2019高考数学专题训练--解三角形(有解析)
2019年高考数学大二轮复习专题三三角函数3-2三角变换与解三角形练习
3.2三角变换与解三角形【课时作业】A 级1.(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =()A .42B .30 C.29D .25解析: ∵cos C 2=55,∴cos C =2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,∴AB =32=4 2. 故选A. 答案: A2.(2018·山东菏泽2月联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=()A.427B .±225C .±427D .225解析: ∵α∈⎝⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,由同角三角函数的商数关系知tan α=sin αcos α=-2 2.∴tan(π+2α)=tan2α=2tan α1-tan2α=-421--22=427,故选A. 答案: A3.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于() A.32B .34C.36D .38解析: 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3=B ,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.答案: B 4.若α∈⎝ ⎛⎭⎪⎫π4,π,且3cos2α=4sin ⎝⎛⎭⎪⎫π4-α,则sin2α的值为()A.79B .-79 C .-19D .19解析: 3(cos 2α-sin 2α)=22(cos α-sin α),因为α∈⎝ ⎛⎭⎪⎫π4,π,所以cos α-sin α≠0,所以3(cos α+sin α)=22,即cos α+sin α=223,两边平方可得1+sin2α=89⇒sin2α=-19.答案: C5.(2018·南昌市第一次模拟测试卷)已知台风中心位于城市A 东偏北α(α为锐角)的150千米处,以v 千米/时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)的200千米处,若cos α=34cos β,则v =() A .60B .80 C .100D .125解析: 如图,台风中心为B,2.5小时后到达点C ,则在△ABC中,AB sin α=AC sin β,即sin α=43sin β,又cos α=34cos β.∴sin 2α+cos 2α=169sin 2β+916cos 2β=1=sin 2β+cos 2β,∴sin β=34cos β, ∴sin β=35,cos β=45,∴sin α=45,cos α=35,∴cos(α+β)=cos αcos β-sin αsin β=35×45-45×35=0,∴α+β=π2,∴BC 2=AB 2+AC 2,∴(2.5v )2=1502+2002,解得v =100,故选 C. 答案: C 6.化简:π-α+sin 2αcos2α2=________.解析:π-α+sin 2αcos2α2=2sin α+2sin α·cos α12+cos α=2sin α+cos α12+cos α=4sinα.答案: 4sin α7.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.解析:sin 2A sin C =2sin Acos A sin C =2a c ·b2+c2-a22bc =2×46·25+36-162×5×6=1. 答案: 18.(2018·开封市高三定位考试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b tan B +b tan A =2c tan B ,且a =5,△ABC 的面积为23,则b +c 的值为________.解析: 由正弦定理及b tan B +b tan A =2c tan B ,得sin B ·sin B cos B +sin B ·sin A cos A =2sin C ·sin Bcos B ,即cos A sin B +sin A cos B =2sin C cos A ,亦即sin(A +B )=2sin C cos A ,故sin C =2sin C cos A .因为sin C ≠0,所以cos A =12,所以A =π3.由面积公式,知S △ABC =12bc sin A =23,所以bc =8.由余弦定理,知a 2=b 2+c 2-2bc cos A =(b +c )2-3bc ,代入可得b +c =7.答案: 79.(2018·浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解析: (1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.(2018·北京卷)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解析: (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos2B =437. 由正弦定理得sin A =asin B b =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.B 级1.(2018·河南濮阳一模)已知△ABC 中,sin A ,sin B ,sin C 成等比数列,则sin 2Bsin B +cos B 的取值范围是() A.⎝ ⎛⎦⎥⎤-∞,22B .⎝ ⎛⎦⎥⎤0,22C .(-1,2)D .⎝⎛⎦⎥⎤0,3-32解析: 由sin A ,sin B ,sin C 成等比数列,知a ,b ,c ,成等比数列,即b 2=ac ,∴cos B =a2+c2-b22ac =a2+c2-ac 2ac =⎝ ⎛⎭⎪⎫a2c +c 2a -12≥2a 2c ·c 2a -12=12,当且仅当a =c 时等号成立,可知B ∈⎝⎛⎦⎥⎤0,π3,设y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B,设sin B +cos B =t ,则2sin B cos B =t 2-1.由于t =sin B +cos B =2sin ⎝ ⎛⎭⎪⎫B +π4,B ∈⎝ ⎛⎦⎥⎤0,π3,所以t ∈(1,2],故y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B =t2-1t =t -1t ,t ∈(1,2],因为y =t -1t 在t ∈(1,2]上是增函数,所以y ∈⎝⎛⎦⎥⎤0,22.故选B. 答案: B2.(2018·石家庄质量检测(一))如图,平面四边形ABCD 的对角线的交点位于四边形的内部,AB =1,BC =2,AC =CD ,AC ⊥CD ,当∠ABC 变化时,对角线BD 的最大值为________.解析: 设∠ABC =θ,θ∈(0,π),则由余弦定理得AC 2=3-22cos θ,由正弦定理得1sin∠ACB =AC sin θ,得sin ∠ACB =sin θAC .在△DCB 中,由余弦定理可得,BD 2=CD 2+2-22CD cos ⎝ ⎛⎭⎪⎫π2+∠ACB =AC 2+2+22AC sin ∠ACB =3-22cos θ+2+22AC ×sin θAC =5+22(sin θ-cos θ)=5+4sin ⎝ ⎛⎭⎪⎫θ-π4,当θ=3π4时,⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫θ-π4max =1,∴BD 2m ax =9,∴BD max =3.答案: 33.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b . (1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC 面积的最大值.解析: (1)易得a =(-sin x ,cos x ), 则f (x )=a ·b =sin 2x +3sin x cos x =12-12cos2x +32sin2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12,所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π,k ∈Z 时,即x =π3+k π(k ∈Z )时,f (x )取最大值是32.(2)因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12⇒A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c 时等号成立),所以S =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值是3 3.4.如图,在一条海防警戒线上的点A 、B 、C 处各有一个水声检测点,B 、C 两点到A 的距离分别为20千米和50千米,某时刻B 收到发自静止目标P 的一个声波信号,8秒后A 、B 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求出x 的值; (2)求P 到海防警戒线AC 的距离.解析: (1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12. 在△PAB 中,AB =20,cos ∠PAB =PA2+AB2-PB22PA·AB =x2+202--2x·20=3x +325x,同理,在△PAC 中,AC =50,cos ∠PAC =PA2+AC2-PC22PA·AC =x2+502-x22x·50=25x .∵cos ∠PAB =cos ∠PAC ,∴3x +325x =25x, 解得x =31.(2)作PD ⊥AC 于点D ,在△ADP 中, 由cos ∠PAD =2531,得sin ∠PAD =1-cos2∠PAD=42131,∴PD =PA sin ∠PAD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米.。
2019年高考数学(文):专题09-三角恒等变换与解三角形(命题猜想)(含答案和解析)
【考向解读】正弦定理和余弦定理以及解三角形问题是高考的必考内容,1.和差角公式、二倍角公式是高考的热点,常与三角函数式的求值、化简交汇命题.既有选择题、填空题,又有解答题,难度适中,主要考查公式的灵活运用及三角恒等变换能力.2.预测高考仍将以和差角公式及二倍角公式为主要考点,复习时应引起足够的重视.3.边和角的计算;4.三角形形状的判断;5.面积的计算;6.有关的范围问题.【命题热点突破一】三角恒等变换 例1、(2018年全国III 卷)若,则A.B.C.D.【答案】B【解析】,故答案为B.【变式探究】【2017山东,文7】函数最小正周期为A.π2 B. 2π3C.πD. 2π 【答案】C【变式探究】(1)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________.【解析】基本法:将θ-π4转化为⎝⎛⎭⎫θ+π4-π2.由题意知sin ⎝⎛⎭⎫θ+π4=35,θ是第四象限角,所以 cos ⎝⎛⎭⎫θ+π4>0,所以cos ⎝⎛⎭⎫θ+π4=1-sin 2⎝⎛⎭⎫θ+π4=45.tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2=-1tan ⎝⎛⎭⎫θ+π4=-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-4535=-43.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】 (Ⅰ)由题意知,化简得,即.因为,所以.从而.由正弦定理得2a b c +=.【感悟提升】 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.求三角形中的角,关键是利用正弦定理或余弦定理求出某角的正弦值或余弦值,再根据角的范围求出对应的角的大小.解题时要注意利用三角形内角和定理,即A +B +C =π.【答案】 23π【解析】 ∵cos B cos C +2a c +bc =0,∴ccos B +2acos C +bcos C =0,由正弦定理得sin Ccos B +2sin Acos C +sin Bcos C =0, ∴sin (B +C )+2si n Acos C =sin A +2sin Acos C =0, ∵sin A≠0,∴cos C =-12,∴C =23π.【变式探究】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且csin B =bcos C =3. (1)求b ;(2)若△ABC 的面积为212,求c. 【解析】【感悟提升】 求解三角形的边和面积的关键是利用正、余弦定理求出相关角度和边长.正弦定理揭示了三角形三边和其对角的正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系.正弦定理可以使各边的比值和各个内角的正弦的比值相互转化.只要知道了三角形三边之间的比例关系即可利用余弦定理求出三角形的内角.【命题热点突破三】 正、余弦定理的应用例3、(2018年天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a,b,c .已知b sin A =a cos(B –). (Ⅰ)求角B 的大小;(Ⅱ)设a =2,c =3,求b 和sin(2A –B )的值. 【答案】(Ⅰ)B =;(Ⅱ)b =,【解析】(Ⅰ)在△ABC 中,由正弦定理,可得,又由,得,即,可得.又因为,可得B =.(Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =,有,故b =.由,可得.因为a <c ,故.因此,所以,【变式探究】【2017课标1,文11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练
第二讲 三角函数的图象与性质1.(2019·豫南九校联考)将函数y =sin ⎝⎛⎭⎪⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫x 2-5π24B .y =sin ⎝ ⎛⎭⎪⎫x 2-π3C .y =sin ⎝ ⎛⎭⎪⎫x 2-5π12 D.y =sin ⎝⎛⎭⎪⎫2x -7π12 解析:函数y =sin ⎝ ⎛⎭⎪⎫x -π4经伸长变换得y =sin ⎝ ⎛⎭⎪⎫x 2-π4,再作平移变换得y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π6-π4=sin ⎝ ⎛⎭⎪⎫x 2-π3.答案:B2.(2019·某某亳州一中月考)函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )解析:由题意得函数的周期为T =2π,故可排除B ,D.对于C ,图象过点⎝ ⎛⎭⎪⎫π3,0,代入解析式,不成立,故选A. 答案:A3.(2019·某某某某十校期末测试)要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,∴要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象向左平移π6个单位长度.答案:B4.(2019·东北三省三校一模)已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为( )A.⎣⎢⎡⎦⎥⎤-π3,π6 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤-π3,2π3解析:由题意得2πω=2×π2,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z),解得-π3+k π≤x ≤π6+k π.当k =0时,有x ∈⎣⎢⎡⎦⎥⎤-π3,π6.故选A.答案:A5.(2019·高考全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B.32 C .1D.12解析:由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A. 答案:A6.(2019·某某某某一模)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .1 B.π2C .2D.π解析:∵函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,由ω∈(1,3),得ω=2.由题意得|x 1-x 2|的最小值为函数的半个周期,即T 2=πω=π2.答案:B7.(2019·某某平遥中学调研)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A .x =π12B.x =π4C .x =π3D.x =2π3解析:由题意知图象过A (0,3),B ⎝ ⎛⎭⎪⎫π6,0, 即f (0)=2sin φ=3,f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π6·ω+φ=0,又ω>0,|φ|<π,并结合图象知φ=2π3,π6·ω+φ=π+2k π(k ∈Z),得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3, 移动后g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以对称轴满足2x +π3=π2+k π(k ∈Z),解得x =π12+k π2(k ∈Z),所以满足条件的一条对称轴方程是x =π12,故选A.答案:A8.(2019·某某某某适应性统考)已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B.ω=2,φ=π6C .ω=12,φ=π3D.ω=12,φ=π12解析:由题意知T =4×⎝⎛⎭⎪⎫π12+π6=π,所以ω=2.因为A ⎝ ⎛⎭⎪⎫-π6,0,所以0=sin ⎝ ⎛⎭⎪⎫-π3+φ. 又0<φ<π2,所以φ=π3.答案:A9.(2019·某某某某3月模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,则ω的可能取值为( )A.23 B.2 C.143D.263解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2, ∴sin ⎝ ⎛⎭⎪⎫-π6=-sin ⎝ ⎛⎭⎪⎫π2ω-π6=-12,∴π2ω-π6=2k π+π6或π2ω-π6=2k π+5π6,k ∈Z ,∴ω=4k +23或ω=4k +2,k ∈Z.∵函数f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,∴ωx -π6∈⎝ ⎛⎭⎪⎫-π6,ωπ2-π6,∴2π<ωπ2-π6≤3π,∴133<ω≤193,∴ω=143或ω=6.故选C.答案:C10.(2019·贺州一模)已知函数f (x )=sin(2x +φ)(φ∈R),若f ⎝ ⎛⎭⎪⎫π3-x =f (x ),且f (π)>f ⎝ ⎛⎭⎪⎫π2,则函数f (x )取得最大值时x 的可能值为( )A.π6B.π5C.π3D.π2解析:因为f ⎝ ⎛⎭⎪⎫π3-x =f (x ), 即y =f (x )的图象关于直线x =π6对称,即函数f (x )在x =π6时取得最值,①当函数f (x )在x =π6时取得最大值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π3=f (π),满足题意, ②当函数f (x )在x =π6时取得最小值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2>f ⎝ ⎛⎭⎪⎫π3=f (π),不满足题意, 综合①②得:函数f (x )取得最大值时x 的可能值为π6.故选A. 答案:A11.(2019·某某一模)若函数f (x )=sinωx2·sin ⎝⎛⎭⎪⎫ωx 2+π2(ω>0)在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,则ω的取值X 围是( ) A .(0,5)B.[1,5)C.⎝ ⎛⎭⎪⎫0,92 D.⎣⎢⎡⎭⎪⎫1,92 解析:f (x )=sinωx2sin ⎝⎛⎭⎪⎫ωx 2+π2=12sin ωx ,当ωx =2k π+π2,即x =2k π+π2ω(k ∈Z)时函数取最大值,又函数f (x )在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,即有两种情况,一是区间⎣⎢⎡⎦⎥⎤-π3,π2内只有一个极值点,二是函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π2内单调递增,所以有⎩⎪⎨⎪⎧π2≤ωπ2<5π2,-3π2<-ωπ3或⎩⎪⎨⎪⎧π2≥ωπ2,-π2≤-ωπ3,解得ω∈⎣⎢⎡⎭⎪⎫1,92或ω∈(-∞,1],又∵ω>0,所以ω∈⎝ ⎛⎭⎪⎫0,92,故选C. 答案:C12.(2019·某某一模)函数f (x )=sin(2x +θ)+cos 2x ,若f (x )最大值为G (θ),最小值为g (θ),则( )A .∃θ0∈R ,使G (θ0)+g (θ0)=πB .∃θ0∈R ,使G (θ0)-g (θ0)=πC .∃θ0∈R ,使|G (θ0)·g (θ0)|=πD .∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π解析:f (x )=sin(2x +θ)+cos 2x =cos θ·sin 2x +⎝ ⎛⎭⎪⎫sin θ+12·cos 2x +12=54+sin θsin(2x +φ)+12,所以G (θ)=54+sin θ+12,g (θ)=-54+sin θ+12, ①对于选项A ,G (θ0)+g (θ0)=54+sin θ+12-54+sin θ+12=1,显然不满足题意,即A 错误,②对于选项B ,G (θ0)-g (θ0)=54+sin θ+12+54+sin θ-12=254+sin θ∈[1,3],显然不满足题意,即B 错误, ③对于选项C ,G (θ0)·g (θ0)=⎝ ⎛⎭⎪⎫54+sin θ+12·⎝ ⎛⎭⎪⎫54+sin θ-12=1+sin θ∈[0,2],显然不满足题意,即C 错误,④对于选项D ,⎪⎪⎪⎪⎪⎪G (θ)g (θ)=⎪⎪⎪⎪⎪⎪⎪⎪154+sin θ-12+1∈[2,+∞),即∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π,故D 正确, 故选D. 答案:D13.(2019·某某模拟)函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1(x ∈R)的最大值为________.解析:∵f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (x )max =2. 答案:214.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴x =π6-⎝⎛⎭⎪⎫7π12-π2=π12为f (x )的另一个相邻的极值点,故函数f (x )的最小正周期T =2×⎝⎛⎭⎪⎫7π12-π12=π.答案:π15.(2019·某某某某武邑中学模拟)将f (x )=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则ω的最大值为________.解析:将f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4ω+π4=2sin ωx 的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则满足T 4≥π4,即T ≥π,即2πω≥π,所以0<ω≤2,即ω的最大值为2.答案:216.已知函数f (x )=2a sin(πωx +φ)⎝ ⎛⎭⎪⎫a ≠0,ω>0,|φ|≤π2,直线y =a 与f (x )的图象的相邻两个距离最近的交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[a ,2a ];②在[2,4]上,当且仅当x =3时函数取得最大值; ③f (x )的图象可能过原点. 其中真命题的个数为________.解析:对于①,∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴结合图象可以看出,当a >0时,f (x )在[2,4]上的值域为[a ,2a ],当a <0时,f (x )在[2,4]上的值域为[2a ,a ],①错误;对于②,根据三角函数图象的对称性,显然x =2和x =4的中点是x =3,即当a >0时,f (x )在x =3处有最大值f (3)=2a ,当a <0时,f (x )在x =3处有最小值f (3)=2a ,②错误; 对于③,f (0)=2a sin φ,令f (0)=0,得φ=0,此时f (x )=2a sin πωx ,由2a sin πωx =a 得sin πωx =22,则πωx =2k π+π4(k ∈Z)或πωx =2k π+3π4(k ∈Z),∴x =2k +14ω(k ∈Z)或x =2k +34ω(k ∈Z),∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴令⎩⎪⎨⎪⎧2k +14ω=2,2k +34ω=4,解得k =18∉Z ,即不存在这样的k 符合题意,③错误. 综上,没有真命题. 答案:0。
(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc
2019-2020 年高考数学大题专题练习 —— 三角函数(一)1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R .( 1)求函数 yf ( x) 的对称中心;6( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且f (B6 ) b c, ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 22a【解析】f ( x) 1 cos2 x1 cos2( x) cos(2 x) cos2 x6313 sin 2x cos 2xcos2x223sin 2x1cos2x sin(2 x 6 ) . 22(1)令 2xk ( k Z ),则 xk( kZ ),6212所以函数 yf ( x) 的对称中心为 (k,0) k Z ;212(2)由 f (B)b c,得 sin( B ) bc ,即 3 sin B 1cos B b c ,262a6 2a 2 2 2a整理得 3a sin B a cos B b c ,由正弦定理得:3 sin A sin B sin A cos B sin B sin C ,化简得 3 sin A sin B sin B cos Asin B ,又因为 sin B0 ,所以 3 sin A cos A1,即sin( A1 ,6 )2由 0A,得A5 ,6 66所以 A,即 A3 ,6 6又 ABC 的外接圆的半径为3 ,所以 a 2 3 sin A 3 ,由余弦定理得222222232(b c) 2abc2bc cos A bcbc (b c)3bc (b c)(b c)44,即 ,当且仅当 bc 时取等号,所以周长的最大值为 9.2.【河北衡水】 已知函数 f x2a sin x cosx2b cos 2 x c a 0,b 0 ,满足 f 0 ,且当 x0,时, f x 在 x 取得最大值为 5.26 2( 1)求函数 f x 在 x0, 的单调递增区间;( 2)在锐角 △ABC 的三个角 A ,B ,C 所对的边分别为 a ,b ,c ,且2 22 f C3,求a2b 2c 2 的取值范围 .2ab c【解析】(1)易得 f x5sin 2x 5,整体法求出单调递增区间为0, , 2 ,;3 666 3 (2)易得 C,则由余弦定理可得 a2b 2c 2 2a 2 2b 2 ab2 b a 1,3a 2b 2c 2aba bbsin 2 A3 1 1由正弦定理可得sin B 3,所以asin Asin A2tan A2 ,22a 2b 2c 23,4 .a2b2c2rcos x, 1 r( 3 sin x,cos 2x) , xR ,设函数3.【山东青岛】 已知向量 a, b 2r rf ( x) a b .( 1)求 f(x)的最小正周期;( 2)求函数 f(x)的单调递减区间;( 3)求 f(x)在 0,上的最大值和最小值 . 2【解析】f (x) cos x, 1( 3 sin x,cos 2x) 23 cos x sin x 1cos2x 23sin 2 x 1cos 2x2 2cos sin 2x sin cos 2x6 6sin 2x.6(1)f ( x)的最小正周期为T 2 2,即函数f ( x) 的最小正周期为.2(2)函数y sin(2 x ) 单调递减区间:62k 2x 32k , k Z ,2 6 2得:k x 5 k , k Z ,63∴所以单调递减区间是3 k ,5k , k Z .6(3)∵0 x ,2∴2x 5.6 6 6 由正弦函数的性质,当 2x6 2 ,即 x 时, f (x) 取得最大值1.3当x x 0 f (0) 1,即时,,6 6 2当 2x6 5 ,即 x2时, f21 ,6 2∴ f (x) 的最小值为1. 2因此, f (x) 在 0, 上的最大值是1,最小值是1 .2 224.【浙江余姚】已知函数 f ( x) sin x sin x cos( x ) .( 1)求函数 f(x)的最小正周期;( 2)求 f(x)在 0,上的最大值和最小值.2【解析】( 1) 由题意得 f ( x) sin 2 x sin x cos x6sin 2 xsin x( 3 cos x 1sin x)2 23sin 2x3sin x cos x223(1 cos 2x)3sin 2x443 ( 1sin 2x3cos2x)3 2 2243sin( 2x) 32 34f (x) 的最小正周期为( 2) x0, ,22x23 3 3当 2x,即 x0时, f ( x) min0 ;33当 2x5 时, f ( x) max2 3 33,即 x4212综上,得 x0时, f ( x) 取得最小值,为 0;当 x5 2 3 3时, f ( x) 取得最大值,为4125.【山东青岛】 △ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,已知 b cos A 3a c .3( 1)求 cosB ;( 2)如图, D 为 △ABC 外一点,若在平面四边形ABCD中, D 2 B ,且 AD 1, CD3 , BC 6 ,求 AB 的长.【解析 】解:( 1)在ABC 中,由正弦定理得 sin B cos A3sin Asin C ,3又 C( A B) ,所以 sin B cos A3sin Asin( A B) ,3故 sin B cos A3sin Acos B cos Asin B ,sin A3所以 sin Acos B3sin A ,3又 A(0, ) ,所以 sin A30 ,故 cos B3(2) QD 2 B , cos D2cos 2 B 113又在ACD 中, AD 1, CD 3∴由余弦定理可得 AC2AD2CD22AD CD cosD 19 2 3 ( 1) 12 ,3∴ AC2 3 ,在 ABC 中, BC6 , AC 2 3 , cosB3,3∴由余弦定理可得 AC2AB 2 BC 2 2 AB BCcosB ,即 12 AB 2 6 2 AB63 ,化简得 AB 2 2 2 AB 6 0 ,解得 AB 3 2 .3故 AB 的长为 32 .6. 【江苏泰州】如图,在△ABC 中,ABC,2ACB, BC 1.P 是△ ABC 内一点,且BPC.3 2(1)若ABP,求线段AP的长度;6(2)若APB 2,求△ ABP 的面积 .3【解析】(1)因为PBC ,所以在 Rt PBC 中,6BPC , BC 1,PBC3 ,所以 PB 1 ,2 2在 APB 中,ABP , BP 13 ,所以, AB6 2AP2 AB 2 BP2 2AB BP cos PBA3 1 2 13 37,所以 AP 7 ;4 2 2 4 2(2)设PBA ,则PCB ,在 Rt PBC 中,BPC , BC 1,2PCB ,所以 PB sin ,在 APB 中,ABP , BP sin , AB 3 ,APB 2,3由正弦定理得:sin 3 1sin3cos1sinsin sin 2 2 2 23 3sin 3 cos ,又 sin 2 cos2 1 sin2 32 7SABP 1AB BP sin ABP 1 3 sin 2 3 3 .2 2 148.【辽宁抚顺】已知向量m sin x,1 , n cos x,3, f x m n4 4( 1)求出 f(x)的解析式,并写出f(x)的最小正周期,对称轴,对称中心;( 2)令 h xf x6,求 h(x)的单调递减区间;( 3)若 m // n ,求 f(x)的值.【解析】(1) f xm nsin x4cos x341sin 2 x4 3 1sin 2x231cos2x 3222所以 f x 的最小正周期 T ,对称轴为 xk , kZ2对称中心为k ,3 , kZ42(2) h xf x1 cos2 x 32 36令2k2x32k , kZ 得k x6k ,k Z3所以 h x 的单调减区间为3k ,k ,k Z6(3)若 m // n ,则 3sinxcos x即 tan x13444tan x 2f x1cos2x 3 1sin 2 x231 sin2 x cos 2 xcos x2 sin 2 xcos 2 322 x1 tan2 x 1 332 tan 2 x 31109.【辽宁抚顺】已知函数 f x 2 3 sin x cos x 2cos 2 x 1 , x R .( 1)求函数 f x 的最小正周期及在区间0,2 上的最大值和最小值;( 2)若 f x 06,x 0, 2 ,求 cos 2x 0 的值.54【解析】( 1) 由 f(x)= 2 3 sin xcos x + 2cos 2x - 1,得 f(x)= 3 (2sin xcos x)+(2cos2x-1)= 3 sin 2x+cos 2x=2sin 2x ,6所以函数 f(x)的最小正周期为π0 x , 2 x6 7 , 1 sin 2 x 12 6 6 2 6所以函数 f(x)在区间 0, 上的最大值为2,最小值为- 12( 2)由(1)可知f(x0)=2sin 2 x6又因为 f(x0 )=6,所以 sin 2 x6=3 .5 5由 x0∈, ,得 2x0+∈ 2,74 2 6 3 6从而 cos 2 x0 = 1 sin 2 2 x06 =-46 5所以 cos 2x0= cos 2 x06 6 = cos 2x0 cos + sin 2x06sin6 6 6=3 4 31010.【广西桂林】已知f x 4sin 24 x sin x cosx sin x cosx sin x 1 . 2( 1)求函数 f x 的最小正周期;( 2)常数0 ,若函数 y f x 在区间, 2上是增函数,求的取值2 3范围;( 3)若函数 g x 1 f 2 x af x af x a 1在,的最大值为2 2 4 22,求实数的值 .【解析】(1)f x 2 1 cos x sin x cos2 x sin 2 x 1 22 2sin x sin x 1 2sin 2 x 1 2sin x .∴ T 2 .(2) f x 2sinx .由 2kx 2k2kx2k2 得, k Z ,222 ∴ fx 的递增区间为2k2, 2k, k Z2∵ fx 在,2上是增函数,23∴当 k0 时,有2, 22,.320,∴, 解得 03242 22 ,3∴ 的取值范围是0,3.4(3) gx sin 2x a sin xa cos x 1 a 1.2 令 sin xcos x t ,则 sin 2x1 t2 .112a21 2att2aa∴ y 1 ta 1at2 t4a .222∵ t sin x cos x2 sin x,由x 得x,4 42244∴ 2 t 1 .①当a2 ,即 a2 2 时,在 t2 处 y max2 1 a 2 .22由21 a2 2 ,解得 a8 8 2 2 12 2 (舍去 ).22 2 1 7②当2 a 1,即2 2 a2 时, y maxa 21 a ,由 a 21a 22424 2得 a 2 2a 8 0 解得 a2 或 a 4 (舍去) .③当a1,即a 2 时,在 t 1处y max a 1 ,由a1 2 得a 6.2 2 2综上, a 2 或 a 6 为所求.11.【江苏无锡】如图所示,△ ABC 是临江公园内一个等腰三角形形状的小湖.....(假设湖岸是笔直的),其中两腰CA CB 60 米,cos CAB 2.为了给市民3营造良好的休闲环境,公园管理处决定在湖岸AC,AB 上分别取点E,F(异于线段端点),在湖上修建一条笔直的水上观光通道EF(宽度不计),使得三角形AEF 和四边形 BCEF 的周长相等 .(1)若水上观光通道的端点 E 为线段 AC 的三等分点(靠近点 C),求此时水上观光通道 EF 的长度;(2)当 AE 为多长时,观光通道 EF 的长度最短?并求出其最短长度 .【解析】(1)在等腰ABC 中,过点 C 作 CH AB 于 H ,在 Rt ACH 中,由 cosAH AH 240 , AB 80 ,CAB ,即,∴ AHAC 60 3∴三角形 AEF 和四边形 BCEF 的周长相等.∴ AE AF EF CE BC BF EF ,即 AE AF 60 AE 60 80 AF ,∴AE AF 100.∵ E 为线段 AC 的三等分点(靠近点 C ),∴ AE 40, AF 60,在AEF 中,EF 2 AE 2 AF 2 2 AE AF cos CAB 402 602 2 40 60 2 200 ,3∴ EF 2000 20 5 米.即水上观光通道EF 的长度为20 5米.(2)由( 1)知,AE AF 100 ,设 AE x ,AF y ,在AEF 中,由余弦定理,得EF 2 x2 y2 2x y cos CAB x2 y 24xy x y10xy .23 3∵ xy x y 2 1002 10 502 2 502 .502,∴EF22 3 350 6∴EF,当且仅当x y取得等号,3所以,当 AE 50 米时,水上观光通道EF 的长度取得最小值,最小值为50 6米.312.【江苏苏州】如图,长方形材料ABCD 中,已知AB 2 3 , AD4 .点P为材料ABCD 内部一点,PE AB 于 E , PF AD 于 F ,且 PE1 ,PF 3 .现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN 150 ,点M、N分别在边AB,AD上.( 1)设FPN,试将四边形材料AMPN 的面积表示为的函数,并指明的取值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最小值 .【解析】(1)在直角NFP 中,因为 PF 3 ,FPN ,所以 NF 3 tan ,所以 S NAP 1NA PF 1 1 3 tan 3 ,2 2在直角 MEP 中,因为 PE 1,EPM3,所以MEtan,3所以 S AMP1AM PE 1 3 tan31,2 2所以 SSNAPSAMP3tan1tan33 ,0, .2 23(2)因为S 3 1 tan33 tan3,tan2 33tan2 13 tan22令 t 13 tan,由0, ,得 t1,4,3所以S3 3t24t 4 3 t 43 3 t4 3 23 ,2 3t 2 3t 323t33当且仅当t2 3233 时,即 tan时等号成立,3此时,AN 2 3233,Smin3 ,答:当AN 2 3AMPN 的面积 S 最小,最小值为 233 时,四边形材料.313.【江苏苏州】 如图,在平面四边形ABCD 中, ABC3AD ,, AB4AB=1.uuur uuur3 ,求 △的面积;( 1)若 AB BCABCg( 2)若 BC 2 2 , AD 5 ,求 CD 的长度 .【解析】uuur uuur3 ,所以 uuur uuur,(1)因为 AB BCBAgBC 3guuur uuurABC3 ,即 BA BC cosABC 3 , AB 1 ,所以 1 uuur3 uuur3 2 ,又因为BC cos 3,则 BC44 1 uuur uuur ABC 3所以 S ABC AB BC sin .2 2(2)在 ABC 中,由余弦定理得:AC 2AB 2 BC 2 2 AB BC cos31 8 21 2 22 13 ,42解得: AC 13 ,在ABC 中,由正弦定理得:ACBC2 13sin ABC sin,即sin BAC,BAC13所以 cos CADcosBACsin BAC2 13 ,213在ACD 中,由余弦定理得:CD 2AD 2 AC 2 2AD AC cos CAD ,即 CD3 2 .14.【山东栖霞】 已知函数 f xA sin xA 0,0,的部分图象222如图所示, B , C 分别是图象的最低点和最高点,BC4 .4(1)求函数 f(x)的解析式; (2)将函数y f x 的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到3原来的 2 倍(纵坐标不变)得到函数 yg x 的图象,求函数 yg 2 x 的单调递增区间 .13【解析】(1)由图象可得:3 T 5 ( ) ,所以 f (x) 的周期 T .4 12 3于是2,得2 ,C 524 A 22又 B, A , , A ∴ BC 4 ∴ A 1,12 1224又将 C (5,1) 代入 f (x)sin(2 x) 得, sin(2 5) 1,1212所以 25=2k,即=2k( k R ) ,1223由2 得, ,23∴ f (x)sin(2 x) .3(2)将函数 yf (x) 的图象沿 x 轴方向向左平移个单位长度,3得到的图象对应的解析式为:y sin(2 x) ,3再把所得图象上各点横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象对应的解析式为 g( x)sin( x3 ) ,cos(2x2 )22(x13y g ( x) sin 3 )22由 2k22k, kZ 得, kx k , k Z ,2x336∴函数 yg 2 ( x) 的单调递增区间为 k,k (kZ ) .3615.【山东滕州】 已知函数 f ( x)Asin( x ) ( A 0, 0,) 的部分图象如 2图所示 .( 1)求函数 f (x) 的解析式;( 2)把函数 y f ( x) 图象上点的横坐标扩大到原来的 2 倍(纵坐标不变),再向左平移个单位,得到函数y g (x) 的图象,求611关于 x 的方程 g ( x) m(0 m 2) 在 x [,] 时3 3所有的实数根之和 .【解析】2(1)由图象知,函数 f ( x) 的周期T,故 2 .T点 (, A) 在函数图象上,6∴ Asin(26) A,∴ sin(3) 1,解得:3 2k2, k Z ,即2k6, k Z ,又2 ,从而.6点 (0,1) 在函数图象上,可得:Asin(2 0 ) 1 ,6∴ A 2 .故函数 f (x) 的解析式为: f ( x) 2sin(2 x ) .6 (2)依题意,得g (x) 2sin( x ) .3∵ g( x) 2sin( x ) 的周期T ,3∴ g( x) 2sin( x ) 在 x [11] 内有2个周期. ,3 3 3令x3 k , k Z ,2解得 x k , k Z ,6即函数 g (x) 2sin( x ) 的对称轴为 x k , k Z .3 6又 x [3 ,11 ] ,则 x3[0,4 ] ,3所以 g(x) m(0 m 2) 在 x [ , 11 ] 内有4个实根,3 3不妨从小到大依次设为x i (i 1,2,3, 4) .则x1x2 , x3 x4 13 ,2 6 2 6故 g( x) m(0 m 2) 在x [3 ,11 ] 时所有的实数根之和为:3x1 x2 x3 x4 14. 3。
高考数学一轮复习 第三章 三角函数、解三角形 第一节 任意角、弧度制及任意角的三角函数学案 文(含解
第一节 任意角、弧度制及任意角的三角函数2019考纲考题考情1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角。
(2)从终边位置来看,角可分为象限角与轴线角。
(3)若β与α是终边相同的角,则β用α表示为β=2k π+α,k ∈Z 。
2.弧度与角度的互化 (1)1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角。
(2)角α的弧度数如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=l r。
(3)角度与弧度的换算①1°=π180rad ;②1 rad = ⎛⎪⎫180π°。
(4)弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则l =|α|r ,扇形的面积为S =12lr =12|α|·r 2。
3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0)。
(2)几何表示:三角函数线可以看作是三角函数的几何表示。
正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是点(1,0)。
如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线。
1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角。
(2)不相等的角未必终边不相同,终边相同的角也未必相等。
2.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦。
3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r,cos α=x r ,tan α=y x。
一、走进教材1.(必修4P 10A 组T 7改编)角-225°=________弧度,这个角在第________象限。
答案 -5π4二2.(必修4P 15练习T 2改编)设角θ的终边经过点P (4,-3),那么2cos θ-sin θ=________。
2019年全国高考数学(三角部分)试题及解析
2019年全国高考(三角部分)解三角形本质上是三角形内蕴方程(三角形的正弦定理、余弦定理、三角形面积、三角形内角和定理以及三角形两边之和大于第三边)的基础上,把试题设定的条件(方程)与内蕴方程建立联系,从而求得三角形的全部或部分度量关系。
1.(2019全国Ⅰ)ABC ∆的内角A B C ,,的对边分别为a b c ,,,设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .解:(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒<<︒,所以60A =︒.(2)由(1)知120B C =︒-2b c +=()sin 1202sin A C C +︒-=,1+sin 2sin 2C C C +=,可得()cos 602C +︒= 由于0120C ︒<<︒,所以()sin 60C +︒=()()()sin =sin 6060sin 60co (s60cos 60sin 60C C C C +︒-︒=+︒︒-+︒︒解题策略:单角与复合角思想)2.(2019全国Ⅲ)ABC ∆的内角A B C ,,的对边分别为a b c ,,.已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且c 1=,求ABC ∆面积的取值范围. 解:(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=. 由180A BC ++=︒,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此60B =︒.(2)由题设及(1)知ABC ∆的面积ABC S ∆. 由正弦定理得()sin 120sin 112sin sin sin 22CC c A a C C C ︒-===+=+(化成一个角的三角函数) 由于ABC ∆为锐角三角形,故090A ︒<<︒,090C ︒<<︒.由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<ABC S ∆<<因此,ABC ∆面积的取值范围是⎝⎭.3.(2019全国Ⅱ第9题)下列函数中,已2π为周期且在区间,42ππ⎛⎫⎪⎝⎭单调递增的是( ) .()cos 2f x x =Α ()sin 2.f x x =Β ()cos f x x =C. .()sin f x x =D解:对于A ,函数()cos 2f x x =的周期为2π,当,42x ππ⎛⎫∈ ⎪⎝⎭时,2,2x ππ⎛⎫∈ ⎪⎝⎭,函数()f x 单调递增,故A 正确;对于B ,函数()sin 2f x x =的周期为2π,当,42x ππ⎛⎫∈ ⎪⎝⎭时,2,2x ππ⎛⎫∈ ⎪⎝⎭,函数()f x 单调递减,故B 不正确;对于C ,函数()cos cos f x x x ==的周期为2π,故C 不正确;对于D ,函数sin ,0,()sin sin ,0,x x f x x x x ≥⎧==⎨-<⎩,由正弦函数图象知,在0x ≥和0x <时,()f x 均以2π为周期,但是在整个定义域上()f x 不是正确函数,故D 不正确. 综上所述,选A .4.(2019全国Ⅱ第10题)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin2cos21αα=+,则sin α=( )1.5Α Β D 解:(方法一):2sin2cos21αα=+,得24sin cos 2cos 11ααα=-+,即22sin cos cos ααα=,因为0,2πα⎛⎫∈ ⎪⎝⎭,则1t a n 2α=,所以sin α=.(方法二):由2sin2cos21αα=+,得24sin cos 12sin 1ααα=-+,即22sin cos 1sin ααα=-,因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=22sin 1sin α=-,解得sin α=.故选B .5.(2019全国Ⅱ第15题)在ABC ∆的内角A B C ,,的对边分别为a b c ,,.若6b =,2a c =,3B π=,则ABC∆的面积为 .解:(方法一):因为2a c =,6b =,3B π=,所以由余弦定理2222cos b a c ac B =+-,得()2226222cos3c c c c π=+-⨯⨯,得c =a =ABC ∆的面积11sin sin 223S ac B π==⨯=(方法二):因为2a c =,6b =,3B π=,所以由余弦定理2222cos b a c ac B =+-,得()2226222cos3c c c c π=+-⨯⨯,得c =a =222abc =+,所以2A π=,所以ABC ∆的面积162S =⨯=. 6.(2019全国Ⅰ第11题)关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④ .D ①③ 考查内容:奇偶性、单调性、零点、最值,即函数的基本性质.解:①显然()f x 是偶函数,因为()sin sin()sin sin f x x x x x -=-+-=+,所以①正确;②因为,2x ππ⎛⎫∈ ⎪⎝⎭,所以()sin sin f x x x =+sin sin 2sin x x x =+=,而sin x 在,2ππ⎛⎫⎪⎝⎭单调递减,所以②错误;③因为()f x 是偶函数,所以只需考虑[]0,x π∈的图象,当[]0,x π∈时,()2sin f x x =,其图象如图所示,所以③错误;④正确.故选C .7.(2019全国Ⅲ12题)设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点.下列四个结论: ①()f x 在()0,2π有且仅有3个极大值点 ②()f x 在()0,2π有且仅有2个极小值点 ③()f x 在0,10π⎛⎫⎪⎝⎭单调递增④ω是取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④解:由sin y x =sin 5y x π⎛⎫=+ ⎪⎝⎭ sin 5y x πω⎛⎫=+ ⎪⎝⎭.令05x πω+=,得5x πω=-,周期2T πω=,所以229555x T ππππωωωω=-+=-+=,419255x T ππωω=-+=, 66293555x T ππππωωωω=-+=-+=,51929245525x πππωωω+==,4355210A x πππωωω-+==,15π()向左平移个单位12ω()横坐标伸缩原来的倍对于①:已知()f x 在[]02π,有且仅有5个零点,根据图象可知函数()f x 在(0,2)π有且仅有3个极大值点,所以①是正确;对于②:因为2B x π<或2B x π>,因此可能会出现3个极小值点,有时②是错误; 对于④:依题意,2429255ππωω≤<,即1229510ω≤<,所以④正确; 对于③:因为310A x πω=,因为1229510ω≤<,所以310A x πω=3329291010ππ>=⨯,310A x πω=3128105ππ≤=⨯, 所以3298A x ππ<≤,而31029ππ<,所以函数()f x 在0,10π⎛⎫⎪⎝⎭单调递增,所以③正确. 综上所述,①③④正确,故选D .。
高考数学:解三角形(复习学案)
专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。
2019高考数学真题(理)分类汇编三角函数及解三角形含答案解析
三角函数及解三角形专题1.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 2.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒12+==+故选D. 【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式2sin cos ++x xx x计算求解.题目较易,注重了基础知识、基本计算能力的考查.3.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则b c=A .6B .5C .4D .3【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果. 4.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A . 【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.5.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.6.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.7.【2019年高考北京卷文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,即()cos()sin()cos sin f x x b x x b x -=-+-=-,cos sin cos sin x b x x b x +=-,得sin 0b x =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点睛】本题较易,注重基础知识、逻辑推理能力的考查.根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -恒成立进行判断.8.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B【解析】设圆心为O ,如图1,连接OA ,OB ,AB ,OP ,则22AOB APB ∠=∠=β,所以22242OABS ⨯==扇形ββ,因为ABP AOB OAB S S S S =+-△△阴影扇形,且AOB OAB S S △扇形,都已确定, 所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示.9.【2019年高考天津卷文数】已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭A .−2B .C D .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; ∵()f x 的最小正周期为π,2ππ,T ∴==ω∴2ω=,∴1()sin sin ,2g x A x A x ==ω又π()4g =2A =,∴()2sin 2f x x =,3π()8f = 故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,结合函数性质逐步得出,,A ωϕ的值即可.10.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+ 23172(cos )48x =-++,1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.11.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.12.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.13.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =.ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 14.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=.因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 15.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =.所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin 14a A Bb ==. 在ABC △中,B C A +=π-.所以sin()sin B C A +==【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.16.【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26πB ⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)716+-. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.17.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.18.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB , 所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==, 从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置. 由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,1CQ =此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+.解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=, 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.20.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB .13C .13- D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,所以cos3==-α, 因此21cos 22cos 13=-=αα.故选B. 【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P ,求出cos α,再由二倍角公式,即可得出结果.。
专题15 解三角形-2019年高考数学母题题源系列(江苏专版)(解析版)
专题15 解三角形【母题来源】【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)3c =;(2)5.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A B a b=, 由正弦定理sin sin a b A B =,得cos sin 2B B b b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.【命题意图】(1)掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(3)考查数形结合能力、化归与转化能力、运算求解能力,考查的核心素养是逻辑推理、数学运算、直观想象.【命题规律】解三角形问题是高考重要知识点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点.常见的命题角度主要有:(1)直接利用正、余弦定理解三角形;(2)与三角形面积有关的问题;(3)三角形形状的判断;(4)解三角形与三角恒等变换相结合.【答题模板】解答此类题目,一般考虑如下四步:第一步,定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向.第二步,定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化.第三步,求结果.第四步,再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形.【方法总结】(一)利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用.常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C +=-等.(2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sin cos 22A B C +=; cos sin 22A B C +=. (二)利用正、余弦定理判定三角形形状的两种思路:(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C ++=这个结论. 提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.(三)求三角形面积的方法(1)若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.(四)三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(五)三角形中的综合问题(1)解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.(2)注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.(3)正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.1.【江苏省徐州市2018-2019学年高三考前模拟检测数学试题】在△ABC 中,已知3AC =,cos 14B =,(1)求AB 的长;(2.【答案】(1)2AB =;(2【解析】(1)在△ABC 中,因为cos B =所以sin B ==又因为πA B C ++=,由正弦定理,AB AC =,(2)因为πA B C ++=,【名师点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道两角及一边,用正弦定理.另外,如果知道两个角的三角函数值,则可求第三个角的三角函数值,此时涉及的公式有同角的三角函数的基本关系式和两角和差的三角公式、倍角公式等.(1)利用同角的三角函数的基本关系式可求sin B ,再根据两角和的正弦求出sin C ,最后利用正弦定理可求AB 的长度.(2)利用两角和的余弦可计算cos C ,再利用同角的三角函数的基本关系式可求sin C ,最后利用两角2.【江苏省镇江市2019届高三考前模拟(三模)数学试题】已知,,a b c 分别为ABC △三个内角,,A B C 所对的边,若向量(,cos )b B =m ,(cos ,2)C c a =-n ,且⊥m n .(1)求角B ;(2)若||2=m ,且24ac =,求边,a c . 【答案】(1)π3B =;(2)64a c =⎧⎨=⎩或46a c =⎧⎨=⎩. 【解析】(1)⊥m n ,0∴⋅=m n ,又向量(),cos b B =m ,()cos ,2C c a =-n ,故()cos 2cos 0b C c a B +-=, 由正弦定理sin sin sin a b c A B C==得:sin cos cos sin 2sin cos 0B C B C A B +-=, ()sin 2sin cos 0B C A B ∴+-=,又()()sin sin πsin B C A A +=-=,sin 2sin cos 0A A B ∴-=,sin 0A ≠,1cos 2B ∴=, 又()0,πB ∈,π3B ∴=. (2)由(1)知π3B =, 1,2b ⎛⎫∴= ⎪⎝⎭m ,2∴==m . 2111344b ∴+=,即:228b =,解得:b = 在△ABC 中,由余弦定理得:2222cos b ac ac B =+-, 又π3B =, 故2228a c ac =+-,即:()2283a c ac =+-,又24ac =,∴解得:64a c =⎧⎨=⎩或46a c =⎧⎨=⎩. 【名师点睛】本题考查解三角形的相关知识,涉及向量模长的求解和垂直关系的应用、正弦定理化简边角关系式、三角形内角和的应用、余弦定理解三角形,属于中档题.(1)利用向量垂直可知数量积等于零,从而得到()cos 2cos 0b C c a B +-=,利用正弦定理可整理为()sin 2sin cos 0B C A B +-=,从而可求得1cos 2B =,根据()0,πB ∈求得B ;(2)利用2=m 构造方程求得b ,利用余弦定理可构造关于,a c 的方程,解方程求得结果.3.【江苏省南通市2019届高三适应性考试数学试题】在△ABC 中,已知2AB =,cos 10B =(1)求BC 的长;(2.【答案】(1)5BC =;(2.【解析】(1)因为cos B =,0πB <<,所以sin 10B ===. 在△ABC 中,πA B C ++=,所以π()A B C =-+,于是sin sin[π()]sin()A B C B C =-+=+4sin cos cos sin 1021025B C B C =+=+=. 在△ABC 中,由正弦定理知sin sin BC AB A C=,所以4sin sin 5AB BC A C =⨯==. (2)在△ABC 中,πA B C ++=,所以π()A B C =-+, 于是cos cos[π()]cos()A B C B C =-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭, 于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.24172425225250-⎛⎫⨯+-⨯= ⎪⎝⎭. 【名师点睛】本题主要考查解三角形与三角恒等变换,熟记公式即可,属于常考题型.(1)先由cos 10B =,求出sin B ,再由sin sin[π()]sin()A BC B C =-+=+求出sin A ,根据正弦定理,即可求出结果;(2)同(1)由c o s c o s [π()]c o s ()A B C B C =-+=-+求出cos A ,由二倍角公式求出sin2A 与cos2A ,进而可求出结果.4.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研考试数学试题】在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,()()()sin sin sin sin a A B c b B C -=-+.(1)求角C 的值;(2)若4a b =,求sin B 的值.【答案】(1)π3C =;(2)sin B =.【解析】(1)在△ABC 中, 因为()()()sin sin sin sin a A B c b B C -=-+, 所以由正弦定理sin sin sin a b c A B C==可得:()()()a a b b c c b -=+-,即222a b c ab +-=, 由余弦定理2222cos c a b ab C =+-得1cos 2C =. 又因为0πC <<, 所以π3C =. (2)方法一:因为4a b =及222a b c ab +-=,得2222216413c b b b b =+-=,即c =, 由正弦定理sin sin c b C B =sin b B =,所以sin B =方法二:由正弦定理sin sin a b A B=,得sin 4sin A B =. 由πA B C ++=,得()sin 4sin B C B +=, 因为π3C =,所以1sin cos 4sin 22B B B +=,即7sin B B =. 又因为22sin cos 1B B +=, 所以解得23sin 52B =, 因为在△ABC 中,sin 0B >,所以sin 26B =. 【名师点睛】本题主要考查了正、余弦定理解三角形,考查化简能力及方程思想,还考查了计算能力,属于中档题.(1)利用正弦定理化简()()()sin sin sin sin a A B c b B C -=-+可得:222a b c ab +-=,再利用余弦定理即可求得:1cos 2C =,问题得解.(2)方法一比较简单,利用余弦定理及4a b =可得:c =,再利用正弦定理sin sin c b C B=即可得解. 5.【江苏省苏锡常镇四市2019届高三教学情况调查(二)数学试题】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos sin A c C-=. (1)求角A 的大小;(2)若cos(B +6π)=14,求cos C 的值.【答案】(1)π3;(2)8. 【解析】(1)由正弦定理可得:sin sin a A c C=.所以2cos sin sin A A C C-=,整理得:2cos 0A A -=>,又22sin cos 1A A +=,解得:sin A =, 所以π3A =或2π3A =(舍去), 所以π3A =. (2)πABC ++=,∴()πππcos cos cos cos 366C A B B B ⎡⎤⎛⎫⎛⎫=-+=-+=-++⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1ππsin 2626B B ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭, π0π6B <+<,πsin 64B ⎛⎫∴+=== ⎪⎝⎭,∴11cos 24C =⨯-=【名师点睛】本题主要考查了正弦定理及三角恒等变形,还考查了诱导公式,考查转化能力及构造能力,考查计算能力,属于中档题.(12cos sin A C-=得:2cos 0A A =>,结合22sin cos 1A A +=即可求得sin 2A =,问题得解.(2)由诱导公式及两角和的余弦公式整理可得1ππcos sin cos 2626C B B ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,由已知即可求得πsin 6B ⎛⎫+= ⎪⎝⎭,问题得解. 6.【江苏省南通市基地学校2019届高三3月联考数学试题】在△ABC 中,角,,A B C 所对的边分别为,,a b c .向量()2,a b =m ,()1,cos C =-n ,且∥m n .(1)若30A =︒,求角C 的值;(2)求角B 的最大值.【答案】(1)120;(2)30.【解析】(1)因为()2,a b =m ,()1,cos C =-n ,且∥m n ,所以()2cos a C b ⨯-=,即2cos 0a C b +=, 由正弦定理sin sin a b A B=,得2sin cos sin 0A C B +=……① 所以()2sin cos sin 0A C A C ++=,整理,得3sin cos cos sin 0A C A C +=……②将30A =代入上式得tan C =又()0,πC ∈,所以120C =.(2)方法一:由①式,因为sin 0A >,sin 0B >,所以cos 0C <90C ⇒>,cos 0A ∴>.②式两边同时除以cos cos A C ,得3tan tan 0A C +=,()22tan tan tan 3tan 2tan tan tan 1tan tan 13tan 13tan A C A A A B A C A C A A +-∴=-+=-=-=-++,又213tan A A +≥,tan 3B ∴≤=,1A =,即30A =时取等号,又()0,πB ∈,所以B 的最大值为30.方法二:由(1)知,2cos 0a C b +=, 由余弦定理222cos 2a b c C ab+-=,代入上式并化简得22220a b c +-=, 所以()222222222131222cos 222a c c a a c a c b B acac ac +--++-===,又223122a c +≥=,cos 22B ac ∴≥=, 当且仅当223122a c =,即c =时取等号, 又()0,πB ∈,所以B 的最大值为30.【名师点睛】本题主要考查解三角形边角关系式的化简,以及通过边角关系式求解角的范围的问题.解决边角关系式的关键是能够通过正、余弦定理将边化成角或者将角化成边,然后再进行处理.(1)利用向量平行得到2cos 0a C b +=,再利用正弦定理化简,可求得tan C =C ;(2)方法一:利用正弦定理将边都化成角的关系,化简求得3tan tan 0A C +=,再利用()tan tan B A C =-+,结合基本不等式求得tan B 的最值,从而得到B 的最大值;方法二:利用余弦定理将角化成边的关系,再利用cos B 和基本不等式得到cos B 的最小值,从而得到B 的最大值.7.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟数学试题】在△ABC 中,a ,b,c分别为角A,B,C所对边的长,cos cosa B A=,cos3A=.(1)求角B的值;(2)若a=ABC的面积.【答案】(1)π4B=;(2)64+.【解析】(1)在△ABC中,因为cos A=0πA<<,所以sin A==.因为cos cosa B A=,由正弦定理sin sina bA B=,得sin cos cosA B B A=.所以cos sinB B=.若cos=0B,则sin=0B,与22sin cos1B B+=矛盾,故cos0B≠.于是sintan1cosBBB==.又因为0πB<<,所以π4B=.(2)因为a=sin A=所以由(1)及正弦定理sin sina bA B=2=,所以b=.又()()sin sinπsinC A B A B=--=+=sin cos cos sinA B A B+=+=.所以△ABC的面积为116sin22264S ab C+===.【名师点睛】本题主要考查了同角三角函数基本关系式,正弦定理,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.(1)由已知利用同角三角函数基本关系式可求sin A ,由正弦定理化简已知等式可求sin tan 1cos B B B==,结合范围0<B <π,可求B 的值.(2)由(1)及正弦定理可求b 的值,利用两角和的正弦函数公式可求sin C 的值,根据三角形面积公式即可计算得解.8.【江苏省泰州中学2019届高三3月月考数学试题】在△ABC 中,三个内角A ,B ,C 所对的边依次为a ,b ,c ,且1cos 4C =. (1)求22cos 2sin 22A B C ++的值; (2)设2c =,求a b +的取值范围.【答案】(1)34+;(2)2,3⎛ ⎝⎦. 【解析】(1)1cos 4C =,且C 为三角形内角,sin 4C ∴==, ()22cos 2sin21cos 2sin22A B C A B C +∴+=+++1131cos 4sin cos 144444C C C =-+=-+⨯⨯=. (2)2c =,1cos 4C =, ∴由余弦定理可得:()22215422a b ab a b ab =+-=+-, 222a b ab +≥,∴由22142a b ab =+-可得:83ab ≤,当且仅当a b =时等号成立,∴可得:()2532423a b ab +=+≤,可得:a b +≤,当且仅当a b =时等号成立, 2a b c +>=,a b ∴+的取值范围为:2,3⎛ ⎝⎦.【名师点睛】本题主要考查了同角三角函数基本关系式,三角函数恒等变换的应用,余弦定理,基本不等式,三角形两边之和大于第三边等知识的应用,考查了计算能力和转化思想,属于中档题.(1)利用同角三角函数基本关系式可求sin C ,利用三角函数恒等变换的应用即可计算得解.(2)由余弦定理,基本不等式可求a b +的最大值,利用三角形两边之和大于第三边可求2a b c +>=,即可得解a b +的取值范围.9.【江苏省如皋市2019届高三教学质量调研(三)数学试题】在△ABC 中,tan 3tan A B =-,cos cos b C c B +=.(1)求角C 的大小;(2)设2()sin()cos ()2x B f x x A +=++,其中5π[0,]6x ∈,求()f x 的取值范围. 【答案】(1)π6;(2)⎡-⎢⎣⎦. 【解析】(1)因为tan 3tan A B =-,所以sin cos 3sin cos A B B A =-,即222222322a c b b c a a b ac bc+-+-⋅=-⋅, 所以2222c a b =-,由cos cos b C c B +=及正弦定理得sin cos sin cos B C C B B +=,即sin()sin B C A B +==,所以a =,解得3c b a ==,由余弦定理得222cos 2a b c C ab +-==, 因为()0,πC ∈, 所以π6C =. (2)由(1)知π6B C ==,2ππ3A B C =--=, 所以()2π1cos()2π2π316sin()cos ()sin()sin 323242x x B f x x x x x +++=++=++=-+3π1cos 262x ⎛⎫=++ ⎪⎝⎭, 因为50,π6x ⎡⎤∈⎢⎥⎣⎦,所以ππ,π66x ⎡⎤+∈⎢⎥⎣⎦,所以π1cos 6x ⎛⎫-≤+≤ ⎪⎝⎭,所以3π11cos 262x ⎛⎫-≤++≤ ⎪⎝⎭所以()f x 的取值范围为21,4⎡⎤-⎢⎥⎣⎦. 【名师点睛】本题考查了正弦定理,余弦定理,及三角恒等变换,三角函数求值域,要根据题设条件判断选择正弦定理还是余弦定理解决三角形中的边角关系,三角恒等变换时一看“角”,二看三角函数名,三看式子的形式,三角函数求值域要将函数用一个自变量表示,再根据定义域求值域.10.【江苏省南京市2019届高三上学期综合模拟数学试题】在△ABC 中,3π,6,4A AB AC ===(1)求πsin 4B ⎛⎫+ ⎪⎝⎭的值; (2)若点D 在BC 边上,AD BD =,求AD 的长.【答案】(1(2. 【解析】(1)设△ABC 的内角,,A B C 所对边的长分别是,,a b c , 由余弦定理得(()222223π2cos 626cos 183636904a b c bc BAC =+-∠=+-⨯⨯=+--=,所以a =又由正弦定理得sin sin10b BAC B a ∠===. 由题设知π04B <<,所以cos B ===.故πππsin sin cos cos sin 4441021025B B B ⎛⎫+=+=+= ⎪⎝⎭.(2)在△ABD 中,由正弦定理得()sin 6sin 3sin π22sin cos cos AB B B AD B B B B⋅====-. 【名师点睛】本题主要考查了余弦定理,正弦定理,两角和正弦公式,属于中档题.(1)根据题意,由余弦定理可得a ,再由正弦定理可得sin B ,利用两角和的正弦公式即可求出.(2)在△ABD 中由正弦定理可得AD .11.【江苏省南京市六校联合体2019届高三12月联考数学试题】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c sin cos A a B =.(1)求角B ;(2)若3b =,sin C A =,求a ,c .【答案】(1)π6B =;(2)3,a c ==【解析】(1)在△ABC 中,由正弦定理sin sin a b A B =sin sin cos B A A B =. 又因为在△ABC 中sin 0A ≠.cos B B =.法一:因为0πB <<,所以sin 0B ≠,因而cos 0B ≠.所以sin tan cos 3B B B ==, 所以π6B =.cos 0B B -=,即π2sin 06B ⎛⎫-= ⎪⎝⎭, 所以()ππ6B k k -=∈Z , 因为0πB <<, 所以π6B =.(2)由正弦定理得sin sin a c A C =,及sin C A =,可得c =,①由余弦定理2222cos b a c ac B =+-,得22π92cos6a c ac =+-,即229a c +-=, ②把①代入②得3,a c ==【名师点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.12.【江苏省南通市通州区、海门市2019届高三第二次质量调研数学试题】在△ABC 中,已知()22sin sin sin sin sin .A B A C C -=-(1)求内角B 的大小;(2)若cos A =求sin2C 的值.【答案】(1)π3B =;(2)6+. 【解析】(1)在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c , 由正弦定理sin sin sin a b c A B C==及()22sin sin sin sin sin A B A C C -=-得,222a b ac c -=-,即222a c b ac +-=, 由余弦定理得2221cos 22a cb B ac +-==, 因为0π<<B , 所以π3B =.(2)因为在△ABC 中,cos 3A =,所以sin A ==所以sin 22sin cos 3A A A ==,221cos 2cos sin 3A A A =-=-, 而π4π22π233C A A ⎛⎫=--=- ⎪⎝⎭,所以4π4π4πsin 2sin 2sin cos 2cos sin 23336C A A A ⎛⎫=-=-= ⎪⎝⎭. 【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。
三角函数与解三角形_测试题(有解析、答案)
三角函数与解三角形 测试题(有解析、答案)(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17 D .-7 解析:由α∈(π2,π),sin α=35,得tan α=-34,tan(α+π4)=1+tan α1-tan α=17.答案:A2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.32解析:sin45°cos15°+cos225°sin15°=sin45°cos15°-cos45°sin15°=sin(45°-15°)=sin30° =12. 答案:C3.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位解析:∵y =sin(2x -π3)=sin2(x -π6),∴只要将y =sin2x 的图像向右平移π6个单位便得到y =sin(2x -π3)的图像.答案:D4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 解析:∵sin 2A +sin 2B -sin A sin B =sin 2C , ∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =60°,∴S △ABC =12ab sin C =12×4×32= 3.答案:D5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 解析:由T =2πω=2ππ2=4,可知此波形的函数周期为4,显然当0≤x ≤1时函数单调递增, x =0时y =0,x =1时y =1,因此自0开始向右的第一个波峰所对的x 值为1,第二个 波峰对应的x 值为5,所以要区间[0,t ]上至少两个波峰,则t 至少为5. 答案:C6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 解析:f (x )=(1+3tan x )cos x =cos x +3sin x =2sin(x +π6),∵0≤x <π2,∴f (x )max =2.答案:B7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π3解析:由已知得:f (x )=2sin(2x +θ+π3),由于函数为奇函数,故有θ+π3=kπ⇒θ=kπ-π3(k ∈Z),可淘汰BC 选项,然后分别将A和D 选项代入检验,易知当θ=2π3时,f (x )=-2sin2x 其在区间[-π4,0]上递减. 答案:D8.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.14解析:∵a ⊥b ,∴a ·b =0, ∴4sin(α+π6)+4cos α-3=0,∴sin αcos π6+cos αsin π6+cos α=34,∴12sin α+32cos α=14,∴sin(α+π3)=14,∴sin(α+4π3)=-sin(α+π3)=-14.答案:C9.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π4解析:T 4=3-1=2,∴T =8,ω=2πT =π4令π4×1+φ=π2,得φ=π4. 答案:C10.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)解析:T =π,∴ω=2.∵图像关于直线x =2π3对称,∴sin(2π3ω+φ)=±1即2π3×2+φ=π2+kπ,k ∈Z 又∵-π2<φ<π2∴φ=π6∴f (x )=A sin(2x +π6).再用检验法.答案:D第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知α是第二象限角,sin α=12,则sin2a 等于________解析:由已知得cos α=-32,则sin2α=2sin αcos α=2×12×(-32)=-32.答案:-3212.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.解析:由图像知,函数的周期为32×T =π,∴T =2π3.∵f (π4)=0,∴f (7π12)=f (π4+π3)=f (π4+T 2)=-f (π4)=0.答案:013.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案: 214.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.解析:因为图像的对称中心是与x 轴的交点,所以由y =2sin(2x +π3)=0,x 0∈[-π2,0]得x 0=-π6.答案:-π615.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________.解析:由a cos B -b cos A =35c 及正弦定理可得sin A cos B -sin B cos A =35sin C ,即sin A cos B-sin B cos A =35sin(A +B ),即5(sin A cos B -sin B cos A )=3(sin A cos B +sin B cos A ),即sin A cos B =4sin B cos A ,因此tan A =4tan B ,所以tan Atan B=4. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.解:(1)∵cos(β-π4)=13,∴cos(2β-π2)=2cos 2(β-π4)-1=2×19-1=-79,即sin2β=-79.(2)∵0<α<π2<β<π,∴π4<β-π4<3π4,π2<α+β<3π2,∴sin(β-π4)>0,cos(α+β)<0,∴sin(β-π4)=223,cos(α+β)=-35.∴f (α)=cos α-sin α=2cos(α+π4) =2cos[(α+β)-(β-π4)]=2[cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)]=2(-35×13+45×223)=16-3215.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60°=35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435. 18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c . 解:由题lg a +lgcos A =lg b +lgcos B ,故a cos A =b cos B . 由正弦定理sin A cos A =sin B cos B ,即sin2A =sin2B . 又cos A >0,cos B >0,故A ,B ∈(0,π2),2A,2B ∈(0,π)因a ≠b ⇒A ≠B ,故2A =π-2B . 即A +B =π2,故△ABC 为直角三角形.(2)由于m ⊥n ,所以2a 2-3b 2=0 ① 且(m +n )·(-m +n )=n 2-m 2=14,即8b 2-3a 2=14 ② 联立①②解得a 2=6,b 2=4,故在直角△ABC 中,a =6,b =2,c =10.19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.解:(1)∵a 与b 共线, ∴32cos x +sin x =0.∴tan x =-32. 故2cos 2x -sin2x =2cos 2x -2sin x cos x sin 2x +cos 2x=2-2tan x 1+tan 2x =2013. (2)∵a +b =(sin x +cos x ,12),∴f (x )=(a +b )·b =(sin x +cos x ,12)·(cos x ,-1).∴sin x cos x +cos 2x -12=12(sin2x +cos2x )=22sin(2x +π4). ∵-π2≤x ≤0,∴-3π4≤2x +π4≤π4, ∴-1≤sin(2x +π4)≤22,∴f (x )的值域为[-22,12]. 20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f (x )的一个解析式; (2)根据(1)的结果,若函数y =f (kx )(k >0)周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰 有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T ,得 T =11π6 -(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3B -A =-1,解得⎩⎪⎨⎪⎧A =2B =1. 令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的周期为2π3,又k >0,∴k =3. 令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3]如图sin t =s 在[-π3,2π3]上有两个不同的解的充要条件是s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解的充要条件是m ∈[3+1,3),即实数m 的取值范围是[3+1,3). 21.(本小题满分13分)已知函数y =|cos x +sin x |.(1)画出函数在x ∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x 在R 上取何值时,函数有最大值?最大值是多少?(3)若x 是△ABC 的一个内角,且y 2=1,试判断△ABC 的形状. 解:(1)∵y =|cos x +sin x |=2|sin(x +π4)|,∴当x ∈[-π4,7π4]时,其图像如图所示.(2)函数的最小正周期是π,在[-π4,3π4]上的单调递增区间是[-π4,π4];由图像可以看出,当x =kπ+π4(k ∈Z)时,该函数有最大值,最大值是 2.(3)若x 是△ABC 的一个内角,则有0<x <π, ∴0<2x <2π.由y 2=1,得|cos x +sin x |2=1⇒1+sin2x =1. ∴sin2x =0,∴2x =π,x =π2,故△ABC 为直角三角形.。
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)
专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
2019年三年高考数学(理)真题分类解析:专题11解三角形
高考数学精品复习资料2019.5专题11解三角形考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题掌握20xx山东,9;20xx浙江,14;20xx天津,15;20xx北京,15;20xx课标全国Ⅱ,13;20xx天津,3;20xx天津,13选择题填空题★★★2.正、余弦定理的应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题掌握20xx课标全国Ⅱ,17;20xx课标全国Ⅲ,17;20xx江苏,18;20xx课标全国Ⅲ,8;20xx山东,16;20xx浙江,16;20xx湖北,13解答题★★★分析解读1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.高考全景展示1.【理数全国卷II】在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选 A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.2.【浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】3点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.3.【全国卷Ⅲ理】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。
专题 三角函数及解三角形(解析版)
2,π)单调递增5B.3D.专题三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f(x)=sinx+x在[-π,π]的图像大致为cosx+x2A.B.C.D.2.【2019年高考全国Ⅰ卷理数】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(π③f(x)在[-π,π]有4个零点其中所有正确结论的编号是A.①②④C.①④3.【2019年高考全国Ⅱ卷理数】下列函数中,以④f(x)的最大值为2B.②④D.①③π2为周期且在区间(π4,π2)单调递增的是A.f(x)=|cos2x|C.f(x)=cos|x|4.【2019年高考全国Ⅱ卷理数】已知α∈(0,B.f(x)=|sin2x|D.f(x)=sin|x|π2),2sin2α=cos2α+1,则sinα=5A.15C.3255 5.【2019年高考全国Ⅲ卷理数】设函数f(x)=sin(ωx+个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点π5)(ω>0),已知f(x)在[0,2π]有且仅有5④ ω 的取值范围是[ , )【2π ,且 g ⎛ ⎫⎪= 2 ,则 f ⎛ ⎪= = - ,则 sin 2α + ⎪ 的值是 ▲ . ⎛ αtan + ⎪【 B b c③ f (x )在( 0, π 10)单调递增12 295 10其中所有正确结论的编号是A .①④C .①②③B .②③D .①③④6. 2019 年高考天津卷理数】已知函数 f ( x ) = A s in(ω x + ϕ )( A > 0, ω > 0,| ϕ |< π) 是奇函数,将 y = f (x )的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图象对应的函数为g (x ).若 g (x )的最小正周期为A . -2C . 2⎝ 4 ⎭ ⎝ 8 ⎭π 3π ⎫ B . - 2D . 27.【2019 年高考北京卷理数】函数 f (x )=sin 22x 的最小正周期是__________.8.【2019 年高考全国Ⅱ卷理数】 △ABC 的内角 A, B, C 的对边分别为 a, b , c .若 b = 6, a = 2c, B = π3△ABC 的面积为_________.,则9.【2019 年高考江苏卷】已知tan α 2 ⎛ π ⎫π ⎫ 3 ⎝ 4 ⎭⎝ 4 ⎭10.【2019 年高考浙江卷】在△ABC 中, ∠ABC = 90︒ , AB = 4 , BC = 3,点 D 在线段 AC 上,若∠BDC = 45︒ ,则 BD = ___________, cos ∠ABD = ___________.11.【2019 年高考全国Ⅰ卷理数】△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,设(sin B - sin C )2 = sin 2 A - sin B sin C .(1)求 A ;(2)若 2a + b = 2c ,求 sinC .12. 2019 年高考全国Ⅲ卷理数】△ABC 的内角 A , ,C 的对边分别为 a , , ,已知 a sin(1)求 B ; A + C2b sin A.(2)求 sin2B + ⎪ 的值.(△2)若 ABC 为锐角三角形,且 c △=1,求 ABC 面积的取值范围.13.【2019 年高考北京卷理数】在△ABC 中,a =3,b −c =2,cosB = -(1)求 b ,c 的值;(2)求 sin (B –C )的值.1 2 .14.【2019 年高考天津卷理数】在 △ABC 中,内角 A, B, C 所对的边分别为 a, b , c .已知 b + c = 2a ,3c s in B = 4a sin C .(1)求 cos B 的值;⎛ ⎝π⎫ 6⎭15.【2019 年高考江苏卷】在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a =3c ,b = 2 ,cosB = 2 3,求 c 的值;(2)若sin A要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分)]2+[f(x+)]2的值域.【cos Bπ=,求sin(B+)的值.a2b216.【2019年高考江苏卷】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划....别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.17.【2019年高考浙江卷】设函数f(x)=sinx,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=[f(x+ππ12418.重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点P(-2,1),则cos2α=3B.C.-1tan α-⎪=20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数f(x)=sin(ωx+)(ω>0)的相,将函数图象向左平移个单位得到函数g(x)的图象,则g(x)= C的对边,若△ABC的面积为S,且43S=(a+b)2-c2,则sin C+⎪=A.22133D.-22319.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知c osα=-4,α∈(-π,0),则5⎛π⎫⎝4⎭1A.B.77C.-17D.-7π6邻对称轴之间的距离为ππ26A.sin(x+C.cos2xπ3)πB.sin(2x+)3πD.cos(2x+)321.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数f(x)=A s in(ωx+ϕ),A>0,ω>0,ϕ<π的部分图象如图所示,则使f(a+x)-f(a-x)=0成立的a的最小正值为2A.C.π12π4B.D.π6π322.【山东省实验中学等四校2019届高三联合考试数学试题】在△ABC中,a,b,c分别为角A,B,⎛π⎫⎝4⎭4D .【(2)当 x ∈ [0, ] 时,不等式 c < f ( x ) < c + 2 恒成立,求实数 c 的取值范围.【 =A .1B .22C . 6 - 26 + 2423.【山东省烟台市 2019 届高三 3 月诊断性测试(一模)数学试题】在△ABC 中,角 A , B , C 的对边分别为 a , b , c ,若 a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,则角 A =A .C .2π3 π 6B .D .π 3 5π 624. 广东省韶关市 2019 届高考模拟测试(4 月)数学试题】在 △ABC 中,a 、b 、c 分别是内角 A 、 B 、C 的对边,且 3b cos A = sin A(a cos C + c cos A) .(1)求角 A 的大小;(2)若 a = 2 3 , △ABC 的面积为5 3 4,求 △ABC 的周长.25. 北京市昌平区 2019 届高三 5 月综合练习(二模)数学试题】已知函数 f ( x ) cosx( 3 sin x - cos x)+π(1)求 f ( ) 的值;3π21 2.【解析】由 f (- x ) = sin(- x) + (- x) 2 1 + 2 = 4 + 2π > 1, f (π) = 排除 A .又 f ( ) = ( )2π 2 -1 + π2 , π )单调递增答 案1.【2019 年高考全国Ⅰ卷理数】函数 f(x)= sinx + xcosx + x 2在 [-π, π] 的图像大致为A .B .C .D .【答案】D- sin x - x== - f ( x ) ,得 f ( x ) 是奇函数,其图象关于原点对称, cos(- x ) + (- x ) cos x + x 2π π 2 π22π> 0 ,排除 B ,C ,故选 D .【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得f ( x ) 是奇函数,排除 A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019 年高考全国Ⅰ卷理数】关于函数 f ( x ) = sin | x | + | sin x | 有下述四个结论:①f(x)是偶函数②f(x)在区间(π③f(x)在 [-π, π] 有 4 个零点 其中所有正确结论的编号是A .①②④C .①④④f(x)的最大值为 2B .②④D .①③【答案】C【解析】Q f (- x ) = sin - x + sin (- x ) = sin x + sin x = f (x ) , ∴ f (x )为偶函数,故①正确.当π⎛π<x<π时,f(x)=2sin x,它在区间 ,π⎪单调递减,故②错误.作出y=sin2x的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,⎫2⎝2⎭当0≤x≤π时,f(x)=2sin x,它有两个零点:0,π;当-π≤x<0时,f(x)=sin(-x)-sin x =-2sin x,它有一个零点:-π,故f(x)在[-π,π]有3个零点:-π,0,π,故③错误.当x∈[2kπ,2kπ+π](k∈N*)时,f(x)=2sin x;当x∈[2kπ+π,2kπ+2π](k∈N*)时,f(x)=sin x-sin x=0,又f(x)为偶函数,∴f(x)的最大值为2,故④正确.综上所述,①④正确,故选C.【名师点睛】本题也可画出函数f(x)=sin x+sin x的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以A.f(x)=|cos2x|C.f(x)=cos|x|π2为周期且在区间(B.f(x)=|sin2x|D.f(x)=sin|x|π4,π2)单调递增的是【答案】A【解析】作出因为y=sin|x|的图象如下图1,知其不是周期函数,排除D;因为y=cos x=cos x,周期为2π,排除C;作出y=cos2x图象如图2,由图象知,其周期为πππ,在区间(,)单调递增,A正确;242πππ242故选A.图12 ),2sin2α=cos2α+1,则 sin α=5B .3D . 【 解 析 】 Q 2sin 2α = cos2 α +1 , ∴ 4sin α ⋅ cos α = 2cos 2 α .Q α ∈ 0, ⎪ ,∴ cos α > 0 , sin α > 0,∴2sin α = cos α ,又sin 2α + cos 2α = 1 ,∴ 5sin 2 α = 1,sin 2α = ,又sin α > 0 ,∴ s in α =图 2图 3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数 y = f ( x ) 的周期是函数 y = f ( x ) 周期的一半;② y = sin ω x 不是周期函数.4.【2019 年高考全国Ⅱ卷理数】已知 α∈(0,πA .1C .3【答案】B552 55⎛ ⎝ π⎫ 2 ⎭15 5 5,故选 B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为 1 关系得出答案.④ω的取值范围是[,)ππkπ-④当f(x)=sin(ωx+)=0时,ωx+=kπ(k∈Z),所以5,所以当k=5时,5π-12296π-5≤2π,当k=6时,x=5105>2π,解得5.【2019年高考全国Ⅲ卷理数】设函数f(x)=sin(ωx+个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点π5)(ω>0),已知f(x)在[0,2π]有且仅有5③f (x)在(0,π10)单调递增1229510其中所有正确结论的编号是A.①④C.①②③B.②③D.①③④【答案】D【解析】①若f(x)在[0,2π]上有5个零点,可画出大致图象,由图1可知,f(x)在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,f(x)在(0,2π)有且仅有2个或3个极小值点.故②错误;π55x=ω因为f(x)在[0,2π]上有5个零点,x=ωππω≤ω<,③函数f(x)=sin(ωx+)的增区间为:-+2kπ<ωx+<+2kπ,2k-π+2k⎪π10⎭10<x<⎝⎭.7⎫综上可得,f(x)在 0,⎝10⎭【最小正周期为2π,且g ⎪=2,则f ⎪=又g(x)=A s inωx,∴T=42,∴A=2,故④正确.ππππ5252⎛⎛3⎫⎪⎝ωω取k=0,当ω=1271时,单调递增区间为-π<x<π,52482973当ω=时,单调递增区间为-π<x<π,102929⎛π⎫⎪单调递增.故③正确.所以结论正确的有①③④.故本题正确答案为D.【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错.6.2019年高考天津卷理数】已知函数f(x)=A s in(ωx+ϕ)(A>0,ω>0,|ϕ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的A.-2 C.2⎛π⎫⎝4⎭⎛3π⎫⎝8⎭B.-2D.2【答案】C【解析】∵f(x)为奇函数,∴f(0)=A s inϕ=0,∴ϕ=kπ,k∈Z,∴k=0,ϕ=0;又g(π)=12π21ω2=2π,∴ω=2,∴f(x)=2sin2x,f(3π8)= 2.故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数g(x),再根据函数性【解析】函数 f (x ) = sin 2 2x = 1 - cos 4 x .=1= - ,则 sin 2α + ⎪ 的值是 ▲ .⎛ α tan + ⎪= = = - ,得 3tan 2 α - 5tan α - 2 = 0 ,tan α + ⎪ tan α (1 - tan α )sin 2α + ⎪ = sin 2α cos + cos 2α sin质逐步得出 A, ω,ϕ 的值即可.7.【2019 年高考北京卷理数】函数 f (x )=sin 22x 的最小正周期是__________.【答案】π2π,周期为 .2 2【名师点睛】本题主要考查二倍角的三角函数公式 三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可8.【2019 年高考全国Ⅱ卷理数】 △ABC 的内角 A, B, C 的对边分别为 a, b , c .若 b = 6, a = 2c, B =π3△ABC 的面积为_________.【答案】 6 3,则【解析】由余弦定理得 b 2 = a 2 + c 2 - 2ac cos B ,所以 (2c)2 + c 2 - 2 ⨯ 2c ⨯ c ⨯解得 c = 2 3, c = -2 3 (舍去),1 3所以 a = 2c = 4 3 , Sac sin B = ⨯ 4 3 ⨯ 2 3 ⨯= 6 3.22 2 12 = 62 ,即 c 2 = 12 ,【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于 c 的方程,应用 a, c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.9.【2019 年高考江苏卷】已知【答案】210tanα 2 ⎛ π ⎫ π ⎫ 3 ⎝ 4 ⎭ ⎝ 4 ⎭【解析】由 tan α tan α 2⎛ π ⎫ tan α + 1 tan α + 1 3⎝ 4 ⎭ 1 - tan α解得 tan α = 2 ,或 tan α = -13.⎛π ⎫ π π ⎝4 ⎭ 4 42 (sin 2α + cos 2α )=22 ⎝sin 2 α + cos 2 α ⎭ 2 ⎝ tan 2 α + 1 ⎭= ; 当 tan α = 2 时,上式 = ⎪ ⎝ 2 2 + 1 ⎭10 13 3 ]= 2 .⨯ [2 ⨯ (- ) + 1 - (- )2 当 tan α = - 时,上式=1π ⎫ 2 = .4 ⎭ 10⎛【答案】 12 2 . .【解析】如图,在△ABD 中,由正弦定理有:AB= ,cos ∠BAC = = ,所以 BD ===2 ⎛ 2sin α cos α + cos 2 α - sin 2 α ⎫ ⎪2 ⎛ 2 tan α + 1 - tan 2 α ⎫⎪ ,2 ⎛ 2 ⨯ 2 + 1 - 22 ⎫ 2 21 123 210(- )2 + 13综上, sin 2α + ⎝⎪【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养采取转化法,利用分类讨 论和转化与化归思想解题.由题意首先求得 tan α 的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可 10.【2019 年高考浙江卷】在 △ABC 中, ∠ABC = 90︒ , AB = 4 , BC = 3 ,点 D 在线段 AC 上,若∠BDC = 45︒ ,则 BD = ___________, cos ∠ABD = ___________.7 2 ,5 10BD 3π= ,而 AB = 4, ∠ADB =sin ∠ADB sin ∠BAC 4,AC = AB 2 + BC 2 = 5 , sin ∠BAC =BC 3 AB 4 12 2 AC 5 AC 5 5.π π 7 2cos ∠ABD = cos(∠BDC - ∠BAC ) = cos cos ∠BAC + sin sin ∠BAC =4 4 10.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思( )cos C + sin C = 2sin C ,可得 cos (C + 60︒ )= - 【 B b c想.在 △ABD 中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.11.【2019 年高考全国Ⅰ卷理数】△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,设(sin B - sin C )2 = sin 2 A - sin B sin C .(1)求 A ;(2)若 2a + b = 2c ,求 sinC .【答案】(1) A = 60︒ ;(2) sin C =6 + 2 4.【解析】(1)由已知得 s in 2 B + sin 2 C - sin 2 A = sin B s in C ,故由正弦定理得 b 2 + c 2 - a 2 = bc .b 2 +c 2 - a 2 1 由余弦定理得 cos A = = .2bc 2因为 0︒ < A < 180︒ ,所以 A = 60︒ .(2)由(1)知 B = 120︒ - C ,由题设及正弦定理得 2 sin A + sin 120︒ - C = 2sin C ,即 6 3 1 2 +2 2 2 2.由于 0︒< C < 120︒,所以 sin(C + 60︒)=2 2,故sin C = sin (C + 60︒ - 60︒ )= sin (C + 60︒ )cos60 ︒ - cos (C + 60︒ )sin 60︒= 6 + 2 4.【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.12. 2019 年高考全国Ⅲ卷理数】△ ABC 的内角 A , ,C 的对边分别为 a , , ,已知 a sin(1)求 B ;(2△)若 ABC 为锐角三角形,且 c =1△,求 ABC 面积的取值范围.A + C 2= b sin A .【答案】(1)B =60°;(2) ( 3因为 cos B 从而3△ABC<.因此,△ ABC 面积的取值范围是 8 , 2 ⎪⎭ .b 2 = 32 +c 2 - 2 ⨯ 3 ⨯ c ⨯ - ⎪.3, ) . 8 2【解析】(1)由题设及正弦定理得 s in A s in A + C= sin B sin A .2因为sinA ≠ 0,所以 sin A + C= sin B .2由 A + B + C = 180︒ ,可得 sin A + C B B B B= cos ,故 cos = 2sin cos .2 2 2 2 2B 1≠ 0 ,故 sin = ,因此B =60°.2 2 2(2)由题设及(1△)知 ABC 的面积 S△ABC = 3 4a .c sin A sin (120︒ - C )3 1由正弦定理得 a = = = + .sin C sin C 2 tan C 2△由于 ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故 1< a < 2 ,23< S82⎛ 3 3 ⎫ ⎪ .⎝【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查 V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题13.【2019 年高考北京卷理数】在△ ABC 中,a =3,b −c =2,cosB = -(1)求 b ,c 的值;(2)求 sin (B –C )的值.1 2 .【答案】(1) b = 7 , c = 5 ;(2)4 73 .【解析】(1)由余弦定理 b 2 = a 2 + c 2 - 2ac cos B ,得⎛ 1 ⎫ ⎝ 2 ⎭所以 (c + 2)2 = 32 + c 2 - 2 ⨯ 3 ⨯ c ⨯ - ⎪ . (2)由 cos B = - 得 sin B = ⎪ 的值.⎛ ( 得 3b s in C = 4a sin C ,即 3b = 4a .又因为 b + c = 2a ,得到 b = a , c = a .由余弦定理可得a 2 + c 2 -b 2 a 2 + a 2 - a 21 cos B = = =- .2因为 b = c + 2 ,⎛ 1 ⎫ ⎝ 2 ⎭解得 c = 5 .所以 b = 7 .1 32 2.由正弦定理得 s in C = c 5 3 sin B = b 14.在 △ABC 中,∠B 是钝角,所以∠C 为锐角.所以 cos C = 1 - sin 2 C = 11 14.所以 sin( B - C ) = sin B cos C - cos B sin C = 4 3 7.【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.14.【2019 年高考天津卷理数】在 △ABC 中,内角 A, B, C 所对的边分别为 a, b , c .已知 b + c = 2a ,3c s in B = 4a sin C .(1)求 cos B 的值;(2)求 sin 2B + ⎝π⎫6⎭【答案】(1) - 1 4 3 5 + 7;(2) - .16【解析】 1)在 △ABC 中,由正弦定理 b c=sin B sin C,得 b s in C = c s in B ,又由 3c sin B = 4a sin C ,4 23 34 169 92ac 42 ⋅ a ⋅ a3sin 2B + ⎪ = sin 2B cos + cos 2B sin =- ⨯ - ⨯ =- (2)若 sin A 3 2 ⨯ 3c ⨯ c ,得 ( ) π⎫ 2 5= cos B = 2 ⎭ 5⎛( 2 ) 由 ( 1 ) 可 得 sin B = 1 - cos 2 B =7cos 2B = cos 2 B - sin 2 B = - ,故815 15, 从 而 sin 2 B = 2sin B cos B = - , 4 8⎛ π⎫ π π 15 3 7 1 3 5 + 7 ⎝6 ⎭ 6 6 8 2 8 2 16.【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.15.【2019 年高考江苏卷】在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a =3c ,b = 2 ,cosB = 23,求 c 的值;cos B π= ,求 sin(B + ) 的值.a 2b 2【答案】(1) c =3 2 5;(2) . 3 5【解析】(1)因为 a = 3c, b =2,cos B = 23,a 2 + c 2 -b 2 2 (3c)2 +c 2 - ( 2) 2 1由余弦定理 cos B = ,得 = ,即 c 2 = .2ac 3所以 c =3 3.(2)因为 sin A cos B =a 2b, 由正弦定理 a b cos B sin B= =sin A sin B 2b b,所以 cos B = 2sin B .4从而 cos 2 B = (2sin B)2 ,即 cos 2 B = 4 1 - cos 2 B ,故 cos 2 B = .5因为 sin B > 0 ,所以 cos B = 2sin B > 0 ,从而 cos B = 2 55.因此 sin B + ⎝⎪ .【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划....别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解法一:(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.'因为PB⊥AB,所以cos∠PBD=sin∠ABE=84=.105所以PB=BD12==15.cos∠PBD45因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.5②若Q 在D 处,连结AD ,由(1)知 AD = AE 2 + ED 2 = 10 ,从而 cos ∠BAD = AD 2 + AB 2 - BD 2 7= > 0 ,所以∠BAD 为锐角.2 A D ⋅ AB 25所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设 P 为l 上一点,且 PB ⊥ AB ,由(1)知, P B =15,1 1 1此时 PD = PB sin ∠PBD = PB cos ∠EBA = 15 ⨯ 3 = 9 ;1111当∠OBP >90°时,在 △PPB 中, PB > PB = 15 .1 1由上可知,d ≥15.再讨论点Q 的位置.由 ( 2 ) 知 , 要 使 得 QA ≥15 , 点 Q 只 有 位 于 点 C 的 右 侧 , 才 能 符 合 规 划 要 求 . 当 QA =15 时 ,CQ = QA 2 - AC 2 = 152 - 62 = 3 21 .此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综 上 , 当 PB ⊥AB , 点 Q 位 于 点 C 右 侧 , 且 CQ = 3 21 时 , d 最 小 , 此 时 P , Q 两 点 间 的 距 离PQ =PD +CD +CQ =17+ 3 21 .因此,d 最小时,P ,Q 两点间的距离为17+ 3 21 (百米).解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.在线段AD 上取点M (3, ),因为 OM = 32 + ⎪ < 32 + 42 = 5 ,因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为 3 4.因为PB ⊥AB ,所以直线PB 的斜率为 -4 25直线PB 的方程为 y =- x -.334 3,所以P (−13,9), PB =(-13 + 4)2 + (9 + 3)2 = 15 .因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD : y = - 3x + 6(-4剟x 4) .415 ⎛ 15 ⎫24⎝ 4 ⎭所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设 P 为l 上一点,且 PB ⊥ AB ,由(1)知, P B =15,此时 P (−13,9);1111当∠OBP >90°时,在 △PPB 中, PB > PB = 15 .1 1由上可知,d ≥15.(2)求函数 y = [ f ( x + π )]2 + [ f ( x + )]2的值域. 又 θ ∈ [0, 2π) ,因此θ =π(2) y = ⎢ f x + + ⎢ f x + ⎪⎥ = sin 2 x + 12 ⎭⎥⎦ 4 ⎭⎦ ⎝ + sin 2 x + ⎪ 12 ⎭ ⎝ 4 ⎭ 1 - cos 2 x + ⎪ 1 - cos 2 x + ⎪= + = 1 - cos 2 x - sin 2 x ⎪π ⎫ 6 ⎭ cos 2 x + ⎪ .再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由 AQ = (a - 4)2 + (9 - 3)2 = 15(a > 4) ,得a = 4 + 3 21 ,所以Q ( 4 + 3 21 ,9),此时,线段QA上所有点到点O 的距离均不小于圆O 的半径.综上,当P ( 13,9),Q ( 4 + 3 21 ,9)时,d 最小,此时P ,Q 两点间的距离PQ = 4 + 3 21 - (-13) = 17 + 3 21 .因此,d 最小时,P ,Q 两点间的距离为17 + 3 21 (百米).【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.17.【2019 年高考浙江卷】设函数 f ( x ) = sinx, x ∈ R .(1)已知θ ∈ [0,2 π), 函数 f ( x + θ ) 是偶函数,求θ 的值;π 12 4【答案】(1)θ = π 3π或 ;(2) [1-2 23 3 ,1 + ] . 2 2【解析】(1)因为 f ( x + θ ) = sin( x + θ ) 是偶函数,所以,对任意实数x 都有 sin( x + θ ) = sin( - x + θ ) ,即 sin x cos θ + cos x sin θ = - s in x cos θ + cos x sin θ ,故 2sin x cos θ = 0 ,所以 cos θ = 0 .3π或 . 2 2⎡ ⎣ ⎛ π ⎫⎤ 2 ⎡ ⎛ π ⎫⎤ 2 ⎛ ⎪ ⎝ ⎣ ⎝ π ⎫ ⎛ π ⎫ ⎪⎛ ⎛ π ⎫ ⎝ ⎝2 ⎭ 1 ⎛3 3 ⎫ 2 2 2 ⎝ 2 2⎭= 1 - 3 2⎛ π ⎫⎝ 3 ⎭因此,函数的值域是[1-3.【3B.tan α-⎪=【解析】Q cosα=-,a∈(-π,0),∴α∈⎛-π,-π⎫⎪,3,1+].22【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力18.重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点P(-2,1),则cos2α=A.2213C.-13D.-223【答案】B【解析】因为角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点P(-2,1),所以cosα=-22+1=-63,因此cos2α=2cos2α-1=13.故选B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点P(-2,1),求出cosα,再由二倍角公式,即可得出结果.19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知c osα=-4,α∈(-π,0),则5⎛π⎫⎝4⎭A.17B.7C.-17D.-7【答案】C45⎝2⎭33∴s inα=-,tanα=,54π ⎫ tan α - 1 4 1 则 tan α - ⎪ == = - .故选 C . 4 ⎭ 1 + tan α 7 3 1 +20.【广东省韶关市 2019 届高考模拟测试(4 月)数学文试题】已知函数 f ( x ) = sin(ω x + ) (ω > 0) 的相,将函数图象向左平移 个单位得到函数 g ( x ) 的图象,则 g ( x ) =) + ] = sin 2 x + + ⎪ = cos 2 x 的图象,故选 C .3- 1 ⎛⎝4【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知 c os α 的值,结合同角三角函数关系式可求 tan α,然后根据两角差的正切公式即可求解.π6邻对称轴之间的距离为 π π2 6A . sin( x +C . cos2 x π 3 ) πB . sin(2 x + )3πD . cos(2 x + )3【答案】C【解析】由函数 f ( x ) = sin(ω x +π π T π)(ω > 0) 的相邻对称轴之间的距离为 ,得 = ,即 T = π ,所6 2 2 2以 π =2πω ,解得 ω = 2 ,π π将函数 f ( x ) = sin(2 x + ) 的图象向左平移 个单位,6 6得到 g ( x ) = sin[2( x + π 6 π ⎛ 6 ⎝ π π ⎫ 3 6 ⎭【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.21.【河南省郑州市 2019 届高三第三次质量检测数学试题】已知函数 f (x ) = A s in (ωx + ϕ ),A > 0,ω > 0, ϕ < π的部分图象如图所示,则使 f (a + x )- f (a - x ) = 0 成立的 a 的最小正值为 2⇒>,∴ω<所以a的最小正值为.C的对边,若△ABC的面积为S,且43S=(a+b)2-c2,则sin C+⎪=4D.A.C.π12π4B.D.π6π3【答案】B【解析】由图象易知,A=2,f(0)=1,即2sinϕ=1,且ϕ<ππ,即ϕ=,26由图可知,f(11π11ππ11ππ12k-2 )=0,所以sin(⋅ω+)=0,∴⋅ω+=kπ,k∈Z,即ω=,k∈Z,1212612611 11π2π11π24又由图可知,周期T>,且ω>0,12ω1211所以由五点作图法可知k=2,ω=2,π所以函数f(x)=2sin(2x+),6因为f(a+x)-f(a-x)=0,所以函数f(x)关于x=a对称,即有2a+ππkππ=kπ+,k∈Z,所以可得a=+,k∈Z,6226π6故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出A,ϕ,ω,可得函数f(x)的解析式,再由f(a+x)-f(a-x)=0易知f(x)的图象关于x=a对称,即可求得a的值.22.【山东省实验中学等四校2019届高三联合考试数学试题】在△ABC中,a,b,c分别为角A,B,⎛π⎫⎝4⎭A.1B.C.6-2【答案】D 226+2 4【解析】由43S=(a+b )2-c2,得43⨯12ab sin C=a2+b2-c2+2ab,∵a2+b2-c2=2ab cos C,∴23ab sin C=2ab cos C+2ab,即 3 sin C - cos C = 1 ,即 2sin C - 6 ⎭ = 1 ,则 sin C - ⎪ = ,+ = sin cos + cos sin = 3 ⨯ 2 + ⨯ 2 = 6 + 2 sin C + = sin ⎝ ⎝ 3 4 ⎭ 2 2 2 2 44 ⎭ 3 4 3 4 π ⎫⎛⎝ π ⎫ ⎪ ⎛ ⎝π ⎫ 1 6 ⎭ 2∵ 0 < C < π ,∴ - π π 5π π π π< C - < , ∴ C - = ,即 C = ,6 6 6 6 6 3则 ⎛ ⎛ π π ⎫ π π π π 1 ⎪ ⎪,故选 D .【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出 C 的值,然后利用两角和的正弦公式进行求解即可.23.【山东省烟台市 2019 届高三 3 月诊断性测试(一模)数学试题】在△ABC 中,角 A , B , C 的对边分别为 a , b , c ,若 a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,则角 A =A .C .2π 3 π 6B .D .π 3 5π 6【答案】D【解析】∵ a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,∴ 3 sin A cos C + 3 sin C cos A = -b cos A ,∴ 3 sin( A + C ) = 3 sin B = -b cos A ,∴ 3a sin B = -b cos A ,由正弦定理可得: 3 sin A s in B = - sin B cos A ,∵ sin B > 0 ,∴ 3 sin A = - cos A ,即 tan A = - 3 3,∵ A ∈ (0, π) ,∴ A = 5π 6.故选 D .【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本题时,由 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,可得 3a sin B = -b cos A ,再由正弦定理得到tan A = -3 ,结合 A ∈ (0, π) ,即可求得 A 的值.3【, a = 2 3 , △ABC 的面积为,24. 广东省韶关市 2019 届高考模拟测试(4 月)数学试题】在 △ABC 中,a 、b 、c 分别是内角 A 、 B 、C 的对边,且 3b cos A = sin A(a cos C + c cos A) .(1)求角 A 的大小;(2)若 a = 2 3 , △ABC 的面积为5 3 4,求 △ABC 的周长.【答案】(1) A =π 3;(2) 5 3 .【解析】(1)∵ 3b cos A = sin A(a cos C + c cos A) ,∴由正弦定理可得:3 sin B cos A = sin A(sin A cos C + sin C cos A) = sin A s in( A + C ) = sin A s in B ,即 3 sin B cos A = sin A s in B ,∵ sin B ≠ 0 ,∴ tan A = 3 ,∵ A ∈ (0, π) ,∴ A = π3.(2)∵ A = π 5 33 41 3 5 3∴ bc sin A = bc =2 4 4,∴ bc = 5 ,∴由余弦定理可得: a 2 = b 2 + c 2 - 2bc cos A ,即12 = b 2 + c 2 - bc = (b + c)2 - 3bc = (b + c)2 - 15 ,解得: b + c = 3 3 ,∴ △ABC 的周长为 a + b + c = 2 3 + 3 3 = 5 3 .【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,两角和的正弦函数公式化简已知等式可得 3 sin B cos A = sin A s in B ,由 sin B ≠ 0 ,(2)当 x ∈ [0, ] 时,不等式 c < f ( x ) < c + 2 恒成立,求实数 c 的取值范围.【 = = sin 2 x - 所以 - ≤ sin (2 x - )≤ 1 .⎪⎩c + 2 > 1 所以实数 c 的取值范围为 (-1,- ) .(2)首先求得函数 f (x )在区间 ⎢0, ⎥ 上的值域,然后结合恒成立的结论得到关于 c 的不等式组,求可求 tan A = 3 ,结合 A ∈ (0, π) ,可求 A =π3.(2)利用三角形的面积公式可求bc = 5 ,进而根据余弦定理可得b + c = 3 3 ,即可计算△ABC 的周长的值.25. 北京市昌平区 2019 届高三 5 月综合练习(二模)数学试题】已知函数 f ( x ) cos x( 3 sin x - cos x)+π(1)求 f ( ) 的值;3π21【答案】(1)1;(2) (-1,- ) .21【解析】(1) f ( x )3 sin x cos x - cos 2 x + 2= 31cos 2 x2 2π=sin(2 x - ) ,6 π所以 f ( ) = 1 .31 2.(2)因为 0 ≤ x ≤ π 2,π π 5π所以 - ≤ 2 x - ≤ ,6 6 6 1 π2 6⎧1 ⎪ c <- 1由不等式 c < f ( x ) < c + 2 恒成立,得 ⎨2 ,解得 -1 < c < - . 212【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;⎡ π ⎤ ⎣ 2 ⎦解不等式组可得 c 的取值范围.。
平面向量专题6 解三角形专题—三角形形状判断-人教A版(2019)高中数学必修(第二册)专题练习
【知识总结】1、设△ABC 中的最大角为C ,若2220a b c +-<,则△ABC 是钝角三角形;若222=0a b c +-,则△ABC 是直角三角形;若2220a b c +->,则△ABC 是锐角三角形;2、若三角形的两边相等或两角相等,则三角形为等腰三角形;3、注意:等腰直角三角形与等腰三角形或直角三角形不一样。
【巩固练习】1、在ABC △中,若222sin sin sin A B C +<,则角C 为()A .锐角B .钝角C .直角D .不确定【答案】B2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定B 【解析】∵cos cos sin bC c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.3、若则为()A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形【答案】B 【解析】因为,而由正弦定理可知所以,即在三角形ABC 中,可得B=45°同理,由正弦定理可知所以,即在三角形ABC 中,可得C=45°所以三角形ABC 为等腰直角三角形所以选B4、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,若222a b ab c +-==,则ABC ∆一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】B综上,故选B.5.在ABC ∆中,若sin 2sin cos A C B =,则ABC ∆是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】C即22b c =,即b c =,即ABC ∆是等腰三角形,故选:C.6.在ABC △中,若等式222sin sin sin A B C ==成立,则ABC △的形状是().A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形【答案】A【解析】由正弦定理得222a b c ==,即a b c ==,故三角形为等边三角形.7.已知ABC △的内角A ,B ,C 的对边分别是a ,b ,c ,若2sin sin c ba B C+=,则ABC △的形状是A .等边三角形B .等腰直角三角形C .锐角三角形D .钝角【答案】B8.(2019·四川高一期末(文))已知,,a b c 分别是ABC∆的内角,,A B C 的的对边,若cos cA b<,则ABC ∆的形状为()A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】Asin sin cos C B A <sin()sin cos sin cos sin cos sin cos sin cos 0A B B AA B B A B AA B ∴+<∴+<∴<又sin 0A >,cos 0B ∴<,即B 为钝角,故选:A 。
2019版高考数学复习三角函数解三角形3.6正弦定理和余弦定理学案理
3.6 正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).4.在△ABC 中,常有的结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. [诊断自测] 1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(2)在△ABC 中,a sin A =a +b -csin A +sin B -sin C.( )(3)若a ,b ,c 是△ABC 的三边,当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A5P 10A 组T 4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×46×34=1. (2)(必修A5P 20A 组T 11)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.答案 7解析 因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8cos A =52+82-2×5×8×12=49,所以BC =7.3.小题热身(1)(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3 D .4 答案 A解析 在△ABC 中,设A ,B ,C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1.故选A.(2)(2016·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 答案2113解析 由已知可得sin A =35,sin C =1213,则sin B =sin(A +C )=35×513+45×1213=6365,再由正弦定理可得a sin A =bsin B ⇒b =1×636535=2113.题型1 利用正、余弦定理解三角形典例1 (2018·郑州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A,则cos B =( )A .-12 B.12 C .-32 D.32边角互化法.答案 B解析 由正弦定理知sin B3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B.典例2 (2018·重庆期末)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3D. 3注意本题的多解性.答案 C解析 在△ABC 中,由余弦定理可得AC 2=42=(43)2+BC 2-2×43BC cos30°, 解得BC =4或BC =8.当BC =4时,AC =BC ,∠B =∠A =30°,△ABC 为等腰三角形,∠C =120°, △ABC 的面积为12AB ·BC sin B =12×43×4×12=4 3.当BC =8时,△ABC 的面积为12AB ·BC sin B =12×43×8×12=83,故选C.方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a =2R sin A ,b =2R sin B ,c =2R sin C 能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2017·河西五市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(b -a )sin A =(b -c )(sin B +sin C ),则角C 等于( )A.π3 B.π6 C.π4 D.2π3答案 A解析 由题意,得(b -a )a =(b -c )(b +c ),∴ab =a 2+b 2-c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =π3,故选A.2.(2018·山东师大附中模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A =-13,c =3,sin A =6sin C .(1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.解 (1)在△ABC 中,c =3,sin A =6sin C ,由正弦定理asin A=csin C,得a =6·c=6×3=3 2.(2)由cos2A =1-2sin 2A =-13得,sin 2A =23,由0<A <π2,得sin A =63,则cos A =1-sin 2A =33. 由余弦定理a 2=b 2+c 2-2bc cos A , 化简,得b 2-2b -15=0, 解得b =5(b =-3舍去).所以S △ABC =12bc sin A =12×5×3×63=522.题型2 利用正、余弦定理判断三角形的形状典例 (2017·陕西模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定用边角互化法.答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.故选B.[条件探究1] 将典例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形答案 B解析 解法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .故选B. 解法二:由正弦定理得2a cos B =c ,由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .故选B.[条件探究2] 将典例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形.故选C.[条件探究3] 将典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状. 解 由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc,∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2). ∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2.∴△ABC 为直角三角形. 方法技巧判定三角形形状的两种常用途径提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.冲关针对训练在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C 及正弦定理,得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵0°<A <180°,∴A =60°. (2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin120°cos B -cos120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为等边三角形.题型3 与三角形有关的最值角度1 与三角形边长有关的最值典例 (2017·杏花岭区模拟)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =b cos C +33c sin B . (1)求B ;(2)若b =2,求ac 的最大值.本题采用转化法.解 (1)在△ABC 中,∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B , ∴sin A =sin(B +C )=sin B cos C +33sin C sin B , 化为cos B sin C =33sin C sin B ,sin C ≠0, 可得tan B =3,B ∈(0,π),∴B =π3.(2)由正弦定理得b sin B =2R =43,令y =ac =2R sin A ·2R sin C =163sin A sin C=163sin A sin ⎝ ⎛⎭⎪⎫2π3-A =83sin ⎝ ⎛⎭⎪⎫2A -π6+43. ∵0<A <π2,0<2π3-A <π2,∴π6<A <π2.故π6<2A -π6<5π6,∴sin ⎝⎛⎭⎪⎫2A -π6∈⎝ ⎛⎦⎥⎤12,1,∴y ∈⎝ ⎛⎦⎥⎤83,4.∴ac 的最大值为4.角度2 与三角形内角有关的最值典例 (2017·庄河市期末)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.本题采用重要不等式法.解 (1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b =2c .又由正弦定理,得sin B =2sin C , ∵B -C =π3,∴sin ⎝ ⎛⎭⎪⎫π3+C =2sin C , 整理得3sin C =cos C ,∴tan C =33. ∵角C 是三角形的内角,∴C =π6.(2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0,即a 2+b 2-2c 2=0,由余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12(当且仅当a =b 时取等号).又∵余弦函数在⎝⎛⎭⎪⎫0,π2上递减,C 是锐角, ∴0<C ≤π3.方法技巧求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.冲关针对训练(2018·绵阳检测)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x4+cos 2x4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. 因为f (x )=1,所以sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)因为(2a -c )cos B =b cos C由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12,B =π3,所以0<A <2π3,所以π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. 又因为f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,所以f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.1.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A 答案 A解析 ∵等式右边=sin A cos C +(sin A cos C +cos A sin C )=sin A cos C +sin(A +C )=sin A cos C +sin B ,等式左边=sin B +2sin B cos C , ∴sin B +2sin B cos C =sin A cos C +sin B . 由cos C >0,得sin A =2sin B . 根据正弦定理,得a =2b .故选A.2.(2018·南阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =________.答案π6解析 由正弦定理,得sin B (sin A cos C +sin C cos A )=12sin B ,即sin B sin(A +C )=12sin B ,因为sin B ≠0,所以sin B =12,所以B =π6或5π6,又因为a >b ,故B =π6.3.(2018·沈阳模拟)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是________.答案 5<b 2+c 2≤6解析 由正弦定理,可得(a -b )·(a +b )=(c -b )·c ,即b 2+c 2-a 2=bc ,cos A =b 2+c 2-a 22bc =12,又A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.∵b sin B =c sin C =3sinπ3=2, ∴b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4⎣⎢⎡⎦⎥⎤1-cos2B 2+1-cos2(A +B )2=3sin2B -cos2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4. ∵△ABC 是锐角三角形,且A =π3,∴B ∈⎝ ⎛⎭⎪⎫π6,π2,即2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,∴5<b 2+c 2≤6.4.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12,所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.[重点保分 两级优选练]A 级一、选择题1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A .1B .2C .4D .6 答案 C解析 a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-6c cos60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).故选C.2.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .故选A.3.(2017·湖南长郡中学六模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则a b等于( )A .2B .3 C. 2 D. 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴a b=2.故选A.4.(2017·衡水中学调研)在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b2c cos C =2-68×⎝ ⎛⎭⎪⎫-14=2,故选B.5.在△ABC 中,A ,B ,C 是三角形的三个内角,a ,b ,c 是三个内角对应的三边,已知b 2+c 2=a 2+bc .若sin B sin C =34,△ABC 的形状( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形答案 A解析 在△ABC 中,由余弦定理,可得cos A =b 2+c 2-a 22bc,由已知,得b 2+c 2-a 2=bc ,∴cos A =12.∵0<A <π,故A =π3.∵A +B +C =π,A =π3,∴C =2π3-B .由sin B sin C =34,得sin B sin ⎝ ⎛⎭⎪⎫2π3-B =34.即sin B ⎝ ⎛⎭⎪⎫sin 2π3cos B -cos 2π3sin B =34.32sin B cos B +12sin 2B =34, 34sin2B +14(1-cos2B )=34, 32sin2B -12cos2B =1,∴sin ⎝ ⎛⎭⎪⎫2B -π6=1.又∵-π6<2B -π6<7π6,∴2B -π6=π2,即B =π3.∴C =π3,也就是△ABC 为等边三角形.故选A.6.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332 D .3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.① ∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332, 故选C.7.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 答案 A解析 由a sin A =b sin B =bsin2A ,得b =2cos A .π2<A +B =3A <π,从而π6<A <π3. 又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.故选A.8.(2014·全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 答案 B解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B=45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.9.(2018·辽宁五校第一次联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( )A .锐角三角形B .等腰三角形C .直角三角形D .等腰或者直角三角形 答案 C解析 由两直线平行可得b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin2A =12sin2B ,又A 、B ∈(0,π),且A +B ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,此时两直线重合,不符合题意,舍去,故A +B =π2,则△ABC 是直角三角形,故选C.10.(2017·武昌调研)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3 答案 C解析 a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C 1-tan B tan C,即tan A +tan B +tan C =tan A tan B tan C )⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),令m -2=t ⇒(t +2)2t =t +4t +4≥8,当且仅当t =4t,即t =2,tan A =4时,取等号.故选C.二、填空题11.(2015·重庆高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B2,代入①式中,2sin B =2sin ⎝⎛⎭⎪⎫90°-B 2.∴2sin B =2cos B2.∴4sin B 2cos B 2=2cos B2.∴sin B 2=24.∴cos B =1-2sin 2B 2=1-14=34. 13.(2018·沈阳监测)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8解析 由题意得4×12bc sin A =a 2-b 2-c 2+2bc .又a 2=b 2+c 2-2bc cos A ,代入上式得2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎪⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16, ∴S 的最大值为8.14.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则cos ∠ABC =14,sin ∠ABC =154.所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD22BD ·BC=8-CD28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. B 级三、解答题15.(2018·郑州质检)已知△ABC 的外接圆直径为433,角A ,B ,C 所对的边分别为a ,b ,c ,C =60°.(1)求a +b +csin A +sin B +sin C的值;(2)若a +b =ab ,求△ABC 的面积.解 (1)因为a sin A =b sin B =c sin C =2R =433,所以a =433sin A ,b =433sin B ,c =433sin C .所以a +b +c sin A +sin B +sin C =433(sin A +sin B +sin C )sin A +sin B +sin C =433.(2)由c =433sin C ,得c =433×32=2,c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ,又a +b =ab ,所以(ab )2-3ab -4=0,解得ab =4或ab =-1(舍去),所以S △ABC =12ab sin C =12×4×32= 3.16.(2017·湖北四校联考)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A +sin A sinB -6sin 2B =0.(1)求a b的值;(2)若cos C =34,求sin B 的值.解 (1)因为sin 2A +sin A sinB -6sin 2B =0,sin B ≠0, 所以⎝⎛⎭⎪⎫sin A sin B 2+sin A sin B-6=0,得sin A sin B =2或sin A sin B =-3(舍去).由正弦定理得a b =sin Asin B=2.(2)由余弦定理得cos C =a 2+b 2-c 22ab =34.①将a b=2,即a =2b 代入①,得5b 2-c 2=3b 2, 得c =2b .由余弦定理cos B =a 2+c 2-b 22ac,得cos B =(2b )2+(2b )2-b 22×2b ×2b =528,则sin B =1-cos 2B =148. 17.(2018·海淀区模拟)在△ABC 中,角A ,B ,C 所对的边长分别是a ,b ,c .满足2a cos C +c cos A =b .(1)求角C 的大小;(2)求sin A cos B +sin B 的最大值. 解 (1)由正弦定理及2a cos C +c cos A =b , 得2sin A cos C +sin C cos A =sin B . 在△ABC 中,A +B +C =π,∴A +C =π-B ,即sin(A +C )=sin B .∴2sin A cos C +sin C cos A =sin(A +C )+sin A cos C =sin B +sin A cos C =sin B , ∴sin A cos C =0, 又∵0<A <π,0<C <π, ∴sin A >0. ∴cos C =0, ∴C =π2.(2)由(1)得C =π2,∴A +B =π2,即A =π2-B .∵sin A cos B +sin B =cos 2B +sin B =-sin 2B +sin B +1=-⎝ ⎛⎭⎪⎫sin B -122+54.∵0<B <π2,∴当sin B =12,即B =π6时,sin A cos B +sin B 取得最大值54.18.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD . (1)求tan ∠ADB 的值; (2)若CD =33,求S △ABC .解 (1)如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB 得,BC =233a .在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC22AB ·BC=a 2+⎝⎛⎭⎪⎫23a 32-a 22a ·233a=33, ∴∠ABC 是锐角,则sin ∠ABC =1-cos 2∠ABC =63. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD , 得b 2=a 2+b 2-233ab ,解得a =233b .由正弦定理AD sin ∠ABD =AB sin ∠ADB ,得b 63=a sin ∠ADB,解得sin ∠ADB =223,又2b 2>a 2,∴∠ADB 为锐角,∴cos ∠ADB =1-sin 2∠ADB =13,tan ∠ADB =2 2.(2)由已知可得 3⎝ ⎛⎭⎪⎫b +33=2a ,① 由(1)可知a =233b ,②联立①②得a =2,b = 3.过A 作AH ⊥BC 于H ,则H 为BC 的中点,易求得DH =33. 则tan ∠ADB =AH33=2 2.∴AH =263,∴S △ABC =12×433×263=423.。
专题18 解三角形综合-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)
【母题原题1】【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A C a b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)3B π=;(2)(,82. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A C A B A +=. 因为sin A ≠0,所以sin sin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是,82⎛⎫ ⎪ ⎪⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦专题18 解三角形综合定理求解),最后考查△ABC 是锐角三角形这个条件的利用。
考查的很全面,是一道很好的考题.【母题原题2】【2017年高考全国Ⅲ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c.已知sin cos 0A A =,a,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【答案】(1)4c = ;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=. 解得6c =-(舍去),4c =.(2)由题设可得π2CAD ∠=,所以π6BAD BAC CAD ∠=∠-∠=. 故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅. 又ABC △的面积为142sin 2BAC ⨯⨯∠=,所以ABD △【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【命题意图】主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题.主要考查考生的数学运算能力.【命题规律】考查正弦定理、余弦定理和三角形面积公式的应用.解三角形是高考的一个必考热点,多为解答题,有时也以选择题或填空题的形式呈现,试题难度不大,多为中低档题.主要命题角度有:(1)以斜三角形为背景求三角形的基本量、求三角形面积或判断三角形形状,主要考查正弦定理、余弦定理以及三角函数公式的应用;(2)以实际生活为背景(如测量、航海、几何、天体运行和物理学上的应用等)考查解三角形问题,此类考题在近两年高考中虽没涉及,但此类题深受高考命题者的青睐,应给予关注;(3)解三角形与其他知识相交汇问题,常与三角恒等变换、不等式、平面向量等知识相交汇,这一直是高考考查的重点和热点.此类问题出现在解答题的第二问中,属于中档题.【知识总结】1.正弦、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC的外接圆半径,则2.三角形中的常见结论在△ABC中,常有下列结论:(1)A+B+C=π.(2)大边对大角,大角对大边,如a>b⇔A>B⇔sin A>sin B.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)有关三角形内角的三角函数关系式:sin (A+B )=sin C ;cos (A+B )=–cos C ;tan (A+B )=–tan C ;sin 2A B +=cos 2C ;cos 2A B +=sin 2C . (5)在△ABC 中,内角A ,B ,C 成等差数列⇔B=π3,A+C=2π3. (6)在斜△ABC 中,tan A+tan B+tan C=tan A ·tan B ·tan C .3.三角形的面积公式(1)已知三角形一边及该边上的高:S=12ah (h 表示边a 上的高); (2)已知三角形的两边及其夹角:S=12ab sin C=12ac sin B=12bc sin A ;(3)已知三角形的三边:(p=12(a+b+c )); (4)已知三角形的三边及内切圆半径:S=12r (a+b+c )(r 表示三角形内切圆半径). 【方法总结】1.判断三角形的形状,主要有如下两种方法:(1)角化边.利用正弦、余弦定理把已知条件转化为边的关系,通过因式分解、配方等得出边的相应关系,如:①若a=b ,则三角形为等腰三角形;②若c 2=a 2+b 2,则三角形为以角C 为直角的直角三角形;③若c 2>a 2+b 2,则三角形为以角C 为钝角的钝角三角形;④若c 2<a 2+b 2,则只能得到三角形中角C 为锐角,如果同时有a 2<c 2+b 2,b 2<a 2+c 2都成立,此三角形为锐角三角形;⑤有时可能得到两个结论a=b ,且c 2=a 2+b 2,此时三角形为等腰直角三角形.化简过程中不能随便约分,要把关系找充分,从而正确判断三角形的形状.(2)边化角.利用正弦、余弦定理把已知条件转化为内角三角函数间的关系,通过三角恒等变换,得出内角的关系,常见的关系有:①sin 2A=sin 2B ,即A=B 或A+B=π2,三角形为等腰三角形或直角三角形; ②A+B=π2,三角形为以角C 为直角的直角三角形; ③A=B=C ,三角形为等边三角形.在这里要注意应用A+B+C=π这个结论,从而判断出三角形的形状. 注意:(1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断.注意不要轻易两边同除以一个式子.(2)要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.2.与三角形面积有关的问题主要有两种:一是解三角形求出有关量,利用公式求面积;二是将面积作为已知条件之一,与正弦定理和余弦定理一起求解三角形中的其他量.解题时主要应用三角形面积公式S=12ab sin C ,此公式既与边长的乘积有关,又与角的三角函数值有关,因此可以将正弦定理和余弦定理综合起来求解问题.3.解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.注意:(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A+B+C=π,0<A<π,b –c<a<b+c ,三角形中大边对大角等.1.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知在ABC △中.,,A B C 所对的边分别为,,a b c ,若2228a b c +-=,ABC △的面积为(1)求角C 的大小;(2)若c =,求sin sin A B +的值.【答案】(1)π3;(2)32.【解析】(1)由ABC △的面积为1sin 2ab C = 由2228a b c +-=及余弦定理可得2cos 8ab C =,故tan 3C ==π; (2)∵,2cos 8,83C ab C ab ==∴=π,又2228,a b c c +-==6a b +=, 由正弦定理sin sin sin a b c A B C==, 得()sin sin sin 3sin sin 2a C b C C A B a b c c c +=+=+=. 【名师点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.2.【广西桂林市2019届高三4月综合能力检测(一模)数学】如图,在ABC △中,4AB =,点D 在边BC的延长线上,已知7cos 9CAD =∠,AC AD ==(1)求sin B 的值;(2)求ABC △的面积.【答案】(1)sin 3B =;(2)【解析】(1)在A C D △中,2222cos CD AC AD AC AD CAD =+-⋅∠729=+-,所以3CD =, 在ACD △中,221cos 23AC CD AD ACD AC CD +-∠==⋅. 因为()0,ACD ∠∈π,所以sin 3ACD ∠=,所以()sin sin sin ACB ACD ACD ∠=π-∠=∠=. 在ACB △中,sin sin AC AB B ACB=∠.所以3sin 4B ==,(2)()1cos cos cos 3ACB ACD ACD ∠=π-∠=-∠=-. 在ABC △中,2222cos AB AC BC AC BC ACB =+-⋅∠.所以2100BC +-=,解得BC =所以ABC △的面积为11sin 422AB BC B ⋅=⨯= 【名师点睛】本题主要考查解三角形,熟记正弦定理和余弦定理、以及三角形的面积公式即可,属于常考题型.3.【广西南宁市2019届高三毕业班第一次适应性测试数学】在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且222333b c a +-=.(1)求sin A ;(2)若3sin sin c A B =,ABC △,求ABC △的周长.【答案】(1)1sin 3A =;(2)2+【解析】(1)因为222333b c a +-=,所以2223b c a +-=,所以222cos 23b c a A bc +-==,从而1sin 3A ===.(2)因为3sin sin c A B =,所以3ac =,即b =.因为ABC △,所以1sin 2bc A =即21123=24c =,解得2c =. 【名师点睛】本题主要考查了正余弦定理及面积公式求解三角形,属于基础题.4.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】在ABC △中,角,,A B C 所对的边分别为,,a b c ,且sin sin cos cos b B a A A B -=,a b ¹.(1)求角C ;(2)若c =ABC △的中线2CD =,求ABC △的面积.【答案】(1)π3C =;(2)S =【解析】(1)由sin sin cos cos b B a A A B -=-及正弦定理得,22sin sin B A -cos cos A A B B =,∴1cos21cos222B A --- A B =,cos2cos2A A B B -=-, 即2sin 22sin 266A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭; 又a b ≠, ∴2266A B ππ⎛⎫⎛⎫-+-=π ⎪ ⎪⎝⎭⎝⎭, 解得23A B π+=, ∴()3C A B π=π-+=. (2)由12CD CA CB =+可得:22216CA CB CA CB ++⋅=, 即2216a b ab ++=,①又由余弦定理222222cos 8c a b ab C a b ab =+-=+-=,②由①②两式得4ab =,∴ABC △的面积1sin 2S ab C === 【名师点睛】本题考查正余弦定理的应用及三角形的面积公式,解题的关键是根据需要进行适当的变形,逐步达到求解的目的,属于基础题.5.【广西桂林市2019届高三4月综合能力检测(一模)数学】如图所示,在平面四边形ABCD 中,2BC CD ==,BCD △的面积是2.(1)求BCD ∠的大小;(2)若260ABD ACB ∠=∠=o ,求线段AD 的长.【答案】(1)90︒;(2)AD =【解析】(1)在BCD △中,2BC CD ==,12BCD S =△sin 2BC CD BCD ⨯⨯⨯=,解得sin 1BCD =, 90BCD ︒∴∠=.(2)由2BC CD ==,90BCD ︒∠=,得到45,CBD BD ︒∠==260ABD ACB ︒∠=∠=,45,45CBD CAB ︒︒∠=∴∠=,在ABC △中,由正弦定理有:sin sin BC AB BAC ACB =∠∠,即2sin30sin45AB ︒︒==在BAD △中由余弦定理有:(22226AD ︒=+-⨯=,AD ∴=【名师点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.6.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】在ABC △中,角,,A B C 所对的边分别为,,a b c ,且()()222222(2sin sin )sin a b cA B a c b B +--=+-. (1)求角C ;(2)若c =ABC △的中线2CD =,求ABC △的面积.【答案】(1)π3C =;(2)S =【解析】(1)∵()()2222sin sin a b c A B +--= ()222sin a c b B +-. ∴()2cos 2sin sin 2cos sin ab C A B ac B B -=.∴()2sin cos sin sin A C B C A =+=,又在ABC △中,sin 0A ≠,∴1cos 2C =, 又0C <<π,∴π3C =. (2)由12CD CA CB =+可得:22216CA CB CA CB ++⋅=, 即2216a b ab ++=,①又由余弦定理222222cos 8c a b ab C a b ab =+-=+-=,②由①②两式得4ab =,∴ABC △的面积1sin 2S ab C === 【名师点睛】本题考查正余弦定理在三角形中的应用及三角形的面积公式,解题的关键是根据需要进行适当的变形,逐步达到求解的目的,属于基础题.7.【云南省保山市2019年普通高中毕业生市级统一检测数学】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且22212cos 2B C a b c +⎛⎫+=- ⎪⎝⎭. (1)求角C ;(2)若c =,求ABC △周长的最大值.【答案】(1)2π3C =;(2)4+. 【解析】(1)由22212cos 2B C a b c +⎛⎫+=- ⎪⎝⎭得22cos a b c A +=. 根据正弦定理,得sin 2sin 2cos sin A B A C +=,化为()sin 2sin 2cos sin A A C A C ++=,整理得到sin 2sin cos A A C =-,因为sin 0A >,故1cos 2C =-,又0C <<π,所以23C π=. (2)由余弦定理有2222cos c a b ab C =+-,故2212a b ab ++=,整理得到()2212122a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,故4a b +≤,当且仅当2a b ==时等号成立,所以周长的最大值为224++=+【名师点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.解三角形中的最值问题,可以用基本不等式或利用正弦定理把最值问题转化为某个角的三角函数式的最值问题.8.【四川省百校2019年高三模拟冲刺卷数学】在ABC ∆中,已知内角A B C ,,的对边分别为a b c ,,,且满足π2sin 6a B c ⎛⎫+= ⎪⎝⎭. (1)求角A 的大小;(2)若ABC △的面积等于12,求a 的最小值. 【答案】(1)π6;(21【解析】(1))π2sin cos 6a B c a B B c ⎛⎫+=⇒+= ⎪⎝⎭,由正弦定理,得)()sin cos sin sin A B B C A B +==+,sin sin cos A B A B + sin cos cos sin A B A B =+,sin cos sin A B A B =,又据题意,sin 0B ≠cos A A =, 解得π6A =. (2)1sin 22S bc A bc =⇒=,由余弦定理,得2222cos a b c bc A =+-(222b c bc =+≥ 4=-当且仅当b c =时取等号,即)2241a ≥-=,所以a 1. 【名师点睛】本题考查正余弦定理,三角形面积公式,基本不等式求最值,熟记公式定理,准确计算是关键,是中档题.9.【四川省内江市2019届高三第三次模拟考试数学】如图所示,在ABC △中,45B D ∠=︒,是BC 边上一点,23AD AC DC ===,.(1)求ADC △的面积;(2)求BD 的长.【答案】(1)2;(2)1.【解析】(1)在ACD △中,由余弦定理得222cos 2AD DC AC ADC AD DC +-∠=⨯ 22231912232+-==-⨯⨯.∴120ADC ∠=︒,故sin ADC ∠=. ∴1sin 2ADC S AD DC ADC =⋅⋅∠△1232=⨯⨯=. (2)1204575BAD ADC B ∠=∠-∠=︒-︒=︒,()sin sin75sin 3045BAD ∠=︒=︒+︒sin30cos45cos30sin45=︒︒+︒︒=.在ABD △中,由正弦定理得sin sin AD BD B BAD=∠∠, ∴sin sin AD BAD BD B ⋅∠=∠212==+ 【名师点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.10.【贵州省遵义市绥阳中学2019届高三模拟卷(一)数学】在ABC △中,角,,A B C 所对的边分别为,,a b c,cos (2)cos b A c a B =-+.(1)求角B 的大小;(2)若6b =,ABC △的面积为ABC △的周长.【答案】(1)23B π=;(2)6. 【解析】(1)由正弦定理可得()sin cos 2sin sin cos B AC A B =--,即()sin 2sin cos sin A B C B C +=-=.又角C 为ABC △的内角,所以sin 0C >,所以1cos 2B =-. 又()0,B ∈π,所以23B π=.(2)由1sin 2ABC S ac B ===△8ac =. 又()222236b a c ac a c ac =++=+-=,所以a c +=ABC △的周长为6.【名师点睛】(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.11.【贵州省遵义市绥阳中学2019届高三模拟卷(一)数学】已知在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且()cos 2cos 0c B b a C +-=.(1)求角C 的大小;(2)若2c =,求ABC △的面积S 的最大值.【答案】(1)π3C =;(2 【解析】(1)因为()ccos 2cos 0B b a C +-=,所以()sin cos sin 2sin cos 0C B B A C +-=,所以sin cos sin cos 2sin cos C B B C A C +=,所以()sin 2sin cos B C A C +=.又因为A B C ++=π,所以sin 2sin cos A A C =.又因为()0,A ∈π,所以sin 0A ≠,所以1cos 2C =. 又()0,C ∈π,所以π3C =. (2)据(1)求解知,π3C =, 所以222222cos c a b ab C a b ab =+-=+-.又2c =,所以224a b ab =+-.又222a b ab +≥,当且仅当a b =时等号成立,所以4ab ≤.所以ABC ∆面积的最大值()max max 11sin 4sin 223ABC S ab C π⎛⎫==⨯⨯= ⎪⎝⎭△ 【名师点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可求解,属于常考题型.12.【云南省昆明市2019届高三高考模拟(第四次统测)数学】在ABC △中,D 为BC 边上一点,AD AC ⊥,ABBD =,2AD =.(1)求ADB ∠;(2)求ABC △的面积.【答案】(1)34ADB π∠=;(2)3. 【解析】(1)已知ABBD =,2AD =,在ABD △中,由余弦定理得222cos 22AD BD AB ADB AD BD +-∠==-⨯⨯, 又因为()0,ADB ∠∈π,所以34ADB π∠=. (2)因为ADB ADC ∠+∠=π,所以4ADC π∠=, 因AD AC ⊥,所以ADC △为等腰直角三角形,可得2AC =,所以112223222ABC ABD ADC S S S =+=⨯+⨯⨯=△△△. 13.【贵州省思南中学2018–2019学年高二下学期第二次月考数学】如图,在ABC △中,点D 在边AB 上,CD BC ⊥,3AD =,7AC =,13cos 14ACD ∠=.(1)求BC 的长:(2)求ABC △的面积.【答案】(1)2)4【解析】(1)∵在ACD △中,3,7AD AC ==,13cos 14ACD ∠=. ∴由余弦定理可得:2222cos =AD AC CD AC CD ACD -+⋅⋅∠, 所以2139492714CD CD +⨯⨯⨯=﹣, 由于7CD <,∴解得5=CD , ∵2223571cos 2352CDA +-∠==-⨯⨯,∴3CDB π∠=,又∵2DCB π∠=,∴BC = (2)在CBD △中,2DCB π∠=,3CDB π∠=,∴C 点到AB 的距离h =10BD =,∴ABC △面积113224S =⨯⨯=.【名师点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.。
专题 解三角形-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)
专题15 解三角形【母题来源一】【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.【母题来源二】【2018年高考全国Ⅱ卷文数】在ABC △中,cos 2C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为cos2C =,所以cos C =22cos 2C −1=2×2−1=35-.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2−2AC ×BC ×cos C =52+12−2×5×1×(35-)=32,所以AB =故选A.【名师点睛】本题主要考查二倍角公式、余弦定理,考查考生的运算求解力,考查的数学核心素养是数学运算.解三角形是近几年高考中的高频者点,将解三角形与其他知识巧妙地融合在一起,既体现了试题设计的亮点,又体现了对所学知识的交汇考查.【母题来源三】【2017年高考全国Ⅱ卷文数】ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A=+,则B = .【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 故答案为π3. 【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.【命题意图】三角函数解答题主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.预测今后的高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,可能与三角函数的图象和性质等交汇命题,重点考查计算能力以及应用数学知识分析和解决问题的能力. 【命题规律】本考点一直是高考的热点,尤其是已知边角求其他边角,判断三角形的形状,求三角形的面积考查比较频繁,既有直接考查两个定理应用的选择题或填空题,也有考查两个定理与和差公式、倍角公式及三角形面积公式综合应用的解答题,解题时要掌握正、余弦定理及灵活运用,注意函数与方程思想、转化与化归思想在解题中的应用. 【应试技巧】在ABC △中,若角A ,B ,C 所对的边分别是a ,b ,c ,则 1.正弦定理:sin sin sin a b c==A B C. 2.常见变形sin sin sin 1,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B b a B b A a C c A b C c B B b A a C c ======()2;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b c A B C A B A C B C A B C+++++======+++++()3::sin :sin :sin ;a b c A B C =()3.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-, 4.余弦定理的推论从余弦定理,可以得到它的推论222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===5.三角形面积公式(1)三角形的高的公式:h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A . (2)三角形的面积公式:S =21ab sin C ,S =21bc sin A ,S =21ca sin B. 6.正弦定理可以用来解决两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角.7.三角形解的个数的探究(以已知a b ,和A 解三角形为例) (1)从代数角度来看:①若sin sin 1b AB=a>,则满足条件的三角形的个数为0,即无解;②若sin sin 1b A B=a =,则满足条件的三角形的个数为1;③若sin sin 1b A B=a<,则满足条件的三角形的个数为1或2.注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”“三角形内角和等于180°”等进行讨论.(2)从几何角度来看:①当A 为锐角时,一解一解两解无解4===2.sin sin sin a b c R R ABC A B C()正弦定理的推广:,其中为△外接圆的半径②当A为钝角或直角时,一解一解无解无解8.利用余弦定理解三角形的步骤【解题经验分享】1.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”.2.在解实际问题时,需注意的两个问题(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决.3.利用正弦定理与余弦定理解题时,经常用到转化思想一个是把边转化为角,另一个是把角转化为边,,具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,也是我们利用正弦定理与余弦定理化简式子的最终目标,对于两个定理都能用的题目,应优先考虑利用正弦定理,会给计算带来相对的简便,根据已知条件中边的大小来确定角的大小,此时利用正弦定理去计算较小边所对的角,可避免分类讨论,利用余弦定理的推论,可根据角的余弦值的正负直接确定所求角是有锐角还是钝角,但计算麻烦.△中,角A,B,C的对边分别为a,1.【陕西省西安市2019届高三第三次质量检测数学试题】在ABCC=︒,则c=b,c,若ABC△的面积和周长分别为20,60A.7B.8C.5D.6【答案】A【解析】由题意可得,11sin sin6022ABC S ab C ab ==︒△,∴1sin602ab ︒=40ab =. ∵20a b c ++=,∴20c a b -=+.由余弦定理可得,()()222222cos60320120c a b ab a b ab c =+-︒=+-=--, 解得7c =.故选A .【名师点睛】本题考查利用余弦定理和面积公式解三角形.在运用余弦定理时常用到()2222a b a b ab +=+-.2.【陕西省汉中市略阳天津高级中学、留坝县中学、勉县二中等12校2019届高三下学期校际联考数学试题】在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC △的面积为AB .3C D 【答案】D【解析】在ABC △中,2227cos 28b c a A bc +-==,将2b c =,a =22246748c c c +-=, 解得:2c =,由7cos 8A =得sin A ==,所以,11sin 2422ABC S bc A ∆==⨯⨯=故选D.【名师点睛】三角形的面积公式常见形式有两种:一是12⨯(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.3.【重庆市2019届高三学业质量调研抽测(第二次)4月二诊数学试题卷】在ABC △中,角,,A B C 的对边分别为,,a b c ,已知3B π=,1cos 3A =,b =,则边c 的长为A. B.C.D.【答案】B【解析】因为1cos 3A =,()0,A ∈π,所以sin 3A =, 在ABC △中()11sin sin 323C A B =+=+=由正弦定理sin sin b c B C=,所以sin sin 6b c C B ===故选B.【名师点睛】本题考查了正弦定理解三角形,属于基础题.4.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学试题】在ABC △中,角,,A B C 的对边分别为,,a b c ,若ABC △为锐角三角形,且满足2sin 2tan (2sin cos 2)C A C C =+-,则等式成立的是 A .2b a = B .2a b =C .2A B =D .2B A =【答案】B【解析】依题意得()2sin 2sin cos 22cos cos 2cos A C C C C A =-+-,2sin sin 12cos cos C AC A=-,()2sin cos cos sin sin A C A C A +=,即sin 2sin A B =,由正弦定理得2a b =,故选B.【名师点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式和两角和的正弦公式,考查三角形内角和定理以及正弦定理边角互化,属于基础题.5.【甘青宁2019届高三3月联考数学试题】在ABC △中,D 为AC 边上一点,若3BD =,4CD =,5AD =,7AB =,则BC =A. BC.D【答案】B【解析】在三角形ABD 中,由余弦定理得254996513cos 2577014A +-===⨯⨯.在三角形ABC 中,由余弦定理得BC ==故选B.【名师点睛】本小题主要考查利用余弦定理计算角的余弦值和边长,属于基础题.6.【宁夏石嘴山市第三中学2019届高三下学期三模考试数学试题】设ABC △的内角,,A B C 的对边分别为,,a b c ,若2,a c A ===且b c <,则b =A .3B .C .2D 【答案】C【解析】因为cos A =,所以1sin 2A ==且6A π=,由正弦定理可得:sin sin a c A C=,即:212=,解得:sin 2C =,所以3C π=或23C π=,当3C π=时,362B πππ=π--=,此时B C >,与b c <矛盾,所以3C π=舍去. 当23C π=时,2366B πππ=π--=,由余弦定理可得:2222cos 4122242b ac ac B =+-=+-⨯⨯=, 所以2b =, 故选C.【名师点睛】本题主要考查了正弦定理及三角函数求值,还考查了余弦定理及分类思想,考查计算能力,属于中档题.7.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)数学试题】ABC △的内角,,A B C 的对边分别为,,a b c ,若1,sin sin ,234A B C a π===,则ABC △的面积为___________.【解析】由正弦定理得sin ,sin sin 3sin 3a ab B Bc C C A A ====,所以164sin sin 33bc B C ==,从而1sin 2ABC S bc A ==△. 【名师点睛】本题考查了正弦定理、面积公式,正确使用公式是解题的关键.8.【辽宁省沈阳市东北育才学校2019届高三第八次模拟数学试题】在ABC △中,内角,,A B C 的对边分别为,,a b c ,若222a b ab c ++=,且ABC △,则ab 的最小值为___________. 【答案】48【解析】在ABC △中222a b ab c ++=,结合余弦定理2222cos a b ab C c +-=, 可得1cos 2C =-,所以sin 2C =,1sin 2ab C =代入化简可得4ab c =, 代入222a b ab c ++=中可得222216a b a b ab +=-,因为222a b ab +≥,当且仅当a =b 时取等号,所以22216a b ab ab -≥,解不等式可得48ab ≥, 所以ab 最小值为48.【名师点睛】本题考查了余弦定理及三角形面积公式,不等式在求最值中的应用,属于中档题. 9.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】在锐角三角形ABC 中,a ,b ,c 分别为角A 、B 、C 所对的边,且2sin c A =,c =ABC △的面积为,则a b +的值为___________. 【答案】52sin c A =2sin sin ,sin 0,sin A C A A C =≠∴=. 在锐角三角形ABC 中,可得3C π=.所以ABC △的面积1sin 2S ab C ===6ab =. 由余弦定理可得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=, 解得5a b +=. 故答案为5.【名师点睛】本题主要考查了正余弦定理及三角形面积公式的应用,重点考查了计算能力,属于基础题. 10.【甘肃省白银市靖远县2019届高三第四次联考数学试题】在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,若1a =,且BC 边上的高等于tan A ,则ABC △的周长的取值范围为___________.【答案】(2,1+ 【解析】由题可知:11tan sin 22ABC S a A bc A ∆==, 故cos 1bc A =222221122b c a b c bc bc +-+-⇒⋅==,即223b c +=,又22222b c b c ++⎛⎫≥ ⎪⎝⎭,则b c +≤当且仅当b c =时,取等号.又1b c a +>=,则21a b c <++≤,所以ABC △的周长的取值范围为(2,1.故填(2,1.【名师点睛】本题考查解三角形中的周长最值问题的求解,关键是能够通过余弦定理建立等量关系,+的最大值,再利用三角形三边关系确定最小值,从而得到取值范围.从而求得b c。
(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题
3.2 解三角形基础题命题角度1利用正弦、余弦定理解三角形高考真题体验·对方向1.(2019全国Ⅰ·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a sin A-b sin B=4c sin C ,cosA=-14,则bb =()A.6B.5C.4D.3,得a 2-b 2=4c 2,由余弦定理的推论,得-14=cos A=b 2+b 2-b 22bb, ∴b 2-4b 22bb =-14,∴-3b 2b =-14,∴b b =32×4=6,故选A .2.(2018全国Ⅱ·6)在△ABC 中,cos b2=√55,BC=1,AC=5,则AB=()A.4√2B.√30C.√29D.2√5cos C=2cos 2b 2-1=-35,∴AB 2=BC 2+AC 2-2BC ·AC cos C=1+25+2×1×5×35=32.∴AB=4√2.3.(2018全国Ⅲ·9)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为b 2+b 2-b 24,则C=()A.π2B.π3C.π4D.π6S=b2+b2-b24=12ab sin C,得c2=a2+b2-2ab sin C.又由余弦定理c2=a2+b2-2ab cos C,∴sin C=cos C,即C=π4.4.(2017某某·9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2Asin B(1+2cos C)=2sin A cos C+cos A sin C,∴sin B+2sin B cos C=(sin A cos C+cos A sin C)+sin A cos C,∴sin B+2sin B cos C=sin B+sin A cos C, ∴2sin B cos C=sin A cos C,又△ABC为锐角三角形,∴2sin B=sin A,由正弦定理,得a=2b.故选A.5.(2019全国Ⅱ·15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为.√3b2=a2+c2-2ac cos B,∴(2c)2+c2-2×2c×c×12=62,即3c 2=36,解得c=2√3或c=-2√3(舍去).∴a=2c=4√3.∴S △ABC =12ac sin B=12×4√3×2√3×√32=6√3.典题演练提能·刷高分1.在△ABC 中,若原点到直线x sin A+y sin B+sin C=0的距离为1,则此三角形为()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解析由已知可得√22=1,∴sin 2C=sin 2A+sin 2B ,∴c 2=a 2+b 2,故三角形为直角三角形.选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C+c=2a ,且b=√13,c=3,则a=() A.1 B.√6C.2√2D.42b cos C+c=2a ,由正弦定理可得2sin B cos C+sin C=2sin A=2sin(B+C )=2sin B cos C+2cos B sin C ,∴sin C=2cos B sin C ,∵sin C ≠0,∴cos B=12.由余弦定理可得b 2=a 2+c 2-2ac cos B ,又知b=√13,c=3,解得a=4.故选D .3.(2019某某某某高三质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a sin B=2b sinC ,b=3,cos B=14,则△ABC 的面积为()A.9√15B.9√1516C.3√1516D.916a sin B=2b sin C ,结合正弦定理可得ab=2bc ,则a=2c.由余弦定理b 2=a 2+c 2-2ac cos B ,可得9=(2c )2+c 2-2×2c ×c ×14,解得c=32,则a=3.又sin B=√1-cos 2b =√154,所以S △ABC =12ac sin B=12×3×32×√154=9√1516.故选B .4.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若2cos 2b +b2-cos 2C=1,4sin B=3sin A ,a-b=1,则c 的值为()A.√13B.√7C.√37D.6解析∵2cos2b +b2=2cos 2π-b 2=2cos 2π2−b 2=2sin 2b2=1-cos C ,∴1-cos C-cos2C=1.∴cos2C=-cos C.∴2cos 2C+cos C-1=0,解得cos C=12.因为{b -b =1,4b =3b ,故得到{b =3,b =4.根据余弦定理得到12=b 2+b 2-b 22bb,解得c 的值为√13.5.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若a=5,B=π3,cos A=1114,则△ABC 的面积S=()A.10√33B.10C.10√3D.20√3cos A=1114,所以sin A=5√314,由正弦定理得到bsin b=bsin b,解得b=7,由正弦定理得到sin C=sin(A+B )=4√37,△ABC 的面积S=12×5×7×4√37=10√3.6.(2019某某某某高三二调)在△ABC 中,角A ,B ,C 成等差数列,且对边分别为a ,b ,c ,若bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =20,b=7,则△ABC 的内切圆的半径为()A.√3B.7√33C.2D.3角A ,B ,C 成等差数列,∴2B=A+C=π-B ,即B=π3,∴bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ca cos π3=20,即ca=40,由余弦定理b 2=c 2+a 2-2ca cos B ,可得49=a 2+c 2-ac=(a+c )2-3ac=(a+c )2-120,解得a+c=13.故a=5,c=8.设△ABC 的内切圆的半径为r ,则12(a+b+c )r=12ac sin B ,可得12(5+8+7)r=12×5×8×√32,可得△ABC 的内切圆的半径r=√3.故选A .7.如图,平面四边形ABCD 中,AC 与BD 交于点P ,若3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AB=AD=√3BC ,∠CAD+∠ACB=56π,则bbbb=() A.√213B.√214C.2√63D.√62BC=1,则AB=AD=√3,延长BC 到E ,使BE=3BC ,所以CE=2,依题意3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以AC ∥DE ,所以bb bb=bb bb=12,由正弦定理得{bb sin b =bbsin b ,bb sin b=bb sin b,两式相除得2sin b=√3sin b, 所以2sin5π6-α=√3sin α,所以α=π2,β=π3.在△ABC 中,由余弦定理得3=1+AC 2-2AC cos π3,AC=2,在Rt △ACD 中CD=√3+4=√7,故bbbb =√7√3=√213,选A .8.在△ABC 中,AB=2,AC=√7,∠ABC=2π3,则BC=.,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B ,即BC 2+2BC-3=0,解得BC=1,或BC=-3(舍去负值).9.在△ABC 中,a=1,b=√7,且△ABC 的面积为√32,则c=.或2√3△ABC =12ab sin C=12×1×√7×sin C=√32,则sin C=√217,cos C=±2√77, 当cos C=2√77时,c 2=1+7-2×1×√7×2√77=4,c=2;当cos C=-2√77时,c 2=1+7+2×1×√7×2√77=12,c=2√3.10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为米..5由题意画出图象,如图所示,且AB=13里=6500米,BC=14里=7000米,AC=15里=7500米.在△ABC 中,由余弦定理有cos B=bb 2+bb 2-bb 22bb ·bb=132+142-1522×13×14=513,B 为锐角,sin B=√1-cos 2b =1213.设△ABC 外接圆半径为R ,则由正弦定理有bsin b =2R ,R=b2sin b =75002×1213=4062.5(米).命题角度2与三角形有关的最值和X 围问题高考真题体验·对方向1.(2015全国Ⅰ·16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值X 围是.√6−√2,√6+√2).作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°.在△CBE中,由正弦定理得,EB=√6−√2.延长CD交BA的延长线于F,则∠F=30°.在△BCF中,由正弦定理得,BF=√6+√2,所以AB的取值X围为(√6−√2,√6+√2).2.(2014全国Ⅰ·16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.√3,可得(2+b)(a-b)=(c-b)·c.∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=b2+b2-b22bb =12.∴sin A=√32.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=12bc·sin A≤√3,即(S△ABC)max=√3.典题演练提能·刷高分1.(2019某某某某高三一模)在△ABC中,AB=2,C=π6,则AC+√3BC的最大值为() A.4√7 B.3√7C.2√7D.√7ABC 中,AB=2,C=π6,则2R=bbsin b =4,则AC+√3BC=4sin B+4√3sin A=4sin 5π6-A +4√3sin A=2cos A+6√3sin A=4√7sin(A+θ),其中sin θ=√714,cos θ=3√2114,由于0<A<5π6,0<θ<π2,所以0<A+θ<4π3,所以最大值为4√7.故选A .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A=π3,a=2√2,则△ABC 面积的最大值为()A.√2B.2√3C.√6D.√3ABC 中,由余弦定理知a 2=b 2+c 2-2bc cos A ,即8=b 2+c 2-2bc cos π3=b 2+c 2-bc ≥2bc-bc=bc ,即bc ≤8,当且仅当b=c 时,等号成立,所以△ABC 面积的最大值为S=12bc sin A=12×8sin π3=2√3,故选B .3.已知锐角△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=a (a+c ),则sin 2bsin(b -b )的取值X 围是()A.(0,√22)B.(12,√32) C.(12,√22) D.(0,√32)b 2=a (a+c ),由余弦定理,得a 2+c 2-2ac cos B=a (a+c ), 化简得c-a=2a cos B.由正弦定理,得sin C-sin A=2sin A cos B ,∵C=π-(A+B ),∴sin(A+B )-sin A=2sin A cos B ,化简得sin(B-A )=sin A.∵△ABC 是锐角三角形,∴B-A=A ,即B=2A ,∵{0<b <π2,π2<b +b <π,即{0<2b <π2,π2<3b <π,∴π6<A<π4,∴sin 2bsin(b -b )=sin A ∈(12,√22).4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为√3,且cos(b +b )cos b=b2b +b ,则c 的最小值是()A.2B.2√2C.2√3D.4∵cos(b +b )cos b=b 2b +b ,∴-cos b cos b =b2b +b ,∴根据正弦定理可得-cos bcos b =sin b2sin b +sin b ,即-2sin A cos C=sin A.∵sin A ≠0,∴cos C=-12.∵C ∈(0,π),∴C=2π3.∵△ABC 的面积为√3,∴S △ABC =12ab sin C=√3,即ab=4.∵cos C=b 2+b 2-b 22bb=-12, ∴c 2=a 2+b 2+ab ≥2ab+ab=3ab=12,当且仅当a=b 时取等号. ∴c min =2√3,故选C .5.在△ABC 中,已知a 2+b 2-c 2=4S (S 为△ABC 的面积),若c=√2,则a-√22b 的取值X 围是()A.0,√2B.-1,0C.-1,√2D.-√2,√2a 2+b 2-c 2=4S ,∴a 2+b 2-c 2=4×12ab sin C=2ab sin C.∴b 2+b 2-b 22bb =sin C ,∴cos C=sin C.∴C=π4. ∵bsin b =bsin b =bsin b =√2√22=2,∴a=2sin A ,b=2sin B ,又a-√22b=2sin A-√22×2sin B=2sin A-√2sin B=2sin A-√2sin3π4-A=sin A-cos A=√2sin A-π4,∵0<A<3π4,∴-π4<A-π4<π2, ∴-1<√2sin A-π4<√2,∴-1<a-√22b<√2,故选C .6.已知平面四边形ABCD 中,AB=AD=2,BC=CD ,∠BCD=90°,则四边形ABCD 面积的最大值为()A.6B.2+2√3C.2+2√2D.4,设∠DAB=θ,BC=CD=x ,则BD=√2x.在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos θ,即(√2x )2=4+4-8cos θ=8-8cos θ,∴x 2=4-4cos θ.∴四边形ABCD 的面积为S=12×22×sin θ+12x 2=2sin θ+(2-2cos θ)=2√2sin θ-π4+2.∵0<θ<π,∴-π4<θ-π4<3π4,∴当θ-π4=π2,即θ=3π4时,S 有最大值,且S max =2√2+2.选C .7.已知点O 是△ABC 的内心,∠BAC=60°,BC=1,则△BOC 面积的最大值为.BOC=180°-180°-60°2=120°,在△OBC 中,BC 2=OB 2+OC 2-2OB ·OC ·cos120°,即1=OB 2+OC 2+OB ·OC ≥3OB ·OC ,即OB ·OC ≤13,所以S △OBC =12OB ·OC sin120°≤√312,当OB=OC 时取得最大值.8.在△ABC 中,AB=AC ,D 为AC 的中点,BD=1,则△ABC 面积的最大值为.ABD 中,设AB=AC=b ,由余弦定理得cos A=b 2+b 24-12b ·b 2=54−1b 2,则sin A=√1-(54-1b 2) 2,所以△ABC 的面积为S=12b 2sin A=12b 2·√1-(54-1b2)2=18√-9(b 2-209)2+2569≤23,所以△ABC 的面积的最大值为23.9.在△ABC 中,角A ,B ,C 所对边的边长分别为a ,b ,c ,若|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,则△ABC 面积的最大值为.|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,∴|AB|=3.∵bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,∴ab cos C=6.∴cos C=6bb .由余弦定理得9=a 2+b 2-2ab cos C=a 2+b 2-12≥2ab-12,∴ab ≤212.∴S=12ab sin C=12ab √1-cos 2b=12ab √1-36b 2b 2=12√b 2b 2(1-36b 2b 2 =12√b 2b 2-36≤12√(212) 2-36=3√334.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考数学专题训练--解三角形(有解析)
专题限时集训(二) 解三角形 (建议用时:60分钟) 一、选择题1.(2018•天津模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,若AB=13,a=3,∠C=120°,则AC等于( ) A.1 B.2 C.3 D.4 A [由余弦定理得13=AC2+9-6ACcos 120° 即AC2+3AC-4=0 解得AC=1或AC=-4(舍去).故选A.] 2. (2018•合肥模拟)△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,bcos A+acos B=2,则△ABC的外接圆的面积为( ) A.4π B.8π C.9π D.36π C[由bcos A+acos B=2,得b2+c2-a22c +a2+c2-b22c=2 化简得c=2,又sin C=13,则△ABC的外接圆的半径R=c2sin C=3,从而△ABC的外接圆面积为9π,故选C.] 3.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a-b)2+6,C=π3,则△ABC的面积( ) A.3 B.932 C.332 D.33 C [因为c2=(a-b)2+6,C=π3,所以由余弦定理得:c2=a2+b2-
2abcosπ3,即-2ab+6=-ab,ab=6,因此△ABC的面积为12absin C=3×32=332,选C.] 4.如图216,为测得河对岸塔AB的高,先
在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高为( ) 图216 A.10米 B.102米 C.103米 D.106米 D [在△BCD中,∠DBC=180°-105°-45°=30°,由正弦
定理得10sin 30°=BCsin 45°,解得BC=102. 在△ABC中,AB=BCtan∠ACB=102×tan 60°=106.] 5.(2018•长沙模拟)在△ABC 中,角A,B,C对应边分别为a,b,c,已知三个向量m=a,cos A2,n=b,cos B2,p=c,cosC2共线,则△ABC的形状为( ) A.等
边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形 A [由m∥n得acosB2=bcosA2,即sin Acos B2=sin Bcos A2化简得sinA2=sinB2,从而A=B,同理由m∥p得A=C,因此△ABC为等边三角形.] 6.如图217,在△ABC中,C=π3,BC=4,点D在边AC上,AD=DB,DE⊥AB,E为垂足.若DE=22,则cos A=( ) 图217 A.223 B.24 C.64 D.63 C [∵DE=22,∴BD=AD=DEsin A=22sin
A.∵∠BDC=2∠A,在△BCD中,由正弦定理得BCsin∠BDC=BDsin C,
∴4sin2A=22sin A×23=423sin A,∴cos A=64,故选C.] 7.为测出所住小区的面积,某人进行了一些测量工作,所得数据如图218所示,则小区的面积为( ) 图218 A.3+64 km2 B.3-64 km2 C.6+34 km2 D.6-34 km2 D [如图,连接AC,根据余弦定理可得AC
=3,故△ABC为直角三角形,且∠ACB=90°,∠BAC=30°,从而△ADC为等腰三角形,且∠ADC=150°,设AD=DC=x,根据余弦定理得x2+x2+3x2=3,即x2=32+3=3(2-3).所以所求小区的面积为12×1×3+12×3(2-3)×12=23+6-334=6-34(km2).] 8.在△ABC中,A=60°,BC=10,D是AB边上不同于A,B的任意一点,CD=2,△BCD的面积为1,则AC的长为( ) A.23 B.3 C.33 D.233 D [由S△BCD=1,可得12×CD×BC×sin∠DCB=1,即
sin∠DCB=55,所以cos∠DCB=255或cos∠DCB=-255,又∠DCB <∠ACB=180°-A-B=120°-B<120°,所以cos∠DCB>-12,所以cos∠DCB=255.在△BCD中,cos∠DCB=CD2+BC2-BD22CD•BC =255,解得BD=2,所以cos∠DBC=BD2+BC2-CD22BD•BC=31010,所以sin∠DBC=1010.在△ABC中,由正弦定理可得AC=BCsin Bsin A=233,故选D.] 二、填空题 9.如图219,为了估测某塔的高度,在同一水平面的A,B两点处进行测量,在点A处测得塔顶C在西偏北20°的方向上,仰角为60°;在点B处测得塔顶C在东偏北40°的方向上,仰角为30°.若A,B两点相距130 m,则塔的高度CD=________m. 图219 1039 [分析题意可知,设CD=h,则AD=h3,BD=3h,在△ADB中,∠ADB=180°-20°-40°=120°,由余弦定理AB2=BD2+AD2-2BD•AD•cos 120°,可得1302=3h2+h23-2•3h•h3•-12,解得h=1039,故塔的高度为1039 m.] 10.(2018•衡阳模拟)在△ABC中,角A,B,C的对边分别是a,b,c,已知b=45,c=5,且B=2C,点D为边BC上一点,且CD=3,则△ADC的面积为________. 6 [在△ABC中,由正弦定理得bsin B=csin C,又B=2C,则b2sin Ccos C=csin C,又sin C>0,则cos C=b2c =255,又C为三角形的内角,则sin C=1-cos2C=1-2552=55,则△ADC的面积为12AC•CDsin C=12×45×3×55=6.] 11.(2018•济南模拟)已知△ABC中,AC=4,BC=27,∠BAC=60°,AD⊥BC于
点D,则BDCD的值为________. 6 [在△ABC中,由余弦定理可得BC2=AC2+AB2-2AC•ABcos∠BAC,即28=16+AB2-4AB,解得AB
=6或AB=-2(舍),则cos∠ABC=28+36-162×27×6=27,BD=AB•cos∠ABC=6×27=127,CD=BC-BD=27-127=27,所以BDCD =6.] 12.已知在△ABC中,B=2A,∠ACB的平分线CD把三角形分成面积比为4∶3的两部分,则cos A=________. 23 [由题意知
S△ACD∶S△BCD=4∶3,即12AC•CDsin∠ACD12BC•CD•sin∠BCD=43,化简得ACBC=43 又ACsin B=BCsin A,所以sin Bsin A=ACBC =43 因为B=2A,所以sin 2Asin A=43,化简得cos A=23.] 三、解答题 13.如图2110,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°. 图2110 (1)若PB=12,求PA; (2)若∠APB=150°,求tan∠PBA. [解] (1)由已知得,∠PBC=60°,所以∠PBA=30°. 在△PBA中,由余弦定理得PA2=3+14-
2×3×12cos30°=74.故PA=72. (2)设∠PBA=α,由已知得PB
=sin α. 在△PBA中,由正弦定理得3sin 150°=sin αsin30°-α,化简得3cos α=4sin α. 所以tan α=34,即tan∠PBA =34. (教师备选) 在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-c)cos A=acos C. (1)求角A的大小; (2)若a=3,求△ABC 周长的最大值. [解] (1)由(2b-c)cos A=acos C及正弦定理,得(2sin B-sin C)cos A=sin Acos C,∴2sin Bcos A=sin Ccos A +sin Acos C,∴2sin Bcos A=sin(C+A)=sin B. ∵B∈(0,π),∴sin B≠0. ∵A∈(0,π),cos A=12,∴A=π3. (2)由(1)得A =π3,由正弦定理得bsin B=csin C=asin A=332=23,∴b=23sin B,c=23sin C. △ABC的周长l=3+23sinB+23sinB+π3 =3+23sinB+23sin Bcosπ3+cos Bsinπ3 =3+33sin B+3cos B =3+6sinB+π6. ∵B∈0,2π3,∴当B=π3时,△ABC的周长取得最大值为9.。