材料科学基础习题 2

合集下载

材料科学基础2复习题与参考答案

材料科学基础2复习题与参考答案

材料科学基础2复习题及部分参考答案一、名词解释1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。

2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。

3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点强度和节约材料为目的。

(《笔记》聚合物拉伸时出现的细颈伸展过程。

)4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。

(《书》晶体中某处一列或者若干列原子发生了有规律的错排现象)5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯氏气团”。

(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。

)6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。

7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。

8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。

(《书》晶体开始滑移时,滑移方向上的分切应力。

)9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬化。

(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。

)10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。

(《书》使金属在再结晶温度以上发生加工变形的工艺。

)11、柏氏矢量:是描述位错实质的重要物理量。

反映出柏氏回路包含的位错所引起点阵畸变的总积累。

(《书》揭示位错本质并描述位错行为的矢量。

)反映由位错引起的点阵畸变大小的物理量。

12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。

13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为层错面)两侧附近原子的错排的一种面缺陷。

材料科学基础习题与答案

材料科学基础习题与答案

第二章思考题与例题1.离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因?2.从结构、性能等方面描述晶体与非晶体的区别。

3.何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4.比较三种典型晶体结构的特征。

(Al 、α-Fe、Mg 三种材料属何种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。

)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同?5.固溶体和中间相的类型、特点和性能。

何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6.已知Cu的原子直径为2.56 A ,求Cu的晶格常数,并计算1mm3Cu的原子数。

7.已知Al 相对原子质量Ar(Al )=26.97,原子半径γ=0.143nm,求Al 晶体的密度。

38 bcc 铁的单位晶胞体积,在912℃时是0.02464nm3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm3。

当铁由bcc转变为fcc 时,其密度改变的百分比为多少?9.何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如何?10.在面心立方晶胞中画出[012]和[1 2 3]晶向。

在面心立方晶胞中画出(012)和(1 2 3)晶面。

11.设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。

反之,求(1213)及(21 12)的正交坐标的表示。

(练习),上题中均改为相应晶向指数,求相互转换后结果。

12.在一个立方晶胞中确定6 个表面面心位置的坐标,6 个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。

13.写出立方晶系的{110} 、{100} 、{111} 、{112}晶面族包括的等价晶面,请分别画出。

材料科学基础-张代东-习题答案(2)

材料科学基础-张代东-习题答案(2)

第1章 习题解答1-1 解释下列基本概念金属键,离子键,共价键,范德华力,氢键,晶体,非晶体,理想晶体,单晶体,多晶体,晶体结构,空间点阵,阵点,晶胞,7个晶系,14种布拉菲点阵,晶向指数,晶面指数,晶向族,晶面族,晶带,晶带轴,晶带定理,晶面间距,面心立方,体心立方,密排立方,多晶型性,同素异构体,点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙,点缺陷,线缺陷,面缺陷,空位,间隙原子,肖脱基缺陷,弗兰克尔缺陷,点缺陷的平衡浓度,热缺陷,过饱和点缺陷,刃型位错,螺型位错,混合位错,柏氏回路,柏氏矢量,位错的应力场,位错的应变能,位错密度,晶界,亚晶界,小角度晶界,大角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界,晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界(略)1-2 原子间的结合键共有几种?各自特点如何? 答:原子间的键合方式及其特点见下表。

类 型 特 点离子键 以离子为结合单位,无方向性和饱和性 共价键 共用电子对,有方向性键和饱和性 金属键 电子的共有化,无方向性键和饱和性分子键 借助瞬时电偶极矩的感应作用,无方向性和饱和性 氢 键依靠氢桥有方向性和饱和性1-3 问什么四方晶系中只有简单四方和体心四方两种点阵类型?答:如下图所示,底心四方点阵可取成更简单的简单四方点阵,面心四方点阵可取成更简单的体心四方点阵,故四方晶系中只有简单四方和体心四方两种点阵类型。

1-4 试证明在立方晶系中,具有相同指数的晶向和晶面必定相互垂直。

证明:根据晶面指数的确定规则并参照下图,(hkl )晶面ABC 在a 、b 、c 坐标轴上的截距分别为h a 、k b 、l c ,k h b a AB +-=,l h c a AC +-=,lk ca BC +-=;根据晶向指数的确定规则,[hkl ]晶向cb a L l k h ++=。

利用立方晶系中a=b=c , 90=γ=β=α的特点,有 0))((=+-++=⋅k h l k h ba cb a AB L 0))((=+-++=⋅lh l k h ca cb a AC L 由于L 与ABC 面上相交的两条直线垂直,所以L 垂直于ABC 面,从而在立方晶系具有相同指数的晶向和晶面相互垂直。

材料科学基础习题二

材料科学基础习题二

材料科学基础习题二1.指出下列概念的错误之处,并更正。

1)所谓过冷是指结晶过程中平台温度与冷却曲线上熔点之间的差异。

2)金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。

3)在任何温度下,液态金属中最大的结构波动是晶体胚。

4)在任何温度下,液相中最大的结构波动是原子核。

5)所谓临界晶核,就是体系自由能的减少完全补偿表面自由能的增加时的晶胚大小。

6)在液态金属中,任何小于临界核半径的晶体胚都不能形核,但只要有足够的能量波动来提供形核功,它就可以形核。

7)测定某纯金属铸件结晶时的最大过冷度,其实测值与用公式0.2tm计算值,基本一致。

8)当一些铸件结晶时,由于快速冷却速度,均匀形核率N1增加,非均匀形核率N2也增加,因此总形核率为n=N1+N2。

9)若在过冷液体中,外加10000颗形核剂,则结晶后就可以形成10000颗晶粒。

10)从非均匀形核功的计算公式中可以看出,当润湿角为0度时,非均匀形核的形核功最大。

11)为了生产出一批厚度大、粒度均匀的砂型铸件,可以采用在砂型铸造过程中加入成核剂的方法。

12)非均匀形核总是比均匀形核容易,因为前者是以外加质点为结晶核心,不像后者那样形成界面,而引起自由能的增加。

13)在研究金属晶粒细化过程时,我们主要寻找熔点低、晶格常数与金属相近的成核剂,它们的成核催化效率最高。

14)纯金属生长时,无论液固界面呈粗糙型还是光滑型,其液相原子都一个一个地沿着固相面得垂直方向连接上去。

15)无论温度分布如何,普通纯金属的生长都是树枝状界面。

16)氯化铵饱和水溶液与纯金属结晶终了时的组织形态一样,前者呈树枝状,后者也成树枝晶。

一17)人们无法观察到极纯金属的树枝状生长过程,所以关于树枝状的生长形态仅仅是一种推想。

18)在液态纯金属中加入成核剂时,其生长形式总是树枝状的。

19)纯金属结晶时,若呈垂直方式生长,其界面时而光滑,时而粗糙,交替生长。

20)从宏观上观察,若液固界面是平直的,称为光滑界面结构;若是呈金属锯齿形的,称为粗糙界面结构。

《材料科学基础》习题

《材料科学基础》习题

1
2.固态下完全不互溶的三元共晶相图如图6-2所示,画出过Am、PQ的垂直截面。若三组元的熔点tA>tB>tC,请画出tB <t<tA温度下的水平截面。
3.液相面投影图如图6-3,分析O合金的结晶过程,画出冷却曲线、结晶示意图、注明反应式,并计算室温下组织组成物的相对量。
4.液相面投影图如图6-4,请写出全部四相平衡转变。
4.计算面心立方结构(111)、(110)与(100)面的面密度和面间距。
5.FeAl是电子化合物,具有体心立方点阵,试画出其晶胞,计算电子浓度,画出(112)面原子排列图。
6.合金相VC、Fe3C、CuZn、ZrFe2属于何种类型,并指出其结构特点。
第二章 晶体缺陷
1.铜的空位生成能1.7×10-19J,试计算1000℃时,1cm3铜所包含的空位数,铜的密度8.9g/cm3,相对原子质量63.5,玻尔兹曼常数K=1.38×10-23J/K。
1.何为成份过冷?影响成份过冷的因素有那些?试述区域提纯的原理。
2.简述枝晶偏析形成过程和消除方法。
3.分析0.45%C,1.2%C和2.3%C 的铁碳合金的平衡结晶过程,计算室温下组织组成 物的相对量及两相相对量。
4.根据显微组织分析,一灰口铁内石墨的体积占12%,铁素体的体积占88%,试求该合金的碳含量。
如图2-1所示的位错环,说明各段位错的性质,并指出刃位错多余半原子面的位置。
2.如图2-2,某晶体滑移面上有一个 柏氏矢量为b的位错环,受到均匀切应力τ作用,试分析:
该位错环各段位错的结构类型;
求各段位错所受的力;
在τ的作用下,位错环将如何运动?
在τ的作用下,位错环稳定不动,其最小半径应该多大?

材料科学基础试卷(二)与参考答案

材料科学基础试卷(二)与参考答案

材料科学基础试卷(二)与参考答案一、名词解释(每小题1分,共10分)1.晶胞2.间隙固溶体3.临界晶核4.枝晶偏析5.离异共晶6.反应扩散7.临界分切应力8.回复9.调幅分解10. 二次硬化二、判断正误(每小题1分,共10分)正确的在括号内画“√”, 错误的画“×”1. 金属中典型的空间点阵有体心立方、面心立方和密排六方三种。

( )2. 作用在位错线上的力F 的方向永远垂直于位错线并指向滑移面 上的未滑移区。

( )3. 只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。

( )4. 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。

( )5. 固溶体凝固形核的必要条件同样是ΔG B <0、结构起伏和能量起伏。

( )6. 三元相图垂直截面的两相区内不适用杠杆定律。

( )7. 物质的扩散方向总是与浓度梯度的方向相反。

( )8. 塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。

( )9. 和液固转变一样,固态相变也有驱动力并要克服阻力,因此两种转变的难易程度相似。

( )10.除Co 以外,几乎所有溶入奥氏体中的合金元素都能使C 曲线 左移,从而增加钢的淬透性。

( )三、作图题(每小题5分,共15分)1. 在简单立方晶胞中标出具有下列密勒指数的晶面和晶向:a)立方晶系 (421),(231),[112];b)六方晶系(1112),[3112]。

2. 设面心立方晶体中的(111)为滑移面,位错滑移后的滑移矢量为2a [110]。

(1)在晶胞中画出柏氏矢量b的方向并计算出其大小。

(2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数。

3.如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。

试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图。

四、相图分析(共20分)(1) 就Fe-Fe3C相图,回答下列问题:1. 默画出Fe-Fe3C相图,用相组成物填写相图;2. 分析含碳量为1.0wt%的过共析钢的平衡结晶过程,并绘出室温组织示意图。

材料科学基础-张代东-习题问题详解(2)

材料科学基础-张代东-习题问题详解(2)

第1章 习题解答1-1 解释下列基本概念金属键,离子键,共价键,德华力,氢键,晶体,非晶体,理想晶体,单晶体,多晶体,晶体结构,空间点阵,阵点,晶胞,7个晶系,14种布拉菲点阵,晶向指数,晶面指数,晶向族,晶面族,晶带,晶带轴,晶带定理,晶面间距,面心立方,体心立方,密排立方,多晶型性,同素异构体,点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙,点缺陷,线缺陷,面缺陷,空位,间隙原子,肖脱基缺陷,弗兰克尔缺陷,点缺陷的平衡浓度,热缺陷,过饱和点缺陷,刃型位错,螺型位错,混合位错,柏氏回路,柏氏矢量,位错的应力场,位错的应变能,位错密度,晶界,亚晶界,小角度晶界,大角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界,晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界(略)1-2 原子间的结合键共有几种?各自特点如何? 答:原子间的键合方式及其特点见下表。

类 型 特 点离子键 以离子为结合单位,无方向性和饱和性 共价键 共用电子对,有方向性键和饱和性 金属键 电子的共有化,无方向性键和饱和性分子键 借助瞬时电偶极矩的感应作用,无方向性和饱和性 氢 键依靠氢桥有方向性和饱和性1-3 问什么四方晶系中只有简单四方和体心四方两种点阵类型?答:如下图所示,底心四方点阵可取成更简单的简单四方点阵,面心四方点阵可取成更简单的体心四方点阵,故四方晶系中只有简单四方和体心四方两种点阵类型。

1-4 试证明在立方晶系中,具有相同指数的晶向和晶面必定相互垂直。

证明:根据晶面指数的确定规则并参照下图,(hkl )晶面ABC 在a 、b 、c 坐标轴上的截距分别为h a 、k b 、l c ,k h b a AB +-=,l h c a AC +-=,lk ca BC +-=;根据晶向指数的确定规则,[hkl ]晶向cb a L l k h ++=。

利用立方晶系中a=b=c ,ο90=γ=β=α的特点,有0))((=+-++=⋅kh l k h ba cb a AB L 0))((=+-++=⋅lh l k h ca cb a AC L 由于L 与ABC 面上相交的两条直线垂直,所以L 垂直于ABC 面,从而在立方晶系具有相同指数的晶向和晶面相互垂直。

材料科学基础复习题第二部分

材料科学基础复习题第二部分

复习题(下)第六章空位与位错本章的主要内容:晶体中的缺陷,晶体缺陷的分类晶体缺陷的形成点缺陷:点缺陷的种类,点缺陷的形成,点缺陷的运动,点缺陷的平衡浓度,点缺陷对材料性能的影响位错:位错理论的起源:理论切变强度,位错学说位错的观察位错基本类型及特征:刃型位错,螺型位错,混合位错柏氏矢量:确定方法,柏氏矢量的模,实际晶体中的柏氏矢量,柏氏矢量的特性,位错密度外力场中作用在位错线上的力位错运动:滑移,攀移,派一纳力,混合位错的运动位错的弹性性质:直螺错的应力场,直刃错的应力场,混合直位错的应力场位错的应变能及位错线张力位错间的交互作用:两根平行螺位错的交互作用,两根平行刃位错的交互作用,位错的相互交截:螺型位错与螺型位错,刃错与刃错,螺错与刃错位错的塞积位错的增殖实际晶体中的位错:单位位错,堆垛层错,不全位错:肖克莱,弗兰克不全位错位错反应及汤普逊四面体位错与溶质原子的交互作用:弹性交互作用,柯垂尔气团,斯诺克气团,静电交互作用化学交互作用1 填空1 空位是热力学_______________的缺陷,而位错是热力学_____________的缺陷。

2 fcc晶体中单位位错(全位错)的柏氏矢量是_________________;bcc晶体中单位位错(全位错)的柏氏矢量是_________________;hcp晶体中单位位错(全位错)的柏氏矢量是_________________;fcc中Frank位错的柏氏矢量是___________。

3 一根柏氏矢量b=a/2<110>的扩展位错滑出晶体后,在晶体表面产生的台阶的高度为_____________________。

4 在某温度下,晶体中的空位数与点阵数的比值称为__________________。

2ξ为位错线单位矢量,b为柏氏矢量,则bξ=0时为_______位错,bξ=b时为________________位错,bξ =-b时为______________位错。

无机材料科学基础课后习题答案2

无机材料科学基础课后习题答案2

2-1 名词解释:配位数与配位体,同质多晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。

答:配位数:晶体结构中与一个离子直接相邻的异号离子数。

配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。

同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。

多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。

位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。

重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。

晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。

配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论。

图2-1 MgO晶体中不同晶面的氧离子排布示意图2-2 面排列密度的定义为:在平面上球体所占的面积分数。

(a)画出MgO(NaCl型)晶体(111)、(110)和(100)晶面上的原子排布图;(b)计算这三个晶面的面排列密度。

解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。

(a)(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。

(b)在面心立方紧密堆积的单位晶胞中,(111)面:面排列密度=(110)面:面排列密度=(100)面:面排列密度=2-3 试证明等径球体六方紧密堆积的六方晶胞的轴比c/a≈1.633。

证明:六方紧密堆积的晶胞中,a轴上两个球直接相邻,a0=2r;c轴方向上,中间的一个球分别与上、下各三个球紧密接触,形成四面体,如图2-2所示:图2-2 六方紧密堆积晶胞中有关尺寸关系示意图2-4 设原子半径为R,试计算体心立方堆积结构的(100)、(110)、(111)面的面排列密度和晶面族的面间距。

【材料科学基础经典习题及答案】考试试题2

【材料科学基础经典习题及答案】考试试题2
2)在上述应力作用下 位错线如何运动?晶体外形如何变化?
13.设面心立方晶体中的 为滑移面,位错滑移后的滑移矢量为 。
1)在晶胞中画出柏氏矢量b的方向并计算出其大小。
2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数。
14.判断下列位错反应能否进行。
1) 2)
3) 4)
2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。
12.设所示立方晶体中的滑移面ABCD平行于晶体的上、下底面。晶体中有一条位错线 段在滑移面上并平行AB, 段与滑移面垂直。位错的柏氏矢量b与 平行而与 垂直。
试问:
1)欲使 段位错在ABCD滑移面上运动而 不动,应对晶体施加怎样的应力?
15.若面心立方晶体中有b= 的单位位错及b= 的不全位错,此二位错相遇产生位错反应。
1)问此反应能否进行?为什么?
2)写出合成位错的柏氏矢量,并说明合成位错的类型。
16.若已知某晶体中位错密度 。1)由实验测得F-R位错源的平均长度为 ,求位错网络中F-R位错源的数目。2)计算具有这种F-R位错源的镍晶体发生滑移时所需要的切应力。已知Ni的 Pa, 。
7.1.6l×l013个原子/mm2;1.14X1013个原子/mm2;1.86×1013个原子/mm2。
8.(1) 5.29×1028个矽原子/m3;(2) 0.33。
9.9. 0.4×10-18/个原子。
10.1.06×1014倍。
11.(1)这种看法不正确。在位错环运动移出晶体后,滑移面上、下两部分晶体相对移动的距离是由其柏氏矢量决定的。位错环的柏氏矢量为b,故其相对滑移了一个b的距离。(2) A'B'为右螺型位错,C'D'为左螺型位错;B'C'为正刃型位错,D'A'为负刃型位错。位错运动移出晶体后滑移方向及滑移量如附图2.3所示。

材料科学基础2复习题及参考答案

材料科学基础2复习题及参考答案

材料科学基础2复习题及部分参考答案一、名词解释1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。

2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。

3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点强度和节约材料为目的。

(《笔记》聚合物拉伸时出现的细颈伸展过程。

)4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。

(《书》晶体中某处一列或者若干列原子发生了有规律的错排现象)5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯氏气团”。

(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。

)6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。

7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。

8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。

(《书》晶体开始滑移时,滑移方向上的分切应力。

)9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬化。

(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。

)10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。

(《书》使金属在再结晶温度以上发生加工变形的工艺。

)11、柏氏矢量:是描述位错实质的重要物理量。

反映出柏氏回路包含的位错所引起点阵畸变的总积累。

(《书》揭示位错本质并描述位错行为的矢量。

)反映由位错引起的点阵畸变大小的物理量。

12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。

13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为层错面)两侧附近原子的错排的一种面缺陷。

《材料科学基础》练习题集02

《材料科学基础》练习题集02

厦门理工学院《材料科学基础》练习题集 02第9章材料的凝固一、名词解释:1、均匀形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。

2、非均匀形核:是液态金属依附在一些未溶颗粒表面或固液界面所形成的晶核。

3、变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非均匀形核晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

4、变质剂:在浇注前所加入的难熔杂质称为变质剂。

5、枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析。

6、比重偏析:比重偏析是由组成相与溶液之间的密度差别所引起的。

如果先共晶相与溶液之间的密度差别较大,则在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下部分的化学成分不一致,产生比重偏析。

7、溶质再分配8、成分过冷二、判断题:1、液态金属的结构特点是近程有序,长程无序。

()2、晶粒尺寸和形核率N、线长大速度Vg之间的关系是N/Vg越大,晶粒尺寸越大。

()3、区域提纯技术的理论基础是凝固过程中的溶质再分配。

()4、液-固粗糙界面可描述为微观粗糙、宏观平整。

()5、在结晶过程中,晶核越多,生长速率越慢,则凝固后的晶粒越细小。

()6、在单相固溶体铸锭结晶时,成分过冷越大,越易形成枝晶。

()7、由凝固理论可知,细化晶粒的途径是提高形核率,降低长大速率。

()8、金属-非金属型共晶具有粗糙-光滑型界面,所以它多为树枝状,针状或螺旋状。

()三、选择题:1、纯金属结晶均匀形核,当过冷度 T很小时,形核率低,是因为。

A、原子可动性低,相变驱动力低;B、原子可动性高,相变驱动力低;C、原子可动性低,相变驱动力高;D、原子可动性高,相变驱动力高;2、合金凝固时,出现成分过冷的原因是。

无机材料科学基础综合测试2

无机材料科学基础综合测试2

测试二一、名词解释(每小题3分,共15分)1.结构弛豫2.阳离子交换容量3.本征扩散4.非均态成核5.二次再结晶二、填空(每小题2分,共20分)1.常用的相平衡实验研究方法有__________、_________和__________三种。

2.化合物TiO2-X由于在组成上偏离化学计量而产生的晶格缺陷是________________,缺陷形成反应式为_____________________________,属于_________型非化学计量化合物,应在_________气氛下形成。

3.一种玻动的摩尔组成为24mol%Na2O,12mol%Al2O3,64mol%SiO2,其四个基本结构参数为Z=__________,R=___________, X=___________, Y=_________,非桥氧百分数X%=____________。

4.三种典型离子化合物PbI2、PbF2、CaF2的比表面能分别为130尔格/cm2、900尔格/cm2、2500尔格/cm2,由此可以预计这三种化合物的表面双电层厚度的大小次序为_________________________________。

5.粘土粒子破键引起的荷电与介质的PH值有关,高岭土在酸性介质中边棱带______电荷;在碱性介质中边棱带____电荷。

6.某物质在800°C时扩散系数为10-10cm2/s,在1200°C时为10-4cm2/s,则该物质的扩散活化能为__________________kJ/mol。

7.固液相变时,非均态成核势垒与接触角q有关。

当q角分别为__________、_________和_________时,(1)非均态成核势垒与均态成核势垒相等;(2)不存在非均态成核势垒;(3)非均态成核势垒为均态成核势垒的一半。

8.归纳起来,固相反应中相界面上的化学反应通常包括以下三个过程:____________________________、___________________________和____________________________。

材料科学基础习题答案_第2版_西安交通大学_石德珂主编

材料科学基础习题答案_第2版_西安交通大学_石德珂主编

9.半径为r1的位错环。10.自己看 11.(1)能,因为能量降低 (2) a −
b= 111 111 面内: [110] → [ 211] + 层错 + 121 2 6 6 a a a − − 在 111 面内: [110] → [121] + 层错 + 211 2 6 6
14-17不用看 18自己看
第四章
1.850 0C : C1 = A exp( −∆EV kT1 )L 20 0C : C2 = A exp(−∆EV kT2 ) ∆EV 1 1 C1 1.5 ×10−18 1 1 ( − ) = exp ) ∴ = exp ×( − −23 1.38 ×10 293 1123 C2 k T2 T1 = exp 274 =
1.(1)
(001) [123] [111] (-132)
(111)
[210] [236]
(1-10)
(-3-22)
(2)
(3)
(-110)
2.
(2 6 3)
3.
N hkl
4 × 3! 24 = m = m 2 n! 2 n!
− − − 3.{111} = (111) + 111 + 111 + 111 − − − {110} = (110 ) + (101) + ( 011) + 110 + 101 + 011 {123} = (123) + (132 ) + ( 213) + ( 231) + ( 312 ) + ( 321) + − − − − − − 123 + 123 + 123 + 132 + 132 + 132 − − − − − − 213 + 213 + 213 + 231 + 231 + 231

大连理工大学材料科学基础思考及习题(第二章)

大连理工大学材料科学基础思考及习题(第二章)
思考及习题(第二章)
固态结构
7个晶系、14 种布拉菲点阵
7个晶系 立方 四方 菱方 六方 正交
棱边长度及夹角关系
14种布拉菲点阵 简单立方
a=b=c,===90 a=bc,===90 a=b=c,==90 a1=a2=a3c,== 90,=120
体心立方 面心立方
(110)
a h2 k 2 l 2
45o
2
[ 1 10] 方向上的线密度为1(注意最邻近的配位原子)。
(001)
[0 1 0]
(111)面
[u v w] (h k l) 晶带定律
[10 1 ]
(100)
(010)
[ 1 10]
4、渗碳体(Fe3C)是一种间隙化合物,它具有正交点阵结构,其晶格常 数a = 0.4514 nm,b = 0.508 nm,c = 0.6734 nm,其密度 = 7.66 g/cm3, 试求Fe3C每个单位晶胞中含Fe与C原子的数目。(C原子量Ac= 12.011 g/mol,
Fe原子量AFe = 55.85 g/mol)
设定Fe3C晶胞中,C原子个数为x,则Fe原子个数为3x。 根据密度公式:
=
xAC+ 3xAFe Vc NA
计算得到x = 3.968 4
故Fe3C间隙化合物中,每个晶胞内C原子数为4,Fe原子数为12。
c a
b
正交晶系 abc,===90
5、下图为-Fe的X-射线衍射谱,所用X光波长 = 0.1542 nm,试计算每 个峰线所对应的晶面间距,并确定其晶格常数。
以最强衍射峰(110)为例,2 为45o。
根据布拉格定律:n = 2 dhklsin, 则 d110 = n/2sin = 0.1542/[2sin(45/2)] = 0.2015 nm(级数n取1) 又根据立方晶系晶面间距公式 d hkl = 可以计算晶格常数a = 0.2850 nm。

材料科学基础第二章习题(34)

材料科学基础第二章习题(34)

1)计算fcc,bcc结构的(001)、(110)、(111)晶面的面密度,计算密排六方结构的(0001)、(112—0)晶面的面密度。

(面密度定义为原子数/单位面积)。

2)从晶体结构的角度,间隙固溶体、间隙相、间隙化合物之间的区别
3)钛具有hcp结构,在20℃时六方晶胞体积为,c/a = ,求a和c。

求在基面上的原子半径。

4)根据下表所给之值,确定哪一种金属可作为溶质与钛形成固溶度较
5)试计算金刚石结构的致密度。

6)In具有四方结构,其相对原子质量为,原子半径为,晶格常数a=,c=,密度ρ= cm3,试问In的单位晶胞内有多少个原子In的致密度为多少
7)按晶体的钢球模型,若球的直径不变,当Fe从fcc转变为bcc时,计算其体积膨胀多少经X射线衍射测定,在912℃时,α-Fe的a = ,γ-Fe 的a = ,计算从γ-Fe转变为α-Fe时,其体积膨胀为多少试说明产生差别的原因。

C)是一种间隙化合物,它具有正交点阵结构,其点阵常
8)渗碳体(Fe
3
C每单位晶胞中含Fe原子与C 数a = ,b = ,c = ,其密度为cm3,试求Fe
3
原子的数目。

9)铜的相对原子质量为,密度为cm3。

(i)计算铜的点阵常数和原子半径。

(ii)测得Au的摩尔分数为40%的Cu-Au固溶体点阵常数a = ,密度为cm3,计算说明它是什么类型的固溶体。

10)Zn原子的摩尔分数为3%Zn的Cu-Zn合金固溶体,铜的原子半径为,Zn的原子半径为。

假设点阵常数随Zn原子增加呈线性变化,求这个合金的密度。

(Cu和Zn的原子量分别为和,阿佛加得罗常数是×1023)。

材料科学基础习题及参考答案

材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社

《材料科学基础》第二版 (张联盟 著)课后习题答案  武汉理工大学出版社

2-26 硅酸盐晶体结构有何特点?怎样表征其化学式?
2-27 硅酸盐晶体的分类依据是什么?可分为那几类,每类的结构特点是什么? 2
2-28 下列硅酸盐矿物各属何种结构类 型:Mg2[SiO4],K[AlSi3O8],CaMg[Si2O6],Mg3[Si4O10](OH)2,Ca2Al [AlSiO7]。
2-9 计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
2-10 根据最密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只 有34.01%),为什么它也很稳定?
2-11 证明等径圆球六方最密堆积的空隙率为25.9%。
2-12 金属镁原子作六方密堆积,测得它的密度为 1.74g/cm3,求它的晶胞体积。
1
若CaS (a=0.567nm)、CaO(a=0.480nm)和MgO(a=0.420nm)为一般阳离子-阴离子接触,试求 这些晶体中各离子的半径。
2-16 氟化锂(LiF)为NaCl型结构,测得其密度为 2.6g/cm3,根据此数据计算晶胞参数,并将此值与你从 离子半径计算得到数值进行比较。
2-17 Li2O的结构是O2-作面心立方堆积,Li+占据所有四面体空隙位置,氧离子半径为0.132nm。求: (1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li+半径比较,说明此 时O2-能否互相接触;(2)根据离子半径数据求晶胞参数;(3)求Li2O的密度。
2-1 名词解释
第二章 晶体结构
晶系 晶胞 晶胞参数 空间点阵 晶面指数 晶格能 原子半径与离子半径 配位数 离子极化 同质多晶与类质同晶 正尖晶石与反正尖晶石 反萤石结构 铁电效应 压电效应 热释电效应 电光效应
2-2 (1)一晶面在x、y、z轴上的截距分别为 2a、3b、 6c,求该晶面的晶面指数;(2)一晶面 在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。

材料科学基础课后习题答案第二章

材料科学基础课后习题答案第二章

第2章 习题2-1 a) 试证明均匀形核时,形成临界晶粒的△G K 与其临界晶核体积V K 之间的关系式为2K K V V G G ∆=-∆; b) 当非均匀形核形成球冠形晶核时,其△G K 与V K 之间的关系如何?a) 证明 因为临界晶核半径 2K Vr G σ=-∆ 临界晶核形成功 32163()K V G G πσ∆=∆ 故临界晶核的体积 3423K K K Vr G V G π∆==∆ 所以 2K K V V G G ∆=-∆ b) 当非均匀形核形成球冠形晶核时,SL 2K Vr G σ=-∆非 临界晶核形成功 3324(23cos cos )3()K SL V G G πσθθ∆=-+∆非故临界晶核的体积 331(23cos cos )3K K V r πθθ=-+非() 3333SL 3281(23cos cos )(23cos cos )33()SL K V V V V V G G G G σπσπθθθθ∆=--+∆=-+∆∆() 所以 2K K V V G G ∆=-∆非 2-2 如果临界晶核是边长为a 的正方体,试求出其△G K 与a 的关系。

为什么形成立方体晶核的△G K 比球形晶核要大?解:形核时的吉布斯自由能变化为326V V G V G A a G a σσ∆=∆+=∆+ 令()0d G da∆= 得临界晶核边长4K V a G σ=-∆ 临界形核功3333222244649632()6()()()()K tK V K V V V V V V G V G A G G G G G G σσσσσσσ∆=∆+=-∆+-=-+=∆∆∆∆∆ 2K Vr G σ=-∆,球形核胚的临界形核功 332242216()4()33()K bV V V V G G G G G σσπσππσ∆=-∆+=∆∆∆ 将两式相比较3232163()13262()K K b V t V G G G G πσπσ∆∆==≈∆∆ 可见形成球形晶核得临界形核功仅为形成立方形晶核的1/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a) 选择合适的容器材料,以减小D和k;
b) 降低容器内氢气压力p0; c) 增加容器壁厚h。
2.一块厚钢板,w(C)=0.1%,在930℃渗碳,表面碳 浓度保持w(C)=1%,设扩散系数为常数,
D0 =2.010-5m2/s, Q=140kJ/mol。 问:
1. 距表面0.05cm 处碳浓度w(C)升至0.45%所需要的时 间。
-P
P+Fe3CⅡ
2.5%C
L L- L-Fe3C(Ld)
-Fe3CⅡ -P
P+ Fe3CⅡ+Ld’
组织组成
Ld Fe3CII P
Ld %
2.5 2.11 100% 4.30 2.11
17.8%
Fe3CII
%
4.3 2.5 4.3 2.11
2.11 0.77 6.69 0.77
(1)利用 D D0 exp( Q / RT ) 可以求得不同温
度的扩散系数。
(2)由于 x Dt
获得相同渗碳层深度,则
tT1 DT 2 tT 2 DT1
二元相图习题
1.根据下列数据绘制概略的A-B二元相图:
①A的熔点是2623℃,B的熔点是3186℃; ②以α表示以A为基的固溶体,以β表示以B为基的固溶体; ③A和B可以形成中间相σ和χ; ④室温下B在A以及A在B中的溶解度分别为10%和2%; ⑤A和B具有下列恒温反应:
110000%%
11..4411%%
4.计算变态莱氏体中共晶渗碳体、二次渗碳体和共
析渗碳体的含量。
Fe3C共晶 %
4.3 2.11 100% 6.69 2.11
47.8%
Fe3CII %
共晶 %
2.11 0.77 6.69 0.77
11.8%

(Ld ' ) P Fe3CII Fe3C共晶
1) 列出稳定状态下金属容器中的高压氢通过器壁 的扩散方程;
2) 提出减少氢扩散逸失的措施。
达到稳定状态后,可以认为钢瓶内部的氢浓度分 布不随时间发生变化,采用扩散第一定律。
(1) J D C
x
而钢瓶内壁:C k p0 ,钢瓶外壁c=0,
因此: J D C Dk p0
x
h
(2) 依据上式,减少氢扩散逸失即需要减小J,因 此可以采取的措施有:
erf
5 104
2
Dt
0.6111
查表求得 5104 0.61 ,
2 Dt
利用已知数求得D代入后可求得 t=2.8h
(2) 同上题 把Cs=1%,C0=0.1%,Cx=0.45%,x=0.1cm代入
C
Cs
(Cs
C0 )erf
2
x Dt
erf
1103
2
Dt
0.6111
查表求得 110 3 0.61 ,
M点
L L- L-+ L++- L+- L- -II
+II +II
N点
L L-
L+- L- -II +II +II
2.根据有关数据,
① 画出系统的综合投影图;
② 说明每个恒温反应的类型;
③ 描述成分为30%A-55%B-15%C的合金凝固过程, 并计算这合金在945℃各相的相对百分比;
④ 描述成分为的20%A-35%B-45%C合金凝固过程。
材料科学基础习题
2013-2014-2
第三章 扩散 第五章 I-二元相图 第五章 II-三元相图 第四章 凝固 第七章 固态相变初步
1. 氢在金属中扩散较快,因此用金属容器贮存氢气 会存在渗漏。假设钢瓶内氢压力为p0,钢瓶放置 于真空中,其壁厚为h,并且已知氢在该金属中的 扩散系数为D,而氢在钢中的溶解度服从C k p, 其中k为常数,p为钢瓶与氢气接触处的氢压力。
L(80%B)+ β(92%B) 2525℃ σ(83.5%B)
L(66%B) 2444℃ σ(68%B)+ α(59.5%B)
σ(82.5%B)+ β(94%B) 1853℃ χ(85.5%B)
σ(74.5%B) 1152℃ α(43%B)+ χ(85.5%B)
建立坐标(C%---T) 绘出三相平衡反应,并标明反应类型 连接相应点
假设含量为x,为y,为z,则有: B
x y z 1
0.5x 0.12y 0.1z 0.3 0.4x 0.8y 0.45z 0.55
0.1x 0.08y 0.45z 0.15
3
任3个方程联立可以解得:
x 48.2%
y
35.5%
z 16.3%
A
4 C
4
L
L—β L+β—γ L—γ L—α+γ
2. 若在距表面0.1cm 处获得同样的浓度(0.45%)所需 时间又是多少?
3. 要在什么温度下渗碳才能在1)求出的时间内使距表 面0.1cm处获得的碳浓度w(C)为0.45%。
(1) 利用fick第二定律误差函数解,
C
Cs
(Cs
C0
)erf
2
x Dt
把Cs=1%,C0=0.1%,Cx=0.45%,x=0.05cm 代入后可以得到
Fe3C共析
Fe3C共析 % 1 共析 % Fe3C共晶 % Fe3CII %
Fe3C共析
%
P%
0.77 6.69
5.根据Fe-O相图,画图分析纯铁在1000C氧 化时氧化层内的组织、并画出氧的浓度变化 规律示意图。
表面
Fe2O3 Fe3O4 FeO -Fe
三元相图习题
1.根据所示的三元相图综合投影图,用热分 析曲线表示图中成分为M和N的材料在平衡 冷却过程中发生的组织转变。
后可以得到D
再根据 D D0 exp( Q / RT )
即可求得T=1062℃
3.870℃渗碳与927℃渗碳相比,优点是热处理产品 晶粒细小,淬火变形小,已知D0 =2.010-5m2/s, Q=140kJ/mol。
问:
1. 上述两种温度下,碳在奥氏体中的扩散系数各是多少?
2. 870℃渗碳需要多少时间才能获得与927℃渗碳10小时 相同的渗层厚度?(已知D0、Q,忽略不同温度下碳在 奥氏体铁中的溶解度差别);
γ+ (α+γ)+ αII
A
B
3 4 C
凝固习题
1.边长为a的临界半径和形核功
G VGV A a3GV 6a2
dG 0
da
a* 4
GV
G*
64
GV
3 2
96 3
GV 2
32 3
GV 2
2.承上题,证明
G*
1 2
VGV
1 2
VGV
1 2
64
GV 3
3
GV
32 3
GV 2
即G*
1 2
VGV
3.
0.3 0.6
0.4
1. k0=ke=0.3/0.6=0.5 2. 共晶凝固之前显然是固溶体凝固,液相完全混合时,有
CS
k0C0
1
Z L
k0 1
代入数据可算得Z/L=0.56,所以共晶体位1-Z/L=0.44 应用杠杆定理?
α
α+β
B%
Z/L

双重相图:
Fe - Fe3C 亚稳系 C%=6.69% Fe – C 稳定系 C%=100%
FFee33CCIIII
%%
22..1111 66..6699
00..7777 00..7777
110000%%
2222..66%%
CCIIII
%%
22..0088 00..6688 110000 00..6688
2 Dt
后可以得到
利用已知数求得D代入后可求得 t=11.2h
简便算法
由于 x Dt

t2 t1
x22 x12
0.1
2
0.05
4
∴t2=2.8h4=11.2h
(3) 把Cs=1%,C0=0.1%,Cx=0.45%,x=0.1cm, t=2.8h代入
C
Cs
(Cs
C0
)erf
2
x Dt
2.画出含碳量分别为0.2%、1.5%和2.5%的铁 碳合金按亚稳系统从液态平衡冷却到室温 的转变过程热分析曲线;写出含碳量为 2.5%的铁碳合金在室温下的组织组成和相 组成并计算各自所占的重量分数。
0.2%C
L L-L + L
- -Fe3C(P)
P+Fe3CⅢ
1.5%C
L L- -Fe3CⅡ
建立坐标系
描绘四相平衡反应的点和
B
线
汇出三相区的点和线
b
3
c a
4
L
A
C
B
恒温反应的类型:
四相:L+β—α+γ 三相:L+β—α
L+β—γ L—α+γ
如何判断?
A
C
3
L
L—β L+β—α L+β—α+γ
β+ α+ (α+γ)+ αII+ β II+ γII
B
3 4
A
C
各相的相对百分比可以通过质量守恒计算
100%
18.6%
P% 4.3 2.5 6.69 2.11 100% 63.6% 4.3 2.11 6.69 0.77
相组成 Fe3C
% 6.69 2.5 100% 62.6%
6.69 0
2.5 0 Fe3C% 6.69 0 37.4%
相关文档
最新文档