青岛市中考数学动点题经典例题
(中考数学)动点问题经典例题
(中考数学)动点问题经典例题
函数揭示了运动变化过程中量与量之间的变化规律是初中数学的重要内容。
动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系。
那么我们怎样建立这种函数解析式呢?下面结合中考试题举例分析。
Part 1
应用勾股定理建立函数解析式
Part 2
应用比例式建立函数解析式
Part 3
应用求图形面积的方法建立函数关系式
专题二函数中因动点产生的相似三角形
函数中因动点产生的相似三角形问题一般有三个解题途径:
①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
专题三中考动点题目练习
--------------------------------------。
中考数学动点问题(含答案)
中考数学之动点问题一、选择题:1. 如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停顿,设点P运动的路程为*,△ABP的面积为y,如果y关于*的函数图象如图2所示,则△ABC的面积是〔〕A、10B、16C、18D、20二、填空题:1. 如上右图,C为线段AE上一动点〔不与点A,E重合〕,在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_______________________〔把你认为正确的序号都填上〕。
三、解答题:1.〔2008年大连〕如图12,直角梯形ABCD中,AB∥CD,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C作CH⊥AB,垂足为H.点P为线段AD上一动点,直线PM∥AB,交BC、C H于点M、Q.以PM为斜边向右作等腰Rt△PMN,直线MN交直线AB于点E,直线PN交直线A B于点F.设PD的长为*,EF的长为y.⑴求PM的长(用*表示);⑵求y与*的函数关系式及自变量*的取值范围(图13为备用图);⑶当点E在线段AH上时,求*的取值范围(图14为备用图).2.〔2008年福建宁德〕如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时0<x<,△DCQ的8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为*秒()8面积为y1平方厘米,△PCQ的面积为y2平方厘米.⑴求y1与*的函数关系,并在图2中画出y1的图象;⑵如图2,y2的图象是抛物线的一局部,其顶点坐标是〔4,12〕,求点P的速度及AC的长;⑶在图2中,点G是*轴正半轴上一点〔0<OG<6=,过G作EF垂直于*轴,分别交y1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<*<6时,求线段EF长的最大值.3.〔2008年白银〕如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为〔4,3〕.平行于对角线AC 的直线m 从原点O 出发,沿*轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t 〔秒〕. (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t=秒或秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?假设有,求出最大值;假设没有,要说明理由.参考答案一、选择 A二、填空:〔1〕〔2〕〔3〕〔5〕 三、解答: 2、解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =*, ∴x y 231=. 图象如下图.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*, ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是〔4,12〕,∴12444212=⋅+⋅-k k . 解得23=k .图1C Q → B图2则点P 的速度每秒23厘米,AC =12厘米. 方法二:观察图象知,当*=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得 12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过〔0,0〕,〔4,12〕,〔8,0〕,∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*,∴kx kx y 42122+-=. ②比拟①②得23=k .则点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差〔或△PDQ 面积〕. ②由⑵得 x x y 64322+-=.〔方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=〕∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大. 3、解:(1)〔4,0〕,〔0,3〕; 2分 (2) 2,6; 4分 (3) 当0<t ≤4时,OM =t .由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. 8分S=矩形OABC 的面积-Rt △OAM 的面积- Rt △MBN 的面积- Rt △NCO 的面积=12-)4(23-t -21〔8-t 〕〔6-t 43〕-)4(23-t =t t 3832+-. ·························· 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t .7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t .8分 以下同方法一. (4) 有最大值.方法一: 当0<t ≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; 11分当4<t <8时, ∵ 抛物线S=t t 3832+-的开口向下,它的顶点是〔4,6〕,∴ S <6. 综上,当t=4时,S 有最大值6. 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如下图. 11分显然,当t=4时,S有最大值6. 12分说明:只有当第〔3〕问解答正确时,第〔4〕问只答复"有最大值〞无其它步骤,可给1分;否则,不给分.。
中考数学高频考点三角形动点问题
中考九年级数学高频考点专题训练--三角形-动点问题一、单选题1.如图,正方形ABCD和等腰直角三角形EFG,斜边EF与AD在一条直线上,AB=6,EG=4,△EFG沿射线DA方向运动(点E从点D出发),设ED=x,△EFG与正方形ABCD重叠部分的面积为y.若y=7,则x的值为()A.3√2或4√2B.3√2或6+√2C.6+√2或6−√2D.3√2或6−√22.如图,在等边△ABC中,AB=2 √3,点D在△ABC内或其边上,AD=2,以AD为边向右作等边△ADE,连接CD,CE.设CE的最小值为m;当ED的延长线经过点B时,∠DEC=n∘,则m,n的值分别为()A.√3,55B.√3,60C.2 √3-2,55D.2 √3-2,603.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60°得到线段BQ,连接CQ,则在点P运动过程中,线段CQ的最小值为()A.5B.10C.20D.25 4.如图,在等边△ABC中,AB=12,点D在AB边上,AD=4,E为AC中点,P为△ABC内一点,且∠BPD=90°,则线段PE的最小值为()A.3 √3﹣2B.4√3−2C.2 √13﹣4D.4 √13﹣85.如图,线段AB的长为8,点D在AB上,ΔACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为()A.5B.4C.4√3D.5√3 6.如图,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA、PB、PC,求PA+PB+PC的最小值()A.3√2B.3+ √2C.3√3D.3+ √3 7.如图,直角三角形ABC中,AC=BC,AD是△ABC的角平分线,动点M、N同时从A点出发,以相同的速度分别沿A→C→B和A一B→C方向运动,并在边BC上的点E相遇,连接AE,①AE平分△ABC的周长,②AE是△ABD的角平分线,③AE是△ABD的中线.以上结论正确的有()A.①②B.①③C.②③D.①②③8.正方形ABCD的边长为8,点E、F分别在边AD、BC上,将正方形沿EF折叠,使点A 落在A′处,点B落在B′处,A′B′交BC于G.下列结论错误的是()A.当A′为CD中点时,则tan∠DA′E=34B.当A′D:DE:A′E=3:4:5时,则A′C=163C.连接AA′,则AA′=EFD.当A′(点A′不与C、D重合)在CD上移动时,△A′CG周长随着A′位置变化而变化二、填空题9.如图,△ABC中.AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A、B重合),连接CD,作∠CDE=30°,DE交BC于点E,若△BDE是等腰三角形,则∠ADC的度数是.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,边AB上有一动点P,将△ABC绕点C逆时针旋转90°得△DEC,点P的对应点为P′,连接PP′,则PP′长的最小值为.11.如图,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20cm,点D是AB中点,点M从点A出发,沿线段AB运动到点B,点P始终是线段CM的中点.对于下列结论:①CD=10cm;②∠CDA=60°;③线段CM长度的最小值是5 √2cm;④点P运动路径的长度是10cm.其中正确的结论是(写出所有正确结论的序号).12.如图,在平面直角坐标系中,直线l:y= √33x﹣√33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B22作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.13.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC 上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.14.如图,在Rt△ABC中,∠C=90°,AC=4,AB=12,AD平分∠BAC交BC于点D,过点D作DE⊥AD交AB于点E,P是DE上的动点,Q是BD上的动点,则BP+PQ的最小值为.三、综合题15.如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+16x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(﹣3,0),M (0,﹣1).已知AM=BC.(1)求二次函数的解析式;(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;(3)在(2)的条件下,设直线l过D且l⊥BD,分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N,求1BP+1BQ的值;16.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求DE的长;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.17.如图,△ABC中,AB =BC=AC =6cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.(3)点M、N运动几秒后,可得到直角三角形△BMN?18.在△ABC中,∠ACB=90°,AC=BC,点A、C分别是x轴和y轴上的一动点.(1)如图1.若点B的横坐标为﹣4,求点C的坐标;(2)如图2,BC交x轴于点D,若点B的纵坐标为3,A(5,0),求点C的坐标;(3)如图3,当A(5,0),C(0,﹣2)时,以AC为直角边作等腰直角△ACE,(﹣2,0)为F点坐标,连接EF交y轴于点M,当点E在第一象限时,求S△CEM:S△ACO的值.19.已知ΔABC是边长为8cm的等边三角形,动点P,Q同时出发,分别在三角形的边或延长线上运动,他们的运动时间为t(s).(1)如图1,若P点由A向B运动,Q点由C向A运动,他们的速度都是1cm/s,连接PQ.则AP=,AQ=,(用含t式子表示);(2)在(1)的条件下,是否存在某一时刻,使得ΔAPQ为直角三角形?若存在,请求出t的值,若不存在,请说明理由;(3)如图2,若P点由A出发,沿射线AB方向运动,Q点由C出发,沿射线AC方向运动,P的速度为3cm/s,Q的速度为.acm/s是否存在某个a的值,使得在运动过程中ΔBPO恒为以BP为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.20.如图,在△ABC中,AD⊥BC于点D,AD=4,BD=3,DC=8,点P是BC边上一点(不与点B、D、C重合),过点P作PQ⊥BC交AB或AC于点Q,作点Q关于直线AD的对称点M,连结QM,过点M作MN⊥BC交直线BC 于点N.设BP=x,矩形PQMN与△ABC重叠部分图形的周长为y.(1)直接写出PQ的长(用含x的代数式表示).(2)求矩形PQMN成为正方形时x的值.(3)求y与x的函数关系式.(4)当过点C和点M的直线平分△ADC的面积时,直接写出x的值.答案解析部分1.【答案】B 2.【答案】D 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】A 7.【答案】B 8.【答案】D9.【答案】50º或80º或110º 10.【答案】√6 11.【答案】①③④ 12.【答案】22017−1213.【答案】251214.【答案】815.【答案】(1)解:∵二次函数y=ax 2+16x+c 的图象经过点B (-3,0),M (0,-1),∴{9a +16×(−3)+c =0c =−1, 解得a=16,c=-1. ∴二次函数的解析式为:y=16x 2+16x-1.(2)证明:∵二次函数的解析式为:y=16x 2+16x-1,令y=0,得0=16x 2+16x-1,解得x 1=-3,x 2=2, ∴C (2,0), ∴BC=5; 令x=0,得y=-1, ∴M (0,-1),OM=1. 又AM=BC , ∴OA=AM-OM=4, ∴A (0,4).设AD ∥x 轴,交抛物线于点D ,如图1所示, 则y D =16x 2+16x −1=OA =4,解得x 1=5,x 2=-6(位于第二象限,舍去) ∴D 点坐标为(5,4). ∴AD=BC=5, 又∵AD ∥BC ,∴四边形ABCD 为平行四边形.即在抛物线F 上存在点D ,使A 、B 、C 、D 四点连接而成的四边形恰好是平行四边形.设直线BD 解析式为:y=kx+b , ∵B (3,0),D (5,4),∴{−3k +b =05k +b =4, 解得:k=12,b=32,∴直线BD 解析式为:y=12x+32.(3)解:在Rt △AOB 中,AB =√OA 2+OB 2=5, 又AD=BC=5, ∴▱ABCD 是菱形.①若直线l ∥BD ,如图1所示. ∵四边形ABCD 是菱形, ∴AC ⊥BD , ∴AC ∥直线l ,∴BA BP =BC BQ =BN BD =12,∵BA=BC=5, ∴BP=BQ=10,∴1BP +1BQ =110+110=15.16.【答案】(1)证明:∵△ABD 是等边三角形,∴AB=BD ,∵△BCE 是等边三角形, ∴BC=BE ,∵∠ABD=∠CBE=60°, ∴∠ABE=∠CBD , ∴△ABE ≌△DBC (SAS ), ∴CD=AE ;(2)解: 取BE 的中点F ,连接DF ,∵BD=BF=1,∠DBF=60°,∴△BDF为等边三角形,∴DF=1,∴FD=FE=FB=1,∴△BED为直角三角形,即∠BDE=90°,∴DE=√BE2−BD2=√3;(3)解:如图,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC= 60°,∴∠ABE=∠DBC,∴AB=BD,在△ABE和△DBC中,AB=AD,∠ABE =∠DBC,BE=BC,∴△ABE≌△DBC ( SAS) ,∴AE=DC,∴DE2+BE2=AE2,BE=CE ,∴DE2+CE2=CD2 ,∴∠DEC=90° ,∴∠BEC=60° ,∴∠DEB=∠DEC-∠BEC=30° .17.【答案】(1)解:设M、N运动t秒后,M、N两点重合,依题可得,t×1+6=2t,解得:t=6.答:点M、N运动6秒后,M、N两点重合.(2)能得到以MN为底边的等腰△AMN,①当点M在AC上,点N在AB上,如图①所示:设运动时间为t秒,依题可得,AM=t,AN=6-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴t=6-2t,解得:t=2;②当点M、N都在BC上时,如图②所示:设运动时间为t秒,依题可得,CM=t-6,BN=18-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ABC是正三角形,∴∠B=∠C,AC=AB,在△ACM和△ABN中,{∠AMC=∠ANB∠C=∠BAC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,即t-6=18-2t,解得:t=8;综上所述:能得到以MN为底边的等腰三角形AMN,此时,M、N的运动时间为2秒或8秒.(3)解:①当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:BN=2t,AN=6-2t,AM=t,∵△ABC为等边三角形,∴∠A=60°,∴∠AMN=30°,∴AM=2AN,即t=2(6-2t),解得:t=2.4;②当点M、N都在AC上时,当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:AN=2t-6,∴CN=6-AN=12-2t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBN=30°,∴BC=2CN,即6=2(12-2t),解得:t=4.5;③当点M、N都在AC上时,当∠BMN=90°时,如图所示:设M、N运动时间是t秒,依题可得:AM=t,∴CM=6-AM=6-t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBM=30°,∴BC=2CM,即6=2(6-t),解得:t=3;综上所述:当点M、N运动2.4秒或3秒或4.5秒时,可得到直角△BMN. 18.【答案】(1)解:如图1中,作BH⊥y轴于H.∵∠BHC=∠BCA=∠AOC=90°,∴∠BCH+∠ACO=90°,∠ACO+∠OAC=90°,∴∠BCH=∠OAC,∵BC=AC,∴△BHC≌△COA(AAS),∴OC=BH,∵点B的横坐标为−4,∴BH=4,∴OC=4,∴C(0,−4);(2)解:如图2中,作BH⊥y轴于H.由(1)可知△BHC≌△COA∴OC=BH,OA=CH,∵若点B的纵坐标为3,A(5,0),∴OA=CH=5,OH=3,∴BH=OC=2,∴C(0,−2);(3)解:如图3中,由题意点E在第一象限,作EH⊥OA于H.同法可证:△AHE≌△COA(AAS),∴AH =OC ,AO =EH , ∵A (5,0),C (0,−2), ∴EH =OA =5,OC =AH =2, ∴E (3,5),设直线 FE 的解析式为: y =kx +b , 则 {0=−2k +b 5=3k +b ,解得 {k =1b =2 ,∴直线 FE 的解析式为: y =x +2 , 令 x =0 ,则 y =2 , ∴OM =2,∴S △CEM :S △ACO = (12×4×3):(12×2×5)=6:5 .19.【答案】(1)tcm ;(6-t )cm(2)解:存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形,理由是①当 PA ⊥AB 时,由题意有 2t =8−t ,解得 t =83s②当 PQ ⊥AC 时,由题意有 t =2(8−t), 解得 t =163s∴ 综上所述,存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形(3)解:存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形,理由是: 作 QM ⊥BP 于M ,如图2所示由题意得: AP =3t,CQ =at ,则 AQ =8+at,BP =|8−3t|∵PQ =BQ,QM ⊥BP ∴PM =BM =12BP∵ΔABC 是等边三角形,∴∠A =60° ∴∠AQM =30° ∴AQ =2AM ,①当 t ≤83 时,由题意有 2(3t +8−3t2)=8+at ,解得 a =3cm/s ,②当 t ≥83 时,由题意有 2(3t −3t−82)=8+at ,解得 a =3cm/s ,∴ 综上所述,存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形.20.【答案】(1)解:①当PQ 交AB 于点Q 时,0<x<3,∵AD ⊥BC ,AD=4,BD=3,∴tan ∠B= 43,∵PQ ⊥BC , ∴PQ BP =43, ∴当0<x<3时,PQ= 43x ;②当PQ 交AC 于点Q 时,3<x<11, ∵AD ⊥BC ,AD=4,CD=8, ∴tan ∠C= 12 ,∵PQ ⊥BC ,∴PQ PC =12,PC=11-x , ∴当3<x<11时,PQ= 11−x 2;(2)解:①当PQ 交AB 于点Q 时,0<x<3, ∵四边形PQMN 为正方形, ∴PQ=QM=MN=NP , ∵QM=2(3-x ), ∴43x=2(3-x ), 解得x= 95;②当PQ 交AC 于点Q 时,3<x<11, ∵四边形PQMN 为正方形,∴PQ=QM=MN=NP , ∵QM=2(x-3), ∴(11−x)2=2(x-3),解得x= 235(3)解:y=PQ+MN+QM+PN , =2× 43x+2×2(3-x ),=12- 43x ;(4)解:如图,连接CM 交AD 于O ,由题可知: AE =DE =12AD =2 ,∵QP =ED =43x ,∴OE =OD −DE =2−43x , EM =QE =PD =3−x ,∵QM ∥BC , ∴△OME ∼△OCD , ∴EO DO =EM DC, ∴2−43x 2=3−x 8, 化简得: 4(2−43x)=3−x ,∴x =1513.。
(中考数学)动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
中考数学常见题型几何动点问题
中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。
如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P ,Q 两点之间的距离是多少?例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少?例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( )A .32B .18C .16D .10ACB By例4:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.例6:如图(3),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;图(3)BC PQBA MN(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
青岛市中考数学动点题汇编
青岛市中考数学动点题汇编在中考数学中,动点问题一直是学生们的难题之一。
动点问题涉及到的知识点较多,需要学生有较强的数学思维和解决问题的能力。
为了帮助学生更好地掌握动点问题的解题技巧,提高解题效率,本文将汇编青岛市中考数学动点题,并给出相应的解析和答案。
动点问题是指在图形中,一个或多个动点在给定条件下运动,求出动点的轨迹、路径、距离等问题。
动点问题的解题思路一般包括:分析动点的运动规律,运用相关数学知识建立方程或不等式,求解并检验。
例1:在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的一个动点,连接CP,过点P作PD⊥AC于D,则AD的长度y与AP的长度x之间的函数关系式是_________。
解析:根据勾股定理可求得AB的长,再根据相似三角形的性质可得答案:根据勾股定理可求得AB的长为10。
根据相似三角形的性质可得例2:在矩形ABCD中,AB=6cm,BC=8cm,E为AD上一点,且BE=7cm,将纸片折叠使点A与E重合,求折痕的长度。
解析:首先根据勾股定理求出AE的长,再根据相似三角形的性质求出折痕的长。
题1:在矩形ABCD中,AB=4cm,BC=6cm,点P是BC边上的一个动点,连接AP。
设BP的长度为,求y关于x的函数关系式及自变量的取值范围。
题2:在梯形ABCD中,AD//BC,AB=CD=AD=2cm,BC=4cm。
点P是BC 边上的一个动点,连接AP。
设BP的长度为,求y关于x的函数关系式及自变量的取值范围。
鉴于甲、乙双方与丙方于年月日签订《房地产营销顾问合同协议书》(以下简称“原合同”),约定丙方接受甲、乙双方的委托,担任房地产营销顾问,负责推动和促进甲、乙双方共同商定之交易事项的完成。
现甲、乙双方经友好协商,决定提前终止原合同,特订立本协议书,以兹共信守。
甲、乙双方同意,自本协议书签署之日起,原合同终止执行。
丙方已完成的房地产营销顾问工作,甲、乙双方确认其工作成果,并按照原合同的约定支付相应的顾问费用。
最新青岛中考动点题型总结大全
《动点题》青岛中考真题
24.(12分)(2014?青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.
24.(12分)(2013?青岛)已知:如图,?ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1)
解答下列问题:
(1)当t为何值时,四边形AQDM是平行四边形?
(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式:
(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.
(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成:1的两部分?若存在,求出相应的t值;若不存在,说明理由.。
初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)
初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)一、选择题1、如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm22、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定3、如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC 上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C. D.4、数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.1 C.0 D.﹣15、如图,正方形ABCD边长为4个单位,两动点P、Q分别从点A、B处,以1单位/s、2单位/s的速度逆时针沿边移动.记移动的时间为x(s),△PBQ面积为y(平方单位),当点Q移动一周又回到点B终止,则y与x的函数关系图象为()A. B.C. D.6、如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7、如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π8、如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD的延长线上移动时,则△PBD的外接圆的半径的最小值为()A.1 B.C.D.9、如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度向点C移动(到达点C后停止运动),同时点Q从点A出发,以1cm/s的速度沿AB﹣BC的方向向点C移动(到达点C后停止),若△APQ的面积为S(cm2),则下列最能反映S(cm2)与移动时间t (s)之间函数关系的大致图象是图2()A.B.C.D.10、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定12、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.13、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.14、已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()二、填空题15、如图,△ABC是边长6的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V p=2cm/s, V Q=1cm/s,当点P到达点B时, P、Q两点停止运动,设点P的运动时间为ts,则当t=___ s时,△PBQ为直角三角形.16、如图,AO OM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF.等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度为_________.17、如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.18、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.19、如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.20、如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点(0,1),(1,1),(1,0),(1,-1),(2,-1),(2,0),…,则点的坐标是.21、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,MN,设移动时间为t(单位:秒,0<t<2.5).(1)当时间为t秒时,点P到BC的距离为cm.(2)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(3)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.22、如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.23、如图,直线AB、CD相交于点O,∠AOC=30°,⊙P的半径为1cm,且OP=4cm,如果⊙P 以1cm/s的速度沿由A向B的方向移动,那么秒后⊙P与直线CD相切.三、解答题24、如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
青岛中考动点题专题训练
中考24题专题讲解平行、垂直、Rt△、等腰三角形的证明一、平行的证明1.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?思考与交流2、如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动时间为t秒.(1)求BC的长度;(2)当MN∥AB时,求t的值;3.如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).(1)设四边形PCQD的面积为y,求y与t的关系式;(2)t为何值时,四边形PQBA是梯形?(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;(4)是否存在时刻t,使得PD⊥AB?若存在,求出t的值;若不存在,请简要说明理由.4.如图:在梯形ABCD中,AD∥BC,∠C=90°,AD=8cm,CD=6cm,BC=10cm,点P以每秒1cm的速度从点C出发沿CD向点D运动,同时点E以每秒2cm的速度从点B出发沿BC向点C运动.过点E作EF⊥AB,交AB于点F,连结PA、PE.设运动时间为t秒.(0<t<5)(1)求边AB的长度;(2)当t为何值时,PE∥AB;一、证明平行的证明1.添加高线、平行线,利用平行线分线段成比例或相似三角形对应边成比例、三角函数,建立相等关系,解方程,求时间t.2.转化的方法——将平行转化为垂直的证明.二、垂直的证明5.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。
青岛市中考数学动点题经典例题
24.(本小题满分12分)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D是AB的中点,连接CD,点P从点C出发,沿CD方向,向点D匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向,向点A匀速运动,速度为2cm/s,连接BP、PQ,设运动时间为t(s)(0≤t≤5),△PQB的面积为y(cm2).解答下列问题:(1)过点C作CE⊥AB于E ,求CE的长;(2)求y与t之间的函数关系式;当t为何值时,y有最大值,并求出y的最大值;(3)是否存在某一时刻t,使得△PQD为等腰三角形?若存在,求出此时t的值;若不存在,请说明理由24.(12分)(2009•仙桃)如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q 运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.24.(本小题满分12分)已知:如图1,矩形ABCD ,AB =6 cm ,BC =8 cm ,点E 从点C 出发,沿CB 方向匀速向点B 运动,速度为每秒4cm ,同时点P 从点A 出发,沿AC 方向匀速向点C 运动,速度为每秒5cm ,过点E 平行于BD 的直线EF ,交CD 于F ,交AC 于Q ,当点P 运动到线段EF 上时,点P 、点E 都停止运动。
设运动时间是t 秒,△PEF 的面积为y cm 2(1)当t = 时,点P 恰好运动到线段EF 上;(请直接写出答案) (2)如图2,过点P 作PH ⊥BC 于H ,当t 为何值时,△PEH ∽△EFC ? (3)求y 关于t 的函数关系式;(4)如图3,取PF 的中点N ,连接EN ,交AC 于M ,请问随着时间t 的改变,点M 的位置会发生改变吗?如果会改变请说明点M 的变化情况;如果不会改变,请求出点M 的具体位置。
青岛历年中考数学动点题
24.(本小题满分12分)已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥?(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.24.(本小题满分12分)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.图①P 'F已知:把Rt △ABC 和Rt △DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)24.(12分)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm/s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t s(0<t <5). (1)当t 为何值时,四边形PQCM 是平行四边形?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形PQCM =9 16S △ABC ?若存在,求出t 的值;若不存在,说明理由;ADBC F ( E) 图(1)图(2)(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.24.(本小题满分12分)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移Array动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;(3)设PQ的长为x(cm),试确定y与x之间的关系式.24.(本小题满分12分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F 运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC ?(2)求y与x 之间的函数关系式,并确定自变量x的取值范围.(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)1. 例题:(2006晋江)在平行四边形ABCD 中,AD =4 cm ,∠A =60°,BD ⊥AD . 一动点P 从A 出发,以每秒1 cm 的速度沿A →B →C 的路线匀速运动,过点P 作直线PM ,使PM ⊥AD .(1) 当点P运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;(2) 当点P 运动2秒时,另一动点Q 也从A 出发沿A →B →C 的路线运动,且在AB 上以每秒1 cm 的速度匀速运动,在BC 上以每秒2 cm 的速度匀速运动. 过Q 作直线QN ,使QN ∥PM . 设点Q 运动的时间为t秒(0≤t ≤10),直线PM 与QN 截平行四边形ABCD 所得图形的面积为S cm 2 .① 求S 关于t 的函数关系式;② (附加题) 求S 的最大值。
青岛中考动点专题
专项突破(七)动点题1,(2018年市南期末)如图,在平行四边形ABCD中,AC⊥BC,AB=10.AC=6.动点P 在线段BC上从点B出发沿BC方向以每秒1个单位长的速度匀速运动;动点Q在线段DC上从点D出发沿DC的方向以每秒1个单位长的速度匀速运动,过点P作PE⊥BC.交线段AB于点E.若P、Q两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.(1)当t为何值时,QE∥BC?(2)设△PQE的面积为S,求出S与t的函数关系式:(3)是否存在某一时刻t,使得△PQE的面积S最大?若存在,求出此时t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使得点Q在线段EP的垂直平分线上?若存在,求出此时t 的值;若不存在,请说明理由.2,(2018年市北期末)如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A 匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM =3:5?若存在,求出t值;若不存在,说明理由.向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)在点Q从B到A的运动过程中,①当t=时,PQ⊥AC;②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(2)伴随着P、Q两点的运动,线段PQ的垂直平分线为l.①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点时停止运动.点P 也同时停止.点P,Q运动速度均为每秒1个单位长度,连接PQ,设运动时间为t(t>0)秒.(1)当点Q从B点向A点运动时(未到达A点),①当t=秒时PQ∥BC②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求此时的t的值和AE的长;②当l经过点B时,求t的值.5,(2018年即墨期末)已知:如图①,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.6,(2019年市南期末)如图,在矩形ABCD中,AB=CD=4cm,AD=BC=6cm,AE=DE =3cm,点P从点E出发,沿EB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为2cm/s,连接PQ,设运动时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使四边形PBCQ面积是四边形PQDE面积的4倍?若存在,求出t的值;若不存在,说明理由.(4)连接BD,点O是BD的中点,是否存在某一时刻t,使P、O、Q在同一直线上?若存在,求出t的值;若不存在,说明理由.7,(2019年市北期末)如图1,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)设△CPQ的面积为S.求S与t之间的函数关系式:(2)如图2,在运动过程中是否存在某一时刻t,使得沿PC翻折△CPQ所得到的到的四边形CQPM是菱形?若存在,求出t的值;若不存在,请说明理由:(3)是否存在某一时刻t,使得P、Q、B三点共线?若存在,求出t的值;若不存在,请说明理由.8,(2019年李沧期末)如图,在Rt△ABC中,∠C=90°,AC=BC=10cm,长为4cm的线段DE在边AC上,且点D与点A重合,点F是DE的中点,线段DE从点A出发,沿AC方向向点C匀速运动,直到点E与点C重合,速度1cm/s.过点F作PF⊥AC,交AB于点P,过点P作PQ∥AC,交BC于点Q,连接PD,PE,QE,设线段DE的运动时间为t(s).(0≤t≤6)(1)请分别用含有t的代数式表示线段PF、BQ;(2)当t为何值时,四边形PFCQ为正方形?(3)设四边形PDEQ的面积为y(cm2).请求出y与t之间的函数关系式,并求出当t 为何值时,四边形PDEQ的面积最大,最大是多少?(4)是否存在某一时刻t,使得EP平分∠AEQ?若存在,求出此时t的值;若不存在,请说明理由.9,(2019年崂山期末)已知:△EFP和矩形ABCD如图①摆放(点C与点E重合),点B,C(E),F在同一直线上,AB=3cm,BC=9cm,EF=8cm,PE=PF=5cm,如图②,△EFP从图①的位置出发,沿CB方向匀速运动,速度为2cm/s,当点F与点C重合时△EFP停止运动停止.设运动时间为t(s)(0<t<4),解答下列问题:(1)当0<t<2时,EP与CD交于点M,请用含t的代数式表示CE=2t,CM=t;(2)当2<t<4时,如图③,PF与CD交于点N,设四边形EPNC的面积为y(cm2),求y与t之间的函数关系式;(3)当2<t<4时,且S四边形EPNC:S矩形ABCD=1:4时,请求出t的值;(4)连接BD,在运动过程中,当BD与EP相交时,设交点为O,当t=时;O 在∠BAD的平分线上.(不需要写解答过程)10,(2019年黄岛期末)已知:如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=AD =8cm,CD=10cm,点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q 从点D出发,沿DC方向匀速运动,速度为lcm/s.连接PQ,设运动时间为t(s)(0<t <8).解答下列问题:(1)当t为何值时,PQ∥AD?(2)设四边形APQD的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形APQO:S四边形BCQP=17:27?若存在,求出t的值,并求此时PQ的长;若不存在,请说明理由.11,(2020年市北期末)如图,已知:在矩形ABCD中,AB=6cm,BC=8cm,点P从点B 出发,沿BC方向匀速运动,速度为2cm/s;与点P同时,点Q从D点出发,沿DA方向匀速运动,速度为1cm/s;过点Q作QE∥AC,交DC于点E.设运动时间为t(s),(0<t<4),解答下列问题:(1)在运动过程中,是否存在某一时刻t,使PQ平分∠APC?若存在,求出t的值;若不存在,请说明理由;(2)设五边形APCEQ的面积为y,求y与t的函数关系式;(3)当0<t<83时,是否存在某一时刻t,使PQE是直角三角形?若存在,求出t的值;若不存在,请说明理由.12,(2020年市南期末)在菱形ABCD中,对角线AC、BD交于点O,且AC=16cm,BD=12cm.点P从点A出发,沿AD方向匀速运动,速度为2cm/s;点Q从点C出发,沿CO方向匀速运QM BC,交BD于点M,设运动时动,速度为1cm/s.若P、Q两点同时出发,过点Q作//间为t(s)(0<t≤4).解答下列问题:PQ CD?(1)当t为何值时,//(2)设四边形AMQP的面积为S1,四边形PQCD的面积为S2,S=S1﹣S2,求S关于t的函数关系式;并求出当t为何值时,S的值最大,最大值是多少?(3)求是否存在某一时刻t,使点P在MQ的垂直平分线上?如果存在,求出此时t的值;如果不存在,请说明理由.13,(2020年局属四校期末)如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm和1cm,FQ⊥BC,分别交AC、BC于点P和点Q,连接EF、EP,设运动时间为t(s)(0<t<4)(1)连接DQ,若四边形EQDF为平行四边形,则t的值是2;(2)设△EPF的面积为ycm2,求y与t的函数关系式;(3)运动时间t为何值时,EF⊥AC?14,(2020年西海岸期末)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点D 从点C出发,沿CA方向匀速运动,速度为2cm/s;同时,动点E从点A出发,沿AB方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.设点D,E运动的时间是t(s)(0<t<5).过点D作DF⊥BC于点F,连接DE,EF.(1)t为何值时,DE⊥AC?(2)设四边形AEFC的面积为S,试求出S与t之间的关系式;(3)是否存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,∠ADE=45°?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.(本小题满分12分)
已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D是AB的中点,连接CD,点P从点C出发,沿CD方向,向点D匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向,向点A匀速运动,速度为2cm/s,连接BP、PQ,设运动时间为t(s)(0≤t≤5),△PQB的面积为y(cm2).解答下列问题:
(1)过点C作CE⊥AB于E ,求CE的长;
(2)求y与t之间的函数关系式;当t为何值时,y有最大值,并求出y的最大值;(3)是否存在某一时刻t,使得△PQD为等腰三角形若存在,求出此时t的值;若不存在,请说明理由
24.(12分)(2009•仙桃)如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA
向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q 运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.
24.(本小题满分12分)
已知:如图1,矩形ABCD ,AB =6 cm ,BC =8 cm ,点E 从点C 出发,沿CB 方向匀速向点B 运动,速度为每秒4cm ,同时点P 从点A 出发,沿AC 方向匀速向点C 运动,速度为每秒5cm ,过点E 平行于BD 的直线EF ,交CD 于F ,交AC 于Q ,当点P 运动到线段EF 上时,点P 、
点E 都停止运动。
设运动时间是t 秒,△PEF 的面积为y cm 2
(1)当t = 时,点P 恰好运动到线段EF 上;(请直接写出答案) (2)如图2,过点P 作PH ⊥BC 于H ,当t 为何值时,△PEH ∽△EFC (3)求y 关于t 的函数关系式;
(4)如图3,取PF 的中点N ,连接EN ,交AC 于M ,请问随着时间t 的改变,点M 的位置会发生改变吗如果会改变请说明点M 的变化情况;如果不会改变,
请求出点M 的具体位置。
第24题图3
第24题图2
D
第24题图1。