2016年上海市高三数学竞赛试卷答案
2016年上海高考数学试卷(理科)含答案
2016年上海市高考数学试卷(理科)参考答案与试题解析一.选择题(共4小题)1.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.2.(2016•上海)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ【考点】简单曲线的极坐标方程.【专题】数形结合;转化思想;三角函数的求值;坐标系和参数方程.【分析】由图形可知:时,ρ取得最大值,即可判断出结论.【解答】解:由图形可知:时,ρ取得最大值,只有D满足上述条件.故选:D.【点评】本题考查了极坐标方程、数形结合方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(2016•上海)已知无穷等比数列{a n}的公比为q,前n项和为S n,且=S,下列条件中,使得2S n<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7 B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8 D.a1<0,﹣0.8<q<﹣0.7【考点】等比数列的前n项和.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】由已知推导出,由此利用排除法能求出结果.【解答】解:∵,S==,﹣1<q<1,2S n<S,∴,若a1>0,则,故A与C不可能成立;若a1<0,则q n,故B成立,D不成立.故选:B.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【考点】命题的真假判断与应用.【专题】分类讨论;转化思想;函数的性质及应用;简易逻辑.【分析】①不成立.可举反例:f(x)=.g(x)=,h (x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h(x)=h(x+T),f(x)=f (x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g (x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二.填空题(共14小题)5.(2016•上海)设x∈R,则不等式|x﹣3|<1的解集为(2,4).【考点】绝对值不等式.【专题】计算题;转化思想;综合法;不等式的解法及应用.【分析】由含绝对值的性质得﹣1<x﹣3<1,由此能求出不等式|x﹣3|<1的解集.【解答】解:∵x∈R,不等式|x﹣3|<1,∴﹣1<x﹣3<1,解得2<x<4.∴不等式|x﹣3|<1的解集为(2,4).故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.6.(2016•上海)设z=,其中i为虚数单位,则Imz=﹣3.【考点】复数代数形式的乘除运算.【专题】计算题;转化思想;综合法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算法则,先求出复数z的最简形式,由此能求出Imz.【解答】解:∵Z====2﹣3i,∴Imz=﹣3.故答案为:﹣3.【点评】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数的乘除运算法则的合理运用.7.(2016•上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.【考点】两条平行直线间的距离.【专题】计算题;规律型;直线与圆.【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.8.(2016•上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 1.76(米).【考点】众数、中位数、平均数.【专题】计算题;转化思想;定义法;概率与统计.【分析】先把这组数据按从小到大排列,求出位于中间的两个数值的平均数,得到这组数据的中位数.【解答】解:∵6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,从小到大排列为:1.69,1.72,1.75,1.77,1.78,1.80,位于中间的两个数值为1.75,1.77,∴这组数据的中位数是:=1.76(米).故答案为:1.76.【点评】本题考查中位数的求法,是基础题,解题时要认真审题,注意中位数的定义的合理运用.9.(2016•上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=log2(x﹣1)(x>1).【考点】反函数.【专题】方程思想;转化思想;函数的性质及应用.【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换即可得出f(x)的反函数f﹣1(x).【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.∴f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换可得:f(x)的反函数f﹣1(x)=log2(x﹣1).故答案为:log2(x﹣1),(x>1).【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.10.(2016•上海)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于2.【考点】棱柱的结构特征.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】根据正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,判断∠D1BD为直线BD1与底面ABCD所成的角,即可求出正四棱柱的高.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,∴∠D1BD为直线BD1与底面ABCD所成的角,∴tan∠D1BD=,∵正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,∴BD=3,∴正四棱柱的高=3×=2,故答案为:2.【点评】本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直线与平面所成的角.11.(2016•上海)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【考点】三角函数的恒等变换及化简求值.【专题】计算题;规律型;转化思想;三角函数的求值.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2﹣2sin2x,即2sin2x+3sinx﹣2=0.可得sinx=﹣2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.12.(2016•上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于112.【考点】二项式定理的应用.【专题】计算题;转化思想;综合法;二项式定理.【分析】根据展开式中所有二项式系数的和等于2n=256,求得n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(﹣)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,∴(﹣)8中,T r+1==,∴当=0,即r=2时,常数项为T3=(﹣2)2=112.故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.13.(2016•上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【考点】解三角形的实际应用.【专题】方程思想;分析法;解三角形.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值.【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===﹣,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.14.(2016•上海)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为(2,+∞).【考点】两条直线平行的判定;基本不等式.【专题】转化思想;转化法;导数的综合应用.【分析】根据方程组无解,得到两直线平行,建立a,b的方程关系,利用转化法,构造函数,求函数的导数,利用函数的单调性进行求解即可.【解答】解:∵关于x,y的方程组无解,∴直线ax+y=1与x+by=1平行,∵a>0,b>0,∴≠,即a≠1,b≠1,且ab=1,则b=,则a+b=a+,则设f(a)=a+,(a>0且a≠1),则函数的导数f′(a)=1﹣=,当0<a<1时,f′(a)=<0,此时函数为减函数,此时f(a)>f(1)=2,当a>1时,f′(a)=>0,此时函数为增函数,f(a)>f(1)=2,综上f(a)>2,即a+b的取值范围是(2,+∞),故答案为:(2,+∞).【点评】本题主要考查直线平行的应用以及构造函数,求函数的导数,利用导数和函数单调性之间的关系进行求解是解决本题的关键.15.(2016•上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.【考点】数列与函数的综合.【专题】分类讨论;分析法;点列、递归数列与数学归纳法.【分析】对任意n∈N*,S n∈{2,3},列举出n=1,2,3,4的情况,归纳可得n>4后都为0或1或﹣1,则k的最大个数为4.【解答】解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.16.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是[0,1+].【考点】平面向量数量积的性质及其运算律.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].【点评】本题考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意平面向量数量积的性质的合理运用.17.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【考点】三角函数的周期性及其求法.【专题】函数思想;转化法;三角函数的图像与性质.【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.18.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.【考点】平面向量的综合题.【专题】计算题;对应思想;向量法;平面向量及应用;概率与统计.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.【点评】本题考查平面向量的综合运用,考查了古典概型概率计算公式,理解题意是关键,是中档题.三.解答题(共5小题)19.(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为π,A1B1长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【考点】异面直线及其所成的角.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】(1)连结O 1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=45°,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(2016•上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【考点】圆锥曲线的轨迹问题.【专题】分类讨论;转化思想;转化法;圆锥曲线的定义、性质与方程.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y0),则y0=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y0),则y0=1,∴x0==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3﹣S△OMP+S△MGN=﹣××1+=,S1﹣S3==,S4﹣S1=﹣=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(2016•上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)•=0,求l的斜率.【考点】直线与圆锥曲线的综合问题;直线与双曲线的位置关系.【专题】计算题;规律型;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)利用直线的倾斜角,求出AB,利用三角形是正三角形,求解b,即可得到双曲线方程.(2)求出左焦点的坐标,设出直线方程,推出A、B坐标,利用向量的数量积为0,即可求值直线的斜率.【解答】解:(1)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,a=1,c2=1+b2,直线l过F2且与双曲线交于A,B两点,直线l的倾斜角为,△F1AB是等边三角形,可得:A(c,b2),可得:,3b4=4(a2+b2),即3b4﹣4b2﹣4=0,b>0,解得b2=2.所求双曲线方程为:x2﹣=1,其渐近线方程为y=±x.(2)b=,双曲线x2﹣=1,可得F1(﹣2,0),F2(2,0).设A(x1,y1),B(x2,y2),直线的斜率为:k=,直线l的方程为:y=k(x﹣2),由题意可得:,消去y可得:(3﹣k2)x2+4k2x﹣4k2﹣3=0,△=36(1+k2)>0,可得x1+x2=,则y1+y2=k(x1+x2﹣4)=k(﹣4)=.=(x1+2,y1),=(x2+2,y2),(+)•=0可得:(x1+x2+4,y1+y2)•(x1﹣x2,y1﹣y2)=0,可得x1+x2+4+(y1+y2)k=0,得+4+•k=0可得:k2=,解得k=±.l的斜率为:±.【点评】本题考查双曲线与直线的位置关系的综合应用,平方差法以及直线与双曲线方程联立求解方法,考查计算能力,转化思想的应用.22.(2016•上海)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.【考点】函数恒成立问题;利用导数求闭区间上函数的最值.【专题】转化思想;换元法;函数的性质及应用.【分析】(1)当a=5时,解导数不等式即可.(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.(3)根据条件得到f(t)﹣f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.【解答】解:(1)当a=5时,f(x)=log2(+5),由f(x)>0;得log2(+5)>0,即+5>1,则>﹣4,则+4=>0,即x>0或x<﹣,即不等式的解集为{x|x>0或x<﹣}.(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(+a)﹣log2[(a﹣4)x+2a﹣5]=0.即log2(+a)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x=,若x=﹣1是方程①的解,则+a=a﹣1>0,即a>1,若x=是方程①的解,则+a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4.(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(+a)﹣log2(+a)≤1,即+a≤2(+a),即a≥﹣=设1﹣t=r,则0≤r≤,==,当r=0时,=0,当0<r≤时,=,∵y=r+在(0,)上递减,∴r+≥=,∴==,∴实数a的取值范围是a≥.【点评】本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大.23.(2016•上海)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.【考点】等差数列与等比数列的综合;数列与函数的综合.【专题】计算题;规律型;转化思想;等差数列与等比数列.【分析】(1)利用已知条件通过a2=a5=2,推出a3=a6,a4=a7,转化求解a3即可.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,利用条件求出,d 与q,求出b n,c n得到a n的表达式,推出a2≠a6,说明{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,通过a n+1=C+sina n,证明a p+1=a q+1,得到{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,得到a2=b1+sina1,设函数f(x)=x﹣b1,g(x)=sinx,说明b n+1=b n,即可说明{b n}是常数列.【解答】解:(1)∵a2=a5=2,∴a3=a6,a4=a7=3,∴a5=a8=2,a6=21﹣a7﹣a8=16,∴a3=16.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,b5﹣b1=4d=80,∴d=20,∴b n=20n﹣19,=q4=,∴q=,∴c n=∴a n=b n+c n=20n﹣19+.∵a1=a5=82,而a2=21+27=48,a6=101=.a1=a5,但是a2≠a6,{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,则a n+1=C+sina n,若存在p,q使得a p=a q,则a p+1=C+sina p=C+sina q=a q+1,故{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,则a2=b1+sina1,设函数f(x)=x﹣b1,g(x)=sinx,由f(x),g(x)图象可得,对于任意的b1,二者图象必有一个交点,∴一定能找到一个a1,使得a1﹣b1=sina1,∴a2=b1+sina1=a1,∴a n=a n+1,故b n+1=a n+2﹣sina n+1=a n+1﹣sina n=b n,∴{b n}是常数列.【点评】本题考查等差数列与等比数列的综合应用,充要条件的应用,考查分析问题解决问题的能力,逻辑思维能力,难度比较大.。
2016全国高中数学联赛试题及评分标准
2016全国高中数学联赛试题及评分标准9月将至,开学的同时,每年一年一度的全国高中数学联赛也即将来了,同学们可知道高中联赛的前世今生吗?从1956年起,在华罗庚、苏步青等老一辈数学家的倡导下,开始举办中学数学竞赛,在北京、上海、福建、天津、南京、武汉、成都等省市都开展了数学竞赛,并举办了由京、津、沪、粤、川、辽、皖合办的高中数学联赛。
1979年,我国大陆上的29个省、市、自治区都举办了中学数学竞赛。
1980年,在大连召开的第一届全国数学普及工作会议上,确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年9月第二个星期日举行“全国高中数学联合竞赛”。
竞赛分为一试和二试,在这项竞赛中取得优异成绩的全国约200名学生有资格参加由中国数学会奥林匹克委员会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”(每年元月)。
各省的参赛名额由3人到8人不等,视该省当年的联赛考试成绩而定,且对于承办方省份有一定额外的优惠。
在CMO中成绩优异的60名左右的学生可以进入国家集训队。
经过集训队的选拔,将有6名表现最顶尖的选手进入中国国家代表队,参加国际数学奥林匹克(IMO)。
为了促进拔尖人才的尽快成长,教育部规定:在高中阶段获得全国数学联赛省、市、自治区赛区一等奖者便获得保送重点大学的资格,对于没有保送者在高考中加分,加分情况根据各省市政策而定,有些省、市、自治区保留了竞赛获奖者高考加5分到20分不等,而部分省级行政区已经取消了竞赛加分。
对二、三等奖获得者,各省、市、自治区又出台了不同的政策,其中包括自主招生资格等优惠录取政策。
为严格标准,中国数学会每年限定一等奖名额1000名左右,并划分到各省、市、自治区。
各省、市、自治区在上报一等奖候选人名单的同时,还要交上他们的试卷,最终由中国数学会对其试卷审核后确定获奖名单。
☆ 试题模式自2010年起,全国高中数学联赛试题新规则如下:联赛分为一试、加试(即俗称的“二试”)。
2016年高考数学上海卷理数(解析版)
(1)当 a=5 时,解不等式 f(x)>0; (2)若关于 x 的方程 f(x)-log2[(a-4)x+2a-5]=0 的解集中恰好有一个元素,求 a 的取值范围;
(3)设
a>0,若对任意
t∈
1 2
,1
,函数
f(x)在区间[t,t+1]上的最大值与最小值的差不超过
13.(2016 上海,理 13)设 a,b∈R,c∈[0,2π),若对任意实数 x 都有 2sin
3
-
π 3
=asin(bx+c),则满足条件的
有序实数组(a,b,c)的组数为
.
答案 4 a=±2,b=±3,当 a,b 确定时,c 唯一,故有 4 种组合.
14.
(2016 上海,理 14)如图,在平面直角坐标系 xOy 中,O 为正八边形 A1A2…An 的中心,A(1,0),任取不同的
3
(2016 上海,理 16)下列极坐标方程中,对应的曲线为右图的是( ) A.ρ=6+5cos θ B.ρ=6+5sin θ C.ρ=6-5cos θ D.ρ=6-5sin θ
答案 D 依次取θ=0,π2,π,32π,
结合图形可知 只有ρ=6-5sin θ满足,选 D. 17.(2016 上海,理 17)已知无穷等比数列{an}的公比为 q,前 n 项和为 Sn,且 lim Sn=S,下列条件中,使得
当 a1<0 时,qn<12,从而 q2<12,选 B.
18.(2016 上海,理 18)设 f(x)、g(x)、h(x)是定义域为 R 的三个函数,对于命题:①若 f(x)+g(x)、f(x)+h(x)、 g(x)+h(x)均为增函数,则 f(x)、g(x)、h(x)中至少有一个增函数;②若 f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均 是以 T 为周期的函数,则 f(x)、g(x)、h(x)均是以 T 为周期的函数,下列判断正确的是( ) A.①和②均为真命题 B.①和②均为假命题 C.①为真命题,②为假命题 D.①为假命题,②为真命题 答案 D 因为 f(x)=
2016年高中数学竞赛b试题答案
2016年高中数学竞赛b试题答案2016年高中数学竞赛B试题的答案如下:选择题:1. 答案:A解析:根据题目所给条件,我们可以通过代入验证法或者排除法来确定正确答案。
例如,将选项A代入题目的等式中,如果满足条件,则A为正确答案。
2. 答案:B解析:此题考查了函数的性质,需要利用函数的单调性、奇偶性等性质来求解。
3. 答案:C解析:本题需要运用数列的通项公式和求和公式,通过计算来确定答案。
4. 答案:D解析:考查了几何图形的性质,需要通过几何证明或者代数方法来求解。
5. 答案:E解析:此题涉及到概率统计的知识,需要根据题目所给的条件,运用概率公式来计算。
填空题:1. 答案:3解析:根据题目所给的数列规律,可以推导出答案。
2. 答案:\( \sqrt{2} \)解析:此题考查了二次根式的性质,需要通过化简来求解。
3. 答案:5解析:根据题目所给的几何图形,可以利用面积公式来求解。
4. 答案:\( \frac{\pi}{4} \)解析:此题考查了三角函数的求值,需要运用三角函数的性质和公式。
5. 答案:\( x^2 - 4x + 3 \)解析:本题需要运用因式分解的方法来求解。
解答题:1. 答案:首先设未知数,然后建立方程组,通过解方程组来求解。
2. 答案:根据题目所给的函数表达式,我们可以利用函数的性质来求解。
3. 答案:此题需要运用数列的递推关系,通过递推公式来求解。
4. 答案:本题考查了几何证明,需要运用几何定理和公理来证明。
5. 答案:此题需要运用组合数学的知识,通过组合公式来求解。
请注意,以上答案和解析是根据一般性描述给出的,具体的题目内容和答案可能会有所不同。
如果需要针对具体题目的详细解析,请提供具体的题目内容。
2016年普通高等学校招生全国统一考试数学理试题(上海卷,参考版解析)
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然2016年上海高考数学(理科)真题一、解答题(本大题共有14题,满分56分)1. 设x ∈R ,则不等式31x -<的解集为________________ 【答案】(2,4)【解析】131x -<-<,即24x <<,故解集为(2,4)2. 设32iiz +=,其中i 为虚数单位,则Im z =_________________【答案】3-【解析】i(32i)23i z =-+=-,故Im 3z =-3. 1l :210x y +-=, 2l :210x y ++=, 则12,l l 的距离为__________________25【解析】22112521d +==+4. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是___ (米) 【答案】1.765. 已知点(3,9)在函数()1x f x a =+的图像上,则()f x 的反函数1()f x -=____________ 【答案】2log (1)x -【解析】319a +=,故2a =,()12x f x =+∴2log (1)x y =-∴12()log (1)f x x -=-6. 如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为2arctan 3, 则该正四棱柱的高等于____________________ 【答案】2【解析】32BD =12223DD BD =⋅=7. 方程3sin 1cos2x x =+在区间[0,2π]上的解为________________【答案】π5π,66x =【解析】23sin 22sin x x =-,即22sin 3sin 20x x +-=∴(2sin 1)(sin 2)0x x -+=∴1sin 2x =∴π5π,66x =8. 在2nx ⎫⎪⎭的二项式中,所有项的二项式系数之和为256,则常数项等于_______________【答案】112【解析】2256n =, 8n =通项88433882()(2)r rr r r r C x C x x--⋅⋅-=-⋅取2r =常数项为228(2)112C -=9. 已知ABC V 的三边长为3,5,7,则该三角形的外接圆半径等于________________【解析】3,5,7a b c ===,2221cos 22a b c C ab +-==-∴sin C∴2sin c R C ==10. 设0,0a b >>,若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是_____________【答案】(2,)+∞【解析】由已知,1ab =,且a b ≠,∴2a b +>11. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*n ∈N ,{2,3}n S ∈,则k 的最大值为___________ 【答案】412. 在平面直角坐标系中,已知(1,0)A , (0,1)B -, P 是曲线y =则BP BA ⋅u u u r u u u r的取值范围 是____________【答案】[0,1+【解析】设(cos ,sin )P αα, [0,π]α∈,(1,1)BA =u u u r , (cos ,sin 1)BP αα=+u u u rπcos [0,1sin 1)14BP BA ααα⋅=+++∈+u u u r u u u r13. 设,,a b ∈R , [0,2π)c ∈,若对任意实数x 都有π2sin(3)sin()3x a bx c -=+,则满足条件的有序实数组(,,)a b c 的组数为______________ 【答案】4【解析】(i)若2a =若3b =,则5π3c =; 若3b =-,则4π3c =(ii)若2a =-,若3b =-,则π3c =;若3b =,则2π3c =共4组14. 如图,在平面直角坐标系xOy 中,O 为正八边形128A A A L 的中心,1(1,0)A ,任取不同的两点,i j A A ,点P 满足0i j OP OA OA ++=u u u r u u u r u u u u r r,则点P 落在第一象限的概率是_______________ 【答案】528 【解析】285528C =二、选择题(本大题共有4题,满分20分)15. 设a ∈R ,则“1a >”是“21a >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件 【答案】A16. 下列极坐标方程中,对应的曲线为右图的是( )A. 65cos ρθ=+B. 65sin ρθ=+C. 65cos ρθ=-D. 65sin ρθ=- 【答案】D【解析】π2θ=-时,ρ达到最大17. 已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得*2()n S S n <∈N 恒成立的是( )A. 10a >, 0.60.7q <<B. 10a <, 0.70.6q -<<-C. 10a >, 0.70.8q <<D. 10a <, 0.80.7q -<<- 【答案】B【解析】1(1)1n n a q S q -=-, 11a S q =-, 11q -<<2n S S <,即1(21)0n a q -> 若10a >,则12nq >,不可能成立若10a <,则12nq <,B 成立18. 设(),(),()f x g x h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +,()()f x h x +,()()g x h x +均为增函数,则(),(),()f x g x h x 中至少有一个为增函数;②若()()f x g x +,()()f x h x +,()()g x h x +均是以T 为周期的函数,则(),(),()f x g x h x 均是以T 为周期的函数,下列判断正确的是( ) A. ①和②均为真命题 B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题 【答案】D【解析】①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩ ②()()()()f x g x f x T g x T +=+++ ()()()()f x h x f x T h x T +=+++ ()()()()g x h x g x T h x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+ ∴②正确 故选D三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱,如图,»AC 长为23π,¼11A B 长为3π,其中1B 与C 在平面11AA O O 的同侧 (1) 求三棱锥111C O A B -的体积(2) 求异面直线1B C 与1AA 所成角的大小【解析】(1) 连11O B ,则¼111113AO A B B π∠==∴111O A B V 为正三角形∴1113O A B S =V ∴1111111133C O A B O A B V OO S -=⋅=V(2) 设点1B 在下底面圆周的射影为B ,连1BB ,则11BB AA ∥∴1BB C ∠为直线1B C 与1AA 所成角(或补角) 111BB AA == 连,,BC BO OC»¼113AB A B π==, »23AC π= ∴»3BCπ=∴3BOC π∠=∴BOC V 为正三角形 ∴1BC BO ==∴11tan 1BCBB C BB ∠== ∴145BB C ∠=︒∴直线1B C 与1AA 所成角大小为45︒20.(本题满分14分)有一块正方形菜地EFGH , EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
2016年高考上海理科数学试题与答案(word解析版)
与底面所成角的大小为
2
arctan,则该正四棱柱的高等于.
3
【答案】22
DD2DD2
【解析】由题意得11
tanDBDDD22
11
BD3323
.
【点评】本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直线与平面所成
32
x
x
n
(8)【2016年上海,理8,4分】在的二项式中,所有项的二项式系数之和为256,则常数项等于.
【答案】112
n,由题意得2256
n
【解析】由二项式定理得:二项式所有项的二项系数之和为2
,所以n8,二项式的通项
为
84
2
r
r38rrrr33
TC(x)()(2)Cx
r188
x
,求常数项则令
84
【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.
(12)【2016年上海,理12,4分】在平面直角坐标系中,已知A1,0,B0,1,P是曲线
2
y1x上一个
动点,则BPBA的取值范围是.
【答案】0,12
2
【解析】由题意得知
y1x表示以原点为圆心,半径为1的上半圆.设Pcos,sin,0,,BA1,1,
fxhx、gxhx均为增函数,则fx、gx、hx中至少有一个增函数;②若fxgx、
fxhx、gxhx均是以T为周期的函数,则fx、gx、hx均是以T为周期的函数,下列判
断正确的是()
(A)①和②均为真命题(B)①和②均为假命题
2020年上海市高三数学竞赛试卷答案
2016年上海市高三数学竞赛试卷2016年3月27日上午9:30~11:30【说明】解答本试卷不得使用计算器.解答请写在答题纸上.一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)1. 已知函数f (x )=ax 2+bx +c (a ≠0,a 、b 、c 均为常数),函数f 1(x )的图像与函数f (x )的图像关于y 轴对称,函数f 2(x )的图像与函数f 1(x )的图像关于直线y=1对称,则函数f 2(x )的解析式是 .2.复数z 满足|z |=1, w=3z 222z-在复平面上对应的动点W 所表示曲线的普通方程为 .3. 关于x 的方程arctan 2arctan 26x x π--=的解是 .4. 红、蓝、绿、白四颗骰子,每颗骰子的六个面上的数字为1,2,3,4,5,6;则同时掷这四颗骰子使得四颗骰子向上的数的乘积等于36,共有 种可能.5. 已知函数f (x)=cos(),x πg (x )=2x a 12-(a ≠0);若存在1x 、2x ∈[0,1],使f (1x ) =f (2x )成立,则实数a 的取值范围为 .6. 如图,有16间小三角形的房间.甲、乙两人被随机地分别安置在不同的小三角形的房间,那么他们在不相邻(指没有公共边)房间的概率是 .(用分数表示)7. 在空间,四个不共线的向量OA 、OB 、OC 、OD ,它们两两间的夹角都是α,则α的大小是 .8.已知a >0,b >0,a 3+b 3=1,则a +b 的取值范围为 .二、解答题(本大题满分60分)9.(本题满分15分)如图,已知五边形A 1B 1C 1D 1E 1内接于边长为1的正五边形ABCDE ;ADED 1E1求证:五边形A 1B 1C 1D 1E 1中至少有一条边的长度不小于cos5π.10.(本题满分15分)设p ,q 和r 是素数,且p |qr 1-(p |qr 1-表示qr 1-能被p 整除),q |rp 1-和r |pq 1-;求pqr 的所有可能的值.11.(本题满分15分)已知数列{}n a 满足递推关系11123n n n a a +=-+(*n N ∈);求所有1a 的值,使{}n a 为单调数列,即{}n a 为递增数列或递减数列.12.(本题满分15分)已知等边三角形ABC 的边长为5,延长BA 至点P ,使得|AP |=9. D 是线段BC 上一点(包括端点),直线AD 与BPC ∆的外接圆交于E 、F 两点,其中|EA |<|ED |.(1)设|BD |=x ,试将|EA |-|DF |表示为关于x 的函数f (x );(2)求f (x )的最小值.一、填空题1.2()2.f x ax bx c =++- 2. 221.25y x += 3.2log x = 4.48. 5. 13[,0)(0,]22-. 6. 1720 7. 1arccos()3-8. 二、解答题9、已知五边形11111A B C D E 内接于边长为1的正方形ABCDE ;求证:五边形11111A B C D E 中至少有一条边的长度不小于cos5π。
2016年高考数学上海卷含答案
2016年 普 通 高 等 学 校 招 生 全 国 统 一 考 试上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x R ∈,则不等式13<-x 的解集为______________________2、设iiZ 23+=,期中i 为虚数单位,则Im z =______________________ 3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x fx f 的反函数6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________7、方程3sin 1cos2x x =+在区间[]π2,0上的解为___________8、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________ 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是____________11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为 .12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是 .13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P落在第一象限的概率是 .二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题三、解答题(74分)19.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
2016年全国高中数学联合竞赛加试(A)含答案解析(PDF版)
O1O2 与 AB, AC 分别交于点U ,V .
X
证明:△ AUV 是等腰三角形.
A
O1 U
O2 V
B
C
Y
证法一 作 ∠BAC 的内角平分线交 BC 于点 P . 设三角形 ACX 和 ABY 的外
接圆分别为ω1 和 ω2 .
由内角平分线的性质知,BP = CP
AB . AC
由条件可得 BX CY
−
a12
)
.
由已知得,对
i
=
1,
2,,
2015 ,均有
ai
−
a2 i +1
>
11 9
a2 i +1
−
a2 i +1
≥
0
.
若 a2016 − a12 ≤ 0 ,则 S ≤ 0 .
…………………10 分
以下考虑 a2016 − a12 > 0 的情况.约定 a2017 = a1 .由平均不等式得
∑ ∑ ∑ 1
试确定所连线段数目的最大值.
解 以这 10 个点为顶点, 所连线段为边, 得到一个 10 阶简单图 G . 我们证
明 G 的边数不超过 15.
设
G
的顶点为
v1,
v2
,,
v10
,共有
k
条边,用
deg(vi )
表示顶点
vi
的度.
若
deg(vi
)
≤
3
对
i
=
1,
2, ,10
都成立,则
∑ =k
1 2
10 i =1
deg(vi )
≤= 1 ×10× 3 2
(完整word版)2016年上海市高考数学试题答卷(理科)
2016年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2016?上海)设x∈R,则不等式|x﹣3|<1的解集为.2.(4分)(2016?上海)设z=,其中i为虚数单位,则Imz=.3.(4分)(2016?上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)(2016?上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是(米).5.(4分)(2016?上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=..(4分)(2016?上海)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于.7.(4分)(2016?上海)方程3sinx=1+cos2x在区间[0,2π]上的解为..(4分)(2016?上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.9.(4分)(2016?上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.10.(4分)(2016?上海)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为.11.(4分)(2016?上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.12.(4分)(2016?上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则?的取值范围是.13.(4分)(2016?上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.14.(4分)(2016?上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.二、选择题(5×4=20分)15.(5分)(2016?上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)(2016?上海)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ17.(5分)(2016?上海)已知无穷等比数列{a n}的公比为q,前n项和为S n,且=S,下列条件中,使得2S n<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7 B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8 D.a1<0,﹣0.8<q<﹣0.718.(5分)(2016?上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、解答题(74分)19.(12分)(2016?上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为π,A1B1长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.20.(14分)(2016?上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)(2016?上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)?=0,求l的斜率.22.(16分)(2016?上海)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.23.(18分)(2016?上海)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.2016年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2016?上海)设x∈R,则不等式|x﹣3|<1的解集为(2,4).【分析】由含绝对值的性质得﹣1<x﹣3<1,由此能求出不等式|x﹣3|<1的解集.【解答】解:∵x∈R,不等式|x﹣3|<1,∴﹣1<x﹣3<1,解得2<x<4.∴不等式|x﹣3|<1的解集为(2,4).故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)(2016?上海)设z=,其中i为虚数单位,则Imz=﹣3.【分析】利用复数代数形式的乘除运算法则,先求出复数z的最简形式,由此能求出Imz.【解答】解:∵Z====2﹣3i,∴Imz=﹣3.故答案为:﹣3.【点评】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数的乘除运算法则的合理运用.3.(4分)(2016?上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)(2016?上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 1.76(米).【分析】先把这组数据按从小到大排列,求出位于中间的两个数值的平均数,得到这组数据的中位数.【解答】解:∵6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,从小到大排列为:1.69,1.72,1.75,1.77,1.78,1.80,位于中间的两个数值为1.75,1.77,∴这组数据的中位数是:=1.76(米).故答案为:1.76.【点评】本题考查中位数的求法,是基础题,解题时要认真审题,注意中位数的定义的合理运用.5.(4分)(2016?上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=log2(x﹣1)(x>1).【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换即可得出f(x)的反函数f﹣1(x).【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.∴f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换可得:f(x)的反函数f﹣1(x)=log2(x﹣1).故答案为:log2(x﹣1),(x>1).【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.6.(4分)(2016?上海)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于2.【分析】根据正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,判断∠D1BD为直线BD1与底面ABCD所成的角,即可求出正四棱柱的高.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,∴∠D1BD为直线BD1与底面ABCD所成的角,∴tan∠D1BD=,∵正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,∴BD=3,∴正四棱柱的高=3×=2,故答案为:2.【点评】本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直线与平面所成的角.7.(4分)(2016?上海)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2﹣2sin2x,即2sin2x+3sinx﹣2=0.可得sinx=﹣2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.8.(4分)(2016?上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于112.【分析】根据展开式中所有二项式系数的和等于2n=256,求得n=8.在展开式的通项公式中,令x 的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(﹣)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,∴(﹣)8中,T r+1==,∴当=0,即r=2时,常数项为T3=(﹣2)2=112.故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.9.(4分)(2016?上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值.【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===﹣,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.10.(4分)(2016?上海)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为(2,+∞).【分析】根据方程组无解,得到两直线平行,建立a,b的方程关系,利用转化法,构造函数,求函数的导数,利用函数的单调性进行求解即可.【解答】解:∵关于x,y的方程组无解,∴直线ax+y=1与x+by=1平行,∵a>0,b>0,∴≠,即a≠1,b≠1,且ab=1,则b=,则a+b=a+,则设f(a)=a+,(a>0且a≠1),则函数的导数f′(a)=1﹣=,当0<a<1时,f′(a)=<0,此时函数为减函数,此时f(a)>f(1)=2,当a>1时,f′(a)=>0,此时函数为增函数,f(a)>f(1)=2,综上f(a)>2,即a+b的取值范围是(2,+∞),故答案为:(2,+∞).【点评】本题主要考查直线平行的应用以及构造函数,求函数的导数,利用导数和函数单调性之间的关系进行求解是解决本题的关键.11.(4分)(2016?上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.【分析】对任意n∈N*,S n∈{2,3},列举出n=1,2,3,4的情况,归纳可得n>4后都为0或1或﹣1,则k的最大个数为4.【解答】解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.12.(4分)(2016?上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则?的取值范围是[0,1+].【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出?的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴?的取值范围是[0,1+].故答案为:[0,1+].【点评】本题考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意平面向量数量积的性质的合理运用.13.(4分)(2016?上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.14.(4分)(2016?上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.【点评】本题考查平面向量的综合运用,考查了古典概型概率计算公式,理解题意是关键,是中档题.二、选择题(5×4=20分)15.(5分)(2016?上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)(2016?上海)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ【分析】由图形可知:时,ρ取得最大值,即可判断出结论.【解答】解:由图形可知:时,ρ取得最大值,只有D满足上述条件.故选:D.【点评】本题考查了极坐标方程、数形结合方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.17.(5分)(2016?上海)已知无穷等比数列{a n}的公比为q,前n项和为S n,且=S,下列条件中,使得2S n<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7 B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8 D.a1<0,﹣0.8<q<﹣0.7【分析】由已知推导出,由此利用排除法能求出结果.【解答】解:∵,S==,﹣1<q<1,2S n<S,∴,若a1>0,则,故A与C不可能成立;若a1<0,则q n,故B成立,D不成立.故选:B.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.18.(5分)(2016?上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h (x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g(x+T),h (x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.三、解答题(74分)19.(12分)(2016?上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为π,A1B1长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【分析】(1)连结O 1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C ﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=45°,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)(2016?上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y0),则y0=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y0),则y0=1,∴x0==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3﹣S△OMP+S△MGN=﹣××1+=,S1﹣S3==,S4﹣S1=﹣=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)(2016?上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)?=0,求l的斜率.【分析】(1)利用直线的倾斜角,求出AB,利用三角形是正三角形,求解b,即可得到双曲线方程.(2)求出左焦点的坐标,设出直线方程,推出A、B坐标,利用向量的数量积为0,即可求值直线的斜率.【解答】解:(1)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,a=1,c2=1+b2,直线l过F2且与双曲线交于A,B两点,直线l的倾斜角为,△F1AB是等边三角形,可得:A(c,b2),可得:,3b4=4(a2+b2),即3b4﹣4b2﹣4=0,b>0,解得b2=2.所求双曲线方程为:x2﹣=1,其渐近线方程为y=±x.(2)b=,双曲线x2﹣=1,可得F1(﹣2,0),F2(2,0).设A(x1,y1),B(x2,y2),直线的斜率为:k=,直线l的方程为:y=k(x﹣2),由题意可得:,消去y可得:(3﹣k2)x2+4k2x﹣4k2﹣3=0,△=36(1+k2)>0,可得x1+x2=,则y1+y2=k(x1+x2﹣4)=k(﹣4)=.=(x1+2,y1),=(x2+2,y2),(+)?=0可得:(x1+x2+4,y1+y2)?(x1﹣x2,y1﹣y2)=0,可得x1+x2+4+(y1+y2)k=0,得+4+?k=0可得:k2=,解得k=±.l的斜率为:±.【点评】本题考查双曲线与直线的位置关系的综合应用,平方差法以及直线与双曲线方程联立求解方法,考查计算能力,转化思想的应用.22.(16分)(2016?上海)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.【分析】(1)当a=5时,解导数不等式即可.(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.(3)根据条件得到f(t)﹣f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.【解答】解:(1)当a=5时,f(x)=log2(+5),由f(x)>0;得log2(+5)>0,即+5>1,则>﹣4,则+4=>0,即x>0或x<﹣,即不等式的解集为{x|x>0或x<﹣}.(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(+a)﹣log2[(a﹣4)x+2a﹣5]=0.即log2(+a)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x=,若x=﹣1是方程①的解,则+a=a﹣1>0,即a>1,若x=是方程①的解,则+a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4.(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(+a)﹣log2(+a)≤1,即+a≤2(+a),即a≥﹣=设1﹣t=r,则0≤r≤,==,当r=0时,=0,当0<r≤时,=,∵y=r+在(0,)上递减,∴r+≥=,∴==,∴实数a的取值范围是a≥.【点评】本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大.23.(18分)(2016?上海)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.【分析】(1)利用已知条件通过a2=a5=2,推出a3=a6,a4=a7,转化求解a3即可.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,利用条件求出,d与q,求出b n,c n得到a n的表达式,推出a2≠a6,说明{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,通过a n+1=C+sina n,证明a p+1=a q+1,得到{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,得到a2=b1+sina1,设函数f(x)=x﹣b1,g(x)=sinx,说明b n+1=b n,即可说明{b n}是常数列.【解答】解:(1)∵a2=a5=2,∴a3=a6,a4=a7=3,∴a5=a8=2,a6=21﹣a7﹣a8=16,∴a3=16.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,b5﹣b1=4d=80,∴d=20,∴b n=20n﹣19,=q4=,∴q=,∴c n=∴a n=b n+c n=20n﹣19+.∵a1=a5=82,而a2=21+27=48,a6=101=.a1=a5,但是a2≠a6,{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,则a n+1=C+sina n,若存在p,q使得a p=a q,则a p+1=C+sina p=C+sina q=a q+1,故{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,则a2=b1+sina1,设函数f(x)=x﹣b1,g(x)=sinx,由f(x),g(x)图象可得,对于任意的b1,二者图象必有一个交点,∴一定能找到一个a1,使得a1﹣b1=sina1,∴a2=b1+sina1=a1,∴a n=a n+1,故b n+1=a n+2﹣sina n+1=a n+1﹣sina n=b n,∴{b n}是常数列.【点评】本题考查等差数列与等比数列的综合应用,充要条件的应用,考查分析问题解决问题的能力,逻辑思维能力,难度比较大.菁优网2016年6月12日。
2016年普通高等学校招生全国统一考试理数试题(上海卷)
2016年上海高考数学(理科)真题、解答题(本大题共有14题,满分56分)1.设x【答案】【解析】R,则不等式x 3 1的解集为(2,4)1x31,即2x4,故解集为(2,4)2.设z 3 2i,其中i为虚数单位,则Im z i【答案】【解析】3z i(3 2i) 2 3i,故Imz 33. l i: 2x y 1 0, 12: 2x y 1 0,则l i,l2 的距离为【答案】2、5 5【解析】d1 12、5 d22 1254. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是(米)【答案】1.765. 已知点(3,9)在函数f(x) 1 a x的图像上,贝V f(x)的反函数f (x) ______________【答案】1og2(x 1)【解析】a3 1 9,故a 2, f(x) 1 2x••• x Iog2(y 1)f 1(x) Iog2(x 1)26. 如图,在正四棱柱ABCD AB1C1D1中,底面ABCD的边长为3, BD1与底面所成角的大小为arctan ,3 则该正四棱柱的高等于_______________________【答案】2 2【解析】BD 3.2 , DD1 BD - 2 237.方程3sinx 1 cos2x在区间[0,2 n上的解为S n为a n的前n项和,若对任意n N* , S n {2,3}, 则k的最大12.在平面直角坐标系中,已知A(1,0) , B(0,1),P是曲线y.1 x2上一个动点,是【答案】[0,12【解析】设P(cosuur uur,sin ), [0, n , BA(1,1),BP (cos,sin 1)uur um BP BA cos sin 1 2 si n(n)14[0,1 2]的取值范围【答案】n 5 n x ,—6 6【解析】23sin x 2 2sin x ,即22sin x 3sin x 2 0 /• (2sin x 1)(sin x2)0.. 1 …sin x -2. n 5 n--x ,—6 6n8•在3x 2的二项式中,所有项的二项式系数之和为256,则常数项等于x【答案】112【解析】2n 256, n 88 r 8 4r通项C8 X丁( -)r C;( 2)r x^X取r 2常数项为Cg( 2)21129.已知VABC的三边长为3,5,7,则该三角形的外接圆半径等于_______________________【答案】7 . 332 2 2【解析】a 3,b5,c a b c7, cosC -12ab2二sinC乜2c7-32sin C3ax y 110.设a 0,b 0,若关于x,y的方程组J彳无解,则ax by 1【答案】(2,)【解析】由已知,ab 1,且a b ,「• a b 2 . ab 2b的取值范围是11.无穷数列a n由k个不同的数组成,值为____________【答案】4r, uur则BP(a,b,c)的组数为 【答案】4【解析】(i)若a达到最大 a n 的公比为q ,前n 项和为£,且]im $ S ,下列条件中,使得2S n S(n N *)恒13.设a,b, R , c [0,2 n ,若对任意实数x 都有 2sin(3xn一)asin(bx c),则满足条件的有序实数组3(ii)若 a3,则 nc —;若b 3,则32n c 314.如图,在平面直角坐标系UULT ILLIU rOA OA 0,uun 点P 满足OP xOy 中, 则点P 落在第一象限的概率是 O 为正八边形A 1A 2L A 8的中心,A(1,0),任取不同的两点 A’A j ,5【答案】—285【解析】 C 82 5_ 28二、选择题(本大题共有 4题,满分20分) 15.设 a R ,则“ a 1 ”是“ a 2 1 ”的() A.充分非必要条件 B.必要非充分条件【答案】AC.充要条件D.既非充分也非必要条件16.下列极坐标方程中,对应的曲线为右图的是A. 【答案】5cos B. 6 5si n )C.6 5cos D. 6 5si n【解析】17.已知无穷等比数列成立的是()A. a 0 0.6 q 0.7B. a 0 50.7 q 0.6 C. a 00.7 5q0.8D. a0 50.8 q 0.7 【答案】B【解析】 S nad1 q n)5S a , 1 q11 q1 q2S > S ,即 a 1(2q n1) 0n1若a i 0,则q -,不可能成立n1右a i 0,则q - , B 成立三、解答题(本大题共有 5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的 步骤. 19. (本题满分12分)将边长为1的正方形AAOQ (及其内部)绕0。
上海市徐汇、金山、嘉定区2016届高三数学下学期学习能力诊断试卷 理(含解析)
2015学年第二学期徐汇、金山、松江区学习能力诊断卷高三数学 理科试卷一. 填空题:(本题满分56分,每小题4分) 1.抛物线x y 42=的焦点坐标是_____________.2.若集合{}{}310,12A x x B x x =+>=-<,则A B =_______________. 3.若复数z 满足1,ii z-=-其中i 为虚数单位,则z =________________. 4.求值:23=________________弧度.5.试写出71x x ⎛⎫- ⎪⎝⎭展开式中系数最大的项________________.6.若函数4y =a ,最大值为b ,则2l i m 34n nn nn a b a b→∞--=_________. 7.在极坐标系中,点(3,)2π关于直线6πθ=的对称点的坐标为________________.8.某学校要从5名男生和2名女生中选出2人作为志愿者,若用随机量ξ表示选出的志愿者中女生的人数,则数学期望E ξ=_______________.(结果用最简分数表示)9.已知平面上三点A 、B 、C 满足|AB|=,|BC|=,|CA|=,则AB BC BC CA CA AB++ 的值等于_______________.10.从集合{}1,2,3,4,5,6,7,8,9,10A =中任取两个数,欲使取到的一个数大于,k 另一个数小于k (其中)k A ∈的概率是2,5则k =__________________. 11.有一个解三角形的题因纸张破损有一个条件不清,具体如下:“在ABC ∆中,角,,A B C 所对的边分别为,,.a b c已知045,a B ==______________,求角A .”经推断破损处的条件为三角形一边的长度,且答案提示060,A =试将条件补充完整.12.在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为__________________.13.定义在R 上的奇函数(),f x 当0x ≥时,[)[)12log (1),0,1,()13,1,,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为________________(结果用a 表示).14.对于给定的正整数n 和正数R ,若等差数列123,,,a a a 满足22121n a a R ++≤,则21222341n n n n S a a a a ++++=++++ 的最大值为__________________.二. 选择题:(本题满分20分,每小题5分)15.已知非零向量a 、b ,“函数2()()f x ax b =+ 为偶函数”是“a b ⊥ ”的----------( )(A ) 充分非必要条件(B ) 必要非充分条件 (C ) 充要条件(D ) 既非充分也非必要条件16.函数y =22,0,,0x x x x ≥⎧⎨-<⎩的反函数是------------------------------------------------------------------( )(A),020x x y x ⎧≥⎪=<(B),020x x y x ⎧≥⎪=⎨⎪<⎩(C)2,00x x y x ≥⎧⎪=< (D)2,00x x y x ≥⎧⎪=⎨<⎪⎩17.如图,圆锥形容器的高为,h 圆锥内水面的高为1,h 且11,3h h =若将圆锥倒置,水面高为2,h 则2h 等于-----------------------------------------------------------------------------------------------------------( )(A )23h (B )1927h (C(D )18.设1x 、2x 是关于x 的方程022=-++m m mx x的两个不相等的实数根,那么过两点),(211x x A 、),(222x x B 的直线与圆()()22111x y -++=的位置关系是----------------------------------------( )(A )相离 (B )相切 (C )相交 (D )随m 的变化而变化 三. 解答题:(本大题共5题,满分74分)19.(本题满分12分;第(1)小题6分,第(2)小题6分) 已知函数x x x x f 2cos 2cos sin 2)(+=. (1)求函数)(x f 的单调递增区间; (2)将函数)(x f y =图像向右平移4π个单位后,得到函数)(x g y =的图像,求方程1)(=x g 的解.20.(本题满分14分;第(1)小题6分,第(2)小题8分)在直三棱柱111C B A ABC -中,1==AC AB ,090=∠BAC ,且异面直线B A 1与11C B 所成的角等于060,设a AA =1. (1)求a 的值;(2)求三棱锥BC A B 11-的体积.21.(本题满分14分;第(1)小题6分,第(2)小题8分) 已知函数()2.f x x a a =-+(1)若不等式()6f x <的解集为()1,3-,求a 的值;(2)在(1)的条件下,若存在0,x R ∈使00()()f x t f x ≤--,求t 的取值范围.1A 1B 1CABC22.(本题满分16分;第(1)小题3分,第(2)小题6分,第(3)小题7分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为()1,0F ,且点3(1,)2P 在椭圆C 上.(1)求椭圆C 的标准方程;(2)过椭圆22122:153x y C a b +=-上异于其顶点的任意一点Q 作圆224:3O x y +=的两条切线,切点分别为,(,M N M N 不在坐标轴上),若直线MN 在x 轴,y 轴上的截距分别为,,m n 证明:22113m n +为定值; (3)若12,P P 是椭圆222223:1x y C a b+=上不同的两点,12PP ⊥x 轴,圆E 过12,,P P 且椭圆 2C 上任意一点都不在圆E 内,则称圆E 为该椭圆的一个内切圆. 试问:椭圆2C 是否存在过左焦点1F 的内切圆?若存在,求出圆心E 的坐标;若不存在,请说明理由.23.(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分) 设集合W 由满足下列两个条件的数列{}n a 构成:①21;2n n n a a a +++<②存在实数,a b 使n a a b ≤≤对任意正整数n 都成立.(1) 现在给出只有5项的有限数列{}{},,n n a b 其中123452,6,8,9,12a a a a a =====;2log (1,2,3,4,5).k b k k ==试判断数列{}{},n n a b 是否为集合W 的元素;(2)数列{}n c 的前n 项和为1,1,n S c =且对任意正整数,n 点1(,)n n c S +在直线220x y +-=上,证明:数列{},n S W ∈并写出实数,a b 的取值范围;(3)设数列{},n d W ∈且对满足条件②中的实数b 的最小值0,b 都有*0().n d b n N ≠∈求证:数列{}n d 一定是单调递增数列.2016年松江区高考数学(理科)二模卷一、填空题1.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/曲线与方程/抛物线的标准方程和几何性质. 【参考答案】(1,0)【试题分析】抛物线22y px =的焦点坐标为(,0)2p,抛物线24y x =中2p =,所以焦点为(1,0),故答案为(1,0).2.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/集合与命题/交集,并集,补集. 【参考答案】1(,3)3-【试题分析】解|1|<2x -得13x -<<,所以1{|310}(,)3A x x =+>=-+∞,{||1|2}=(1,3)B x x =-<-,所以1(,3)3A B =- ,故答案为1(,3)3A B =- .3.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数与运算的基本知识.【知识内容】数与运算/复数初步/复数的四则运算. 【参考答案】1i - 【试题分析】因为1i i z -=-,所以21i i(1i)1+i i iz --===--,所以1i z =-,故答案为1i -. 5.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/矩阵与行列式初步/二阶、三阶行列式. 【参考答案】2π3【试题分析】π2arcsin2ππ2π3232π3633arctan36==⨯-⨯=,故答案为2π3. 5.【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理.【知识内容】整理与概率统计/排列、组合、二项式定理/二项式定理. 【参考答案】35x【试题分析】71x x ⎛⎫-⎪ ⎭⎝展开式的第r 项为7721771C ()(1)C r r r r r rr T x x x --+=⋅-=-,其系数为7(1)C (07)r rr -≤≤,当其最大时,取4r =,所以系数最大的项为415735=C T x x-=,故答案为35x.6.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】函数与分析/函数及其基本性质/函数的基本性质; 方程与代数/数列与数学归纳法/数列的极限. 【参考答案】12【试题分析】因为22023(1)44x x x -++=--+≤≤,所以244y =≤,所以2,4a b ==,2223lim =lim 343243nnnnn n n n n n a b a b →∞→∞--⋅=-⋅-⋅2()213lim 223()43n n n →∞-=⋅-. 7.【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理. 【知识内容】图形与几何/参数方程和极坐标/极坐标;图形与几何/平面直线的方程/两条直线的平行关系与垂直关系. 【参考答案】π(3,)6- 【试题分析】直线π=6θ化为普通方程为3y x =,点π(3,)2对应直角坐标系中的点为(0,3),设点(0,3)关于直线y x =的对称的点为(,)a b,则31,322b a a b ⎧-=-⎪⎪+=,解得32a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以点的坐标为3)2-,化为极坐标系中的点为π(3,)6-. 8.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数据整理与概率统计的基本知识.【知识内容】数据整理与概率统计/概率与统计/随机变量的分布及数字特征. 【参考答案】47【试题分析】根据题意,ξ的取值为0,1,2,2527C 10(=0)=C 21P ξ=,115227C C 10(=1)==C 21P ξ,2227C 1(=2)==C 21P ξ,所以10141221217E ξ=⨯+⨯=,故答案为47.9.【测量目标】运算能力/能通过运算,对问题进行推理和探求.【知识内容】图形与几何/平面向量的坐标表示/平面向量的数量积; 函数与分析/三角比/正弦定理和余弦定理. 【参考答案】8-【试题分析】因为AB BC CA ===所以222cos 2AB BC CA B AB BC+-∠=⋅0==,cos 0AB BC AB BC B ⋅=-∠= ,同理,可求得cos C ∠=,5BC CA ⋅=-,cos A ∠=,3CA AB ⋅=-,所以8AB BC BC CA CA AB ⋅+⋅+⋅=- ,故答案为8-.(或28AB BC BC CA CA AB AB BC AC ⋅+⋅+⋅=⋅=- -)10.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数据整理与概率统计的基本知识.【知识内容】数据整理与概率统计/概率与统计初步/等可能事件的概率. 【参考答案】4或7【试题分析】从集合A 中任取两个数的取法有210C 45=种,因为取到的两个数中一个数大于k ,另一个数小于k 的概率是25,所以事件的可能有545=182⨯种,即(1)(10)18k k --=,解得4k =或7,故答案为4或7.11.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/三角比/正弦定理和余弦定理.【参考答案】c =【试题分析】由B =45°,A =60°,得C =75°,由s i n s i n abA B =得,,所以b =所以sin =sin 2a c c A =,若填入“b =sin sin 2a BA b==得A =60°或120°,故只能填入2c =2c =.12.【测量目标】逻辑思维能力/具有对数学问题进行观察、分析、综合、比较、抽象、概括、判断和论证的能力.【知识内容】方程与代数/数列与数学归纳法/等差数列. 【参考答案】200【试题分析】等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x ++∈N …,遗漏的项为*+,x n a n ∈N 且9,n 1≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+9(322)2185x n =+--=,化简得4494352x n =+≤≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯,故答案为200. 13.【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】函数与分析/函数及其基本性质/函数的基本性质; 函数与分析/指数函数和对数函数/指数方程和对数方程.【参考答案】12a-【试题分析】函数()()F x f x a =-有零点,则函数()f x 的图像与直线y a =有交点,它们的图像如图所示,当[0,1x ∈)时,图像无交点,当10x -≤≤时,[0,1]x -∈,所以12()log (1)f x x -=-+,因为函数()f x 是定义在R 上的奇函数,所以()()f x f x =--12log (1)x =--+,令12()log (1)f x x a =--+=,得12a x =-,当[1,)x ∈+∞时,由()f x a =得1|3|x a --=,|3|=1x a --,126x x +=,同理,可得当(,1)x ∈-∞-时,346x x +=-,所以函数()F x 的所有零点之和为612612a a -+-+=-,故答案为12a-.第13题图apto214.【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】方程与代数/数列与数学归纳法/等差数列; 方程与代数/不等式/一元二次不等式(组)的解法.【参考答案】(22n +【试题分析】因为数列{}n a 是等差数列,所以214122431=2n n n n n a a a a a +++++=+=…,所以31(21)n S n a +=+,又因为22221213131(3)()n n n a a a nd a nd R ++++=-+-≤,即213128n n a da ++- 22100n d R +-≥,关于d 的二次方程22231110820n n n d da a R ++-+-≥有解,则222311=(8)40(2)0n n a n a R ++∆--≥-,化简得22231(6480)40n n a n R +-≥-,所以231n a +≤222401325()8064280642n R R R n n =+--≤,31n a +,所以S.二、选择题15.【测量目标】逻辑思维能力/能从数学的角度有条理地思考问题. 【知识内容】函数与分析/函数及其基本性质/函数的基本性质; 图形与几何/平面向量的坐标表示/向量平行与垂直的坐标关系; 方程与代数/集合与命题/充分条件,必要条件,充分必要条件. 【正确选项】C【试题分析】函数2222()()2f x ax b a x a bx b =+=+⋅+ ,若函数()f x 为偶函数,则()()f x f x =-,所以0a b ⋅= ,a b ⊥ ,充分性成立;反之由a b ⊥可得函数()f x 是偶函数,必要性也成立,所以“函数2()()f x ax b =+ 为偶函数”是“a b ⊥ ”的充要条件,故答案为C. 16.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/指数函数和对数函数/反函数. 【正确选项】B【试题分析】当0x ≥时,20,2y y x x ==≥,所以1(),02x f x x -=≥;当0x <时,20,y x x =-<=1()0f x x -=<,故答案为B.17.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/简单几何体的研究/锥体.【正确选项】D【试题分析】设圆锥底面半径为r ,则根据题意有2222211221ππ()π()33333hr h r h r h h⋅-⋅⋅=,化简得3221927h h h =,所以2h =,故答案为D.18.【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】函数与分析/函数及其基本性质/简单的幂函数、二次函数的性质; 图形与几何/曲线与方程/圆的标准方程和一般方程; 图形与几何/平面直线的方程/点到直线的距离. 【正确选项】C【试题分析】因为方程22=0x mx m m ++-有两个不相等的实数根12,x x ,所以211x mx +=2m m -,且224()0m m m ∆=-->,解得403m <<,因为12x x ≠,所以直线AB 的斜率为22121212=x x x x m x x -=+--,所以直线AB 的方程为211()y x m x x -=--,则圆22(1)(1)1x y -++=的圆心(1,1)-到直线的距离d ==2+1,t m =2519t <<,4()=+4f t t t -,易知其在(1,2]上单调递减,在25(2,)9上单调递增,且25(1)1,(2)0,()19f f f ==<,所以()1f t <0≤,1d <0≤,又圆的半径为1,所以直线AB 与圆相交,故答案为C.三、解答题 19.(本题满分12分,第(1)小题6分,第(2)小题6分) 【测量目标】(1)运算能力/能根据法则准确地进行运算、变形. (2)运算能力/能通过运算,对问题进行推理和探求. 【知识内容】(1)函数与分析/三角函数/函数sin()y A x ωϕ=+的图像和性质. (2)函数与分析/三角函数/函数sin()y A x ωϕ=+的图像和性质.【参考答案】(1)π())14f x x =++, --------------3分由πππ2π22π()242k x k k -++∈Z ≤≤,得)(x f 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z . --6分(2)由已知,π()214g x x ⎛⎫=-+ ⎪⎝⎭, -------------9分由1)(=x gπ204x ⎛⎫-= ⎪⎝⎭,ππ28k x ∴=+,k ∈Z . -----------------------12分20.(本题满分14分,第(1)小题6分,第(2)小题8分) 【测量目标】(1)空间想象能力/能正确地分析图形中的基本元素和相互关系.(2)空间想象能力/能正确地分析图形中的基本元素和相互关系. 【知识内容】(1)图形与几何/空间向量及其应用/距离和角. (2)图形与几何/简单几何体的研究/锥体. 【参考答案】(1)如图建立空间直角坐标系,XHLD1第20题图则由题意得,()()10,0,,1,0,0A a B ,()()111,0,,0,1,B a C a , 所以()()1111,0,,1,1,0A B a BC =-=- .------------3分 设向量111,AB BC 所成角为θ,则060θ=,或0120θ=, 由于cos 0θ=<,所以0120θ=,得1c o s 2θ=-,解得 1.a =--------------6分(2)连接C B 1,1,AC 则三棱锥BC A B 11-的体积等于三棱锥B B A C 11-的体积,1111,B A BC C A B B V V --=11A B B △的面积21=S ,1A BC △的面积242S '==,………11分 又⊥∴⊥⊥CA AB CA A A CA ,,1平面C B A 11,所以611213111=⨯⨯=-B B A C V ,所以6111=-BC A B V . ………14分21.(本题满分14分,第(1)小题6分,第(2)小题8分)【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识. (2)逻辑思维能力/会进行演绎、归纳和类比推理,能合乎逻辑地、准确地阐述自己的思想和观点.【知识内容】(1)方程与代数/不等式/含有绝对值不等式的解法. (2)函数与分析/函数及其基本性质/函数的基本性质. 【参考答案】(1)()26,f x x a a =-+<即26.x a a -<-60,626,a a x a a ->⎧∴⎨-+<-<-⎩即6,33,a a x <⎧⎨-<<⎩-----------------------------------------3分6,31, 2.33,a a a <⎧⎪∴-=-=⎨⎪=⎩即----------------------------------------------------------------------6分(2)2a =时,()22 2.f x x =-+若存在0,x ∈R 使00()(),f x t f x --≤即00()(),t f x f x +-≥---------------------8分 则[]min ()().t f x f x +-≥-----------------------------------------------------------------10分()()22224f x f x x x +-=-+++ (22)(22)48,x x --++=≥当[]1,1x ∈-时等号成立8,t ∴≥即[)8,.t ∈+∞----------------------------------------14分22.(本题满分16分,第(1)小题3分,第(2)小题6分,第(3)小题7分)【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)逻辑思维能力/会进行演绎、归纳和类比推理,能合乎逻辑地、准确地阐述自己的思想和观点.【知识内容】(1)图形与几何/曲线与方程/椭圆的标准方程和几何性质.(2)图形与几何/曲线与方程/椭圆的标准方程和几何性质.(3)图形与几何/曲线与方程/椭圆的标准方程和几何性质、圆的标准方程和几何性质.【参考答案】(1)由题意得, 1.c =所以221,a b =+ 又点3(1,)2P 在椭圆C 上,所以22191,4a b +=解得224,3,a b == 所以椭圆C 的标准方程为221.43x y +=----------------------------------------------3分 (2)由(1)知,2213:1,44x y C +=设点112233(,),(,),(,),Q x y M x y N x y 则直线QM 的方程为224,3x x y y += ① 直线QN 的方程为334,3x x y y += ② 把点Q 的坐标代入①②得2121313143,43x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩所以直线MN 的方程为114,3x x y y +=令0,y =得14,3m x =令0,x =得14,3n y = 所以1144,,33x y m n==又点Q 在椭圆1C 上, 所以2244()3()4,33m n +=即22113,34m n +=为定值.-------------------------------9分(3)由椭圆的对称性,不妨设12(,),(,),P m n P m n -由题意知,点E 在x 轴上, 设点(,0),E t 则圆E 的方程为2222()().x t y m t n -+=-+----------------------11分 由椭圆的内切圆的定义知,椭圆上的点到点E 的距离的最小值是1,PE 设点(,)M x y 是椭圆2C 上任意一点,则222223()21,4ME x t y x tx t =-+=-++ 当x m =时,2ME 最小,所以24.332t t m -=-= ① 假设椭圆2C 存在过左焦点F的内切圆,则222()().t m t n =-+ ②又点1P 在椭圆2C 上,所以221.4m n =- ③------------------------------------14分由①②③得2t =-或t =当t =时,42,3t m ==<-不合题意,舍去,且经验证,t =. 综上,椭圆2C 存在过左焦点F 的内切圆,圆心E的坐标是(---------16分 23.(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)【测量目标】(1)分析问题与解决问题的能力/能自主地学习一些新的数学知识(概念、定理、性质和方法等),并能初步应用.(2)分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题.(3)数学探究与创新能力/能运用有关的数学思想方法和科学研究方法,对问题进行探究,寻求数学对象的规律和联系;能正确地表述探究过程和结果,并予以证明.【知识内容】(1)方程与代数/数列与数学归纳法/数列的有关概念.(2)方程与代数/数列与数学归纳法/数列的有关概念.(3)方程与代数/数列与数学归纳法/数学归纳法.【参考答案】(1)对于数列{},n a 35410,2a a a +=>不满足集合W 的条件①,∴数列{}n a 不是集合W 中的元素.对于数列{},nb 13222log log 22b b b +=<=,24223log log 3,2b b b +=<=35224log log 4,2b b b +=<=而且,当{}1,2,3,4,5n ∈时有22log 1log 5,n b ≤≤显然满足集合W 的条件①②,故数列{}n b 是集合W 中的元素. -------------------4分(2)因为点1(,)n n c S +在直线220x y +-=上,所以1220n n c S ++-= ①, 当2n ≥时,有 1220n n c S -+-= ②,①-②,得1220(2),n n n c c c n +-+=≥所以,当2n ≥时,有11.2n n c c +=又2111220,1,c S S c +-===所以2111.22c c == 因此,对任意正整数,n 都有11,2n n c c +=所以,数列{}n c 是公比为12的等比数列,故()1111,2.22n n n n c S n *--==-∈N 对任意正整数,n 都有21211122,2222nn n n n n S S S ++++=--<-=且12,n S <≤故{},n S W ∈实数a 的取值范围是(],1,-∞实数b 的取值范围是[)2,.+∞-------------------10分(3)假设数列{}n d 不是单递增数列,则一定存在正整数0,k 使001.k k d d +≥------12分 此时,我们用数学归纳法证明:对于任意的正整数,n 当0n k ≥时都有1n n d d +≥成立. ①0n k =时,显然有1n n d d +≥成立;②假设0()n m m k =≥时,1,m m d d +≥则当1n m =+时,由212m m m d d d +++<可得212,m m m d d d ++<-从而有1211(2)m m m m m d d d d d ++++->--10,m m d d +=-≥所以12.m m d d ++> 由①②知,对任意的0,n k ≥都有1.n n d d +≥-----------------------------------------16分显然012,,,k d d d 这0k 个值中一定有一个最大的,不妨记为0.n d 于是0*(),n n d d n ∈N ≥从而00,n d b =与已知条件*0()n d b n ≠∈N 相矛盾.所以假设不成立,故命题得证.------------------------------------------18分。
2016年上海市高中数学竞赛试题及标准答案
2016年上海市高中数学竞赛试题及答案一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分)1.已知函数()2f x ax bx c =++(0a ≠,,,a b c 均为常数),函数()1f x 的图象与函数()f x 的图象关于y 轴对称,函数()2f x 的图象与函数()1f x 的图象关于直线1y =对称,则函数()2f x 的解析式为 .答案:()22 2.f x ax bx c =-+-+解 在函数()y f x =的表达式中用x -代替x ,得()21f x ax bx c =-+,在函数()1y f x =的表达式中用2y -代替y ,得()22 2.f x ax bx c =-+-+2.复数z 满足1z =,2223w z z=-在复平面上对应的动点W 所表示曲线的普通方程是 .答案:221.25y x += 解 设,z a bi w x yi =+=+,则221a b +=,()()()()()()()()()222222222222333210.a bi x yi a bi a bi a bi a bi a bi a bi a bi ab abi -+=+-=+-++-=+--=-+从而22,10x a b y ab =-=,于是()22222224 1.25y x a b a b +=-+= 3.关于x 的方程arctan 2arctan 26x xπ--=的解是 .答案:2log x = 解 因为()()tan arctan 2tan arctan 2221xx x x --⋅=⋅=,所以arctan 2arctan 22x x π-+=,解得arctan 2,arctan 236xx ππ-==,则22log x x ==4.红、蓝、绿、白四颗骰子,每颗骰子的六个面上的数字为1,2,3,4,5,6,则同时掷这四颗骰子使得四颗骰子向上的数的乘积等于36,共有 种可能. 答案:48.解 四颗骰子乘积等于36,共有四种情形:(1)两个1,两个6,这种情形共246C =种可能; (2)两个2,两个3,这种情形共246C =种可能;(3)两个3,一个1,一个4,这种情形共214212C C =种可能; (4),1,2,3,6各一个,这种情形共4424A =种可能.综上,共有66122448+++=种可能. 5.已知函数()()()()1cos ,202xf x xg x a a π==-≠,若存在[]12,0,1x x ∈,使()()12f x g x =成立,则实数a 的取值范围为 .答案;13,00,.22⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦解 易知[]0,1x ∈时,()[]1,1.f x ∈-只需求a 的取值范围,使得()g x 能取到[]1,1-中的值.(1)当0a >时,()g x 单调递增,因为()12g x >-,故只需()01g ≤,解得30.2a <≤ (2)当0a <时,()g x 单调递减,因为()12g x <-,故只需()01g ≥-,解得10.2a -≤<6.如图,有16间小三角形的房间,甲、乙两人被随机地分别安置在不同的小三角形房间,那么他们在不相邻(指没有公共边)房间的概率是 (用分数表示).答案:17.20解法一 如图1,将小三角形房间分为三类:与第一类(红色)房间相邻的房子恰有一间,与第二类(绿色)房间相邻的房间恰有两间,与第三类(白色)房间相邻的房间恰有三间,从而满足条件的安置方法共有()()()316261637164204⨯-+⨯-+⨯-=种.从而所求概率为20417.161520=⨯。
2016年高考上海理科数学试题与答案(word解析版)
解法2:∵
S
n
n
a11q
1q
,
SlimS
n
n
a
1
1q
n
,1q1,2
SS,∴a12q10,
n
若a10,则
1
n
q,故A与C不可能成立;若a10,则
2
1
n
q,故B成立,D不成立.
2
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
(18)【2016年上海,理18,5分】设fx、gx、hx是定义域为R的三个函数,对于命题:①若fxgx、
3
C,若b3,则
3
2
C,
3
综上满足条件的有序实数组a,b,c为2,3,
5
3
,2,3,
4
3
,2,3,
3
,
2,3,
2
3
,共有4组.
【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱
导公式进行转化是解决本题的关键.
(14)【2016年上海,理14,4分】如图,在平面直角坐标系xOy中,O为正八边形
二、选择题(本大题共有4题,满分20分)考生应在答题纸相应编号位置填涂,每题只有一个正确选项,选对
得5分,否则一律得零分.
(15)【2016年上海,理15,5分】设aR,则“a1”是“21
a”的()
(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件
【答案】A
【解析】
22
[f(x)g(x)][f(x)h(x)][g(x)h(x)]
f(x)必为周期为的函数,所以②正确;增函
2016年上海高考数学真题(理科)试卷(word解析版)
绝密★启用前 2016年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________. 4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米).5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.10.设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩,无解,则b a +的取值范围是____________. 11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意N n *∈,{}3,2∈n S ,则k 的最大值为________.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是_____________.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为如图的是( ).(A )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O的同侧.(1)求三棱锥111C O A B 的体积;(2)求异面直线1B C 与1AA 所成的角的大小.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a 都具有性质P”的充要条件为“{}nb是常数列”.考生注意:1. 本试卷共4页,23道试题,满分150分.考试时间120分钟.2. 本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.【答案】(2,4) 【解析】试题分析:由题意得:1x 31-<-<,解得2x 4<<. 考点:绝对值不等式的基本解法.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.【答案】-3 【解析】 试题分析:32i23,Im z= 3.i z i +==--考点:1.复数的运算;2.复数的概念.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________.【解析】试题分析:利用两平行线间的距离公式得d ===.考点:两平行线间距离公式.4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 【答案】2log (1)x -【解析】试题分析: 将点(3,9)代入函数()xf x 1a =+中得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:反函数的概念以及指、对数式的转化.6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.【答案】【解析】试题分析:连结BD,则由题意得11122tan 33DD DBD DD BD ∠==⇒=⇒=.考点:线面角7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .【答案】566ππ, 【解析】试题分析:化简3sinx 1cos 2x =+得:23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),又[]0,2πx ∈,所以566x ππ=或. 考点:二倍角公式及三角函数求值.8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】试题分析:由二项式定理得:所有项的二项式系数之和为n2,即n2256=,所以n 8=,又二项展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,所以r 2=,所以3T 112=,即常数项为112.考点:二项式定理.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【解析】试题分析:利用余弦定理可求得最大边7所对应角的余弦值为22235712352+-=-⨯⨯,所以此角的正弦值2R=,所以R=.考点:正弦、余弦定理.10.设.0,0>>ba若关于,x y的方程组11ax yx by+=⎧⎨+=⎩,无解,则ba+的取值范围是____________.【答案】2+∞(,)【解析】试题分析:将方程组中上面的式子化简得y1ax=-,代入下面的式子整理得(1ab)x1b-=-,方程组无解应该满足1ab0-=且1b0-≠,所以ab1=且b1≠,所以由基本不等式得a b2+>=,即ba+的取值范围是2+∞(,).考点:方程组的思想以及基本不等式的应用.11.无穷数列{}na由k个不同的数组成,nS为{}na的前n项和.若对任意Nn*∈,{}3,2∈nS,则k的最大值为________.【答案】4考点:数列的项与和.12.在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线21xy-=上一个动点,则BABP⋅的取值范围是_____________.【答案】【解析】试题分析:由题意设(cos ,sin )P αα, ,则(cos ,1sin )BP αα=+,又,所以π=cos sin )+1[0,14BP BA ααα⋅+++∈+.考点:1.数量积的运算;2.数形结合的思想.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 . 【答案】4【解析】试题分析:当2a =时,5sin(3)sin(32)sin(3)333πππx x πx -=-+=+,5(,)(3,)3πb c =,又4sin(3)sin[(3)]sin(3)333πππx πx x -=--=-+,4(,)(3,)3πb c =-,注意到[0,2)c π∈,所以只有2组:5(23,)3π,, 4(23,)3π-,满足题意;当2a =-时,同理可得出满足题意的()c b a ,,也有2组,故共有4组.考点:三角函数14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.【答案】528【解析】试题分析:[0,π]α∈(1,1)BA =共有2828C =种基本事件,其中使点P 落在第一象限的情况有2325C +=种,故所求概率为528.考点:古典概型三、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(B )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以“1>a ”是“12>a ”的充分非必要条件,选A.考点:充要条件17.下列极坐标方程中,对应的曲线为如图的是( ).(B )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 【答案】D【解析】试题分析:依次取30,,,22ππθπ=,结合图形可知只有65sin ρθ=-满足,选D.考点:极坐标方程18.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B考点:1.数列的极限;2.等比数列求和.18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题【答案】D 【解析】 试题分析:因为[()g(x)][()(x)][g()(x)]()2f x f x h x h f x +++-+=,所以[(+)g(+)][(+)(+)][g(+)(+)](+)2f x T x T f x T h x T x T h x T f x T +++-+=,又()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,所以[()g()][()()][g()()](+)=()2f x x f x h x x h x f x T f x +++-+=,所以()f x 是周期为T 的函数,同理可得()g x 、()h x 均是以T 为周期的函数,②正确;()f x 、()g x 、()h x 中至少有一个增函数包含一个增函数、两个减函数;两个增函数、一个减函数;三个增函数,其中当三个函数中一个为增函数、另两个为减函数时,由于减函数加减函数一定为减函数,所以①不正确.选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分. 将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B长为3π,其中1B 与C 在平面11AAOO 的同侧. (1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.【答案】(1;(2)π4.【解析】试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =,1113π∠A O B =,再由三角形面积公式计算111S ∆O A B 后即得.(2)设过点1B 的母线与下底面交于点B ,根据11//BB AA ,知1C ∠B B或其补角为直线1CB 与1AA 所成的角,再结合题设条件确定πC 3∠OB =,C 1B =.得出1πC 4∠B B =即可.试题解析:(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 的长为π3,可知111π3∠A O B =.11111111111sin 2S ∆O A B =O A ⋅O B ⋅∠A O B =111111C 1V 3S h -O A B ∆O A B =⋅=.从而直线1C B 与1AA 所成的角的大小为π4.考点:1.几何体的体积;2.空间角.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(3)求菜地内的分界线C 的方程;(4)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.【答案】(1)24y x =(02y <<);(2)矩形面积为52,五边形面积为114,五边形面积更接近于1S 面积的“经验值”.【解析】试题分析:(1)由C 上的点到直线EH 与到点F 的距离相等,知C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分.(2)通过计算矩形面积,五边形面积,以及计算矩形面积与“经验值”之差的绝对值,五边形面积与“经验值”之差的绝对值,比较二者大小即可.试题解析:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为52,而所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差 的绝对值为11814312-=,所以五边形面积更接近于1S 面积的“经验值”. 考点:1.抛物线的定义及其标准方程;2.面积计算.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.【答案】(1)y =;(2).【解析】 试题分析:(1)设(),x y A A A ,根据题设条件得到()24413b b +=,从而解得2b 的值.(2)设()11,x y A ,()22,x y B ,直线:l ()2y k x =-与双曲线方程联立,得到一元二次方程,根据l 与双曲线交于两点,可得230k -≠,且()23610k ∆=+>.再设AB 的中点为(),x y M M M ,由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,从而得到1F 1kk M⋅=-,进而构建关于k 的方程求解即可. 试题解析:(1)设(),x y A A A .由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430kx k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.设AB 的中点为(),x y M M M .由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,知1F M ⊥AB ,故1F 1k k M⋅=-.而2122223x x k x k M +==-,()2623k y k x k M M =-=-,1F 2323k k k M =-,所以23123k k k ⋅=--,得235k =,故l 的斜率为155±. 考点:1.双曲线的几何性质;2.直线与双曲线的位置关系;3.平面向量的数量积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【答案】(1)()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭;(2)(]{}1,23,4;(3)2,3⎡⎫+∞⎪⎢⎣⎭.【解析】试题分析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>,从而得解.(2)将其转化为()()24510a x a x -+--=,讨论当4a =、3a =时,以及3a ≠且4a ≠时的情况即可.(3)讨论()f x 在()0,+∞上的单调性,再确定函数()f x 在区间[],1t t +上的最大值与最小值之差,从而得到()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 试题解析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>, 解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x +=-+-,()()24510a x a x -+--=,当4a =时,1x =-,经检验,满足题意. 当3a =时,121x x ==-,经检验,满足题意.当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠.1x 是原方程的解当且仅当11a x +>,即2a >; 2x 是原方程的解当且仅当21a x +>,即1a >.于是满足题意的(]1,2a ∈.综上,a 的取值范围为(]{}1,23,4.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.考点:1.对数函数的性质;2.函数与方程;3.二次函数的性质.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)16;(2){}n a 不具有性质P ,理由见解析;(3)见解析.【解析】 试题分析:(1)根据已知条件,得到678332a a a a ++=++,结合67821a a a ++=求解即可.(2)根据{}n b 的公差为20,{}n c 的公比为13,写出通项公式,从而可得520193nn n n a b c n -=+=-+.通过计算1582a a ==,248a =,63043a =,26a a ≠,即知{}n a 不具有性质P .(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明. 试题解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =.(2){}n b 的公差为20,{}n c 的公比为13,所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193nn n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P .[证](3)充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证.必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得πm b >,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.考点:1.等差数列、等比数列的通项公式;2.充要条件的证明;3.反证法.祝福语祝你考试成功!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市高三数学竞赛试卷
2016年3月27日上午9:30~11:30
【说明】解答本试卷不得使用计算器.解答请写在答题纸上.
一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)
1. 已知函数f (x )=ax 2+bx +c (a ≠0,a 、b 、c 均为常数),函数f 1(x )的图像和函数f (x )的图像关于y 轴对称,函数f 2(x )的图像和函数f 1(x )的图像关于直线y=1对称,则函数f 2(x )的分析式是 .
2.复数z 满足|z |=1, w=3z 222
z
-在复平面上对应的动点W 所表示曲线的普通方程为 .
3. 关于x 的方程arctan 2arctan 26
x x π
--=
的解是 .
4. 红、蓝、绿、白四颗骰子,每颗骰子的六个面上的数字为1,2,3,4,5,6;则同时掷这四颗骰子使得四颗骰子向上的数的乘积等于36,共有 种可能.
5. 已知函数f (x)=cos(),x πg (x )=2x a 1
2
-
(a ≠0);若存在1x 、2x ∈[0,1],使f (1x ) =f (2x )成立,则实数a 的取值范围为 .
6. 如图,有16间小三角形的房间.甲、乙两人被随机地分别安置在不同的小三角形的房间,那么他们在不相邻(指没有公共边)房间的概率是 .(用分数表示)
7. 在空间,四个不共线的向量OA 、OB 、
OC 、OD ,它们两两间的夹角都是α,则α的大小是 .
8.已知a >0,b >0,a 3+b 3=1,则a +b 的取值范围为 .
二、解答题(本大题满分60分)
9.(本题满分15分)如图,已知五边形A 1B 1C 1D 1E 1内接于边长为1的正五边形ABCDE ;
A
B
C
D
E
A 1
B 1
C 1
D 1
E 1
求证:五边形A 1B 1C 1D 1E 1中至少有一条边的长度不小于cos
5
π
.
10.(本题满分15分)设p ,q 和r 是素数,且p |qr 1-(p |qr 1-表示qr 1-能被p 整除),q |rp 1-和r |pq 1-;求pqr 的所有可能的值.
11.(本题满分15分)已知数列{}n a 满足递推关系11123
n n n a a +=-+(*n N ∈);
求所有1a 的值,使{}n a 为单调数列,即{}n a 为递增数列或递减数列.
12.(本题满分15分)已知等边三角形ABC 的边长为5,延长BA 至点P ,使得|AP |=9. D 是线段BC 上一点(包括端点),直线AD 和BPC ∆的外接圆交于E 、F 两点,其中|EA |<|ED |.
(1)设|BD |=x ,试将|EA |-|DF |表示为关于x 的函数f (x );
(2)求f (x )的最小值.
一、填空题
1.2
()2.f x ax bx c =++- 2. 2
2
1.25
y x += 3.2log 3.x = 4.48. 5. 13[,0)(0,]22-. 6. 1720 7. 1arccos()3
- 8. 34] 二、解答题
9、已知五边形
11111A B C D E 内接于
边长为1的求证:五正方形ABCDE ;
边形11111
A B C D E 中至少有一
cos
5
π。
条边的长度不小于证
明
:
A
B
C
D E
F
P
1111111111,,,,,,,,,AE AA BA BB CB CC DC DD ED EE 的长分别为
1212121212,,,,,,,,,a a b b c c d d e e 。
于是1212121212()()()()()5a a b b c c d d e e +++++++++=
由平均数原理,1212121212(),(),(),(),()a a b b c c d d e e +++++必有一个大于等于1。
不妨设121a a +≥,故211a a ≥-。
()()2
222
21112121111322cos
121cos 55
A E a a a a a a a a ππ=+-≥+-+- 2
11222(1cos
)21cos 155a a ππ⎛
⎫
=---+ ⎪⎝
⎭
2
2121122(1cos )1cos
(cos )5225
5a ππ
π⎛⎫⎛⎫
=--++≥ ⎪ ⎪
⎝⎭⎝⎭
10.解:由题设可知|(1)(1)(1)pqr qr rp pq ---;
222(1)(1)(1)()1,qr rp pq p q r pqr p q r pq qr rp ---=-+++++-
|1,pqr pq qr rp ∴++-即
11111
pq qr rp pqr p q r pqr
++-=++-为正整数;
记1111,k p q r pqr =
++-由于,,2,p q r ≥故3
1,2
k ≤<从而只能1k =. 由对称性,不妨设p q r ≤≤; 若3,p ≥则111
1,k p q r
<
++≤矛盾,故2p =. 若3,q >则12
5,1,25
q k ≥≤
+<矛盾. 若2,q =则1111
()1,224k r r
=
++->也矛盾,故3q =. 最后,由1111
1,236r r
=
++-得5r =. 经检验,2,3,5p q r ===符合题意. 30pqr ∴=.
11. 解:*1111111
()333,232
n n n n n n n a a n N a a ++++=-
+∈⇔=-⨯+ 令3,n
n n b a =则*113636
3,(),()2525
n n n n b b b b n N ++=-
+-=-∈ 1111163636()()()(3),52525
n n n b b a --+∴-
=--=-- 1111116632121[(3)()]()()()335525352
n n n n n n n b a a a ---=
=+--=+-- 1111222()[()()].2535
n n a --=--+-
若120,5a -
≠则由11222()535n a --<-,可得213
52
1log (),25n a >+-
故当*
,n N ∈且213
52
1log (
)25
n a >+-时,11222()()535n a --+-和125a -同号;
而1
1
()
2
n --正负交叉,从而n a 正负交叉,{}n a 不是单调数列.
当125a =
时,1
21()53
n n a -=为递减数列; 综上,当且仅当12
5
a =
时,{}n a 为单调数列. 12. 解:(1)设,,,u EA v AD DF ω===则()f x u w =-. 在ABD 中,由余弦定理得,22
2cos v AB BD AB BD ABD =
+-∠2221
5255252
x x x x =+-⨯⋅
=-+.
在PBC 的外接圆中运用相交弦定理,得,,EA AF BA AP ED DF BD DC == 即()45,()(5);u v w u v w x x +=+=-两式相减得2
()545,v u w x x -=-+故
222545()5)525
x x f x u w x v x x -+=-==≤≤-+
(2)设25250t x x =
-+≥,则
222202020()245525
t f x t t t t t x x +=
==+≥⋅=-+.
当且仅当20
t t
=
时等号成立,即252525t x x =-+=55x ±=
所以,当55
x ±=
时,()f x 取到最小值5。