波谱解析名词解释
波谱解析
光谱分析基本定律——Lambert-Beer定律:电磁波的波粒二象性——Planck方程:电磁辐射按波长顺序排列称为电磁波谱(光波谱)。
分区依次(短→长)为:γ射线区→X射线区→紫外光区(UV)→可见光区→红外光区(IR)→微波区→射频区(NMR)Franck-Condon原理:①电子跃迁时认为核间距r不变,发生垂直跃迁;②电子能级跃迁时必然同时伴有多种振动能级和转动能级的变化,同理振动能级跃迁时必然同时伴有多种转动能级的变化。
有机波谱的三要素:谱峰的①位臵(定性指标)、②强度(定量指标)和③形状。
【提请注意】对《天然药物化学成分波谱解析》(以下简称“教材”)P.5图1-8不理解的同学,应注意到轨道其中的“+”“-”表示的是波函数的位相,而不是电性!E总=E0+E平+E转+E振+E电电子跃迁类型:①σ→σ*、②n→σ*、③π→π*、④n→π*,其中,后两者对紫外光谱有意义。
此外,还包括主要存在于无机物的⑤电荷迁移跃迁和⑥配位场跃迁。
分子和原子与电磁波相互作用,从一个能级跃迁到另一个能级要遵循一定的规律,这些规律称为光谱选律。
紫外光谱所遵循的选律包括:①自选旋律和②对称性选律。
影响紫外光谱最大吸收波长(λmax)的主要因素:①电子跃迁类型;②发色团(生色团)和助色团;③π-π共轭、p-π共轭和σ-π超共轭(弱);④溶剂和介质;〃规律:溶剂极性增大,n→π*跃迁发生篮移(紫移),π→π*跃迁发生红移。
〃总结:溶剂的选择原则即紫外透明、溶解度好、化学惰性。
〃例子:甲醇、95%乙醇、环己烷、1,4-二氧六环。
【相关概念】等色点:同一化合物在不同pH条件下测得的紫外光谱曲线相交于一点,此即~。
⑤顺反异构、空间位阻和跨环效应。
影响紫外光谱吸收强度(εmax)的主要因素:εmax=0.87×1020×P(跃迁几率)×α(发色团的靶面积)【提请注意】严格地说,跃迁的强度最好是用吸收峰下的面积来测量(如果是以ε对ν作图)!吸收带:跃迁类型相同的吸收峰称为~。
波谱解析复习——名词解析
波谱学:波谱学是涉及电池辐射与物质量子化的能态间的相互作用,其理论基础是量子化的能量从辐射场向物质转移。
电池辐射区域:γ射线区,X射线区,远紫外,紫外,可见光区,近红外,红外,远红外区,微波区和射频区。
紫外光谱1.助色团:通常把那些本身在紫外或可见光区域吸收带不产生吸收带但与生色团相连后,能使生色团的吸收带向长波方向移动的基团称为助色团(将含有未公用电子对的杂原子基团称为助色团)发色团:有机化合物分子结构中有能吸收紫外光或可见光的基团,此类基团称为发色团。
2.红移:由于化学环境的变化而导致吸收峰长波方向移动的现象叫做红移。
3.蓝移:导致吸收峰向短波方向移动的现象叫做蓝移。
4.增色效应:使紫外吸收强度增加的作用。
5.减色效应:使紫外吸收强度降低的作用。
红外光谱红外吸收:一定波长的红外光照射被研究物质的分子,若辐射能等于振动基态的能级与第一振动激发态的能级之间的能量差时,则分子可吸收能量,由振动基态跃迁到第一振动激发态。
IR选律:在红外光的作用下,只有偶极矩(∆μ)发生变化的振动,即在振动过程中∆μ≠0时,才会产生红外吸收。
1.费米(Fermi)共振:由频率相近的倍频峰和基频峰相互作用产生,结果使倍频峰的强度增大或发生裂分。
2.伸缩振动:沿键轴方向发生周期性变化的振动称为伸缩振动。
3.弯曲振动:沿键角发生周期性变化的振动称为弯曲振动。
4.基频峰:从基态跃迁到第一激发态时将产生一个强的吸收峰,即基频峰。
5.倍频峰:从基态跃迁到第二激发态,第三激发时将产生相应弱的吸收峰,即倍频峰。
6.振动自由度:将多原子分子的复杂振动分解成若干个简单的基本振动,这些基本振动的数目称为分子的振动自由度。
7.指纹区:在红外光谱中,波数在1330~667cm-1 范围内称为指纹区。
8.振动偶合效应:当两个相同的基团在分子中靠得很近时,其相应的特征峰常发生分裂,形成两个峰,这种现象叫作振动偶合。
质谱:是化合物分子在真空条件下受电子流的“轰击”或强电场等其他方法的作用,电离成离子,同时发生某些化学键有规律的断裂,生成具有不同质量的带正电荷的离子,这些离子按质荷比的大小被收集记录的谱。
波谱解析的原理及应用
波谱解析的原理及应用1. 引言波谱解析是一种重要的分析技术,广泛应用于物理、化学、生物等领域。
本文将介绍波谱解析的基本原理以及其在不同领域中的应用。
2. 波谱解析的原理波谱解析是指通过测量光谱中的波长或频率分布来分析物质的成分、结构和性质。
它基于不同物质对辐射能的吸收、发射或散射的不同特性进行分析。
波谱解析的基本原理包括以下几个方面:2.1 原子和分子的能级结构原子和分子具有不同的能级结构,当光或其他辐射能与原子或分子相互作用时,会引起能级的变化。
这种能级变化会伴随着能量的吸收、发射或散射,从而产生特定的光谱现象。
2.2 光谱的测量方法波谱解析中常用的测量方法包括吸收光谱、发射光谱和散射光谱。
吸收光谱是通过测量样品对入射光的吸收程度来分析样品的成分和浓度。
发射光谱是通过测量样品发射的光的强度和波长来分析样品的性质。
散射光谱则是通过测量样品对入射光的散射程度来分析样品的形态和结构。
2.3 光谱的解析方法波谱解析方法包括光谱峰识别、波长/频率计算、能级分析等。
光谱峰识别是通过分析光谱中的峰值来确定物质的成分,每个峰对应特定的波长或频率。
波长/频率计算是通过已知的能级结构和物理常数来计算光谱中峰值的波长或频率。
能级分析是通过比较实验测得的波谱与理论模型进行对比,进而推导出物质的能级结构和特性。
3. 波谱解析的应用波谱解析在不同领域中有着广泛的应用。
以下列举了几个常见领域的应用案例。
3.1 化学分析波谱解析在化学分析中起着重要作用。
例如,红外光谱被广泛用于确定分子的结构和功能团;紫外可见光谱可用于分析溶液中的物质浓度以及化学反应的动力学过程;质谱则能够确定物质的分子量和化学结构。
3.2 材料科学波谱解析在材料科学中也有广泛应用。
例如,X射线衍射可以用于确定晶体的结构和定量分析晶体中的杂质;核磁共振波谱可用于确定物质的结构和分析样品的纯度。
3.3 生物科学在生物科学领域,波谱解析被用于分析生物分子的结构和功能。
波谱解析课后习题答案
波谱解析课后习题答案波谱解析课后习题答案在学习波谱解析这门课程时,课后习题是巩固知识、检验理解的重要方式。
然而,有时候我们可能会遇到一些难题,需要一些指导和答案来帮助我们更好地理解和应用所学的知识。
本文将为大家提供一些波谱解析课后习题的答案,希望对大家的学习有所帮助。
1. 什么是波谱解析?为什么波谱解析在科学研究中如此重要?波谱解析是一种分析和解释光谱图像的过程。
它通过测量和分析光的频率、波长或能量,来研究物质的结构、组成和性质。
波谱解析在科学研究中非常重要,因为它可以帮助我们了解物质的微观结构和相互作用,从而推动科学的发展和应用。
2. 什么是光谱?有哪些常见的光谱类型?光谱是指将光按照频率、波长或能量进行分类和排序的过程。
常见的光谱类型有连续光谱、发射光谱、吸收光谱和拉曼光谱等。
3. 什么是连续光谱?请举个例子说明。
连续光谱是指包含了所有频率或波长的光谱。
例如,太阳光就是一个连续光谱,它包含了从紫外线到红外线的所有波长。
4. 什么是发射光谱?请举个例子说明。
发射光谱是指物质在受到能量激发后,发出特定频率或波长的光。
例如,氢气在受到电子激发后,会发出一系列具有特定波长的光谱线,这就是氢的发射光谱。
5. 什么是吸收光谱?请举个例子说明。
吸收光谱是指物质在受到特定频率或波长的光照射后,吸收部分光的现象。
例如,当白炽灯光通过氢气时,氢气会吸收一部分特定波长的光,形成氢的吸收光谱。
6. 什么是拉曼光谱?请举个例子说明。
拉曼光谱是指物质在受到光激发后,发生光子与物质分子相互作用,导致光的频率或波长发生变化的现象。
例如,当激光照射到样品上时,样品会散射出具有特定频率差的光,形成拉曼光谱。
7. 什么是红外光谱?有哪些常见的红外光谱技术?红外光谱是指研究物质在红外光波段的吸收和散射特性的光谱。
常见的红外光谱技术包括傅里叶变换红外光谱(FTIR)、近红外光谱(NIR)和拉曼光谱等。
8. 什么是质谱?有哪些常见的质谱技术?质谱是一种通过测量和分析物质的质量和相对丰度,来研究物质结构和组成的技术。
波谱解析
6.如何判断EI分子离子峰?
7.何谓软电离技术?质谱测定常用的软电离技术有哪些?
在质谱分析中,离子源是将分子离解成离子或解离成碎片,在这里分子失去电子,生成带正电荷的分子离子。分子离子可进一步裂解,生成质量更小的碎片离子。由于离子化所需要的能量随分子不同差异很大,因此,对于不同的分子应选择不同的离解方法。通常称能给样品较大能量的电离方法为硬电离方法,而给样品较小能量的电离方法为软电离方法,后一种方法适用于易破裂或易电离的样品。
二者的异同点
二者都是红外光谱上的峰。基频峰是振动能级由基态跃迁至第一激发态,泛频峰是振动能级由基态跃迁至第二振动激发态、第三激发态等。基频峰一般都较大,因而基频峰是红外光谱上最主要的一类吸收峰。泛频峰可以观察到,但很弱,可提供分子的“指纹”,是红外光谱中的峰跃迁禁阻峰。
两者都是红外光谱上的峰,如果懂得,对分析红外光谱图很有用。泛频峰的存在增加了红外光谱的复杂性,但是增强了红外光谱的特征性。取代苯的泛频峰出现在2000~1667cm-1的区间,主要由苯环上碳-氢面外的倍频峰等构成,特征性较强,可用于鉴别苯环上的取代位置,但峰强常常较弱,也有可能被淹没。
一、名词解释
1.生色团、助色团、红移、蓝移、增色效应、减色效应
2.基频峰、倍频峰、组合频、振动耦合、费米共振
基频峰:分子吸收一定频率的红外线,若振动能级由基态跃迁至第一激发态时,所产生的吸收峰称为基频峰。
泛频峰:在红外吸收光谱上,除基频峰外,还有振动能级由基态跃迁至第二振动激发态、第三激发态等现象,所产生的峰称为泛频峰。
“软”是相对于最常用的电子电离EI而言。采用软电离技术容易获得能指明相对分子质量的准分子离子(M+H)+、(M-H)+,,但能供结构信息的碎片离子较少。
波谱解析复习
波谱解析复习第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强. 2、发色团:分子中能吸收紫外或可见光的结构系统. 3、红移:吸收峰向长波方向移动,强度增加,增色作用. 4、蓝移:吸收峰向短波方向移动,减色作用. 5、增色作用:使吸收强度增加的作用. 6、减色作用:使吸收强度减低的作用. 7、吸收带:跃迁类型相同的吸收峰. 二、选择题1、不是助色团的是:D A、-B、-C、-D、32- 2、所需电子能量最小的电子跃迁是:D A、ζ→ζ*B、n →ζ*C、π→π*D、n →π* 3、下列说法正确的是:A A、饱和烃类在远紫外区有吸收 B、吸收无加和性C、π→π*跃迁的吸收强度比n →ζ*跃迁要强10-100倍 D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用ε表示,当ε=5000~10000时,表示峰带:B A、很强吸收B、强吸收C、中强吸收 D、弱吸收 5、近紫外区的波长为:C A、 4-200 B、200-300 C、200-400 D、300-400 6、紫外光谱中,苯通常有3个吸收带,其中λ在230~270之间,中心为254 的吸收带是:B A、R带B、B带 C、K带 D、E1带7、紫外-可见光谱的产生是外层价电子能级跃迁所致,其能级差的大小决定了 C A、吸收峰的强度B、吸收峰的数目 C、吸收峰的位置D、吸收峰的形状 8、紫外光谱是带状光谱的原因是于:D A、紫外光能量大B、波长短C、电子能级差大 D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:A A、水B、乙醇C、甲醇 D、正己烷10、下列化合物中,在近紫外区无吸收的是:A A、B、 C、D、11、下列化合物,紫外吸收λ值最大的是:A A、B、C、D、12、频率为×108的辐射,其波长数值为 A A、 B、μ C、D、 13、化合物中,下面哪一种跃迁所需的能量最高 A A、ζ→ζ*B、π→π*C、n→ζ* D、n→π* 第二章红外光谱一、名词解释:1、中红外区 2、共振 3、基频峰 4、倍频峰 5、合频峰6、振动自度 7、指纹区 8、相关峰 9、不饱和度 10、共轭效应 11、诱导效应 12、差频二、选择题1、线性分子的自度为:A A:35 B: 36 C: 35 D:36 2、非线性分子的自度为:B A:35 B: 36 C:35 D: 36 3、下列化合物的ν的频率最大的是:DA B C D 4、下图为某化合物的图,其不应含有:D 1 A:苯环 B:甲基C:2 D:5、下列化合物的ν的频率最大的是:A A B CD 6、亚甲二氧基与苯环相连时,其亚甲二氧基的δ特征强吸收峰为:A A: 925~9351 B:800~8251 C:955~9851 D:1005~10351 7、某化合物在3000-25001有散而宽的峰,其可能为:A A:有机酸 B:醛C:醇D:醚8、下列羰基的伸缩振动波数最大的是:C 9、 R C N 中三键的区域在:B A ~33001 B 2260~22401 C 2100~20001 D 1475~13001 10、偕三甲基(特丁基)的弯曲振动的双峰的裂距为:D A 10~20 1 B15~30 1 C 20~301 D 301以上第三章核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫 4、屏蔽效应5、远程偶合 2 6、自旋裂分 7、自旋偶合 8、核磁共振 9、屏蔽常数 +1规律 11、杨辉三角 12、双共振 13、效应 14、自旋去偶 15、两面角 16、磁旋比 17、位移试剂二、填空题1、1化学位移δ值范围约为 0~14 。
波谱名词解释
《波谱解析名词解释》说明:以下如有错别字的请自己更改和补加其他名词解释第一章紫外光谱的基础知识1.助学团:某些饱和的原子团本身在近紫外区无吸收的,并不“发色”,但其与发色团相连或共轭时,能使发色团的吸收峰长波方向移动,强度增强,这些基团称为助色团。
常用的助色团有—OH,—OR,—NR2,—SR,—Cl,—Br,—I等。
2.发色团:有机化合物分子结构中有能吸收紫外光或可见光的基团,此类基团称为发色团。
3红移:由于化学环境的变化而导致吸收峰长波方向移动的现象叫做红移。
4蓝移:导致吸收峰向短波方向移动的现象叫做蓝移。
5.增色效应:使紫外吸收强度增加的作用。
6.减色效应:使紫外吸收强度降低的作用。
第二章红外光谱1费米(Fermi)共振:由频率相近的倍频峰和基频峰相互作用产生,结果使倍频峰的强度增大或发生裂分。
2伸缩振动:沿键轴方向发生周期性变化的振动称为伸缩振动。
3弯曲振动:沿键角发生周期性变化的振动称为弯曲振动。
4基频峰:从基态跃迁到第一激发态时将产生一个强的吸收峰,即基频峰。
5倍频峰:从基态跃迁到第二激发态,第三激发时将产生相应弱的吸收峰,即倍频峰。
6振动自由度:将多原子分子的复杂振动分解成若干个简单的基本振动,这些基本振动的数目称为分子的振动自由度。
7指纹区:在红外光谱中,波数在1330~667cm-1范围内称为指纹区。
8振动偶合效应:当两个相同的基团在分子中靠得很近时,其相应的特征峰常发生分裂,形成两个峰,这种现象叫作振动偶合。
9诱导效应:在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。
10共轭效应:共轭体系中电子离域现象称为共轭效应。
第三章核磁共振1化学位移:是指将待测氢核共振峰所在位置与某基准物质氢核所在的位置进行比较,求其相对距离。
称之为化学位移。
2偶合常数:两个氢核之间的相互干扰叫做自旋偶合,干扰强度可用偶合常数表示。
波谱解析3
波谱解析3一、名词解释 1.蓝移当化合物结构改变或溶剂改变等使吸收峰向短波方向移动的现象,称之为蓝(紫)移。
2. 弯曲振动基团键角发生周期变化而键长不变的振动称为弯曲振动,用符号δ表示。
二、简答题1. HMBC谱的主要特征和用途?HMBC是1H检测的异核多键相关谱,是通过1H检测异核多量子相干调制,选择性地增加某些碳信号的灵敏度,使孤立的自旋体系相关连,而组成一个整体分子,可高灵敏度地检测13C-1H远程偶合(2J CH,3J CH),由此可得到有关季碳的结构信息及因杂原子或季碳存在而被切断的1H偶合系统之间的结构信息,其灵敏度比传统的远程偶合13C-1HCOSY高得多。
主要用于确定相隔2根或2根以上化学键的碳核和氢核之间的相关信息,从而确定其所在的结构片段,如图5-7所示。
该法特别适用于具有众多甲基的天然产物,如三萜类化合物的结构鉴定。
2. 快原子轰击质谱(FAB-MS)的特点及适用是什么?特点:(1)产生单电荷离子峰,主要是准分子离子,碎片离子较少。
常见的离子有[M+H]+(正离子方式)或[M-H]-(负离子方式)。
此外,还会生成加合离子,如[M+Na]+、[M+K]+等;(2)有正负离子检测两种模式,负离子检测方式可增加一些化合物的灵敏度;(3)在金属有机化合物和有机盐类的表征上是非常有效的。
其缺点是离子源原子束分散,灵敏度偏低。
适用范围:适用于低聚糖和多糖、多肽、核苷酸、金属有机配合物,以及磺酸或磺酸盐类等难挥发、热不稳定、强极性、分子量大的有机化合物的样品分析。
FAB是目前广泛使用的软电离技术,适用于难气化,极性强的大分子。
三、某化合物可能是下面结构中的A或B,它的紫外吸收λmax 为268nm (lgε=4.9),试计算并指出这个化合物是属于哪一种结构。
(A)(B)四、下面为化合物A、B的红外光谱图,请指出图中其主要官能团的振动吸收峰。
化合物A化合物BA五、归属下列化合物氢谱中的质子信号。
波谱解析名词解释
波谱解析名词解释
波谱解析是一种审查事物性质的分析技术,它基于物质与辐射的相互作用关系,通过观察和研究光、电磁波、声波等辐射的频率或波长分布特征,从中获取有关物质的结构、成分、性质等信息。
在波谱解析中,有许多重要的名词需要解释,下面将就其中的几个进行解释:
1. 光谱:光谱是指在光学仪器上通过分光装置观察到的辐射能量强度与波长或频率的关系图像。
光谱可以提供光的成分、色彩、强度、温度等信息,是波谱解析的重要手段之一。
2. 紫外-可见吸收光谱:这是一种常用的波谱解析方法,用于分析物质的成分和浓度。
当物质受到紫外光或可见光照射时,它会吸收一部分光能,而受到吸收的光谱可以被记录下来从而得到有关物质的信息。
3. 红外光谱:红外光谱是一种利用红外光与物质相互作用的波谱解析方法。
红外光谱可以分析物质的化学结构、键的种类和数量,以及功能基团等信息。
红外光谱在有机化学、药学、材料科学等领域有广泛应用。
4. 质谱:质谱是一种将物质分子进行离子化并进行质量分析的波谱解析方法。
质谱可以提供物质的分子量、元素组成以及化合物分析等信息。
质谱广泛应用于有机化学、环境科学、生物医学等领域。
5. 核磁共振波谱:核磁共振波谱是一种利用原子核在外加磁场和射频辐射作用下的特征信号进行分析的波谱解析方法。
核磁共振波谱可以提供物质的分子结构、化学环境、官能团等信息,被广泛应用于有机化学、生物化学、医学等领域。
波谱解析作为一种重要的科学手段,在物理学、化学、生物学等众多领域有广泛的应用。
通过解析和研究波谱,可以揭示物质的本质和行为,为科学研究、工程设计、医学诊断等提供重要支持。
波谱分析习题库答案
7、特征峰:红外光谱中4000-1333cm-1区域为特征谱带区,该区的吸收峰为特征峰。
8、质荷比:质量与电荷的比值为质荷比。
9、磁等同氢核化学环境相同、化学位移相同、对组外氢核表现相同偶合作用强度的氢核。
C、门控去偶谱D、反门控去偶谱
15、1JC-H的大小与该碳杂化轨道中S成分()
A、成反比B、成正比
C、变化无规律D、无关
16、在质谱仪中当收集正离子的狭缝位置和加速电压固定时,若逐渐增加磁场强度H,对具有不同质荷比的正离子,其通过狭缝的顺序如何变化?()
A、从大到小B、从小到大
C、无规律D、不变
17、含奇数个氮原子有机化合物,其分子离子的质荷比值为:()
A、该化合物含奇数氮。
B、该化合物含偶数氮,相对分子质量为265。
C、该化合物相对分子质量为265。
D、该化合物含偶数氮。
7、苯在环己烷中的吸收带包括()。
A 184 B 203 C 256 D 360
四、简答题
1、色散型光谱仪主要有哪些部分组成?
2、紫外光谱在有机化合物结构鉴定中的主要贡献是什么?
A、诱导效应B、共轭效应C、费米共振D、空间位阻
化合物A
26、测定化合物的氢谱时,所用试剂应该是()
A、乙醇B、甲醇C、氘代试剂D、非氘代试剂
27、下列化合物紫外图谱中最大吸收波长的大小顺序为()
① ② ③
A、③>②>①B、③>①>②C、②>③>①D、①>②>③
28、某化合物分子式为C8H7N红外光谱数据如下,IR(cm-1):3020,2920,2220,1602, 1572,1511,1450.1380,817
波谱原理及解析
波谱原理及解析
波谱原理是指物质分子在不同波长的光照射下,吸收或发射特定波长的光线,从而产生特定的光谱现象。
波谱分析是一种重要的分析方法,它通过测量样品对不同波长光线的吸收或发射情况,来确定样品的成分和结构。
本文将介绍波谱原理及解析的相关知识。
波谱原理主要包括吸收光谱和发射光谱两种。
吸收光谱是指物质吸收特定波长光线后产生的光谱现象,而发射光谱是指物质受到激发后发射特定波长光线的光谱现象。
吸收光谱和发射光谱都具有独特的特征峰,通过测量这些特征峰的位置和强度,可以确定样品的成分和结构。
波谱解析是指利用波谱技术对样品进行分析和鉴定的过程。
波谱解析的关键是准确测量样品对不同波长光线的吸收或发射情况,并将这些数据与已知标准进行比对,从而得出样品的成分和结构信息。
波谱解析涉及到许多专业知识和复杂的数据处理方法,需要有一定的实验技能和分析能力。
在波谱解析过程中,需要注意一些问题。
首先是样品的制备和处理,样品的制备和处理对波谱分析结果有重要影响,必须严格控
制样品的制备条件和处理方法。
其次是仪器的选择和操作,不同波谱技术需要不同的仪器和操作方法,必须根据样品的特性和分析要求选择合适的仪器和操作条件。
最后是数据的处理和解释,波谱数据的处理和解释需要使用专业的数据处理软件和方法,必须对数据进行准确的处理和解释,才能得出可靠的分析结果。
总之,波谱原理及解析是一门重要的分析技术,它在化学、生物、材料等领域都有广泛的应用。
掌握波谱原理及解析的知识,对于开展科研工作和进行实验分析都具有重要意义。
希望本文的介绍能够对读者有所帮助,引起大家对波谱原理及解析的兴趣,进一步深入学习和研究。
波谱解析名词解释
波谱解析名词解释紫外吸收光谱1. 紫外吸收光谱系分子吸收紫外光能、发生价电子能级跃迁而产生的吸收光谱,亦称电子光谱。
2. 曲折或肩峰:当吸收曲线在下降或上长升处有停顿或吸收稍有增加的现象。
这种现象常由主峰内藏有其它吸收峰造成。
3. 末端吸收:是指紫外吸收曲线的短波末端处吸收增强,但未成峰形。
4. 电子跃迁选律:P95. 紫外吸收光谱的有关术语:P12-136. Woodward-fieser规那么: P217. Fieser-kuhns规那么:P23 红外吸收光谱1. 振动偶合:分子内有近似相同振动频率且位于相邻部位〔两个振动共用一个原子,或振动基团间有一个公用键〕的振动基团,常常彼此相互作用,产生二种以上基团参加的混合振动,称之为振动偶合。
2. 基频峰:本征跃迁产生的吸收带称为本征吸收带,又称基频峰。
3. 倍频峰:由于真实分子的振动公是近似的简谐振动,不严格遵守⊿V=±1的选律,也可产生⊿V=±2或±3等跃迁,在红外光谱中产生波数为基频峰二倍或三倍处的吸收峰〔不严格等于基频峰的整数倍,略小〕称为倍频峰。
4. 结合频峰:基频峰间的相互作用,形成频率等于两个基频峰之和或之差的峰,叫结合频峰。
5. 泛频峰:倍频峰和结合频峰统称为泛频峰。
6. 热峰:跃迁发生在激发态之间,这种跃迁产生的吸收峰称为热峰。
7. 红外非活性振动:不产生红外吸收的振动称红外非活性振动。
核磁共振光谱1. 磁偶极子:任何带电物体的旋转运动都会产生磁场,因此可把自旋核看作一个小磁棒,称为磁偶极子。
2. 核磁距:核磁偶极的大小用核磁矩表示。
核磁矩与核的自旋角动量〔P〕和e/2M的乘积成正比。
3. 进动:具有磁矩的原子核在外磁场中一方面自旋一方面以一定角度〔θ〕绕磁场做盘旋运动,这种现象叫做进动。
4. 核磁共振:当射频磁场的能量〔〕等于核自旋跃迁能时〔〕,即旋转磁场角频率〔〕与核磁矩进动角频率〔〕相等时,自旋核将吸收射频场能量,由α自旋态〔低能态〕跃迁至β自旋态〔高能态〕。
(一到四章)有机化合物波谱解析复习指导讲解
第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强.2、发色团:分子中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波方向移动,强度增加,增色作用.4、蓝移:吸收峰向短波方向移动,减色作用.5、增色作用:使吸收强度增加的作用.6、减色作用:使吸收强度减低的作用.7、吸收带:跃迁类型相同的吸收峰.二、选择题1、不是助色团的是:DA、-OHB、-ClC、-SHD、 CH3CH2-2、所需电子能量最小的电子跃迁是:DA、σ→σ*B、 n →σ*C、π→π*D、 n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、 UV吸收无加和性C、π→π*跃迁的吸收强度比n →σ*跃迁要强10-100倍D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:B很强吸收B、强吸收 C、中强吸收 D、弱吸收5、近紫外区的波长为:CA、 4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了CA、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量大B、波长短C、电子能级差大D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:AA、水B、乙醇C、甲醇D、正己烷10、下列化合物中,在近紫外区(200~400nm)无吸收的是:AA、 B、 C、 D、11、下列化合物,紫外吸收λmax值最大的是:A(b)A、 B、 C、 D、12、频率(MHz)为4.47×108的辐射,其波长数值为AA、σ→σ*B、π→π*C、n→σ*D、n→π*第二章红外光谱一、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动自由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频二、选择题(只有一个正确答案)1、线性分子的自由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、非线性分子的自由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最大的是:( )A B C D答案:CH2CH2CH21651 1657 1678 1680O O1716 1745 1775 1810 OOCH24、下图为某化合物的IR图,其不应含有:DA:苯环 B:甲基 C:-NH2 D:-OH5、下列化合物的νC=C的频率最大的是:A B C D答案:1646 1611 1566 164116506、亚甲二氧基与苯环相连时(1,2亚甲二氧基苯:),其亚甲二氧基的δCH 特征强吸收峰为:AA:925~935cm-1B:800~825cm-1C:955~985cm-1D:1005~1035cm-17、某化合物在3000-2500cm-1有散而宽的峰,其可能为:AA:有机酸 B:醛 C:醇 D:醚8、下列羰基的伸缩振动波数最大的是:C9、中三键的IR区域在:BA ~3300cm-1B 2260~2240cm-1C 2100~2000cm-1D 1475~1300cm-110、偕三甲基(叔丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm-1 B15~30 cm-1 C 20~30cm-1 D 30cm-1以上第三章核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫4、屏蔽效应5、远程偶合6、自旋裂分7、自旋偶合8、核磁共振CRORACROHBCROFCROClC DC NR9、屏蔽常数10.m+1规律11、杨辉三角12、双共振13、NOE效应14、自旋去偶15、两面角16、磁旋比17、位移试剂二、填空题1、1HNMR化学位移δ值范围约为 0~14 。
波谱解析 复习 名词解释
氢谱屏蔽效应:氢核周围不断运动的电子影响,在外场的作用下,运动着的电子产生相对于外磁场方向的感应磁场,起到屏蔽作用,使氢核实际受到的外磁场作用减小。
化学键的磁各向异性:如果由电子组成的化学键在空间形成小的磁场,与化学键不对称,则产生了磁各向异性,与外场相反,消弱了外场,屏蔽作用“+”,化学位移变小。
与外场相同,去屏蔽作用。
去偶法:用第一个振荡器扫描Ha时,用第二个振荡器扫描Hb使他发生共振,hb在两种自旋之间迅速变化,Hb对Ha的两种影响被抵消掉,这样Ha就等于没有受到影响,这就是去偶。
核的NOE效应:当两个人(组)不同类型的质子位于相近的空间距离时,照射其中的一个会使另一个质子的信号增强。
碳谱碳谱的特点:耦合常数大:1H-1H耦合常数0-20Hz.碳原子常与氢原子连接,它们可以互相耦合,这种13C-1H 一键耦合常数的数值很大,一般在125-250 Hz。
因为13C 天然丰度很低,这种耦合并不影响1H 谱,但在碳谱中是主要的。
弛豫时间长:13C 的弛豫时间比1H 慢得多,有的化合物中的一些碳原子的弛豫时间长达几分钟,这使得测定T1、T2等比较方便。
另外,不同种类的碳原子弛豫时间也相差较大,这样,可以通过测定弛豫时间来得到更多的结构信息。
共振方法多:13C NMR 除质子噪声去耦谱外,还有多种其它的共振方法,可获得不同的信息。
如偏共振去耦谱,可获得13C-1H 耦合信息;门控去耦谱,可获得定量信息等。
因此,碳谱比氢谱的信息更丰富,解析结论更清楚。
空间效应:13C化学位移还易受分子内几何因素的影响。
相隔几个键的碳由于空间上的接近可能产生强烈的相互影响。
通常的解释是空间上接近的碳上H 之间的斥力作用使相连碳上的电子密度有所增加,从而增大屏蔽效应,化学位移则移向高场。
羰基碳200 酯基碳170苯环连氧碳155苯环碳110-140缩酮(醛)105连氧碳60-80甲氧基55甲基碳10-20 OCH3:一般位于55-60 CH2OH:一般位于62左右CHOH:一般位于60-80 C-OH:一般大于80 炔烃:C=65-90烯烃: C=100-150质子宽带去偶:C原子与直接相连的H或邻近C原子上的H 都有偶合---谱线复杂。
波谱分析名词解释
名词解释1.增色效应、减色效应:吸收强度即摩尔吸光系数ε增大(2.5分)或减小(2.5分)的现象分别称为增色效应或减色效应。
2.红外特征区:有机化合物分子中一些主要官能团的特征吸收多发生在红外区域4000-1333cm-1。
该区域吸收峰比较稀疏,容易辨认,故通常把该区域叫红外特征区。
(5分)3.磁的各向异性效应:在电子云分布不是球形对称时,这种影响在化学键周围也是不对称的,有的地方与外加磁场方向一致,将增加外加磁场,故化学位移增大;而有的地方则与外加磁场方向相反,故化学位移减小,这种效应叫做磁的各向异性效应。
4.Mclafferty重排:具有γ-氢原子的不饱和化合物,经过六元环空间排列的过渡态,γ-氢原子重排转移到带正电荷的杂原子上,伴随有Cα-Cβ键的断裂。
(3分)上述裂解途径(2分)。
5.K带、R带:共轭非封闭体系烯烃的π→π*跃迁均为强吸收带,ε≧104,称为K带吸收;n→π*跃迁λmax270-300nm,ε﹤100,为禁阻跃迁,吸收带弱,称R带。
6.振动耦合、费米共振:分子内两基团位置很近并且振动频率相同或相近时, 它们之间发生强相互作用, 结果产生两个吸收峰, 一个向高频移动, 一个向低频移动,这叫振动耦合。
当倍频峰(或组频峰)位于某强的基频峰附近时,弱的倍频(或组频)峰的吸收强度常被大大强化(间或发生峰带裂分),这种倍频(或组频)与基频之间的振动偶合成为费米共振。
7.偶合常数:峰裂距即偶合常数,以J来表示,J有正负号,单位为Hz。
它反映的是两个核之间的作用强弱,与偶合核的局部磁场有关,其数值与仪器的工作频率(或磁场强度)无关。
(5分)8.ESI-MS:电喷雾电离质谱(2分);它是在4000v强电场中,使用强静电场电离技术使样品形成高度荷电的雾状小液滴从而使样品分子电离而形成的质谱。
9.Woodward rule:由Woodward首先提出,将紫外光谱的最大吸收与分子结构相关联,选择适当的母体,再加上一些修饰即可估算某些化合物的最大吸收波长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《波谱解析名词解释》
1.助学团:某些饱和的原子团本身在近紫外区无吸收的,并不“发色”,但其与发色团相连或共轭时,能使发色团的吸收峰长波方向移动,强度增强,这些基团称为助色团。
常用的助色团有—OH,—OR,—NR2,—SR,—Cl,—Br,—I等。
2.发色团:有机化合物分子结构中有能吸收紫外光或可见光的基团,此类基团称为发色团。
3红移:由于化学环境的变化而导致吸收峰长波方向移动的现象叫做红移。
4蓝移:导致吸收峰向短波方向移动的现象叫做蓝移。
5.增色效应:使紫外吸收强度增加的作用。
6.减色效应:使紫外吸收强度降低的作用。
第二章红外光谱
1费米(Fermi)共振:由频率相近的倍频峰和基频峰相互作用产生,结果使倍频峰的强度增大或发生裂分。
2伸缩振动:沿键轴方向发生周期性变化的振动称为伸缩振动。
3弯曲振动:沿键角发生周期性变化的振动称为弯曲振动。
4基频峰:从基态跃迁到第一激发态时将产生一个强的吸收峰,即基频峰。
5倍频峰:从基态跃迁到第二激发态,第三激发时将产生相应弱的吸收峰,即倍频峰。
6振动自由度:将多原子分子的复杂振动分解成若干个简单的基本振动,这些基本振动的数目称为分子的振动自由度。
7指纹区:在红外光谱中,波数在1330~667cm-1范围内称为指纹区
8振动偶合效应:当两个相同的基团在分子中靠得很近时,其相应的特征峰常发生分裂,形成两个峰,这种现象叫作振动偶合。
9诱导效应:在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。
10共轭效应:共轭体系中电子离域现象称为共轭效应。
第三章
1化学位移:是指将待测氢核共振峰所在位置与某基准物质氢核所在的位置进行比较,
求其相对距离。
称之为化学位移。
2偶合常数:两个氢核之间的相互干扰叫做自旋偶合,干扰强度可用偶合常数表示。
3 NOE效应:在观测1H-NMR时,使用第二射频场照射某一核,使其饱和,则空间上与之相近的另一核信号将增强,此作用简称为NOE效应。
4 n+1规律:有n个相邻的磁不等同氢核时,将显示n+1个小峰。
这就是n+1规律。
5饱和:核连续吸收电磁波,原来过剩的低能态核逐渐减少,吸收信号的强度就会减弱直到完全消失,这个现象称为“饱和”
6弛豫:在外部磁场中,低能态的核一般要比高能态的多一些。
吸收电磁波能量而迁移到高能态的核会经过非辐射的途径释放能量而回到原来的低能态,这一过程称之为“弛豫”
7自旋偶合:氢原子核之间的相互干扰引起的,原子核之间的相互干扰叫自旋偶合。
8化学位移等价:分子处于相同的化学环境,具有相同的化学位移值,称为化学位移等价。
9磁等价:化学环境相同,化学位移也相同,且对组外氢核表现出相同偶合作用强度的氢核,称为磁等价原子核。
第四章
1.分辨率R:是指质谱仪分开相邻离子质量数差的能力,即质谱仪能分辨相邻二峰的质量数差越少,分辨率越高。
2.分子离子峰:一个分子通过电离,丢失一个外层价电子形成的带正电荷的离子,称为分子离子。
3.准分子离子:准分子离子是指分子获得一个质子或失去一个质子,记[M+H]+, [M+H]-所得质谱峰。
4.离子经电场加速,在飞行途中裂解为离子m2+,此时失去一部分动能,因此其质谱峰不在正常的m2+位置上,而是在较低质量位置上,相应的质谱峰称为亚稳离子峰。
5.图谱中最强的峰称为基峰,将它的强度定为100%,其他离子峰以对基峰的相对百
分值表示,称为相对丰度。
6.均裂:一个б键的两个电子裂开,每个碎片上各保留一个电子。
7.异裂:一个б键的两个电子裂开后,两个电子都归属于其中某一个碎片。
8.断裂发生的位置都是电荷定位原子相邻的第一个碳原子和第二个碳原子之间的键,这个键称为a键,这类由自由基引发的断裂统称a断裂。