焊接操作仿真训练模拟器
VRTEX 移动虚拟现实焊接培训器说明说明书
EASILY TRANSPORTED from classroom toclassroom or to a recruitment event or openhouse. The VRTEX Mobile can be ready to goin a matter of minutes.BLENDED TRAINING SOLUTIONS FOR WELDING EDUCATIONTOUCHSCREEN USER INTERACTION providesequipment and procedural set-up on an intuitive,resistive touchscreen. All screens mirror theVRTEX 360, making transfer of interactionseamless between the systems.UNIVERSAL GUN HANDLE allows for connectionof a MIG/MAG gun attachment for GMAW andFCAW, and a stick attachment for SMAW welding.TABLETOP COUPON STAND easily attaches andstands on a standard table for welding and istaken apart for quick and simple storage insidethe VRTEX Mobile.The VRTEX systems are virtual reality arc welding training simulators. Thesecomputer based training systems are educational tools designed to supplementand enhance traditional welding training. They allow students to practice theirwelding technique in a simulated and immersive environment. The VRTEX systemspromote the efficient transfer of quality welding skills and body positioning tothe welding booth while reducing material waste associated with traditionalwelding training. The combination of realistic puddle, arc welding sound, andreal-time feedback tied to the welder’s movement provides a realistic andexciting, hands-on training experience.The VRTEX® Mobile is a basic, entry level welding training system. It is designedto provide mobility in an easy to use and engaging welding training tool. TheVRTEX Mobile is ideal for initial, basic welding training, as a recruitment andengagement tool for educational and industry and for employment and screeningfor human resources or as an evaluation tool for instructors and educators to geta baseline on student knowledge. The VRTEX Mobile is definitely on the move!VRTEX MOBILE PROVIDES:FLEXIBILITY» M ultiple welding processes and positions» V ariety of joint configurations» I nstructor tools allow modification basedon preferred welding program and styleINNOVATION» R ealistic welding puddle appearance and sounds» M agnetic tracking system provides accuratemeasurements for student score and evaluation» V irtual weld discontinuities appear in the weldwhen improper welding technique is usedCLASSROOM PERFORMANCE» Visual cues give real-time technique feedback» Advanced scoring system for student evaluation» E ncourages interaction — the instructor cancoach the welder while conducting virtualweld inspection» R ecord, archive and verify student work.CONSUMABLE ANDENVIRONMENTAL SAVINGS» No welding consumables, wire or waste» Track savings with the Weldometer™LANGUAGE SUPPORTEnglish, French, German, Spanish, Turkish,Japanese, Chinese (Mandarin), Portuguese(Brazilian), Russian, Korean, Hindi and ArabicDEMO MODE:Allows the instructor or student to view anexample weld or a demonstration of propertechnique, prior to a weld being madeREPLAY MODEAllows for instructor or student to reviewand analyze the welding processSET-UP AND INSTALLATION REQUIREMENTS:• T he VRTEX system requires minimal space for set-up. Dimensions are 8 W x 8 D x 8 H ft. (2.4 x 2.4 x 2.4 m).• W hen operating multiple units in one location, switch between standard and alternate frequency systems (unique part numbers are identified).• T he VRTEX Mobile system is not designed for operation in harsh environments. Recommendations are listed in the instruction manual.• A void magnetic fields, conductive and high frequency objects and processes.• A n uninterruptible power supply (UPS) may be required for protection of the system from power irregularities and/or disruptions.MC12-93 (06/15) © Lincoln Global, Inc. All Rights Reserved. Printed in U.S.A.CUSTOMER ASSISTANCE POLICYThe business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for information or advice about their use of our products. Our employees respond to inquiries to the best of their ability based on information provided to them by the customers and the knowledge they may have concerning the application. Our employees, however, are not in a position to verify the information provided or to evaluate the engineering requirements for the particular weldment. Accordingly, Lincoln Electric does not warrant or guarantee or assume any liability with respect to such information or advice. Moreover, the provision of such information or advice does not create, expand, or alter any warranty on our products. Any express or implied warranty that might arise from the information or advice, including any implied warranty of merchantability or any warranty of fitness for any customers’ particular purpose is specifically disclaimed.Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to for anyupdated information.。
VR焊接模拟器技术方案(纯方案
VR焊接模拟器技术方案(纯方案一、概述近年来,随着虚拟现实(Virtual Reality,简称VR)技术的不断发展和应用,各行各业都开始探索如何利用VR技术来提升工作效率和培训质量。
焊接是许多制造业中重要的工艺之一,因此,研发一种能够提供真实焊接模拟的VR技术方案是非常有意义的。
本方案旨在介绍一种基于VR技术的焊接模拟器技术方案。
二、技术原理VR焊接模拟器的技术原理是基于虚拟现实技术和物理仿真技术的结合。
首先,通过VR设备(如头戴式显示器和手柄控制器)将用户带入虚拟的焊接工作环境中。
然后,利用虚拟现实技术实时渲染真实的焊接场景,包括焊接设备、焊接材料、焊接烟雾等,并提供交互性的操作界面。
最后,结合物理仿真技术,模拟真实的焊接过程,包括焊接位置、焊接弧长、电流强度等参数的控制。
三、系统架构硬件方面,系统需要包括VR设备(如头戴式显示器和手柄控制器)、计算机系统以及传感器等。
其中,VR设备用于提供沉浸式的焊接体验,计算机系统用于运行虚拟焊接模拟软件,传感器用于捕捉用户的动作和手势。
软件方面,系统需要包括虚拟焊接模拟软件和物理仿真引擎。
虚拟焊接模拟软件用于生成虚拟的焊接工作环境,包括焊接设备、焊接材料等,并提供交互性的界面。
物理仿真引擎用于模拟真实的焊接过程,包括焊接的位置、焊接弧长、电流强度等参数的控制。
同时,软件还需要提供实时渲染和交互功能,以便用户能够感受到真实的焊接过程。
四、技术优势1.安全性:传统焊接培训需要实际的焊接设备和材料,存在一定的安全风险。
而VR焊接模拟器通过虚拟环境提供焊接培训,可以在无风险的情况下进行真实的焊接模拟。
2.效率:传统焊接培训需要安排专业的导师进行指导,花费大量的时间和资源。
而VR焊接模拟器可以随时随地进行培训,不受时间和地点的限制,大大提高了培训的效率。
3.反馈与评估:VR焊接模拟器可以提供实时的反馈和评估功能,通过分析用户的焊接过程和结果,给予相应的评价和建议。
模拟焊接训练器产品方案(纯方案,7页)
模拟焊接训练器是由本公司独家研制开发,为焊接实践操作开辟了一个全新的学习途径,参加培训的学员通过模拟焊接训练器对焊接的操作与控制做系统了解,在操作的同时,通过模拟焊接训练器产生真实的焊接效果及焊接弧光,所有的主要参数(焊接速度、电弧长度、焊枪角度、焊道形状)均由一个摄像头和计算机支持的测量系统监控,出现任何异常情况会立即提示学员进行操作修正。
通过设置不同的焊接参数许可变化范围,模拟焊接训练器可以训练不同水平等级的学员,一旦学员的操作参数超出这个设定的许可范围,就会有信号传出直至操作参数回复到正常范围之内,同时,记录操作过程中数据值。
因此,能够对学员的焊接工艺结果进行评估。
双工位型焊接训练模拟器具备焊条电弧焊模拟训练系统、CO2气体保护焊模拟训练系统、氩弧焊模拟训练系统、焊接机器人模拟示教操作系统。
能让学员在高度仿真的模拟环境下进行焊接技能的高效训练,可以让训练者能够感受到真实的焊接过程。
可以有效地和周围真实的环境进行互动,让训练者处于高度逼真的环境中,可有效促进操作者完全投入到当前的任务中。
对于有经验的训练者通过系统提供的训练平台来操作完成一个好的虚拟焊缝;系统还可以精确地测量到操作信息,训练者可以从中学到要点并能将这些焊接技能转化到实际的焊接工作中。
电焊模拟器软件系统可在我校现有的电焊仿真装置上进行部署使用。
(1)能够真实的模拟焊接过程中的各种条件设置,引弧、焊接、收弧中的各种手法,并能体验操作手法中的各种力量反馈感,电弧、明暗场、飞溅、焊缝、声效表现逼真;该系统可进行多角度、全位置焊接演练。
通过更换焊件,须模拟多种不同的焊接方式,例如平焊、立焊、横焊、仰焊等;适用于对接、T接等接头形式。
(2)系统设置简单,虚实结合,通过真实的焊板、焊枪进行焊接训练;系统可提供完善的语音提示,焊接过程中可以通过图形及语音提示帮助学员校正操作姿势,辅助指导学员的培训过程与应用。
1)该系统具有仿真示范教学功能,示范最佳的焊枪姿态(包括焊接速度、焊枪角度、焊枪与工件的距离和位置等)。
VR焊接训练模拟器技术方案(纯方案,35页)
目录五、设备详细技术规格参数 (1)5.1系统概述 (1)5.2系统功能特点 (2)5.3功能简介 (4)5.4操作说明及系统界面 (5)5.4.1 用户接口 (5)5.4.2 程序界面 (5)5.5系统功能说明 (6)5.6教师端管理系统概述 (8)5.7教师端管理系统简介 (9)5.8教师端管理系统功能说明 (9)5.9焊接技术要求 (10)5.10焊接训练模拟器整体性能 (11)5.11焊接训练模拟器功能 (12)5.12产品配置 (15)六、付款方式和供货周期 (18)6.2供货周期及保证措施 (18)6.2.1 质量保证 (18)6.2.2 供货周期 (18)6.2.3 送货地点 (18)6.2.4 验收方式 (18)6.2.5 售后服务承诺 (19)6.2.6 培训 (19)6.2.7 回访制度 (19)七、售后服务及能提供的培训方式 (20)7.1售后服务条款及优惠条件 (20)7.1.1 售后服务范围 (20)7.1.2 售后服务期限 (20)7.1.3售后服务内容及保障措施 (20)7.1.3.1 售后服务体系 (20)7.1.3.2 售后服务内容及组织 (21)7.1.3.3 售后服务过程 (22)7.1.3.4 售后技术服务 (23)7.1.3.5 售后服务内容 (24)7.2培训方案 (25)十三、其他资料 (26)13.1检验、测试、调试与验收建议书 (26)13.1.1 出厂检验工作计划 (26)13.1.2 出厂检验的时间、地点 (26)13.1.3 出厂检验主要内容和测试方法 (26)13.1.4 到货检查 (27)13.1.5 开箱检验 (27)13.1.6 安装验收 (28)13.1.7 系统测试 (29)13.1.8 系统联调阶段 (30)13.1.9 预验收 (30)13.1.10最终验收 (31)13.1.11保质期 (31)13.2售后服务人员保障承诺 (32)五、设备详细技术规格参数5.1系统概述焊接成形是现代工业高质量、高效率制造技术中一种不可缺少的加工工艺,广泛应用于各种成产场合。
AR焊接操作训练模拟器解决方案(纯方案,8页)
ONEW-360AR焊接操作增强训练仪使用说明书二O一九年四月版权说明为用户更好的使用本产品,本公司将会保持对产品的持续更新,本产品使用手册(以下简称“手册”)内容若有变动,恕不另行通知。
本手册例子中所用公司、人名和数据若非特别声明,均属虚构。
未得到武汉湾流科技股份有限公司(以下简称“湾流”)明确的书面许可,不得为任何目的、以任何形式或手段(电子的或机械的)复制或传播手册的任何部分。
本手册以及相关的程序仅用于为最终用户提供信息,湾流有权随时更改或撤销其内容。
手册是湾流的专有信息,并受中华人民共和国版权法和国际公约的保护。
在有关法律允许的范围内,湾流按“既定”方式提供本手册,且不对本手册提供任何形式的担保,包括(但不限于)对特定目的的适销性、适用性以及无侵权行为不作任何暗示担保。
在任何情况下,湾流不对最终用户或任何第三方因使用本手册而引发的任何直接或间接的丢失或损坏负责,包括(但不限于)利润损失、业务中断、商誉影响或信息丢失等,即使已将此类损失或损坏明确告知湾流。
本手册以及本手册所提及的任何产品的使用均受适用的用户许可协议限制。
本手册由湾流制作。
本手册中提及的所有商标、商标名称、服务标志及徽标均归其各自公司所有。
目录版权说明 (2)目录 (3)1 ONEW-360AR焊接操作增强训练仪介绍 (4)1.1 系统概述 (4)1.2 系统功能特点 (4)1.3 ONEW-360AR焊接操作增强训练仪硬件说明 (5)1.3.1 硬件外观展示 (5)1.3.2 硬件组成介绍 (5)1.4 启动 (5)2 ONEW-360AR焊接操作增强训练仪系统使用说明 (5)ONEW-360AR焊接操作增强训练仪系统客户端 (5)2.1首页 (6)2.2 焊接准备 (6)2.3 焊接训练 (7)1 ONEW-360AR焊接操作增强训练仪介绍1.1 系统概述ONEW-360AR焊接操作增强训练仪是ONEW-360焊接模拟器的基础版,基于增强现实(AR)技术,让技能训练与真实实训环境高度融合;同时首次提出焊接工艺卡(虚拟实训)教材,课程采用任务驱动模式,真正实现“教学做训考”一体化教学。
基于数值模拟的焊接虚拟仿真实验教学软件设计与实现
基于数值模拟的焊接虚拟仿真实验教学软件设计与实现一、引言随着计算机技术和数值模拟技术的日益发展,虚拟现实技术在教育领域逐渐得到应用。
通过虚拟仿真技术,可以有效地模拟真实场景,将学生置身于实际操作环境之中,提高实际操作能力和安全性。
本文针对焊接实验教学,设计并实现了一款基于数值模拟的焊接虚拟仿真实验教学软件,旨在提高学生的学习效率和实际操作水平。
二、需求分析针对目前传统的焊接实验教学方法存在的问题,如时间和场地限制,安全风险等,需要开发一款独立于时间和地点限制的虚拟焊接实验教学软件。
该软件需要具备以下功能:1. 提供焊接虚拟仿真实验场景,包括焊枪、焊条、焊接材料等,用于学生进行切实可行的操作练习。
2. 实现真实的焊接过程仿真,体现焊接实验的真实性和操作性。
3. 记录学生的操作过程数据,提供智能化的纠错提醒和分析报告,帮助学生及时查找和解决问题。
4. 提供多种场景模拟和任务模式,让学生针对不同的焊接工作任务进行实际操作练习。
5. 提供实时交互模式,让教师可监控学生实验进程,进行实时指导和纠错,提高学生对实际操作的理解。
6. 为学生提供更广泛的学习资源,例如学习资料、实验报告、视频教学等多种形式,使教育资源更加丰富多样。
三、系统设计1. 环境准备考虑到焊接实验的不同类型和难度,我们为软件设计多种焊接实验环境。
我们用3D软件设计各种3D焊接方案和场景,包括不同形状和材料的金属板、焊接区域和已焊接区域。
为了真实模拟焊接过程,我们需要采用真实物理引擎,从而准确模拟各种交互、力学和重力效应。
2. 焊接操作在虚拟实验环境中,学生可以使用鼠标来控制焊接的方向、角度和速度。
我们利用图形处理器来实现物理引擎的高速计算,提高软件的快速响应和真实仿真效果。
3. 信息处理和分析在目标对象的视点中,我们使用虚拟的照相机,以快速帧速率来捕捉视野中的场景。
为了更好地模拟焊接过程,我们使用数据采集技术来收集、记录和储存学生操作过程中的数据。
焊接技能模拟训练设备技术方案(纯方案,28页)
1.8.1焊接技能模拟训练设备技术方案1.基本概述焊接技能模拟训练设备采用VR虚拟现实技术与真实焊接设备相结合,用于学生在高度仿真的模拟环境下,实现手工电弧焊、TIG氩弧焊、CO2气体保护焊等的模拟操作训练,同时具有焊接训练过程管理功能。
为雷达装备保障人才培养的质量效益提供教学平台支撑。
2.功能指标虚拟焊接实训设备由焊接操作训练模拟器、教师端管理系统及局域网设备等组成。
3.焊接操作训练模拟器焊接操作训练模拟器用于学生进行焊接技能模拟操作训练。
主要由硬件、软件和虚拟焊接仿真系统构成。
(1)焊接训练模拟器硬件主要包括主机、训练工位、VR子系统和仿真焊枪。
各硬件的功能如下:①主机。
主要用于模拟真实焊机主机。
包括仿真计算系统、位置传感器及其计算系统、焊板芯片系统以及按真实物理存在的用于电流电压等参数设置的旋钮等。
②训练工位。
主要进行学生模拟操作训练。
③VR子系统。
采用虚拟现实沉浸式头戴显示器进行虚拟场景展现,同时配备无线操控手柄(带力反馈效果)与精确的位置跟踪定位系统配合系统进行焊接教学。
④仿真焊枪模拟真实焊枪。
可模拟焊条电弧焊枪、CO2气体保护焊枪、TIG氩弧焊枪。
(2)软件主要包括焊条电弧焊模拟训练子系统、CO2气体保护焊模拟训练子系统、TIG氩弧焊模拟训练子系统和虚拟焊接仿真子系统。
①焊条电弧焊模拟训练子系统。
可模拟焊条与工件互相熔化并在冷凝后形成焊缝,从而获得牢固接头的焊接过程的模拟系统。
②CO2气体保护焊模拟训练子系统。
可模拟以二氧化碳气体作为电弧介质,保护金属熔滴、焊接熔池和焊接区高温金属的一种熔焊模拟系统。
③TIG氩弧焊模拟训练子系统。
可模拟高强度电流密度效果,焊接过程中系统可体现氩弧焊燃烧稳定、热量集中、熔滴细小、飞溅少的使用特点。
④虚拟焊接仿真子系统虚拟焊接仿真子系统用于最后生成虚拟焊缝显示在屏幕上。
包括:将焊接工艺参数和焊枪运动参数状态信息传递给焊接仿真模型和仿真引擎;对工件、焊枪等焊接仿真环境进行静态几何建模, 完成焊缝模拟、烟、光照、火光、阴影、光照等特效3D图形渲染;实时监测仿真状态,输出动态仿真结果,分析、评价仿真过程数据。
⑷ONEW360焊接训练模拟系统
4.现ቤተ መጻሕፍቲ ባይዱ焊接训练模拟器分析与评价
该系统的中央控制台 连接着6个焊接架, 指导者 可以在中央控制台上,监 视训练者的操作情况, 分 析存储焊缝的信息。 不足:画面效果一般, 无力反馈功能,价格昂 贵。
4.现有焊接训练模拟器分析与评价
(2)HTS 模拟焊接培训系统(HTS)是由西安交通大学和 中油一建在中国石油天然气集团公司资助下,针对 焊工培训而开发的一款焊接模拟器。该系统具有焊 后评价焊条位置检测、场景虚拟和焊接知识培训系 统四个基本功能,采用沉浸式、交互式的方式,通 过手持模拟焊枪对模拟焊板进行虚拟焊接。
2.焊接训练模拟器的发展现状
2.2 焊接训练模拟器分类 (1)按显示方式形式分: 单屏幕无包裹:沉浸感差,逼真程度低,适用简单训练, 类似游戏机。 头盔式全包裹:沉浸感好,逼真程度高,适合焊接实际操 作场景的仿真。 (2)按焊枪运行状态跟踪方法分: 光学式、机械式、电磁式
2.焊接训练模拟器的发展现状
2.焊接训练模拟器的发展现状
2.1 焊接训练模拟器概述 传统焊接培训有高投入、无规范化、作业环 境差等缺点,随着现代计算机的发展,强大的个 人计算机运行真实地模拟焊接过程绰绰有余,使 得利用焊接训练模拟器成为训练焊工的另一种方 法。使用虚拟焊接仿真系统进行焊工的岗前培训 可有效解决以上问题。
2.焊接训练模拟器的发展现状
(3)CS-WAVE 2003年6月法国西施公司开发的CSWAVE焊 接仿真系统被AFPA(法国国家成人职业培训协 会)采用,系统使用InterSense公司提供的IS900 PCT racker 运 动 跟 踪 系 统 研 制 出 SMAW/GMAW仿真系统。CS WAVE系统的解决方 案可以将焊接动作分解, 再将焊接动作单独 或多种组合进行训练。
焊接操作仿真训练模拟
焊接操作仿真训练模拟器采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。
在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。
将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。
在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。
实现教师端各项功能,分别是:监控、课程设计、任务设计、学生管理、成绩管理、任务共享和系统设置。
教师机用于制定任务,供学生练习和考试,在考试完成后可以查看测试成绩,并对学生进行管理。
1、教师软件功能(1)监控选择虚拟焊接设备,向其发送训练或测试任务。
每台设备应可以同时接受不同类型的课程,或进入不同的模式。
(2)课程设计可以对课程内容进行设置,应包括:课程名称、任务等,并可方便的添加和删除。
应可以查看课程信息:选择一个节点,显示出该节点的详细信息。
(3)任务设计应可以对任务内容进行设置,须包括:任务名称、目的、焊机类型、接口类型、焊接位置、坡口类型和母材厚度等。
应可查看该教师设计的任务:选择一个节点显示出该节点的详细信息。
(4)学生管理应可以新建年级、新建专业、新建班级等。
(5)成绩管理须可以查看自己所管理班级的课程成绩单、学生测试成绩单、任务详细成绩单。
须能以文字报告、焊接参数曲线显示训练结果。
(6)任务共享须实现查看其它教师所设计的任务并能共享。
选择要查看的教师,任务列表中须显示出所有的任务,单击某一任务应可以查看任务详细信息。
(7)系统设置须可将学员列表中的自由设备添加到自己的教学组。
可以修改登录密码、设置公差等级的具体参数。
2、管理员功能须可向虚拟焊接设备发送任务;能查看课程信息、任务信息、学生信息和成绩;对教师进行管理;分配虚拟焊接设备设备。
管理员分为七个部分:设备监控、课程设计、任务设计、教师管理、学生管理、成绩管理和系统设置。
焊接模拟专业软件SYSWELD中文终极教程
焊接部分(使用软件版本visual-mesh6.1,sysweld2010,pam-assembly2009,weld-planner2009)一、软件安装说明软件包括visual-mesh6.1,sysweld2010,pam-assembly2009,weld-planner2009,其中pam-assembly2009,weld-planner2009统一叫做WeldingDE09,安装基本相同,点击setup,所有选项默认,点击next按钮,直到安装完成,点击finish。
所有安装完毕后,重启计算机,在桌面上出现ESI GROUP文件夹,所有软件的快捷方式都在此文件夹内。
二、基本流程中小件焊接过程模拟分析的步骤是CAD->网格划分(Visual-mesh)->热源校核(sysweld软件中的Heat Input Fitting)->焊接向导(sysweld软件中的welding wizrad)->求解(sysweld slover)->后处理观察结果(sysweld)网格网格划分是有限元必需的步骤。
Sysweld的网格划分工具采用visual-mesh。
版本使用的是6.1Visual –mesh界面见下图对于形状简单的零件,可以在visual-mesh里面直接建立模型,进行网格划分,对于复杂的图形,需要先在CAD画图软件中画出零件的3维几何图形,然后导入visual-mesh软件进行网格划分。
Visual-mesh的菜单命令中的Curve,Surface,Volume,Node是用来创建几何体的命令,接下来的1D,2D,3D是用来创建1维,2维,3维网格的命令。
对于一个简单的焊接零件,网格创建的步骤为:●建立节点nodes●生成面surface●网格生成a)生成2D mesh 用于生成3D网格b)拉伸3D mesh 用于定义材料赋值及焊接计算c)提取2D mesh表面网格用于定义表面和空气热交换d)生成1D 焊接线,参考线用于描述热源轨迹●添加网格组a)开始点,结束点,开始单元用于描述热源轨迹b)装夹点用于定义焊接过程中的装夹条件下面以T型焊缝网格划分为例,说明visual-mesh的具体用法,常用快捷键说明:按住A移动鼠标或者按住鼠标中键,旋转目标;按住S移动鼠标,平移目标;按住D移动鼠标,即为缩放;按F键(Fit),全屏显示;选中目标,按H键(Hide),隐藏目标;选中目标,按L键(Locate),隐藏其他只显示所选并全屏显示;Shift+A,选中显示的全部内容;鼠标可以框选或者点选目标,按住Shift键为反选;在任务进行中,鼠标中键一般为下一步或者确认。
焊接模拟器功能简介
KM-C-360焊接模拟器功能简介KM-C-360焊接模拟器是武汉科码软件有限公司自主研发的虚拟仿真焊接训练产品。
该产品能让学员在高度仿真的模拟环境下进行焊接技能的高效训练,让训练者能够感受到真实的焊接过程。
该产品可以有效地和周围真实的环境进行互动,让训练者处于高度逼真的环境中,有效促进操作者完全投入到当前的任务中。
焊接训练模拟技术适用于新一代焊接人员的培训和焊接就业教育,在一般的培训教室即可进行培训工作。
对于有经验的训练者,本产品系统提供高训练平台,通过视觉、听觉和触觉来操作完成一个好的焊缝;并且,本产品可以精确地测量到操作信息,训练者可以从中学到要点并能简便有效地将这些焊接技能转化到实际的焊接工作中。
KM-C-360焊接模拟器与传统的焊接训练相比,具有以下优点:一、适用性广:1、多种焊接工艺。
本实训设备可以模拟训练多种焊接工艺,包括:1)焊条电弧焊模拟训练系统焊条电弧焊模拟训练系统可模拟焊条与工件互相熔化并在冷凝后形成焊缝,从而获得牢固接头的焊接过程的模拟系统。
本系统可进行酸性焊条J422(Φ2.5、Φ3.2、Φ4.0)、碱性焊条J507(Φ2.5、Φ3.2、Φ4.0)的多种训练,并可对焊件进行平焊、立焊、横焊和仰焊等多种不同位置的焊接训练。
训练者在手工焊接操作时可看到焊缝熔池实时生成,训练者的手工操作直接影响到了熔池成形的结果,并由系统进行实时的专家评定焊接缺陷,以便训练者了改进焊接手法,以达到焊条电弧焊训练效果。
2)CO2气体保护焊模拟训练系统CO2气体保护焊模拟训练系统可模拟以二氧化碳气体作为电弧介质,保护金属熔滴、焊接熔池和焊接区高温金属的一种熔焊模拟系统。
本系统可选用药芯焊丝YJ502、YJ507、YJ507CuCr、YJ607、YJ707;自保护焊丝:直径Φ1.0、Φ1.2、Φ1.6。
并可对焊件进行平焊、立焊、横焊和仰焊等多种不同位置的焊接训。
训练者在手工焊接操作时可看到焊缝熔池实时生成,训练者的手工操作直接影响到了熔池成形的结果,并由系统进行实时的专家评定焊接缺陷,以便训练者了改进焊接手法,以达到CO2气体保护焊训练效果。
焊接操作训练模拟器技术方案(纯方案,34页)
焊接操作训练模拟器(双工位)技术方案1.1 系统概述气体保护焊模拟训ONEW-360焊接模拟器具备焊条电弧焊模拟训练系统、CO2练系统、氩弧焊模拟训练系统、机器人焊接。
能让学员在高度仿真的模拟环境下进行焊接技能的高效训练,可以让训练者能够感受到真实的焊接过程。
可以有效地和周围真实的环境进行互动,让训练者处于高度逼真的环境中,可有效促进操作者完全投入到当前的任务中。
对于有经验的训练者,本产品系统提供高训练平台,通过视觉、听觉和触觉来操作完成一个好的焊缝;并且,技术产品可以精确地测量到操作信息,训练者可以从中学到要点并能简便有效地将这些焊接技能转化到实际的焊接工作中。
单台ONEW-360双工位型焊接训练模拟器实训设备占地要求为长5米,宽2.5米,高2米。
1.2 技术基础当操作者进行训练时,系统中的多个传感器将获得的多个焊枪实时参数反馈给计算机,计算机对数据进行处理分析,并在显示装置和音响上显示相应的焊接画面和焊接声音。
焊接实训设备应具有以下技术:1、数字图像处理、信息技术。
2、计算机图形学、传感与控制技术。
3、多种焊接操作技术、安全操作规范。
4、融多项高新技术于一体,呈现代职业教育之先进手段。
5、新型的焊接训练实训设备是一种低成本、高效率、现代化的焊接训练解决方案。
焊接模拟器技术原理图1.3 视景仿真系统结构焊接模拟器视景仿真系统结构图各个模块应具有的功能如下:1、数据输入模块主要负责将焊接工艺参数和焊枪运动参数状态信息传递给焊接仿真模型模块和仿真引擎模块。
2、仿真模型模块主要负责对工件、焊枪等焊接仿真环境进行静态几何建模, 完成焊缝模拟、烟、光照、火光、阴影、光照等特效3D图形渲染。
3、焊接仿真引擎是系统的核心,它主要探寻焊接工艺、焊枪运动状态参数和焊缝横截面几何参数之间的关系。
4、仿真结果输出模块包括评价系统模块和其它功能子模块。
主要负责实时监测仿真状态, 输出动态仿真结果,分析、评价仿真过程数据。
5焊接仿真及调试
5.5仿真及调试
完成路径创建后,即可进行仿真及调试。
通过仿真演示,用户可以直观地看到机器人的运动情况,为后续的项目实施或者优化提供依据。
RobotStudio仿真软件还提供了仿真录像、视图录制和打包等功能,以方便用户之间进行交流讨论。
5.5.1 工作站仿真演示
在焊接实训仿真中,工作站仿真演示的具体操作步骤见表5-11.
5.5.2 仿真录像
在焊接实训仿真中进行仿真录像的具体操作步骤见表5-12。
表5-12焊接实训仿真中仿真录像操作步骤
5.5.3录制视图
5.5.4打包工作站
工作站打包文件可以在不同计算机上的RobotStudio软件中打开,以方便用户间的交流。
在焊接实训仿真中打包工作站的具体操作步骤见表5-14。
焊接训练模拟器虚拟空间中三维焊枪的实时构建(IJEM-V9-N5-3)
I.J. Engineering and Manufacturing, 2019, 5, 34-45Published Online September 2019 in MECS () DOI: 10.5815/ijem.2019.05.03Available online at /ijemReal-time Construction of 3D Welding Torch in Virtual Space for Welding Training SimulatorFangming, Yuana1a1 Wuhan University of Technology, Hu Bei Provence,Wu Han 430063,ChinaReceived: 16 April 2019; Accepted: 11 August 2019; Published: 08 September 2019Abstract One unsolved problem in the development of an effective welding training simulator is how to construct an accurate 3D welding torch model based on the moving position of this torch in the training process. This paper presents an effective approach to deal with the problem. The whole scene is constructed in the base coordinate system and the torch is modeled as a 3D object in the sub-coordinate system. The sub-coordinate system firstly overlaps the base coordinate system, and it’s continuously changing as the trainer operates the torch. A nine axis sensor is installed in the torch at a selected point, which is the origin of the sub-coordinate system. The sensor can measure the rotation posture of the torch. Another marked point that can be captured by the Binocular Vision System (BVS) is installed with an infrared emitter. The BVS can measure the coordinate values of this point in the base coordinate system. As long as the coordinate values of a certain point on the model and its rotation posture based on this point can be determined, the VR development tool, such as Unity-3d,can track the model in real-time. That is the algorithm of this system, which is verified by Pro/E, a 3D modeling software. The approach presented above is applied to a welding training simulator product, which has been put into use and proved to be effective.Index Terms: Virtual and Augmented Reality Applications, Welding simulator, Real-time positioning system, Real-time visualization.© 2019 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Mode rn Education and Computer Science* Corresponding author. E-mail address: fangming1995@Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training Simulator351. IntroductionIn practical production, welding is widely used, from bridge construction, space shuttle, large ships to building materials, bicycle production and door manufacturing. The types of welding are classified according to different standards, and most of them are done by human workers. Therefore, the quality and efficiency of welding largely depend on workers' operating skills and experience. However, the improvement of workers' operating skills can only be achieved through multiple welding practices. Argon arc welding, for example, produces a lot of smoke and strong light, and the workers have to wear heavy protective equipment. Welding gun and welding rod in the actual operation process, on the other hand, will consume a lot of human and material resources, so there are great drawbacks and defects in the actual welding operation as a way of training workers. The purpose of this study is to design an efficient and environmentally friendly virtual welding simulator, which can be used by workers to replace the actual welding gun for welding training.Using virtual welding training technology instead of physical welding for welding training has incomparable advantages, but the development of such virtual welding system contains many technical difficulties. One of them is how to locate the virtual welding torch and determine the pose of the torch in real time. Many researchers have made great efforts in this field.On the basis of summarizing predecessors' work, we put forward a new real-time positioning algorithm for welding gun. This algorithm has been strictly calculated and proved, and the solid model is established in PRO/E software, which verifies the correctness and accuracy of this algorithm. In the section 2, we list the relevant researches in this field, and learn the excellent part and successful experience from these researches.In section 3, the hardware structure and working principle of the virtual welding gun simulator are described. Compared with text, graphic representation has more intuitive advantages. In section 4, we introduce the important hardware components, and introduce the principle of Nine-axis sensor and Binocular Vision System in detail.In section 5, the real-time positioning algorithm of the virtual welding simulator is described in detail, including matrix operation process and applied mathematical equations. In the section 6, the algorithm described above is verified by 3D modeling software, and the practical application of the virtual welding simulator is introduced.At the end of the article, the advantages of the algorithm and the current limitations are summarized and discuss the prospect for the future work.2. Literature reviewVirtual reality technology(VR) has been developed for a long time, with a perfect knowledge system and research methods. This technology has a wide range of applications, which can be integrated with many practical working scenes. The application of virtual reality technology in welding scene is a big promotion of virtual reality technology, and it also overcomes the unbearable difficulties in actual welding scene, such as high temperature, gas, strong light and so on. Up to now, many scholars and research institutions have conducted comprehensive researches in this field and achieved good results.Kenneth Fast built a virtual welding system to simulate the gas metal arc welding (GMAW) process. The system makes use of a real GMAW welding torch, which is connected to a 3 DOF haptic device. The haptic device has a work envelope of 1 and a force resolution of 1 gm. Translational forces are applied at the tip of the welding torch. The motion of the welding torch is tracked by using a commercial inertial 6 DOF tracking system and the angular orientation of the welding torch is also tracked by three-axis measurement gimbals. The real-time tracking data is used to update the force model for the haptic device and viewpoint for the visual display [1].36Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training SimulatorScholar YiZhong Wang and his team developed a simulation model to simulate the wet arc welding, which is operated underwater. A haptic underwater wet arc welding training system is established, which mainly consists of three parts: a haptic device, an underwater wet arc welding model, and a virtual welder diver training model. The underwater wet arc welding model is used to generate proper underwater wet welding parameters for different wet welding situations. The virtual welder diver training model receives the welder diver's performance data, evaluates the performance, and generates the feedback to correct the errors of wet welding [2] .Steven White and his teammates developed a welding training system that can simulate the welding process in real-time and give feedback to welders and the feedback can be used to analyze the process by the teacher afterwards. The system is based mainly on COTS components, a standard PC with a Dual-core CPU, and a medium-end nVidia graphics card. The torch is tracked by an Opti-Track system with 3 FLEX: V100 cameras. The same is also used to track a regular welding helmet to get accurate eye positions for display. The display itself is a Zalman Trimon stereo monitor that is laid out horizontally[3].In the study of Yukang Liu, he designed a system that can simulate the GTAW process. The system consists of two workstations: welding station and virtual station. The welding station consists of an industrial welding robot, an eye view camera, and a compact 3D weld pool sensing system. In the virtual station a human welder can view the mock up where the weld pool image is rendered and displayed, and moves the virtual welding torch accordingly as if the operator is right in front of the work-piece. The human welder’s movement is accurately captured by a Leap motion sensor, and the obtained virtual welding torch tip 3D coordinates will be sent to the PC.These researches mentioned above provide several methods of the simulation system, but most of the authors didn’t illustrate the algorithm of determining the location and pose of the torch in real time. That algorithm is the key point of this design, and it is essential to demonstrate the method and the algorithm clearly.The difficulty of this design is to determine the coordinate values of a certain point on the welding torch and the rotation posture of the torch based on that point. In order to accurately locate the simulated welding torch in real time, we set the installation point of the nine-axis sensor as the reference point. In this paper, binocular vision system and nine-axis sensor are adopted to the system. The coordinate values of the infrared marked point can be obtained by the BVS, and the coordinate values of the nine-axis sensor can be deduced accurately from this and the transformation matrices. With the rotation angles being measured by the nine-axis sensor, the goal of real-time positioning of the simulated welding torch can be achieved. It has been verified that the algorithm is accurate and the model can provide a good man-computer interaction experience. This method can be applied to practical welding training products that can be put into mass production.3. System frameworkThe hardware structure of this system is shown in the Fig.1. The design of hardware components includes main control computer, image acquisition card, cameras, the simulated welding torch, test plate and the monitor. The motion parameters are measured by a nine-axis sensor, and the binocular vision system is used to determine the position coordinates of the marked point in the welding torch. The flowchart of the system is shown in Fig.2. This flowchart intuitively shows the working process of the virtual welding simulator. Firstly, the position of the welding gun is measured by the Binocular Vision System, which is represented by the coordinate value in the global coordinate system, Then the Nine-axis sensor measures the real-time tilt angle of the welding gun, and the computer determines the real-time position of the welding gun by integrating the coordinate value of the welding gun and the tilt angle.Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training Simulator37Dual cameras measure welding torch in real timeSimulated welding torchinfrared bulbNine axis sensorImage acquisition cardSimulatedMCCplateCMOS camerasFig. 1. Structure diagram of hardwareMonitorFig.2. Flowchart of this system38Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training Simulator4. Measuring equipment4.1 Nine axis sensorThe nine-axis sensor is a combination of three sensors: a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer. The three-axis accelerometer measures the acceleration of the object by indirectly measuring the force on the object, and presents the motion of the object. The three-axis gyroscope mainly measures the rotation rate of the object on X, Y and Z axes, that is, the rate of changes of the rotation angles; By measuring the intensity and direction of the magnetic field, the three-axis magnetometer locates the orientation of the object and measures the angles between the object and each coordinate axis. Nine-axis sensor is an integrated sensor module, which reduces the circuit board and overall space. Compared with other sensors, nine-axis sensor is more suitable for light and portable electronic devices and wearable products, with better measurement accuracy and function.The data accuracy of the integrated sensor depends on the accuracy of the equipment itself, and also involves the correction after welding and assembly, as well as the matching algorithm for different usage scenarios. The motion state of the object can be determined according to the data measured by the accelerometer. The suitable algorithm fuses the data from various sensors to make up for the shortcomings of single sensor in calculating the precise orientation and direction. So the nine-axis sensor can achieve high precision motion detection. Therefore, nine-axis sensor is the most suitable measuring equipment in a welding simulator. By working together, the nine-axis sensor calculates the real-time position of the object in the help of the fusion algorithm. (Fig.3.)Fig.3(a-b). Schematic diagram of nine-axis sensor4.2 Binocular Vision SystemThe Binocular Vision System is an important form of machine Vision. The working principle of Binocular Vision System is based on the principle of human vision, and it's a way for computers to perceive distance. By observing an object from two or more points, images from different perspectives can be obtained. According to the matching relationship of pixels between images, the offset between pixels can be calculated based on the triangulation principle, so as to obtain the 3d information of objects. With the depth of field information of the object, we can calculate the actual distance between the object and the camera, the 3d size of the object, and the actual distance between two points.Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training Simulator39Fig.4. Schematic diagram of binocular vision systemIn order to accurately obtain the depth information of a certain point in 3d space, we need to obtainparameters such as focal length f, parallax d and camera center distance . To get the X and Y coordinatesof a certain point, you also need to know the deviation of the left and right plane coordinate system and thecentral point of the stereo coordinate system, and . Therefore, we need to carry out the following threesteps: camera calibration, image correction and stereo matching. Due to the limited space of the article, thedetailed introduction of these three steps is omitted here.The realization of binocular stereoscopic imaging is based on the principle of parallax, and its model isshown in the figure. This model is based on a set of mathematical models that are non-distortion, alignmentand based on a measured standard stereoscopic experimental table. The stereo vision system is composed oftwo cameras on the right and left. The coordinate values on the imaging plane and in the two camerasof point A (X, Y, Z) areand, respectively. These two image points are the images ofthe same object point A, which are called "Conjugate Points". Making the connections respectively betweenthem and the optical centers of the two cameras and , the intersection point is the object A(X, Y, Z) inthe world space. That's the basic principle of stereo vision. (Fig.4.)5. AlgorithmIn this positioning system, the coordinate systems are all right-handed. After determining the worldcoordinate system, the welding torch coordinate system is established on this basis. There is an infraredemitter point B on the simulated torch, whose coordinate values () in the world coordinatesystem are measured by the binocular vision system. A nine axis sensor is installed in the torch at a selectedpoint C, which is the origin of the welding torch coordinate system. The nine-axis sensor measures the tiltangles of the welding torch (α,β,γ) in real time. With the help of the transformation matrix betweencoordinate systems, the coordinate values of point C in the world coordinate system and the real-time rotationposture of the welding torch are derived from the known coordinate values of point B and the tilt angles of thewelding torch. (The model diagram is shown in the Fig.5.)40Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training SimulatorFig.5. Model diagram of simulatorThere are three types of rotation matrices of coordinate system about the X axis, Y axis and Z axis. The rotation matrix is shown as follows:(1)In the initial state, the infrared emitter’s coordinates in the torch coordinate system are known as B(, ). The coordinates of point C on the welding torch in the world coordinate system( , ,)are the values to be solved. The rotation matrices are combined in a certain order to obtain the rotationtransformation matrix. In this paper, coordinate values of B are calculated in accordance with the commonlyused rotation order of z-x-y axis. The coordinate relation of point B between the two coordinate systems isshown as follows:=+(2)**(3)Integrate equations (2) and (3), and we can get:= -**(4)=-(5)According to the above formula, the coordinate values of point C in the world coordinate system can be obtained. Since the rotation matrix is an orthogonal matrix, its inverse matrix is the transposed matrix of theoriginal matrix, and that's where the rotation matrix comes in handy.(, )represents the positionalrelationship between point B and point C in the initial situation. This value is accurately determined whenconstructing the torch model and is one of the known parameters of the system.(, )is anintermediate variable that represents the positional relationship between point B and point C at any time, thatis, the coordinate value of point B in the torch coordinate system at any time.Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training Simulator41After finding the coordinate values of point C in the world coordinate system, set a point H at the end of the welding torch, then connect B、H and extend the linear. The intersection of linear BH with X-O-Y plane of the world coordinate system is the location of A, the welding molten pool. According to the spatial linear equation:(6)Point A is on the X-O-Y plane (Seen in the Fig.5.), therefore equals 0. Then we can get the coordinatevalues of the welding molten pool in the world coordinate system().6. Examination and field application6.1 ExaminationIn this paper, the Pro/E 3d modeling software is used to build the models and to verify the correctness of coordinate algorithm. Firstly, the point C on the nine-axis sensor of the welding torch is selected to set up the 3D model of the welding torch. Then set the positional relationship between the infrared emitter point B andthe nine axis sensor installation point C. It means that(, )has been determined.Operate the software to rotate the model around the three axis for 、 、ɤ respectively, and thus simulatethe welding torch in new position and posture in the space. To make it convenient and clear, set the infraredemitter’s initial coordinate values(, )in the torch coordinate system as (-50,-50,0) and point C inthe world coordinate system()for (100,100,0)Fig.6.The interface of model test in the softwareThere are three groups of model verification processes. As is shown in Table 1, the model is rotated around the coordinate axis according to the values in the table. Then the coordinates of point B in the base coordinate system are measured. By comparing the coordinate values calculated by the above algorithm and the measured coordinate values, the correctness of the algorithm is obtained. Fig.6. shows the interface of the Pro/E software model validation. In this software the coordinate values of the marker on the model can be displayed directly. The red model in Fig.6 represents the position before the rotation transformation, and the gray model represents the position after the rotation transformation.42Real-time Construction of 3D Welding Torch in Virtual Space for Welding Training SimulatorBy measuring the position coordinates of point B in the base coordinate system()andcomparing them with the coordinate values calculated by the algorithm, the two sets of values are equal andthe correctness of the algorithm is verified.Table 1.The coordinate value of B in the base coordinate systemThe coordinate values after rotation The first group(37°、45°、90°) The second group(45°、45°、45°) The third group(30°、30°、30°)X 50.48 64.64 67.07Y 50.48 50.0 40.85Z 9.84 -35.36 20.426.2 Field applicationThe real-time positioning method designed in this paper has been successfully applied to practical products. Wuhan KeMa co. developed a new generation of welding simulator based on this positioning algorithm. Compared with the previous generation of products, this simulator has a limited improvement effect in terms of time delay reduction, etc., but the positioning accuracy of welding gun has been greatly improved. Therefore, the users can get a better human-computer interaction experience. In the process of further improvement, the trainer can get more intuitive feedback by adding voice prompts and enhancing the rendering effect.The figure below shows the picture displayed when the welding simulator is working (Fig.7.).Fig.7. Operation interface of the simulatorReal-time Construction of 3D Welding Torch in Virtual Space for Welding Training Simulator437. ConclusionsThis paper introduces a real-time positioning system of virtual welding torch in the simulation welding training. Its basic principle is to obtain the exact coordinate values of unknown points according to the transformation matrix relation between the coordinate values of two spatial points. Based on this principle, a practical algorithm is designed to track the position and pose of the virtual welding torch. The accuracy of the algorithm is fully verified by comparing the results of several examples in 3D modeling tools.Obtaining the accurate position information of the nine-axis sensor is the key to accurately positioning the virtual torch. If the installation point of the Nine-axis sensor and the infrared marker of the BVS are the same point, this problem will be easily solved. But in fact, these two points cannot be completely overlapped, because in the manufacturing process, this is impossible to achieve. Prior to this, most of the welding simulators placed the two points very closed, so they were treated as the same point. This method is inherently wrong, let alone its accuracy.The positioning method designed in this paper has undergone rigorous derivation calculation, and it has solved the above mentioned shortcomings well, which greatly improves the positioning accuracy. However, there are also some limitations. For example, there will be further requirements for the welding torch production process to ensure the accuracy of their positional relationship. In addition, the production cost of the welding simulator will be a little higher. Looking ahead to the future work, the details of the welding simulator can be further improved and developed, so the users shall have a more vivid human-computer interaction experience. And we can figure out some ways to improve the service life of the welding simulation.AcknowledgementsIn the process of writing this article, Professor Guo Xing and Wang Guoxian have given me great help and recommended many references. I also want to thank my classmates for helping me solve many practical problems with the modeling software. Thank you, Ms. Zhu FeiFei, for helping me correct the grammatical errors in my manuscript. I would like to express my heartfelt thanks to the above friends.References[1] Fast, K., Gifford, T., Yancey, R. Virtual training for welding [P]. Mixed and Augmented Reality, 2004. ISMAR 2004. Third IEEE and ACM International Symposium on, 2004.[2] Yizhong Wang, Yonghua Chen, Wenjie Zhang, Dingcheng Liu, Huafang Huang. Study on underwater wet arc welding training with haptic device [P]. VECIMS '09. IEEE International Conference on, 2009.[3] White, S., Prachyabrued, M., Baghi, D., Aglawe, A., Reiners, D., Borst, C., Chambers, T. Virtual Welder Trainer [P]. Virtual Reality Conference, 2009. VR 2009. IEEE, 2009.[4] Xiwen Liu. Single neuron self-tuning PID control for welding molten pool depth [P]. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, 2008.[5] Xin Yin, Zhen Zhang. Defect recognized system of friction welding based on compensatory fuzzy neural network [P]. Machine Learning and Cybernetics, 2009 International Conference on, 2009.[6] Ning Huang,YuKang Liu,Shujun Chen,YuMing Zhang. Control of human welder's arm movement in (GTAW) process [P]. Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, 2014.[7] B. Xie, Q. Zhou and L. Yu, "A real-time welding training system base on virtual reality," 2015 IEEE Virtual Reality (VR), Arles, 2015, pp. 309-310.[8] U. Yang, G. A. Lee, Y. Kim, D. Jo, J. Choi and K. Kim, "Virtual Reality Based Welding TrainingSimulator with 3D Multimodal Interaction," 2010 International Conference on Cyberworlds, Singapore, 2010, pp. 150-154.[9] S. Nawrocki, L. Hao and X. Tang, "Modeling & analysis of weld short faults of bar-wound propulsionIPM machine part II: Phase-to-phase short," 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, 2011, pp. 1-4.[10] B. Hazel, E. Boudreault, J. Côté and S. Godin, "Robotic post-weld heat treatment for in situ repair ofstainless steel turbine runners," Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry, Foz do Iguassu, 2014, pp. 1-6.[11] H. Tokunaga, N. Matsuki, H. Sawada, T. Okano and Y. Furukawa, "A robot simulator for manufacturingtasks on a component-based software development and execution framework," (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005., Montreal, Que., 2005, pp. 162-167.[12] E. E. M. Mohamed, T. A. Ahmed and M. A. Sayed, "Real-time simulation of position control for linearinduction motor drives using cascaded sliding mode control," 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, 2018, pp. 386-391.[13] W. Yao and L. Ma, "Research and Application of Indoor Positioning Method Based on Fixed InfraredBeacon," 2018 37th Chinese Control Conference (CCC), Wuhan, 2018, pp. 5375-5379.[14] G. Cao, L. Lin, H. Qiu and J. F. Pan, "Design and analysis of a dSPACE-based position control systemfor a linear switched reluctance motor," 2009 3rd International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, 2009, pp. 1-4.[15] T. LI and H. ZHU, "Research on model control of binocular robot vision system," 2018 ChineseAutomation Congress (CAC), Xi'an, China, 2018, pp. 1794-1797.[16] P. Hu, X. Hao, J. Li, C. Cheng and A. Wang, "Design and Implementation of Binocular Vision Systemwith an Adjustable Baseline and High Synchronization," 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, 2018, pp. 566-570.[17] F. Zhao and Z. Jiang, "A New Algorithm for Three-dimensional Construction Based on the RobotBinocular Stereo Vision System," 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, Jiangxi, 2012, pp. 302-305.[18] G. Yang, W. Jin and T. Xu, "Design and implementation of infrared-binocular vision system for robotnavigation," 2011 Chinese Control and Decision Conference (CCDC), Mianyang, 2011, pp. 4185-4188.[19] J. Deng, J. Li, X. Zou and F. He, "A Test System of Binocular Vision of Picking Robot," 2010International Conference on Measuring Technology and Mechatronics Automation, Changsha City, 2010, pp. 369-372.[20] C. Ruan, X. Gu, Y. Li, G. Zhang, W. Wang and Z. Hou, "Base frame calibration for multi-robotcooperative grinding station by binocular vision," 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), Shanghai, 2017, pp. 115-120.[21] Wang, XW (Wang, Xuewu).Three-dimensional vision-based sensing of GTAW: a review[J].InternationalJournal of Advanced Manufacturing Technology,2014,Vol.72,No.1-4.。
3D焊接模拟
3D焊接模拟3D虚拟焊接模拟10090113 李翠一、实验时间、地点、参加人员实验时间:2013.12.5(第14周周四)实验地点:校工厂车间二层实验室参加人员:李翠、王蓝、包育典等9人二、实验目的1、了解虚拟焊接仿真的操作步骤和流程;2、熟悉ARC+焊接模拟器的操作方法;3、掌握某一种材料、母材装配、焊接位置的虚拟焊接仿真操作,并利用软件进行焊接质量诊断和评价,发现焊接中存在的问题。
三、实验原理焊接训练模拟器(Welding Simulator)是一台通过计算机处理器,模拟电弧焊接环境及操作过程的教学仪器。
它不需要实际的焊接设备、气体、及金属基材,因而也不产生热、辐射及实际的电焊火花。
它完全通过“3D 绘图模拟软件ARC”在显示屏上模拟显示真实的焊接环境,训练人员通过操作特制的模拟焊接手持焊枪,由探测器捕捉,即可在显示屏上模拟出真实的焊接过程、焊接产品及焊接效果。
显示屏为15寸触摸屏,无需键盘、鼠标,程序快速启动。
可任意选择模拟基体材料、焊接工艺、焊接前后准备工作、焊接位置和焊枪姿态;可模拟超过100个焊接工艺、有多种训练模式选择;系统可进行网络连接、训练程序备份。
四、实验设备Arc+焊接模拟器1、仪器组成:(1)硬件设备:实际焊接工艺模拟设备(焊枪)、Arc+焊接模拟系统、动态3D感应系统、焊接头盔;(2)软件系统:3D绘图软件ARC+;2、主要参数:(1)应用范围:可实现MMA焊、MIG焊、TIG焊虚拟3D焊接环境模拟(2)15寸触摸屏(3)可任意选择集体材料、焊接工艺、焊接前后准备工作、焊接位置和焊枪姿态(4)模拟超过100个焊接工艺(5)多种焊接训练模式3、设备特色:(1)设备根据3D绘图软件ARC+和虚拟焊接工艺模拟设备(焊枪)进行焊接模拟教学(2)可以实现MMA焊、MIG焊、TIG焊虚拟3D焊接环境模拟(3)针对不同焊接方法及焊接工艺参数进行焊接训练,并可针对焊接过程进行问题诊断(4)可进行焊接工作的高度模拟,实现无污染、零耗材的焊接教学4、主要应用:(1)教学、认证培训及科学研究的焊接训练模拟;(2)适用于被培训者多层次训练模式;(3)操作人员焊接手法的提高;(4)焊接工作质量评价;(5)焊接问题诊断;(6)虚拟金属工程项目;(7)高度适应多样性操作,精确的运动定位技术能精密捕捉焊接操作运动;(8)测试及记录被培训者能力进展的快速反应;(9)练习日志记录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉科码焊接操作仿真训练模拟器
产品采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。
在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。
将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。
在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。
可实现教师端各项功能,分别是:监控、课程设计、任务设计、学生管理、成绩管理、任务共享和系统设置。
教师机用于制定任务,供学生练习和考试,在考试完成后可以查看考试成绩,并对学生进行管理。
1、教师软件功能
(1)监控
选择虚拟焊接设备,向其发送训练或考试任务。
每台设备应可以同时接受不同类型的课程,或进入不同的模式。
(2)课程设计
可以对课程内容进行设置,应包括:课程名称、任务等,并可方便的添加和删除。
应可以查看课程信息:选择一个节点,显示出该节点的详细信息。
(3)任务设计
应可以对任务内容进行设置,须包括:任务名称、目的、焊机类型、接口类型、焊接位置、坡口类型和母材厚度等。
应可查看该教师设计的任务:选择一个节点显示出该节点的详细信息。
(4)学生管理
应可以新建年级、新建专业、新建班级、新建学生、修改学生信息、删除信
息等。
(5)成绩管理
须可以查看自己所管理班级的课程成绩单、学生考试成绩单、任务详细成绩单。
须能以文字报告、焊接参数曲线显示训练结果。
(6)任务共享
须实现查看其它教师所设计的任务并能共享。
选择要查看的教师,任务列表中须显示出所有的任务,单击某一任务应可以查看任务详细信息。
(7)系统设置
须可将学员列表中的自由设备添加到自己的教学组。
可以修改登录密码、设
置公差等级的具体参数。
2、管理员功能
须可向虚拟焊接设备发送任务;能查看课程信息、任务信息、学生信息和成绩;对教师进行管理;分配虚拟焊接设备设备。
管理员分为七个部分:设备监控、课程设计、任务设计、教师管理、学生管理、成绩管理和系统设置。
(1)设备监控
须可以查看当前焊接设备,通过选择教师(管理员“设备监控”可以“选择教师”,其他功能与教师“监控”相同)、课程及任务向学员机发送任务。
(2)课程设计
管理员端“课程设计”可以“选择教师”,须可以查看其教师名下的课程及详细任务信息。
其他功能与教师登录的“课程设计”相同。
(3)任务设计
管理员的“任务设计”须可以“选择教师”,并能查看其任务列表,详细任务信息等。
(4)教师管理
须具有管理员权限的人员,可添加和修改教师账户信息。
(5)学生管理
须可以选择教师,查看其管理的学生信息。
(6)成绩管理
须可以选择教师查看其管理学生的考试信息等。
(7)系统设置
通过设备管理应可以方便的添加和删除设备。
通过设备分组须可以给每个教师分配学员。
3.模拟焊接的内容与种类
1) 该系统须适用于多种焊接类型,可模拟三种不同的焊机,其中包含:二氧化碳保护焊、焊条电弧焊、TIG氩弧焊。
2) 该系统应可进行多角度、全位置焊接演练。
通过更换焊件,须可模拟多种不同的焊接方式,例如平焊、立焊、横焊、仰焊等;适用于对接、T接等接头形式。
3) 系统应提供分级培训模式,系统将培训阶段分为三级,每级的公差大小完全由教师设置,须对不同阶段与等级的学员分别设置,完成学员培训循序渐进,由易到难的过程。
4) 系统应可提供完善的语音提示,辅助指导学员的培训过程与应用。
5) 焊接过程中须可以通过图形及语音提示帮助学员校正操作姿势,从而降低教师的劳动强度,并大大提高培训效果,缩短培训时间。
6) 该系统应没有焊丝、焊件和保护气体等材料的消耗,节约电能,后期培训节约资金。
7) 虚拟仿真焊接应安全可靠,不存在因焊接使用不当引起的火灾、人员灼伤等问题。
8) 该系统须不排放有毒气体、低消耗,无污染、无噪声,是环保绿色的培训方式。
9) 该系统须采用计算机仿真技术,人员的视觉效果、听觉效果与真实环境一致。
10)虚拟仿真焊接须采用无线网络通讯技术实现设备网络化,提高培训效率。
应用便捷、移动方便、管理灵活。
11)该系统须具有完善的学员与教师管理功能,可以通过管理员权限进行教师管理,教师可以对所属学员进行完善的管理。
包括:年级、专业、班级、学员及成绩等。
12)该系统应可实时记录学员操作信息,测评效果真实,可反复训练,无环境条件限制。
13)考试结果考完即刻生成,学员帐号、成绩管理方便,应可长期保存,并可以进行任意的查询、打印。
14)任务与标准答案设置应可完全对教师开放。
多个教师之间,任务具有方便的共享功能。
15)该系统须配备观摩教学投影设备,能够显示虚拟焊接设备的所有操作及演练过程,方便教学应用。
16)教师可通过调整各种参数的分值比重来重点考察学员某一方面技能。
17)系统须具有训练及考核功能,系统应支持多教师同时管理多客户终端设备的功能。
18)系统须可方便的进行课程组织及焊接任务设置。
可以设置母材材料、母材厚度、接头种类等多种项目。
母材材料至少应包含碳钢、不锈钢。
19)系统应能够根据教师所建立的任务参数设置标准,自动监控学员的参数输入正确与否,并针对错误做出相应的扣分。
20)该系统须具有虚拟的焊接焊件、焊枪、19英寸触摸显示屏以及视景眼镜。
通过触摸屏,学员应可根据任务的焊接工艺标准,调整焊接电流、焊接电压、气体流量和焊丝直径的数值大小。
21)该系统须具有仿真示范教学功能,示范最佳的焊枪姿态(包括焊接速度、焊枪与工件的距离和位置等)。
22)该系统须可精确计算热输入量和熔敷率,应可实现各种焊接工艺并让工艺过程接近真实。
23)系统须可对训练过程进行回放。
24)系统须可体验短路电弧和喷射电弧的使用感觉。
25)系统应配备虚拟焊件升降、缩进、旋转操作杆,可调节虚拟场景焊件的位置,满足多位置、多角度(可进行360度)焊接的演练需要。
26)虚拟焊接仿真实训系统须可在不浪费昂贵耗材的情况下,多次进行同一项训练。
27)系统须配备视景眼镜,在不需要真实焊材和环境的情况下,应可在视野中看到模拟的焊接作业环境和焊接效果,如焊接电弧、火花飞溅以及焊液从生成、流动到冷却的过程,并能听到相应的声音,产生强烈的身临其境之感。
28)使用焊接模拟培训系统,任何焊接动作所对应的参数都须能被跟踪、记录,学员可回放焊接过程;通过演练过程中参数的不同变化来对学员的焊接动作规范及焊接质量进行精确地分析,这些信息应能由服务器进行处理,归档,便于对学员的学习过程进行跟踪。
29)须可以根据学员的实际情况,为学员设定个性化的培训计划,并根据训练监控及分析结果随时进行修改及调整。
学员也可以进行自助训练。
系统须具有明晰的操作界面,使任何操作者能自助使用和掌握模拟焊接综合仿真实训系统。