2.故选C .14. 7.(2017湖北黄冈,7,3分)16的算术平方根是 .答案:4,解析:16164=.15. 2.(2017湖北荆门,2,3分)在函数y 25x -中,自变量x 的取值范围是( ) A .x >5 B .x ≥5 C .x ≠5 D .x <5答案:A ,解析:这里自变量的取值范围应满足:(1)分母不为0;(2)被开方数不能是负数.所以x -5>.解得x >5.故选A .16.1.(2017江苏泰州,1,3分)2的算术平方根是( )A.2 2 C.2 D.2答案:B ,解析:根据算术平方根的定义可知,2的算术平方根是2.17. 6.(2017山东烟台,6,3分)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为( )A. 12B. 132C. 172D. 252答案:C 23(3)642-=172. 18. 6.(2017天津,3分)38A .4和5之间B .5和6之间C .6和7之间D .7和8之间答案:C ,解析:由36<38<49,可得6387,故选C .19. (2017湖南邵阳,1,3分)25 的算术平方根是( )A . 5B . ±5C .-5D .25答案:A ,解析:根据算术平方根的概念做出判断. 如果正数x 的平方等于a (a >0),则正数x 就是a 的算术平方根,由此即可解决问题.20. (2017湖南邵阳,5,3分)函数 y =5-x 中,自变量 x 的取值范围在数轴上表示正确的是( )A .B .C .D .答案:B ,解析:二次根式的被开方数必须为非负数,所以x -5≥0;解不等式x -5≥0,得x ≥5,所以,在数轴上从5向右画,并且用实心点,故选B .21. 11.(2017呼和浩特,31-2xx 的取值范围为_______________. 答案:x <12,解析:根据1-2x >0,解得,x <12。
2017届中考数学考前小题狂做专题2实数(无理数,平方根,立方根)(含解析)
实数(无理数,平方根,立方根)一、选择题1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>02.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1083. 的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和64.将0.00025用科学记数法表示为()A.2.5×104B.0.25×10﹣4C.2.5×10﹣4D.25×10﹣55.下列根式中,不是最简二次根式的是()A. B.C.D.6.若+b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.27.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.实数﹣的绝对值是()A.2 B.C.﹣D.﹣9.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数10.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104参考答案1.【考点】实数与数轴.【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.2.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B3.【考点】估算无理数的大小.【分析】根据无理数的大小比较方法得到<<,即可解答.【解答】解:∵<<,即5<<6,∴的运算结果应在5和6两个连续整数之间.故选:D4.【考点】科学记数法—表示较小的数.【分析】根据用科学记数法表示较小的数的方法解答即可.【解答】解:0.00025=2.5×10﹣4,故选:C.【点评】本题考查的是用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.6.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的和为零,可得a、b的值,根据有理数的乘法,可得答案.【解答】解:由+b2﹣4b+4=0,得a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选:D.【点评】本题考查了非负数的性质,利用非负数的和为零得出a、b的值是解题关键.7.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣的绝对值是.故选:B.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.9.【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:A、a<0,故A正确;B、ab<0,故B正确;C、a<b,故C正确;D、乘积为1的两个数互为倒数,故D错误;故选:D.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.10.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:181万=181 0000=1.81×106,故选:B.。
2017年全国中考数学真题《二次根式》分类汇编解析
2017年全国中考数学真题《二次根式》分类汇编解析二次根式考点一、二次根式 (初中数学基础,分值很大)1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥∙=b a b a ab(4))0,0(≥≥=b a bab a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
一、 选择题1.(2017·福建龙岩·4分)与是同类二次根式的是( )A .B .C .D .2.计算3﹣2的结果是( )A .B .2C .3D .63.( 2017河南3分)下列计算正确的是( )A .﹣=B .(﹣3)2=6C .3a 4﹣2a 2=a 2D .(﹣a 3)2=a 54.(2017·重庆市B 卷·4分)若二次根式有意义,则a 的取值范围是( )A .a ≥2B .a ≤2C .a >2D .a ≠2 5.(2017·四川内江)在函数y 3x -x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3且x ≠4 6.(2017·四川南充)下列计算正确的是( )A .=2B .=C .=xD .=x7. (2017·黑龙江齐齐哈尔·3分)下列算式①=±3;②=9;③26÷23=4;④=2017;⑤a +a =a 2.运算结果正确的概率是( )A .B .C .D .8.(2017·湖北荆门·3分)要使式子有意义,则x 的取值范围是( )A .x >1B .x >﹣1C .x ≥1D .x ≥﹣1 9.(2017·内蒙古包头·3分)下列计算结果正确的是( )A .2+=2 B .=2 C .(﹣2a 2)3=﹣6a 6 D .(a +1)2=a 2+110.(2017·山东潍坊·3分)实数a ,b 在数轴上对应点的位置如图所示,化简|a |+的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 11. (2017·四川眉山·3分)下列等式一定成立的是( ) A .a 2×a 5=a 10 B . C .(﹣a 3)4=a 12 D .二、 填空题1.(2017·广西桂林·3分)若式子1-x 在实数范围内有意义,则x 的取值范围是 .2.(2017·贵州安顺·4分)在函数21+-=x xy 中,自变量x 的取值范围是 .3.(2017·黑龙江哈尔滨·3分)计算18-221的结果是 .4.( 2017广西南宁3分)若二次根式有意义,则x 的取值范围是 .5. (2017·吉林·3分)化简:﹣= .6. (2017·内蒙古包头·3分)计算:6﹣(+1)2=.7. (2017·青海西宁·2分)使式子有意义的x取值范围是.8. (2017·山东潍坊·3分)计算:(+)=.三、解答题1.(2017·四川攀枝花)计算;+20170﹣|﹣2|+1.2.(2017·四川南充)计算:+(π+1)0﹣sin45°+|﹣2|3.(2017·四川泸州)计算:(﹣1)0﹣×sin60°+(﹣2)2.4.(2017·四川内江)(7分)计算:|-3|3tan30°38-(2017-π)0+(1)-1.25.(2017·四川宜宾)(1)计算;()﹣2﹣(﹣1)2017﹣+(π﹣1)06.(2017·广西桂林·8分)已知任意三角形的三边长,如何求三角形面积? 古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式))()((c p b p a p p s ---=(其中a ,b ,c 是三角形的三边长,2c b a p ++=,S 为三角形的面积),并给出了证明例如:在△ABC 中,a =3,b =4,c =5,那么它的面积可以这样计算: ∵a =3,b =4,c =5∴p ==6∴S ===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC 中,BC =5,AC =6,AB =9 (1)用海伦公式求△ABC 的面积; (2)求△ABC 的内切圆半径r .答案二次根式一、选择题1.(2017·福建龙岩·4分)与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】根据化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【解答】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C2.计算3﹣2的结果是()A.B.2C.3D.6【考点】二次根式的加减法.【分析】直接利用二次根式的加减运算法则求出答案.【解答】解:原式=(3﹣2)=.故选:A.3.(2017河南3分)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2 D.(﹣a3)2=a5【考点】二次根式的加减法;有理数的乘方;合并同类项;幂的乘方与积的乘方.【分析】分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.【解答】解:A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,无法计算,故此选项错误;D、(﹣a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题关键.4.(2017·重庆市B卷·4分)若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2 D.a≠2【考点】二次根式有意义的条件.【专题】计算题;实数.【分析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的范围即可.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A【点评】此题考查了二次根式有意义的条件,二次根式性质为:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(2017·四川内江)在函数y3x-x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4 [答案]D[考点]二次根式与分式的意义。
中考数学复习高频考点精讲精练(全国通用):专题02 实数运算(原卷版)
专题02实数运算一、平方根、算术平方根、立方根【高频考点精讲】1.平方根(1)定义:如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根。
一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根。
(2)求一个数a的平方根的运算叫做开平方,其中a叫做被开方数。
”。
一个正数a的正的平方根表示为“a”,负的平方根表示为“a2.算术平方根(1)定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a。
(2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数。
(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算。
3.立方根(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,即x3=a,那么x叫做a的立方根,记作3a。
(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数,任意数都有立方根。
(3)求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。
注意:“3a”的根指数“3”不能省略,对于立方根,被开方数没有限制,正数、零、负数都有唯一立方根。
4.平方根和立方根的性质(1)平方根的性质:正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
(2)立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0。
【热点题型精练】1.(2022•攀枝花中考)2的平方根是()A.2B.±2C.D.2.(2022•海南模拟)一个正数a的两个平方根是2m﹣1和m+4,则这个正数a=.3.(2022•恩施州中考)9的算术平方根是.4.(2022•贺州中考)若实数m,n满足|m﹣n﹣5|+=0,则3m+n=.5.(2022•宝鸡模拟)的立方根为()A .B .C .D .6.(2022•常州中考)化简:=.二、无理数定义及估算【高频考点精讲】1.无理数定义(1)定义:无限不循环小数叫做无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数(无理数,平方根,立方根)
一、选择题
1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()
A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0
2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()
A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108
3. 的运算结果应在哪两个连续整数之间()
A.2和3 B.3和4 C.4和5 D.5和6
4.将0.00025用科学记数法表示为()
A.2.5×104B.0.25×10﹣4C.2.5×10﹣4D.25×10﹣5
5.下列根式中,不是最简二次根式的是()
A. B.C.D.
6.若+b2﹣4b+4=0,则ab的值等于()
A.﹣2 B.0 C.1 D.2
7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()
A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4
8.实数﹣的绝对值是()
A.2 B.C.﹣D.﹣
9.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()
A.a<0 B.ab<0 C.a<b D.a,b互为倒数
10.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()
A.18.1×105B.1.81×106C.1.81×107D.181×104
参考答案
1.【考点】实数与数轴.
【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.
【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,
∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.
故选:D.
【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.
2.【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左
边起第一个不为零的数字前面的0的个数所决定.
【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,
故选:B
3.【考点】估算无理数的大小.
【分析】根据无理数的大小比较方法得到<<,即可解答.
【解答】解:∵<<,
即5<<6,
∴的运算结果应在5和6两个连续整数之间.
故选:D
4.【考点】科学记数法—表示较小的数.
【分析】根据用科学记数法表示较小的数的方法解答即可.
【解答】解:0.00025=2.5×10﹣4,
故选:C.
【点评】本题考查的是用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
5.【考点】最简二次根式.
【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.
【解答】解:因为==2,因此不是最简二次根式.
故选B.
【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
6.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.
【分析】根据非负数的和为零,可得a、b的值,根据有理数的乘法,可得答案.
【解答】解:由+b2﹣4b+4=0,得
a﹣1=0,b﹣2=0.
解得a=1,b=2.
ab=2.
故选:D.
【点评】本题考查了非负数的性质,利用非负数的和为零得出a、b的值是解题关键.
7.【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,
故选:B.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8.【考点】实数的性质.
【分析】根据负数的绝对值是它的相反数,可得答案.
【解答】解:﹣的绝对值是.
故选:B.
【点评】本题考查了实数的性质,负数的绝对值是它的相反数.
9.【考点】实数与数轴.
【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.
【解答】解:A、a<0,故A正确;
B、ab<0,故B正确;
C、a<b,故C正确;
D、乘积为1的两个数互为倒数,故D错误;
故选:D.
【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.10.【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:181万=181 0000=1.81×106,
故选:B.。