(第八章)空间滤波分析解读

合集下载

空间滤波的理论和方法

空间滤波的理论和方法
为输入信息与空间滤波脉冲响应
的卷积的平方。通常可运用这一原理,根据对输入信息的具体要求,进行变 换或滤波。如果从光学系统所能完成的功能分析,系统的空间滤波可以实现 输入信息与滤波器脉冲响应的卷积运算。在频谱平面上放置滤波器其后有
AF fx, fy H fx, fy . 实际上是实现了输入频谱和滤波器复振幅透过率的乘
阿贝——波特实验图示
空间滤波的基本原理
阿贝—波特实验:结论
1.实验充分证明了阿贝成像理论的正确性:像的结构直接 依赖于频谱的结构,只要改变频谱的组分,便能够改变像 的结构;像和物的相似程度完全取决于物体有多少频率成 分能被系统传递到像面。
2.实验充分证明了傅里叶分析和综合的正确性: (1)频谱面上的横向分布是物的纵向结构的信息(图B); 频谱面上的纵向分布是物的横向结构的信息(图C); (2)零频分量是直流分量,它只代表像的本底(图D); (3)阻挡零频分量,在一定条件下可使像的衬度发生反转 (图E); (4)仅允许低频分量通过时,像的边缘锐度降低;仅允许 高频分量通过时,像的边缘效应增强; (5)采用选择型滤波器,可望完全改变像的性质(图F)。
空间滤波的理论和方法
重点
• 1. 空间滤波的基本原理 • 2. 空间滤波的基本系统 • 3. 空间滤波器 • 4. 空间滤波应用举例
空间滤波的基本原理 阿贝——波特成像理论
阿贝成像原理
阿贝——波特成像理论
• 阿贝认为相干成像过程分两步完成,如图所示。第一步 是物体在相干平行光垂直照明下,可看作是一个复杂的 光栅,照明光通过物体被衍射,衍射光波在透镜后焦平 面射上光P斑1形作成为物新体的O次的级夫波琅源禾发费出光球斑面图子样波;,第在二像步平是面各相衍干 叠加形成物体的像。将显微镜成像过程看成是上述两步 成像过程,人们称其为阿贝成像理论。

8 空间滤波

8 空间滤波

例1 设物函数中含有从低频到高频的各种结构信息, 物被直径为d=2cm的圆孔所限制,将它放在直径D=
4 cm、焦距f=50 cm的透镜的前焦面上。今用波长l
=600 nm的单色光垂直照射该物并测量透镜后焦面上 的光强分布。问:
(1)物函数中什么频率范围内的频谱可以通过测量得 到准确值? (2)什么频率范围内的信息被完全阻止?
t ( x1 ) t 0 t1 cos( 2x 0 x1 )
(1)在频谱面的中央设置一小圆屏挡住光栅的零级谱,求像 的强度分布及可见度; (2)移动小圆屏,挡住光栅的+1级谱,像面的强度分布和可 见度又如何?
例2 在相干照明4f系统中, 在物平面上有两个图像,它们的中 心在X轴上,距离坐标原点分别为a和-a ,今在频谱面上放置一 正弦光栅,其振幅透过率为
2、傅立叶透镜的信息容量——空间带宽积
信息容量N=频 带 宽 度´ 空 间 宽 度
空间带宽积
截止频率
x D D1 2lf
频带宽度
x 2x D D1 lf
衍射发散角
中的线状构造越密集,则在P2沿r方向空间频 谱分布延伸越远;反之亦然
频谱分析器,又称为衍射图像采样器
由在半圆中不同直径的32个环状 PN结硅光二极管元件和另半圆 呈辐射状分布的32个楔形PN结 硅光二极管元件组成,据此可测 出整个频谱面上各处的光强分布
楔-环探测器 针尖缺陷检查、掩模线宽测量、织物疵病以及纸张印刷质量的 检查等。
一、二元振幅滤波器 (1)低通滤波器 带针孔的不透明模板
低通滤波器结构 只允许位于频谱面中心及其附近的低频分量通过,可以用来滤 掉高频噪声
(2)高通滤波器 带不透明小圆屏的透明模片
阻挡低频分量而允许高频通过,以增强像的 边缘,提高对模糊图像的识别能力或实现衬 度反转,但由于能量损失较大,所以得到的 结果一般较暗。 高通滤波器结构

空间域滤波——精选推荐

空间域滤波——精选推荐

空间域滤波空间域滤波基础 某些邻域处理⼯作是操作邻域的图像像素值以及相应的与邻域有相同维数的⼦图像的值。

这些⼦图像可以被称为滤波器、掩模、核、模板或窗⼝,其中前三个词是更为普遍的术语。

在滤波器⼦图像中的值是系数值,⽽不是像素值。

空间滤波就是在待处理图像中逐点地移动掩模。

在每⼀点 (x, y) 处,滤波器在该点的响应通过事先定义的关系来计算。

对于线性空间滤波,其响应由滤波器系数与滤波掩模扫过区域的相应像素值的乘积之和给出。

对于⼀个尺⼨为 m×n 的掩模,我们假设 m=2a+1 且 n=2b+1,这⾥的 a、b 为⾮负整数。

在后续的讨论中,处理的掩模的长与宽都为奇数。

⼀般来说,在 M×N 的图像 f 上,⽤ m×n ⼤⼩的滤波器掩模进⾏线性滤波由下式给出: 这⾥,a=(m-1)/2 且 b=(n-1)/2。

为了得到⼀幅完整的经过滤波处理的图像,必须对 x=0, 1, 2, …, M-1 和 y=0, 1, 2, …, N-1 依次应⽤公式。

这样,就保证了对图像中的所有像素进⾏了处理。

式中的线性滤波处理与频率域中卷积处理的概念很相似。

因此,线性空间滤波处理经常被称为“掩模与图像的卷积”。

类似地,滤波掩模有时也可以称为“卷积模板”或“卷积核”。

当滤波中⼼靠近图像轮廓时发⽣的情况 考虑⼀个简单的⼤⼩为 n×n 的⽅形掩模,当掩模中⼼距离图像边缘为 (n-1)/2 个像素时,该掩模⾄少有⼀条边与图像轮廓相重合。

如果掩模的中⼼继续向图像边缘靠近,那么掩模的⾏或列就会处于图像平⾯之外。

⽅法⼀:最简单的⽅法就是将掩模中⼼点的移动范围限制在距离图像边缘不⼩于 (n-1)/2 个像素处。

如果要保持与原图像⼀样⼤⼩,可以直接将未处理的图像边缘像素直接复制到结果图像,或者⽤全部包含于图像中的掩模部分滤波所有像素。

通过这种⽅法,图像靠近边缘部分的像素带将⽤部分滤波掩模来处理。

⽅法⼆:在图像边缘以外再补上 (n-1)/2 ⾏和 (n-1)/2 列灰度值为0(也可为其它常值)的像素点,或者将边缘复制补在图像之外。

遥感图像处理实例分析05(空间滤波)

遥感图像处理实例分析05(空间滤波)

空间滤波(spatial filters)空间滤波(又称local operation)空间滤波是一种通用的光栅图像处理操作。

是根据某像素周围像素的数值,修改图像中的该像素值.它能增强或抑制图像的空间细节信号,提高图像的可视化解释。

如应用滤波增强图像的边界信息,去除或减少图像中的噪音图案。

突出结构特征等.空间频率(Spatial frequency)空间频率是所有类型的光栅数据共有的特性,它的定义是指图像中的任何一特定部分,每单位距离内数据值的变化数量.对图像上数据变化小、或渐进变化的区域称为低频区域(如平滑的湖面),对图像上数据变化大、或迅速变化的区域称为高频区域(如布满密集公路网的城区).空间滤波分为三大类:低通滤波(Low pass filters):强调的是低频信息,平滑了图像的噪音、减少了数据的菱角。

因为它不在重视图像的细节部分,所以低通滤波有时又称为平滑或均值滤波。

高通滤波(High pass filters):强调的是高频信息,增强或锐化线性特征,象公路、断层、水陆边界。

因为它没有图像的低频部分,增强了图像的细节信息,所以高通滤波有时又称为锐化滤波。

边界检测滤波(Edge detection filters):强调的是图像中目标或特征的边界,以便更容易分析。

边界检测滤波通常建立一个灰色背景图和围绕图像目标或特征边界的黑白色线.卷积核(convolution kernels)卷积核是指二维矩形滤波距阵(或窗口),包含着与图像像素值有关的权值。

滤波距阵(或窗口)在图像上从左向右,自上而下,进行平移滑动,窗口中心的像素值是根据其周围像素值与窗口中对应的每个像素的权值乘积就和而计算出来的。

ER Mapper滤波对话框如图1—1。

包含着滤波文件名、滤波距阵和滤波编辑等项。

图1-1 ER Mapper滤波对话框实习目的:建立和删除滤波,应用不同的滤波距阵,查看结果。

实习步骤:(一)增加滤波1.打开和显示一个已存在的算法文件①在标准工具条上,点击Open按钮,打开图像显示窗口和文件输入窗口。

空间滤波实验观察报告

空间滤波实验观察报告

空间滤波实验观察报告实验目的:通过进行空间滤波实验,观察和分析不同滤波器对图像的处理效果和特点。

实验原理:空间滤波是基于图像中像素点周围的领域信息进行像素值改变的一种图像处理方法。

在本实验中,我们将使用一些常见的空间滤波器,如均值滤波器、中值滤波器和高斯滤波器。

实验步骤:1. 实验准备- 载入待处理的图像,确保图像格式正确。

- 选择合适的滤波器,如均值滤波器、中值滤波器和高斯滤波器。

2. 均值滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的平均值。

- 观察处理后的图像,注意边缘和细节的变化。

3. 中值滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的中值。

- 观察处理后的图像,注意对椒盐噪声和悬浮粒子等噪声的去除效果。

4. 高斯滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的加权平均值。

- 观察处理后的图像,注意平滑程度和对边缘的影响。

5. 记录观察结果- 针对每个滤波器,观察处理后的图像,记录并比较其效果和特点。

- 注意观察图像的细节变化、噪声去除效果和平滑程度等。

实验结果与分析:经过实验观察和比较,我们得出以下结论:- 均值滤波器对图像进行平滑处理,可以去除高频噪声,但会导致细节部分的模糊。

- 中值滤波器能够很好地去除椒盐噪声和其他离群像素,对图像的平滑效果也较好,但在某些情况下可能会对细节造成损失。

- 高斯滤波器在平滑图像的同时,对边缘的保留效果较好,能够更好地抑制高频噪声,但在一些情况下可能会导致图像的细节模糊。

综上所述,在不同的应用场景下,选择合适的空间滤波器可以实现对图像的不同处理需求。

根据实际需求,可以灵活选择对应的滤波器。

空间频率与空间滤波

空间频率与空间滤波

空间频谱与空间滤波一, 实验背景:阿贝成像原理认为:透镜成像过程可分为两步,第一步是通过物体衍射的光在系统的频谱面上形成空间频谱,这是衍射引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相互叠加而形成物体的像,这是干涉引起的“合成”作用。

这两步从本质上对应着两次傅里叶变换。

如果这两次傅里叶变换完全理想,则像和物应完全一样。

如果在频谱面上设置各种空间滤波器,当去频谱中某一频率的成分,则将明显地影响图像,此即为空间滤波。

二, 实验目的:1, 掌握光具座上光学调整技术;2, 掌握空间滤波的基本原理,理解成像过程中“分频” 与“合成”作用。

3, 掌握方向滤波,高通滤波,低通滤波等滤波技术,观察各种滤波器产生的滤波效果,加深对光学信息处理实质的认识。

三, 实验原理:1, 傅立叶变换近代光学中,对光的传播和成像过程用傅立叶变换来表达,形成了傅立叶光学,可以处理一些无法用经典光学理论解决的问题。

傅立叶变换时处理振荡和波这类问题的有力工具。

对振动和波的傅立叶分析一般在时域和频域中进行,而对光的传播与成像分析是在空间和倒数空间中进行的。

不考虑时域,单色平面光波的表达式如下:0()[()]f r Aexp i k r ϕ=⋅+ (1)直角坐标系中,k 的方向余弦为(cos ,cos ,cos )αβγ,r 为(x ,y ,z )2(cos cos ,cos )k r x y z παβγλ⋅=+ (2) 波矢量的物理意义可以理解为平面波的空间频率,在x ,y ,z 方向上三个分量分别为222cos , cos , cos x y z f f f πππαβγλλλ=== (3)在傅立叶光学中,将物光作为一个输入函数(物函数),研究其经过具有傅立叶变换作用的光学元件后在接收面上得到的输出函数(像函数)。

以物是平面图像为例,物函数g (x ,y )可以表示成一系列不同空间频率的单色平面波的线性叠加,即(,)(,)exp[2()]x y x y x y g x y G f f i xf yf df df π∞-∞=+⎰⎰ (4)其中(,)x y G f f 被称为物函数的空间频谱函数。

XXGX第8章 空间滤波

XXGX第8章  空间滤波

sinc
⎡ ⎢⎣
L
⎛ ⎜⎝
u

m d
⎞⎤ ⎟⎠⎥⎦
L>>d 时,可忽略 各项之间的交叠
=
aL d
⎧ ⎨sinc
(
Lu )

+
sinc
⎛ ⎜⎝
a d
⎞ ⎟⎠
sinc
⎡ ⎢⎣
L
⎛ ⎜⎝
u

1 d
⎞⎤ ⎟⎠⎥⎦
+
sinc
⎛ ⎜⎝
a d
⎞ ⎟⎠
sinc
⎡⎢⎣ L
⎛ ⎜⎝
u
+
1 d
⎞⎤ ⎟⎠⎥⎦
+ L⎫⎬ ⎭
解:(可能与教材略有不同)
设两个输入图像分别用f1(x,y)和f2(x,y)表示,由给定条件可知,整个输入图象
为:
t(x1, y1) = f1(x1 − a, y1) + f2 (x1 + a, y1)
单位振幅T平(u面, v波)垂=直F照1(射u,输v)入e面xp,[频−谱j2为π au] + F2 (u, v) exp[ j2π au]
滤波后的频谱:
T '(u,v) = T(u,v)H(u,v) = {F1(u,v)exp[− j2π au]+ F2(u,v)exp[ j2π au]}
[1+ cos(2π au)] 21
T '(u,v) = F1(u,v) exp[− j2π au]+ F2(u,v)exp[ j2π au]
+ (1/ 2)[F1(u,v) + F2(u,v)]
δ
(u
+

(第八章)空间滤波解析

(第八章)空间滤波解析

8.1.3 空间滤波的傅里叶分析
设光栅常数为d, 缝宽为a,光栅沿x1方向的宽度为L,则它的透过 率为: x 1 x x (8.1.3) t xo rect o comb o rect o
a d a L
在P1平面上的光场分布应正比于物体的频谱,即:
1 xo xo xo F rect F comb F rect d a d L
1 a sin c af x d comb df x L sin c Lf x d aL m sin c af x f x sin c Lf x d d m
1 xo xo xo T f x F t xo F rect comb rect d a d L
1 xo xo xo F rect comb F rect d a d L
事实上,早在1864年在阿贝提出他的理论以前,Toepler就发明了Schlieren(纹 影)方法,早先用来探测透镜的疵病.Schlieren在德语中是条纹的意思.在这一 方法中,只是简单地把衍射图形挡去一半多一点,透镜中的疵病等相位物体就可 以看见.这简单而有效的方法沿用至今,使风洞中气压分布变成可见的图像. 下图中HS是光阑,它挡去一半多一点的衍射图形.P仍用相干光照明.
1 f f x 或 x1 L L f x为其他值 aL sinc(Lf x ) (8.1.5) 则紧靠狭缝后的透射光场为 T(f x )H(f x )= d 1 H(f x )= 0

光学空间滤波

光学空间滤波

光学空间滤波实验研究1.阿贝成像原理1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原理为当今正在兴起的光学信息处理奠定了基础。

如图1-1所示,用一束平行光照明物体,按照传统的成像原理,物体上任一点都成了一次波源,辐射球面波,经透镜的会聚作用,各个发散的球面波转变为会聚的球面波,球面波的中心就是物体上某一点的像。

一个复杂的物体可以看成是无数个亮度不同的点构成,所有这些点经透镜的作用在像平面上形成像点,像点重新叠加构成物体的像。

这种传统的成像原理着眼于点的对应,物像之间是点点对应关系。

阿贝成像原理认为,透镜的成像过程可以分成两步:第一步是通过物的衍射光在透镜后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的“合成”作用。

成像过程的这两步本质上就是两次傅里叶变换。

如果这两次傅里叶变换是完全理想的,即信息没有任何损失,则像和物应完全相似。

如果在频谱面上设置各种空间滤波器,挡去频谱某一些空间频率成份,则将会使像发生变化。

空间滤波就是在光学系统的频谱面上放置各空间滤波器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得到改善。

这也是相干光学处理的实质所在。

以图l-l 为例,平面物体的图像可由一个二维函数g(x,y)描述,则其空间频谱G(f x ,f y )即为g(x ,y)的傅里叶变换:2(,)(,)(,)x y i f x f y x y G f f g x y edxdy π∞-∞-=⎰⎰ (1-1)设,x y ''为透镜后焦面上任一点的位置坐标,则式中为x x f F λ'=,y y f Fλ'= (1-2) 方向的空间频率,量纲为L -1, F 为透镜焦距,λ为入射平行光波波长。

再进行一次傅里叶变换,将(,)G fx fy 从频谱分布又还原到空间分布(,)g x y '''''。

《遥感原理与应用》实验报告——空间滤波

《遥感原理与应用》实验报告——空间滤波

实验名称:空间滤波一、 实验内容1. 对影像进行中值滤波。

2. 对影像进行Sobel 滤波。

二、 实验所用的仪器设备,包括所用到的数据Window7/XP 操作系统电脑一台,遥感影像处理软件(ENVI4.3),TM 单波段卫星遥感影像PCA 。

三、 实验原理(一) 中值滤波1. 定义:是一种非线性的平滑方法,对一个滑动窗口内的诸像素灰度值排序,用其居于中间位置的值代替窗口中心像素的灰度值。

2. 中间值的取法:当邻域内像元数为偶数时,取排序后中间两像元值的平均值;当邻域内的像素数为奇数时,取排序后的位于中间位置的像元的灰度。

3. 优缺点:抑制噪声的同时能够有效保护边缘少受模糊,但是对点、线等细节较多的图像却不太合适。

当窗口内噪声点的个数大于窗口宽度的一半时,中值滤波的效果不好,因此正确选择窗口的尺寸是用好中值滤波的重要环节。

(二) Sobel 滤波1. Sobel 算子: Sobel 算子是图像处理中的算子之一,主要用于边缘检测。

在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。

在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。

2. 核心公式:该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。

如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像,其公式如下:AG and A G +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++---=+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=121000121101202101y x 图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

然后可用以下公式计算梯度方向。

如果以上的角度θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

3. Sobel 滤波:Sobel 滤波是通过Sobel 算子与原始影像进行卷积实现的。

4. 优缺点:该滤波方式使图像的非线性边缘增强。

第八章 空间滤波

第八章 空间滤波
x1
a/d
g(x3)
x1
(2)狭缝允许零级和正、负一级频谱通过
透射频谱:
输出平面场分布:
a
Hale Waihona Puke t(x3)dx1 T(x2/λf)
x1
T(x2/λf)H(x2/ λf)
x1
g(x3)
d
x1
(3)滤波面放置双缝,只允许正、负二级谱通过 透射频谱
输出平面上的场分布
(8.1.8)
a
t(x3)
d
x1 T(x2/λf)
8.4 傅立叶变换透镜
傅里叶变换透镜(简称傅里叶透镜):在光学图像 处理系统中,用于频谱分析的透镜 它是光学信息处理系统中最常用的基本部件. 8.4.1 傅立叶透镜的截止频率、空间带宽积和视场 8.4.2 傅立叶透镜对校正像差的要求 8.4.3傅立叶透镜的结构
8.4.1 傅立叶透镜的截止频率、空间带宽积和视场 1.截止频率
在后焦面上没有该频率成分,测得的频谱强度为零.当传播 方向倾角超过v时,该平面波分量正是这种情况.
在小角度情况下,有 空间频率:
8.4.3 8.4.4
结论:
ξ≤(D-D1)/2λf时,透镜后焦面上可以得到相应的空间 频率成分的物体准确的傅立叶谱;
(D-D1)/2λf ≤ ξ≤(D+D1)/2λf时,透镜后焦面上得到 的并非准确的傅里叶谱,各空间频率成分受到透镜孔 径程度不同的阻挡;
ξ≥(D+D1)/2λf时,透镜后焦面上完全得不到物的傅立 叶谱中的这些高频成分,这是渐晕效应对物的频谱传 播的影响.
从公式可以看出,当傅里叶透镜的孔径增大时,可以 减小这—效应的影响.
2.傅里叶透镜的信息容量——空间带宽积
信息容量可由系统的频带宽度与单频线宽之比来

空间滤波和相干光学处理

空间滤波和相干光学处理

H , A0 exp j ,
对振幅和相位同时起调制作用
空间滤波器
3. 空间频率滤波器结构类型 一、二元滤波器 复振幅透过率为0或1
(d)方向
(1)低通滤波器:只允许位于频谱面中心及附近的低频分量 通过,可以滤掉高频噪音。 (2)高通滤波器:阻挡低频分量而让高频分量通过,可以 实现图像的衬度反转或边缘增强。 (3)带通滤波器:只允许特定区域的频谱通过,可以去除 随机噪音。 (4)方向滤波器:它阻挡或允许特定方向上的频谱分量通过, 可以突出图像的方向特征。
第九章 相干光学处理 9.1 图像相减
图像相加:取相同部分,弃去不同部分 图像相减:取不同部分,弃去相同部分
用于检测两张近似图像之间的差异, 从而研究事物的变化
第九章 相干光学处理 9.1 图像相减 一、空域编码频域解码相减方法
间距为 x0 ,透光部分 与不透光部分相等
1. 编码
第九章 相干光学处理 9.1 图像相减 一、空域编码频域解码相减方法 1. 编码
第八章 空间滤波
4f 系统:
第二节 系统与滤波器
用透镜组合实现傅里叶变换的图像处理系统 最典型的相干滤波系统
f f f f
物平面 P1
L1
焦平面 (频谱面) P2 傅里叶变换透镜
L2
像平面 P3
第八章 空间滤波
2.双透镜系统(1)
第二节 系统与滤波器
傅里叶变换 和成像作用
准直透镜 频谱面 输出面
,滤波函数为:
0
其它
j , H ( , ) 1,
滤波后的频谱:
F ( , ) H ( , ) j ( , ) j ( , )
像面复振幅分布: 像强度分布:

空间滤波

空间滤波

用普通显微镜观察样品, 衬比度极小。 Zernike提出
切片 (物)
e
相位板 i

在玻璃片中 相位反衬法:
心滴一小滴厚h 的液体,
2 π nh
放到频谱面上引起 0 级相移:

~ ~ i(x , y) U物 ( x, y) At ( x, y) Ae
A1 i
1873年,德国阿贝二次成象理论与实验—空间滤波 与光学信息处理的先导 1935年,荷兰泽尼克相衬显微术—空间滤波与光学 信息处理的杰出范例 60年代,Cutrona对综合孔径雷达数据处理、1963年 Vander Lugt全息滤波器、1965年Lohmann和Brown计算 全息图—空间滤波与光学信息处理的蓬勃发展时期
光学强有力的数学手段— 付氏分析, 给了数学上的付氏变换的运算提供了一个新 技术— 光学计算术。 一个透镜就是一个光学模拟计算机。 光学模拟计算机的优点:
1)能直接处理连续函数,不需要抽样离散化… 2)能直接处理二元函数 f (x , y)。 3)是并行输入,光束交叉可独立传播。 4)速度快,不受电路时间常数 RC 的限制。 5)装置简单,价格低。
这样:
I ( x, y) 1 2 ( x, y)
于是像的光强中就更加突出了相位的变化。 Zernike 因此获得了1953年诺贝尔物理奖。
普通显微镜(左)和相衬显微镜拍摄的硅藻照片
三 复数滤波器-图象识别和消模糊
复数滤波器制作:1963年Vander Lugt全息方法制作 L1 P
滤波函数为
T ( f x ) j 2f x
fx可取正、负两值。 为实现负值,可将两块模片叠合,一块是振幅模片 ,其透过率为 T1 ( f x ) 2f x 另一块是相位模片,做成在的正范围和负范围中, 其相位差为的相位掩模,其透过率函数为

傅立叶光学-空间滤波

傅立叶光学-空间滤波

A(u,v) = 常数; (u,v) 随(u,v)变化。可采用镀 膜、光刻、三束直写等方法制作。复杂的相 位滤波器难以制作。
Zernike相衬显微镜
4. 复滤波器
(u,v) 常数,A(u,v) 常数,均随(u,v)变化, 同时对振幅相位进行调制。可用光学全息或 计算全息等方法制作。复杂的相位滤波器难 以制作。
x3
(2)
T´(u)= t0(u)+ (t1/2) (u+0)]
t0
t1/2
u
-0
0
t(x3)= t0 + (t1/2) exp(-j2π0x3)
1/0
t0
j +t1/2
x3
-t1
-t1/2
1/0
|t(x3)|2=t12cos2(2π0x3)
1/(20)
t12
x3
V=1
|t(x3)|2=t02+t12/4+t0t1cos(2π0x3)
镀膜,计算全息,振幅与相位模片叠合,液晶器件。
j2 u
|2 u|
(n-1)h=/2
= u
O
× u
jO u
O
-j
振幅模片
相位模片
8.3 空间滤波应用举例 P218-220,
8.3.1 泽尼克相衬显微镜(Zernike Phase Contrast Microscopy)
相位物体:振幅透过率均匀或近乎均匀,只是由于厚度、折
直流成分<1/2,
像面振幅分布: 周期仍为d, 矩形,有负值。
像面强度分布: 不是均匀分布, 不反转, 衬比度下降。

L

L
t'(x3)

8.1 空间滤波的基本原理

8.1 空间滤波的基本原理
第二步 各衍射斑发出的球面次波在像平面(x',y')上相干 迭加产生干涉,像就是干涉场(合成过程)。
1.基本光路

物平面

频谱面
像平面
阿 贝 波 特 实 验
2.基本原理
物函数为 g (x, y) 频谱面的光振动分布为
e G( ,) g( x, y) 2i(xy) dxdy
, 为频谱面坐标,称为空间频率.
应用:采用低通滤波器,可以滤掉高频噪声,去掉图 片上的污迹,图4-4-4显示了这一过程。
(a)
(b)
(c)
图4-4-4 应用低通滤波器消除图片污迹 (a)原物 (b)低通滤波器 (c)处理后的像
当然,这种滤波器的缺点是将物的高频成分也滤掉, 使得像与无噪声的物并不完全相同,像的分辨率有 所降低。
利用低通和高通滤波器对任意具有非周期结构的 输入图像分别进行了低通和高通滤波处理,输出结果 如图所示。
从噪声中提取信号、图象复原、特征提取(特征识别)等。
历史背景
1873年,德国科学家阿贝(Abbe)创建了二次 衍射成像理论(显微镜成像理论);
1935年,物理学家泽尼克发明了相衬显微镜;
1963年,范德拉格特(A. Vander Lugt)提出 了复数空间滤波的概念,使光学信息处理进入了 一个广泛应用的新阶段;
(a)
(b)
(c)
图4-4-7 普通非周期结构图像的滤波处理结果. (a) 输入图像;(b) 低通输出;(c) 高通输出.Fra bibliotek学习要点
1.什么是光学信息处理?光学信息处理的分类; 2.空间滤波的基本原理:“分频”和“合成”的概
念; 3.阿贝滤波实验(实验光路、实验现象)。
第八章 光学信息处理

数字图像处理——空间滤波

数字图像处理——空间滤波
• 空间卷积的实质是一种加权求和的过程,选择某种形状的邻 域,将其中的每个像素与卷积核中的对应元素相乘再求和。
(1)理想低通滤波
• 低通滤波滤除噪声信号的同时也会使图像中的边缘平滑。 • 低通函数在频域中的分布(二维与三维视图)如下:
(1)理想低通滤波
图像更平滑 对比度降低
在频率域进行空间滤波
原始的图像及其频域分布
149 128 103 103 138 144 106 105 159 120 150 75 120 73 159 163 135 160 144 134 188 155 158 107 72 98 97 104 114 117 168 153 148 134 101 80 44 27 37 38
二维数字图像
• 高通滤波消除低频噪声同时也会使图像中的边缘明显。 • 高通函数在频域中的分布(二维与三维视图)如下:
(3)理想高通滤波
经过高通滤 波之后,图 像的边缘部 分被提取出 来
在频率域进行空间滤波
原始的图像及其频域分布
高通滤波后图像及其频域分布
(4)高斯高通滤波
• 图像中的细节大多是高频,高斯高通滤波滤会使图像的细节更 加明显,对比度更高。
https:///u013921430/article/details/84532068
(5)双边滤波
经双边滤波后图像整体的对比度变化不大,只有相邻像素值差异 明显的点被滤除了(可以类比美图的“磨皮”操作)。
原始的图像及其频域分布
双边滤波后图像及其频域分布
学好信号与系统 低通高通路路通
在频率域进行空间滤波原始的图像及其频域分布高通滤波后图像及其频域分布经过高通滤波之后图像的边缘部分被提取出图像中的细节大多是高频高斯高通滤波滤会使图像的细节更加明显对比度更高

空间域滤波资料共70页

空间域滤波资料共70页
空间域滤波资料
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖——罗·伯顿
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

空间滤波名词解释

空间滤波名词解释

空间滤波名词解释
空间滤波是指在图像处理中,通过改变像素周围的邻域像素值来改善图像质量或提取图像特征的一种处理方法。

其原理是通过对图像中每个像素点周围邻域的像素值进行加权平均或非线性操作,从而改变该像素点的像素值,进而达到图像增强、去噪、边缘检测等目的。

常见的空间滤波方法包括线性滤波和非线性滤波。

线性滤波是指根据像素周围邻域的加权平均运算来得到滤波后的像素值,常用的方法包括均值滤波、高斯滤波、中值滤波等。

非线性滤波则通过非线性运算来改变像素值,如边缘保留滤波、形态学滤波等。

空间滤波在图像处理中应用广泛,能够改善图像的质量、增强图像的细节信息、去除图像中的噪声等,有助于提高图像的视觉感受性和实际应用效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

早期发展
1873 Abbe 提出二次成像理论 1875 Abbe’s experiment:
D
f
Objective low pass filter
D Relative Aperture f
Abbe (1893) -Porter (1906)实验
1935荷兰物理学家Zernike发明 相衬显微镜 Phase contrast microscope
8.1.1 阿贝成像理论
根据阿贝成像理论,当不考虑物镜孔径的限制时,物体所有频 率分量都形成频谱,所有频谱都参与成像,像就是物体的准确 复现。实际上,物镜的孔径总是有限大小的,由于受孔径光瞳 的限制,物体的频率分量只有一部分形成频谱,只有这部分的 频谱参与成像。一些高频的成分丢失而没有通过物镜,使像产 生失真,影响像的清晰度或分辨本领。当高频成分的能量很大, 物体孔径光瞳较小,丢失的高频成分影响较大,像的失真就较 严重;当高频成分的能量较小,物镜的光瞳较大,丢失的高频 成分影响较小,像的失真不大,像就与物体比较相似。因此, 所有由透镜组成的光学系统的作用,都类似于一个低通滤波器。
8.1.2 阿贝——波特实验
图8.1.3给出了不同方向放置的狭缝或小孔光阑对成像的影响。
上述实验可用阿贝的成像理论进行定性的解释。
物体的空间频谱,包含着物体信息中的各种空间频率分量。 在空间频谱平面上的频谱坐标中,中央原点的频谱,由物体 衍射光波与光轴平行的平面波分量相应的角谱形成,称为零 频,相当于直流分量,也就是物体图像的背景光;沿水平或 垂直坐标方向上,依次为基频、倍频、高频频谱,离中心原 点越远,相应的空间频谱的频率成分越高。他们分别由垂直 或水平光栅衍射的光波相应的角谱,即不同传播方向的平面 波分量通过透镜L2形成。物体的像和物体被系统传递的空间 频谱有一一对应的关系。他们的相似程度,完全有能够被系 统传递到像平面的频谱的多少决定。在空间频谱面上放置不 同透射情况的光阑,改变透射的空间频谱,能够被系统传递 的频谱受到调制,像平面上输出像的结构也相应发生变化。
8.1.2 阿贝——波特实验
xo Po yo y1 图8.1.2 阿贝——波特实验
在图8.1.2 所示的实验中,物体是二维正交光栅。相干光垂直照明下, 在L2的后焦面P1上出现物体的空间频谱。这些频谱是排列成平行于 正交光栅的等间距分布的光点点阵。在L3的后焦面Pi出现光点点阵 空间频谱所综合成的正交光栅的像。如不考虑透镜的有限孔径的 影响,物体的全部信息中的频率成分都形成空间的频谱,所有空间 频谱又都参与综合成像,得到的像是几何光学理想像。
Chapter 8
第八章
Optical Spatial Filtering
光学空间滤波
Spatial Filtering
f(x,y)
F{f}
F fx , f y
F
1{F}
f(u,v)
Spatial Filtering
f(x,y)
F{f}
F fx , f y
F
1{F}
f(u,v)
P
L
HS
AI
相干光 f
8.1 阿贝——波特成像理论
8.1.1 阿贝成像理论
图8.1.1 阿贝成像原理
• 二步成像理论 ------ 相干照明下的成像实质上是 • 物谱:第一次衍射第一次傅里叶变换 • 谱像:第二次衍射第二次傅里叶变换

8.1.1 阿贝成像理论
阿贝认为相干成像过程分两步完成,如图8.1.1 所示。第一步是 物体在相干平行光垂直照明下,可看作是一个复杂的光栅,照 明光通过物体贝衍射,衍射光波在透镜后焦平面上P1形成物体O 的夫琅禾费光斑图样;第二步是各衍射光斑作为新的次级波源 发出球面子波,在像平面相干叠加形成物体的像。将显微镜成 像过程看成是上述两步成像过程,人们称其为阿贝成像理论。 两步成像理论,是用频谱语言描述的波动光学观点。 参考3.2节讨论透镜成像性质过程中的式(3.2.6)。两次衍射过程, 也就是两次傅里叶变换的过程。由物平面到后焦面,经过物体 衍射的光波被分解为不同空间频率成分的角谱分量。也就是不 同传播方向的平面波分量,在后焦平面上形成物体的频谱。后 焦面就是频谱面,这是一次傅里叶变换过程。由物镜的后焦面 即频谱面到像平面,各角频谱分量合成为像,这是一次傅里叶 逆变换过程。
8.1.1 阿贝成像理论
应用阿贝成像原理分析显微镜的分辩本领。 设物体是间距为d的光栅,受相干光垂直照明。物体后焦面上有 直径为D的孔径光阑。由傅里叶变换时空间频率的取值与空间坐 标的关系可得,光栅在物镜后焦面上的一级频谱的位置为 f / d ,0 f为物镜的焦距。显然,d越小,一级频谱离开频谱面中心的距离 越远。当d减少到 , 并有
事实上,早在1864年在阿贝提出他的理论以前,Toepler就发明了Schlieren(纹 影)方法,早先用来探测透镜的疵病.Schlieren在德语中是条纹的意思.在这一 方法中,只是简单地把衍射图形挡去一半多一点,透镜中的疵病等相位物体就可 以看见.这简单而有效的方法沿用至今,使风洞中气压分布变成可见的图像. 下图中HS是光阑,它挡去一半多一点的衍射图形.P仍用相干光照明.
humaneye
objective piece
eye piece
生物学家观察透明显微镜标本(如生物切片,油膜、细菌等)时, 由于人眼只能感受光强度的变化,不能辨别位相变化,无法观察 到它的位相结构。 解决这一困难需要把位相变化转化为强度(或振幅)的变化,就 是把空间位相调制的信息变换为空间强度(或振幅)调制的信息。
D/ 2 f /
(8.1.1)
时,到达衍射极限。由式(8.1.1)可得
2 f / D
(8.1.2)

即为显微镜的分辨极限。它与孔径光阑的直径成反比。
8.1.2 阿贝——波特实验
Abbe (1893) -Porter (1906)实验
物体 平行激光 L 焦 平 面 像
f
f
f
f
L: Fourier变换透镜 焦平面 : 滤波平面
x1 P1
Pi yi
xi
8.1.2 阿贝——波特实验
Abbe-Porter实验 空间滤波 低通滤波 D 高通滤波 E 方向滤波 B,C,F 如果在频谱平面上不 同位置放置不同方向 的狭缝或小孔光阑, 分别阻挡部分频谱, 透射传递部分频谱, 则在像平面上就会观 察到改变了的物体的 不同输出像.
图8.1.3 阿贝——波特实验图示
相关文档
最新文档