水箱液位自动控制系统设计

合集下载

水箱液位自动控制系统设计

水箱液位自动控制系统设计

第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。

在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。

液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。

根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。

结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。

应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。

图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。

图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。

也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。

因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。

只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。

性能指标顶的偏低,可能会对产品的质量、产量造成影响。

性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。

性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。

不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。

尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。

有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。

在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。

由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。

该系统常用于水处理、供水系统、工业生产等领域。

本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。

PLC作为控制器,能够实现对水位的监测、控制和保护。

首先,本设计将使用传感器来监测水箱的液位。

液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。

传感器将通过模拟信号将液位信息传输给PLC。

PLC将读取并处理传感器的信号,得到水箱的液位信息。

其次,PLC将根据液位信息来控制水泵的运行。

当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。

当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。

通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。

此外,本系统还将具备一定的保护功能。

当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。

同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。

为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。

程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。

同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。

最后,本设计将进行系统的仿真和调试。

通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。

在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。

通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。

同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。

基于DCS实验平台实现的水箱液位控制系统综合设计

基于DCS实验平台实现的水箱液位控制系统综合设计

基于DCS实验平台实现的水箱液位控制系统综合设计水箱液位控制系统是一种常见的自动控制系统,用于控制水箱中水的液位,并实现自动注水或放水。

在本综合设计中,我们基于DCS(Distributed Control System)实验平台实现了一套水箱液位控制系统。

DCS是一种分布式控制系统,由多个控制器通过网络连接,并共享信息和资源,实现综合控制和监测。

本设计包含以下组成部分:1.水箱:水箱是整个系统的控制对象,用于存储水。

我们使用了一个实验型水箱,通过电动阀门来控制水的流入和流出。

2.传感器:系统中使用了液位传感器来监测水箱中水的液位。

通过传感器,我们可以获取实时的液位数据。

3.执行器:系统中使用了电动阀门作为执行器,用于控制水的注入和排出。

电动阀门可以根据控制信号打开或关闭,实现自动控制。

4.控制器:我们使用了DCS实验平台提供的控制器来实现水箱液位控制算法。

控制器通过接收传感器的反馈信号,并根据设定点和控制算法计算出相应的控制信号,再通过通信网络发送给执行器。

5.计算机界面:我们使用了DCS实验平台提供的计算机界面来监测和操作水箱液位控制系统。

通过计算机界面,操作人员可以实时查看水箱液位、设定控制参数,并监控系统的运行状态。

在系统运行时,控制器会不断地读取传感器的反馈信号,并根据设定点和控制算法计算出相应的控制信号。

控制信号通过通信网络发送给执行器,执行器根据控制信号打开或关闭电动阀门,实现水的自动注入或排出。

同时,系统的运行状态和液位数据会通过计算机界面实时显示,方便操作人员监控和调整。

实验结果表明,我们设计的水箱液位控制系统能够准确地控制水箱中的液位,并实现自动注水或放水的功能。

通过DCS实验平台的分布式控制和监测能力,系统的可靠性和稳定性得到了有效提高。

通过本实验,我们深入了解了水箱液位控制系统的原理和设计方法,熟悉了DCS实验平台的使用,并通过实践掌握了水箱液位控制系统的综合设计过程。

总之,基于DCS实验平台的水箱液位控制系统综合设计是一个充满挑战但又非常有意义的实验项目,通过实验我们可以提升我们在自动控制和DCS技术方面的能力,并为工业自动化控制系统的设计和实施奠定基础。

双容水箱液位控制系统设计

双容水箱液位控制系统设计

双容水箱液位控制系统设计首先,双容水箱液位控制系统的基本原理是根据水位信号的反馈来控制水泵的启停。

当水箱液位低于设定值时,水泵启动,开始抽水;当液位达到设定值时,水泵停止运行。

这样就可以实现水箱液位的自动控制。

第一,确定水箱的容积和设计液位。

容积和设计液位的确定需要根据实际应用情况来选择,一般要考虑水泵的流量和工作时间等因素。

容积大的水箱可以减少水泵启停的频率,但其建设和维护成本也较高。

第二,确定水位传感器的选择和安装。

水位传感器是检测水箱液位的关键部件,可以选择浮子式传感器、超声波传感器等。

选择合适的传感器需要考虑其精度、可靠性、成本和使用环境等因素。

安装传感器时要确保其与水箱的接触良好,避免信号干扰。

第三,确定控制器的选择和编程。

控制器是实现水位控制的核心部件,可以选择PLC、单片机等。

控制器的选择要考虑其处理能力、输入输出接口和编程灵活性等因素。

编程时需要设置液位设定值和控制逻辑,使得系统能够准确地控制水泵的启停。

第四,确定水泵的选择和安装。

水泵是水箱液位控制系统的关键设备,可以选择离心泵、自吸泵等。

选择合适的水泵需要考虑其流量、扬程、功率和效率等因素。

水泵的安装要确保其与水箱的连接可靠,并考虑水泵的防护和维护问题。

第五,确定报警和保护措施。

对于水箱液位控制系统,需要设置相应的报警和保护机制,以及应急措施。

例如,当水泵故障或水箱液位异常时,系统应该能够及时发出报警,并采取相应的措施避免设备损坏或事故发生。

最后,测试和调试系统。

在系统设计和安装完成后,需要进行全面的测试和调试工作。

首先测试传感器和控制器的工作是否正常,然后测试水泵的启停控制是否准确。

同时,还需要进行系统的稳定性和灵敏度测试,确保系统能够稳定运行和满足实际需求。

总之,双容水箱液位控制系统的设计需要综合考虑容积、液位传感器、控制器、水泵、报警保护和测试调试等方面的因素。

只有设计合理并正确配置这些部件,才能实现高效、稳定的液位控制。

PLC水箱液位控制设计

PLC水箱液位控制设计

PLC水箱液位控制设计水箱液位控制是工程和工业应用中的一个重要任务,受到工业生产和生活的影响。

PLC(可编程逻辑控制器)被广泛应用于自动化控制系统中。

在这里,我们将讨论PLC在水箱液位控制中的设计和应用。

一、设计要求1.自动控制水箱液位:根据需要自动控制水箱液位,以保持水箱液位在合适的范围内。

2.液位传感器:使用能够准确测量液位的传感器,例如超声波、浮子或电容传感器等。

3.控制阀门:根据液位传感器的信号,控制阀门的开关来调节进出水的流量。

4.安全保护:设置安全保护机制,如最高和最低液位报警,以防止水箱溢出或干涸。

二、系统设计1.硬件设计:选择适当的液位传感器、PLC和执行器,如电磁阀,来实现水箱液位的控制。

2.软件设计:编写PLC的控制程序,包括液位传感器读取、液位控制算法和输出控制信号给执行器的逻辑。

3.输入输出设计:将传感器连接到PLC的输入模块,并将执行器连接到PLC的输出模块。

4.安全保护设计:为了确保系统的安全性,设计液位报警机制,当液位低于最低限制或高于最高限制时,触发报警信号。

三、工作原理1.初始状态:水箱液位低于最低限制,控制系统开始工作。

2.传感器读取:PLC读取液位传感器的信号,并将其转换为数字量进行处理。

3.液位控制算法:根据传感器信号,PLC计算水箱液位的偏差,并决定相应的动作,如开启或关闭阀门。

4.输出控制信号:根据液位控制算法的结果,PLC将控制信号发送到执行器(电阀)以调节进出水量。

5.液位报警:如果液位低于最低限制或高于最高限制,PLC将触发报警信号以提醒操作员。

四、实施细节1.选择合适的液位传感器:液位传感器的选择取决于应用场景和预算。

超声波传感器具有高精度和无接触的特点,但价格较高。

浮子和电容传感器价格较低,但精度较低。

2.选择适当的PLC:根据应用要求选择适当的PLC。

考虑到通信接口、输入输出数量和处理速度等因素。

3.选择适当的执行器:根据流量要求选择适当的执行器,例如电磁阀。

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计PLC水箱液位控制系统是一种基于可编程逻辑控制器(PLC)的自动控制系统,用于监测和调节水箱中的液位。

这个系统可以应用于各种场景,比如工业生产中的水箱液位控制、建筑物的水池液位控制等。

在本篇文章中,将详细介绍PLC水箱液位控制系统的设计和实现。

首先,我们需要对PLC水箱液位控制系统的硬件进行设计。

其中包括传感器模块、执行器模块和PLC控制器。

传感器模块用于监测水箱中的液位,可以选择合适的液位传感器,如浮球开关、超声波传感器等。

执行器模块用于控制水箱中的液位,可以选择水泵或阀门等执行器。

PLC控制器用于接收传感器模块的信号,根据预设的控制策略来控制执行器模块的工作。

同时,还需要考虑电源模块、通信模块等其他辅助模块。

接下来,我们需要对PLC水箱液位控制系统的软件进行设计。

PLC控制器通常使用Ladder Diagram(梯形图)进行编程。

在本设计中,我们可以根据液位传感器的信号来控制执行器的开关。

当液位低于一定阈值时,PLC控制器可以启动水泵或打开阀门,以增加水箱中的液位。

当液位高于一定阈值时,PLC控制器可以停止水泵或关闭阀门,以减少水箱中的液位。

同时,我们还可以增加一些安全措施,如设置最大液位和最小液位报警,当液位超出范围时,PLC控制器可以发出警报信号或采取相应的措施。

在实际应用中,我们还可以通过人机界面(HMI)来对PLC水箱液位控制系统进行监控和操作。

通过HMI,我们可以实时查看水箱中的液位,修改控制策略,记录操作日志等。

同时,我们还可以将PLC水箱液位控制系统与上位机进行通信,实现远程监控和控制。

最后,我们需要对PLC水箱液位控制系统进行实验验证。

在实验中,我们可以模拟不同的液位情况,观察PLC控制器的响应和执行器的工作情况。

通过实验,我们可以测试系统的稳定性、精度和可靠性,并对系统进行优化和改进。

总结而言,PLC水箱液位控制系统是一种自动控制系统,用于监测和调节水箱中的液位。

双容水箱液位串级控制系统的设计

双容水箱液位串级控制系统的设计

双容水箱液位串级控制系统的设计介绍双容水箱液位串级控制系统主要用于控制双容水箱中的液位。

液位控制是很多自动化系统中常见的控制需求之一。

设计一种能够自动感知液位情况,并根据液位高低自动控制水泵启停的系统,能够提高水资源的利用效率,减少了人工干预和误操作、提高了液位控制的准确性和稳定性,有着广泛的应用场景。

系统组成双容水箱液位串级控制系统主要由以下组成部分组成:•液位传感器:用于感知水箱的液位高度,可以采用浮球式或插杆式测量方式。

•控制器:通过控制水泵的启停和切换,以实现对双容水箱液位的控制。

•水泵:真正实现将水从水箱中供给出去。

•双容水箱:水箱的数量最少为两个,分别为上水箱和下水箱。

两个水箱通过水管连接起来,构成液位串级控制系统。

系统工作原理该系统的工作原理如下:1.当上水箱的液位低于设定的下限值时,由液位传感器向控制器发送信号。

2.控制器接收到液位传感器发送的信号后,会自动启动水泵,并将水泵的工作模式设置为“进水模式”。

3.当上水箱中的水位达到设定的上限值时,液位传感器再次向控制器发送信号。

4.控制器再次接收到信号后,会关闭当前正在工作的水泵,并打开下一台水泵。

5.下一台水泵开始工作,并将工作模式切换至“出水模式”。

6.一旦上水箱中的水位低于下限值,该过程会循环继续。

系统功能双容水箱液位串级控制系统实现以下功能:1.自动感知水箱液位高度,能够准确地监控上下水箱液位状态,确保水箱中水源充足。

2.通过自动控制水泵启停以及切换工作模式,能够实现液位的自动调节和防止水箱过流、干涸的功能。

3.实现多个水泵的串联使用,确保水泵的寿命和性能,从而提高液位控制的准确性和稳定性。

双容水箱液位串级控制系统是一种能够自动感知液位变化和自动控制水泵启停的控制系统。

该系统可以帮助我们有效地利用水资源,减少人工干预以及误操作,提高液位控制的准确性和稳定性。

基于S7-1200PLC的水箱液位控制系统的设计

基于S7-1200PLC的水箱液位控制系统的设计

基于S7-1200PLC的水箱液位控制系统的设计重庆科技学院摘要水箱液位控制系统是一种用于监测、控制水箱液位的自动化设备。

它通过搭载传感器、控制器和执行机构等组件,实现对水箱液位的实时监控和自动控制。

通常,水箱液位控制系统由传感器,控制器,执行机构。

水箱液位控制系统的使用范围广泛,包括建筑物、工业生产、农业灌溉、城市给排水和环保等领域。

它具有结构简单、安装方便、实时性强等特点,该系统能够提高水资源的利用效率、减少用水浪费和防止水源的污染。

本文基于S7-1200 PLC实现水箱液位控制系统设计。

该系统由硬件和软件两部分组成,硬件包括PLC、人机界面触摸屏、传感器、执行器等;软件实现传感器数据处理、PID稳态控制、安全等功能;关键词:液位控制 PLC PID 传感器重庆科技学院本科生毕业设计 3水箱液位控制系统硬件设计1绪论在工业领域,几乎在各个行业都会或多或少的涉及到液位的检测等问题,然而液位变量具有延迟滞后性,参数不稳定,复杂多变等问题,因此,这就需要本文采取更为精确的控制器去实现液位变量的检测。

传统控制具有很多缺陷:比如精度低、速度慢、灵敏度低等。

一个稳定的液位系统,可以保证安全可靠的工业生产、高效的生产效率、充分合理的利用能源等,大大提高了工业生产的经济价值。

日益激烈的市场竞争,要求本文的控制技术必须更加先进,此前的控制技术已落伍,显然无法满足需求,这种对先进技术的需求加速了可编程逻辑控制器的问世。

引入PLC控制器后,能够使控制系统变得更集中、有效、及时。

2水箱液位控制总体方案设计2.1水箱液位控制系统实际应用特征水箱液位控制系统是一种广泛应用于水箱的自动化控制系统,常见于民用和工业领域。

实际应用中,水箱液位控制系统具有以下特征:①实时性强:系统能够实时检测水箱内的液位信息,并根据液位变化及时控制水泵的启停,保证水位稳定。

②可靠性高:系统通过各类安全措施确保水泵的正常启停,不会出现过量或不足的水位情况,避免因为水位变化带来的安全隐患。

水箱液位控制系统设计设计

水箱液位控制系统设计设计

水箱液位控制系统设计设计一、系统概述水箱液位控制系统是一个智能化的系统,用于控制水箱液位并保持在设定的范围内。

该系统由传感器、控制器和执行器组成,通过传感器检测水箱液位,并将液位信号传输给控制器,控制器根据设定的参数进行判断和控制,最终通过执行器完成控制动作。

二、系统组成1.传感器:使用浮球传感器或超声波传感器来检测水箱液位。

传感器将液位转化为电信号,并传输给控制器。

2.控制器:控制器是系统的核心部分,它接收传感器的信号,并进行处理和判断。

控制器可以根据设定的参数来判断液位是否达到目标范围,并通过输出信号来控制执行器的动作。

此外,控制器还需要具备人机界面,方便用户进行参数设置和监测。

3.执行器:执行器根据控制器的控制信号,完成相应的动作。

例如,当液位过高时,执行器可以控制水泵关闭或排水阀打开,以降低液位;当液位过低时,执行器可以控制水泵开启或进水阀打开,以提高液位。

4.电源:为整个系统提供电能。

三、系统设计思路1.确定液位控制的范围:根据实际需求,确定水箱液位的上限和下限。

一般情况下,液位控制范围应在50%至85%之间。

2.选择合适的传感器:根据水箱的结构和液位控制要求,选择合适的传感器。

浮球传感器适用于小型水箱,超声波传感器适用于大型水箱。

3.设计控制器:控制器的主要功能是接收传感器的信号、处理和判断液位,并输出控制信号。

在设计控制器时,需要考虑如下几个方面:-信号处理:传感器的信号可能存在噪声,需要进行滤波处理,保证信号的准确性。

-参数设置:控制器应提供人机界面,方便用户根据实际需求设置参数,例如液位上下限、启停时间等。

-控制算法:根据设定的参数,控制器需要实现相应的控制算法,例如比例控制、积分控制等。

-控制输出:控制器根据判断结果输出控制信号,控制执行器的动作。

4.选用适配的执行器:根据液位控制要求,选择适合的执行器,例如水泵、进水阀、排水阀等。

5.系统集成与调试:将传感器、控制器和执行器进行连接和集成,进行系统调试和性能测试。

单容水箱液位控制系统的设计

单容水箱液位控制系统的设计

单容水箱液位控制系统的设计水箱液位控制系统是指利用传感器等技术手段实时监测水箱液位,并通过控制装置调节供水和排水流量,使水箱的液位保持在设定的范围内的系统。

1.系统组成(1)传感器:负责实时监测水箱液位,常用的传感器有浮球传感器、电阻传感器、超声波传感器等。

传感器要具有高精度、稳定性好、可靠性高等特点。

(2)控制装置:根据传感器反馈的液位信号,控制水泵或排水装置,调节供水和排水流量,使水箱液位保持在设定的范围内。

控制装置可以采用微控制器、PLC等。

(3)供水装置:负责向水箱供水,可以是普通水泵、恒压供水设备等。

供水装置的选型要考虑流量、扬程等参数。

(4)排水装置:负责将多余的水排出水箱,可以是排水泵、电磁阀等。

排水装置的选型要考虑排水能力、响应时间等参数。

(5)控制面板:提供操作和显示功能,用于设定液位控制的参数和实时显示液位情况。

2.系统原理(1)运行原理:系统根据设定的最低液位和最高液位,当液位低于最低液位时,控制装置开启供水装置;当液位高于最高液位时,控制装置开启排水装置。

当液位处于最低液位和最高液位之间时,控制装置停止供水和排水装置。

(2)至空调和给排水系统的作用:当液位低于最低液位时,系统将启动供水装置,为空调系统提供水源;当液位高于最高液位时,系统将启动排水装置,将多余的水排出,保证水箱不溢出。

3.系统设计要点(1)传感器的选择:根据实际情况选择不同类型的传感器。

传感器的安装位置要合理,避免水箱漏水或传感器受到污染。

(2)控制装置的设计:根据传感器反馈的液位信号,计算控制装置的输出信号,控制供水和排水装置的运行。

要考虑控制装置的响应时间、动作准确性等参数。

(3)供水装置和排水装置的选型:选型要根据水箱的容量和液位控制需求确定。

要考虑流量、扬程、动力源等因素。

(4)安全保护措施:系统应具备过液位保护、过流量保护、电源故障保护等功能,确保系统的安全可靠性。

(5)控制面板的设计:控制面板应具有操作简便、参数设定方便、实时显示液位等功能。

水箱液位自动控制系统设计

水箱液位自动控制系统设计

第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。

在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。

液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。

根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。

结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。

应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。

图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。

图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。

也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。

因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。

只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。

性能指标顶的偏低,可能会对产品的质量、产量造成影响。

性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。

性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。

不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。

尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。

有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。

在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。

由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。

双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计引言:双容水箱液位流量串级控制系统是一种用于控制液位和流量的自动化系统。

该系统通过对水泵和阀门的控制,实现对水箱液位和流量的精确调节。

在工业生产中,液位和流量的稳定控制对于保证生产过程的正常运行至关重要。

因此,设计一个可靠的双容水箱液位流量串级控制系统具有重要的实际意义。

系统设计:1.系统硬件组成-水泵:负责将水从源头输送至水箱中。

-水箱:承装和储存水,通过液位传感器测量液位。

-液位传感器:用于测量水箱液位,将测量结果传输给控制器。

-流量传感器:用于测量水流量,将测量结果传输给控制器。

-控制阀:通过控制水流量来调节水箱液位。

-控制器:根据液位和流量传感器的反馈信号,控制水泵和控制阀的启停和开关。

2.系统工作原理双容水箱液位流量串级控制系统的工作原理是通过液位和流量传感器实时监测水箱液位和水流量的变化,并将测量结果传输给控制器。

控制器根据设定的目标液位和流量值,计算出所需的水泵和控制阀的工作状态。

当实际液位或流量低于目标值时,控制器启动水泵和控制阀以增加水流量,从而提高液位;反之,当实际液位或流量高于目标值时,控制器关闭水泵和控制阀以减少水流量,以降低液位。

3.系统控制策略双容水箱液位流量串级控制系统的控制策略可以采用PID控制器。

PID控制器是一种常用的控制算法,它通过对比实际测量值和目标值,计算出一个控制量,然后对被控对象进行控制。

其算法由比例(P)、积分(I)和微分(D)三个部分组成,可以有效地控制系统稳定性和响应速度。

在双容水箱液位流量串级控制系统中,可以将液位作为主要控制量,流量作为辅助控制量。

首先,通过对液位传感器和流量传感器的测量值进行PID控制,控制水泵的启动和停止,以满足目标液位和流量的要求。

接下来,根据控制阀的反馈信号,通过控制阀的开关来实现对水箱液位的精确调节。

4.系统安全性和可靠性双容水箱液位流量串级控制系统设计中,应考虑系统的安全性和可靠性。

单容水箱液位控制系统设计

单容水箱液位控制系统设计

单容水箱液位控制系统设计一、引言单容水箱液位控制系统是一种常见的工业自动化控制系统。

它主要用于监测和控制水箱的液位,确保水箱中的液位保持在特定的范围内。

本文将介绍单容水箱液位控制系统的设计原理、硬件电路设计、软件设计以及系统测试和实施。

二、设计原理1.传感器模块传感器模块用于监测水箱中的液位。

一种常用的传感器是浮球传感器,它随着液位的变化而移动,从而输出不同的电信号。

传感器模块将传感器输出的信号转换为数字信号,并传送给控制器模块进行处理。

2.控制器模块控制器模块是整个系统的核心,它接收传感器模块传来的信号,并根据预设的液位范围进行判断和控制。

控制器模块通常使用单片机或者嵌入式系统来实现。

它可以通过开关控制执行器模块的工作状态,以调节水箱的液位。

3.执行器模块执行器模块用于控制水箱的进水和排水。

在液位过低时,执行器模块打开水泵,使水箱进水;在液位过高时,执行器模块关闭水泵,使水箱排水。

执行器模块可以采用继电器、驱动电机等元件来实现。

三、硬件电路设计1.传感器模块传感器模块将传感器的信号转换为数字信号。

可以使用模拟到数字转换器(ADC)将传感器输出的模拟电压转换为数字信号,然后通过串口等方式传送给控制器模块。

2.控制器模块控制器模块可以使用单片机或者嵌入式系统来实现。

它需要包括输入接口、控制逻辑和输出接口。

输入接口负责接收传感器模块传来的信号,控制逻辑通过判断液位范围来控制执行器模块的工作状态,输出接口负责向执行器模块发送控制信号。

3.执行器模块执行器模块根据控制器模块的信号控制水箱的进水和排水。

可以使用继电器或驱动电机等元件来实现。

进水时,可以通过开启水泵或开启电磁阀等方式;排水时,可以通过关闭水泵或关闭电磁阀等方式。

四、软件设计软件设计主要包括控制器模块的程序设计。

程序需要实时监测传感器模块的信号,并根据预设的液位范围进行判断和控制。

可以使用状态机或者PID控制算法来实现。

1.状态机状态机通过定义不同的状态和状态转移条件来实现控制逻辑。

双容水箱液位控制系统方案

双容水箱液位控制系统方案

双容水箱液位控制系统方案一、前言在许多工业生产过程中,水位的控制是非常关键的环节。

双容水箱液位控制系统是一种常用的水位控制方案,它通过两个水容器之间的液位传感器和控制阀门来实现液位的自动控制。

本文将就双容水箱液位控制系统的设计方案进行详细介绍。

二、系统结构[插入系统结构示意图]系统由两个水容器、液位传感器、控制阀门和控制器组成。

其中,一个水容器为水箱,另一个水容器为储水槽。

三、系统原理四、系统设计步骤1.确定控制策略首先要确定液位控制的目标和要求,例如需要将水箱液位控制在一定范围内。

然后根据具体的要求设计控制策略,如使用PID控制算法。

2.选择液位传感器根据实际需要选择合适的液位传感器,可以使用浮球式液位传感器或是压力式液位传感器。

传感器的选择需要考虑其测量范围、精度和稳定性等因素。

3.选择控制阀门选择合适的控制阀门用于控制水的流入和流出。

阀门的选择需要考虑其流量范围、响应速度和可控性等因素。

同时,还需要考虑阀门的安装位置和连接方式等因素。

4.确定控制器和通信协议选择合适的控制器用于接收液位传感器的信号,并控制控制阀门的开关状态。

通常可以选择PLC或是单片机作为控制器,并根据实际需要确定通信协议。

5.编写控制程序根据控制策略和控制器的要求编写控制程序,实现液位的自动控制。

程序需要包括液位传感器的读取、控制阀门的开关和液位的调节等功能。

6.系统调试和优化对安装完毕的系统进行调试和优化,通过实际测试来验证系统的性能和稳定性。

如有需要,可以对控制策略和参数进行调整,以满足实际应用的需求。

五、系统特点和应用1.可靠性高:通过使用液位传感器和控制器,系统能够实时监测和控制液位,避免了人工操作的误差。

2.自动化程度高:系统可以实现液位的自动控制,减少了人工操作的工作量。

3.调节性能好:根据实际需要,可以选择合适的控制策略和参数,以实现液位的快速调节和稳定控制。

4.应用范围广:双容水箱液位控制系统广泛应用于各类工业生产过程中,如供水系统、储罐液位控制等。

双容水箱液位控制系统毕业设计

双容水箱液位控制系统毕业设计

双容水箱液位控制系统毕业设计双容水箱液位控制系统是一种用于控制水箱液位的智能化系统,通过传感器、控制器和执行器等组件,实现对水箱液位的自动监测与控制。

本文将介绍关于双容水箱液位控制系统的毕业设计,包括设计目标、系统结构、工作原理和关键技术等方面的内容。

首先,设计目标是实现对双容水箱液位的智能化控制,以提高水箱的利用率和节约水资源。

具体目标包括:准确监测水箱液位,实时调节进水与排水流量,保持水箱液位在合理范围内。

其次,双容水箱液位控制系统的结构主要包括传感器模块、控制模块和执行器模块。

传感器模块用于监测水箱液位,可以采用压力传感器、浮球传感器或超声波传感器等;控制模块负责收集传感器数据,进行算法分析和决策,控制执行器模块的动作;执行器模块包括水泵和电磁阀等组件,通过控制水泵的运行和电磁阀的开关,调节进水与排水的流量,从而控制水箱液位。

系统的工作原理是首先通过传感器获取水箱液位信息,并传输给控制模块进行处理。

控制模块根据设定的液位范围和液位变化规律,判断当前液位状态,决定执行器的动作。

如果液位过高,则控制模块发送信号给执行器模块,开启电磁阀进行排水;如果液位过低,则控制模块发送信号给执行器模块,启动水泵进行进水。

通过不断的反馈和调整,控制系统可以使液位保持在合理范围内。

关键技术包括传感器选择与布置、控制算法设计和执行器参数调节等。

传感器的选择和布置需要考虑液位变化范围和液位测量的准确性;控制算法的设计需要根据实际情况制定,包括液位判断标准和动作决策规则;执行器参数调节需要根据实际需求和系统响应特性进行调整和优化。

综上所述,双容水箱液位控制系统的毕业设计旨在实现对水箱液位的智能化监测与控制。

通过设计合理的系统结构、优化的工作原理和关键技术的应用,可以实现对水箱液位的准确监测和精确控制,提高水资源的利用效率。

基于MATLAB水箱液位控制系统的设计

基于MATLAB水箱液位控制系统的设计

基于MATLAB水箱液位控制系统的设计水箱液位控制系统是水处理领域的一个重要应用,可以实现对水箱液位的监测和控制。

本文将基于MATLAB平台设计一个水箱液位控制系统,并详细介绍其工作原理、设计步骤和实现方法。

1.设计目标和原理设计目标是实现水箱液位的实时监测和自动控制,保持液位在设定值附近波动。

系统原理是通过传感器实时检测水箱液位,将液位信号传输给控制器进行处理,控制器根据设定值和实际液位偏差调整执行机构的动作,使液位保持在设定值范围内。

2.设计步骤(1)确定传感器和执行机构:选择合适的液位传感器和执行机构,如浮球传感器和电动阀门。

(2)建立数学模型:根据系统特性建立数学模型,描述液位与传感器输出和执行机构控制信号之间的关系。

(3)设计控制器:根据液位模型设计控制器,如PID控制器。

(4)编写MATLAB程序:使用MATLAB编写程序,实现液位监测、控制器设计和控制信号输出。

3.系统实现方法(1)建立模拟环境:在MATLAB中建立水箱液位模拟环境,包括液位模型、传感器模型和执行机构模型。

(2)液位监测:读取传感器输出信号,获取实时液位信息。

(3)控制器设计:根据实时液位和设定值计算控制信号,可以使用PID控制器进行设计。

(4)控制信号输出:将控制信号发送给执行机构,实现对阀门的开关控制。

(5)反馈调整:根据执行机构的反馈信号对控制器参数进行调整,以进一步优化系统性能。

4.系统性能指标和优化(1)稳定性:控制系统在干扰的情况下能够保持液位稳定。

(2)响应速度:控制系统对液位变化的响应速度,可以通过调整控制器参数来实现快速响应。

(3)偏差:控制系统的液位偏差大小,可以通过调整控制器参数和设定值来控制偏差范围。

(4)抗干扰性能:控制系统对外界干扰(如水源变化)的抵抗能力。

(5)稳定性分析:通过系统稳定性分析,确定系统参数的合理范围。

(6)优化方法:通过试验和仿真,不断调整控制器参数和设定值,以实现最佳控制效果。

水箱液位控制系统设计

水箱液位控制系统设计

水箱液位控制系统设计一、引言二、水箱液位控制系统功能需求1.实时监测水箱内的液位,能够准确地反映水箱的水位高低。

2.自动控制水泵的启停,能够根据液位情况自动控制水泵的工作状态。

3.监测和报警功能,当水箱液位过高或过低时,能够及时发出警报,防止水箱溢满或干涸。

4.用户可通过控制面板进行参数设置和手动控制,便于系统的调试和操作。

三、系统硬件设计1.液位传感器:选择合适的液位传感器,如浮球式液位传感器、压力式液位传感器等,用于测量水箱内的液位。

2.控制面板:包括液晶显示屏、按键开关和警报器,用于进行参数设置、手动控制和状态显示。

3.控制器:采用单片机或PLC等控制器,用于控制水泵的启停和监测、处理液位传感器的信号。

4.电磁继电器:用于控制水泵的启停,根据控制器的输出信号来控制水泵的运行。

四、系统软件设计1.液位监测算法:通过液位传感器获取的模拟信号,经过模数转换后,传入控制器进行处理。

控制器根据预设的液位范围和阈值,判断并监测水箱的液位高低。

2.控制算法:根据液位监测的结果,判断是否需要启动或停止水泵。

当液位过低时,控制器输出控制信号,驱动电磁继电器闭合,启动水泵;当液位过高时,控制器输出控制信号,驱动电磁继电器断开,停止水泵。

3.参数设置界面:在控制面板上设计用户界面,用户可以通过按键设置液位的上下限值、警报阈值等参数。

4.警报功能:当水箱液位超过上限或低于下限时,控制器将发出警报信号,触发警报器报警,并在液晶显示屏上显示相应的警报信息。

五、系统测试与调试1.对液位传感器的测量精度进行测试,确认液位传感器和控制器的连接正确,信号传输正常。

2.进行液位控制的测试,对水箱进行填满、放空等操作,检查控制系统是否正常响应并进行相应的控制。

3.对警报功能进行测试,将液位设置为超过上限或低于下限的值,检查是否触发警报器和显示屏的报警信息。

六、系统优化与改进1.根据实际情况对控制算法进行优化,提高控制的精度和可靠性。

单容水箱液位控制系统设计

单容水箱液位控制系统设计

单容水箱液位控制系统设计一、引言水箱是常见的储水设备,广泛应用于家庭、工业和农业等领域。

为了保证水箱的水位稳定和安全,需要设计一种液位控制系统来监测和控制水箱的液位。

本文将介绍一个单容水箱液位控制系统的设计思路和实现方法。

二、系统设计思路1.系统功能要求2.系统组成液位传感器用于检测水箱的液位,并将检测到的液位信号传输给控制器。

控制器根据液位传感器的信号以及设定范围来判断蓄水或排水的需求,并通过控制阀门的开闭来实现液位的控制。

执行器是用于控制阀门开闭的装置,可以是电磁阀、电动阀或脚踏阀等。

人机界面用于显示水箱的液位信息和设置控制参数,可以是液晶显示屏或者计算机控制界面。

3.系统工作原理水箱液位控制系统的工作原理如下:当水箱液位低于设定范围的下限时,控制器会发送信号给执行器,使其打开阀门,进水进入水箱。

当水箱液位达到设定范围的上限时,控制器会发送信号给执行器,使其关闭阀门,停止进水进入水箱。

当水箱液位高于设定范围的上限时,控制器会发送信号给执行器,使其打开阀门,排水排出水箱。

当水箱液位低于设定范围的下限时,控制器会发送信号给执行器,使其关闭阀门,停止排水排出水箱。

三、系统实现方法1.液位传感器的选择与安装在单容水箱液位控制系统中,可以使用浮球式液位传感器或者压力式液位传感器。

浮球式液位传感器安装在水箱内部,通过浮球的上下运动来检测液位变化。

压力式液位传感器安装在水箱外部,通过测量水箱外部水压来间接推算液位变化。

2.控制器的设计与实现控制器可以使用微控制器或者可编程逻辑控制器(PLC)来实现。

控制器需要实现以下功能:(1)接收液位传感器的信号,并进行信号处理和滤波;(2)判断水箱液位是否低于设定范围的下限或高于设定范围的上限;(3)根据判断结果控制执行器的开闭。

3.执行器的选择与控制执行器可以根据具体需求选择合适的类型,如电磁阀、电动阀或脚踏阀。

执行器控制的开闭可以通过控制信号来实现。

4.人机界面的设计与实现人机界面可以使用液晶显示屏或者计算机控制界面来显示水箱的液位信息和设置控制参数。

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是现代工业控制的重要组成部分,广泛应用于工业生产和日常生活中。

本文将就基于PLC的水箱液位控制系统进行毕业设计进行介绍。

本文毕业设计的目标是设计并实现一个基于PLC的水箱液位控制系统,实现水箱的液位控制和监测。

系统包括液位传感器、PLC控制器、水泵和电磁阀等组成。

首先,设计师需要根据实际需求选择合适的液位传感器,并将其与PLC控制器进行连接。

液位传感器用于监测水箱中的液位,根据液位的变化输出相应的信号给PLC控制器。

接下来,设计师需要使用PLC编程软件编写相应的PLC控制程序。

程序的主要功能是根据液位传感器的信号,控制水泵和电磁阀的开启和关闭。

当水箱的液位低于一些设定值时,PLC控制器会开启水泵将水箱填满;当液位超过一定设定值时,PLC控制器会关闭水泵,同时开启电磁阀,将多余的水排出。

除了基本的液位控制功能外,设计师还可以在PLC控制程序中添加其他功能,如报警功能。

当水箱的液位异常高或异常低时,PLC控制器可以通过声音或灯光等方式发出警报,提醒操作人员进行处理。

在整个系统的设计和实现过程中,设计师需要考虑如何提高系统的可靠性和安全性。

例如,可以在PLC控制程序中设置容错机制,确保系统在出现异常情况时能够正常运行;同时,在选择和配置水泵和电磁阀时,要考虑其工作负荷和可靠性,以确保系统的稳定运行。

在毕业设计完成后,设计师需要对系统进行测试和调试。

首先,需要检查液位传感器的安装和连接是否正常,确保其能够准确地监测水箱的液位变化;然后,利用测试仪器对PLC控制器的输出和输入进行测试,确保其能够按照预期进行控制。

总结而言,基于PLC的水箱液位控制系统是一项非常具有实用价值的毕业设计。

通过该设计,不仅可以提高水箱的自动化程度,还可以提高水资源的利用效率,减少人工操作错误的可能性。

同时,本设计也为进一步研究和开发更先进的基于PLC的控制系统提供了宝贵的经验和借鉴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)关键词 (1)引言 (2)1设计任务目的及要求 (2)1.1 设计目的 (2)1.2 设计要求 (2)2系统元件的选择 (3)2.1有自平衡能力的单容元件 (3)2.2 无自平衡能力的单容元件 (4)2.3单容对象的特性参数 (6)3控制器参数的整定 (7)3.1 参数的确定 (7)3.2 电动机的数学模型 (9)3.3 控制系统的数学模型 (10)3.4 PID控制器的参数计算 (10)4控制系统的校正 (11)4.1 控制器的正反作用 (12)4.2 串级控制系统 (12)5系统的稳定性分析 (16)5.1 系统的稳定性分析 (16)5.2 控制系统的稳态误差 (17)结束语 (19)参考文献 (20)致 (21)水箱液位自动控制系统原理摘要:水箱液位自动控制系统就是利用自身的水位变化进行调节和改变的系统,它自身具平衡能力,并由电动机带动下自动完成水位恢复的功能。

水箱液位是由传感器检测水位变化并达到设定值时,水箱自己的阀门关闭,防止溢出,当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。

关键词:有自平衡能力、无自平衡能力、电动机、单容对象、系统稳定引言液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。

在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。

液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。

根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。

结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。

1 设计任务目的及要求1.1 设计目的通过课程设计,对自动控制原理的基本内容有进一步的了解,特别是水箱液位系统的设计。

能把本学期学到的自动控制理论知识进行实践,操作。

在提高动手能力的同时对常用的开闭环控制有一定的了解,在系统设计方面有感性的认识。

而且在进行系统设计的时候遇到问题,通过独立的思考有利于提高解决问题的能力。

在经过课程设计后,更明白自动控制原理设计的一般方法,以及在遇到困难怎么排除问题。

1.2 设计要求我选择的课程任务是设计一个水箱液位自动控制系统。

设计要求包括:1有自平衡能力的单元原件以及无自平衡能力的单元原件;2控制器具有正反作用;3系统具有自校正系统。

2系统元件的选择2.1有自平衡能力的单容元件如果被控对象在扰动作用下偏离了原来的平衡状态,在没有外部干预的情况下(指没有自动控制或人工控制参与),被控变量依靠被控对象内部的反馈机理,能自发达到新的平衡状态,我们称这类对象是有自平衡能力的被控对象。

具有自平衡能力的单容对象的传递函数为这是个一阶惯性环节。

描述这类对象的参数是时间常数T和放大系数K。

图1单容水箱图1是单容水箱的示意图。

我们已经推导过水箱的传递函数为其中T=RC,T称为水箱的时间常数。

K称为水箱的放大系数。

一阶系统的特性我们已经在时域分析中进行了详细的讨论,所有结论都适用于单容对象。

作为过程控制的被控对象,单容对象的时间常数比较大。

2.2 无自平衡能力的单容元件图2 单容积分水箱图2也是一个单容水箱。

不同的是水箱的出口侧安装了一台水泵,这样一来,水箱的流出水量就与水位无关,而是保持不变,即流出量的变化量。

在静态下,流入水箱的流量与水泵的排水量相同都为Q,水箱的水位H保持不变。

在流入量有一个增量时,静态平衡被破坏,但流出量并不变化,水箱的水位变化规律为式中C为水箱的横截面积。

对上式两端求取拉普拉斯变换,可得水箱的传递函数:这是一个积分环节。

它的单位阶跃响应为图3 两种水箱变化的比较(a)单容积分水箱(b)有自平衡能力的单容水箱图3(a)是水位变化的曲线。

为了比较,我们把具有惯性环节特性的水箱在单位阶跃输入下的水位响应曲线也画出来,如图3(b)所示。

很明显,具有惯性环节特性的单容水箱,在输入作用下,水位经过一个动态过程后,可以重新达到一个新的稳定状态。

而具有积分环节的水箱在受到同样的扰动之后,水位则无限地上升,永远不会达到一个新的稳定状态。

我们称这种水箱为单容水箱。

具有积分环节特性的单容对象的传递函数可以表示为式中称为飞升速度。

其单位阶跃响应为这是一条直线方程,如图3(a)所示。

是直线的斜率。

当被控对象原来的平衡状态被扰动作用破坏后,如果不依靠自动控制或人工控制的外来作用,被控变量将一直变化下去,不可能达到新的平衡状态。

我们称这类对象为无自平衡能力的对象。

2.3单容对象的特性参数被控对象有无自平衡能力,是被控对象本身固有的特性。

图4给出了两类水箱的方框图。

图4(a)是有自平衡能力的单容水箱,从方框图中可以看出,水箱的水位既与流入量有关,也受流出量的制约,在被控对象内部形成了一个负反馈机制。

当流入量增大时,将引起水位的上升。

水位上升的结果,流出量就会增加。

流出量的增大又限制了水位的进一步上升。

经过一个动态过程后,总能重新找到一个平衡点,使流入量与流出量相等,水位不再变化。

图4(b)是无自平衡能力的单容水箱,在其内部不存在负反馈机制,水位只与流量有关。

具有自平衡能力的被控对象,本身对扰动有一定的克服能力,控制性能较好。

而无自平衡能力的被控对象,其传递函数的极点位于虚轴上,是不稳定的。

被控变量若要按要求的规律变化,必须完全依赖于对象外部的控制系统。

图4 两种类型的单容水箱(a)有自平衡能力(b)无自平衡能力容量系数可定义为C=被控对象储存的物质或能量的变化量/输出的变化量。

容量系数对不同的被控对象有不同的物理意义,如水箱的横截面积,电容器的电容量。

热力系统得热容量等。

在我们推导系统或环节的传递函数时,经常遇到T 称为系统或环节的时间常数,它是系统或环节惯性大小的量度。

式中的R称为阻力系数。

如电路的电阻,流体流动的液阻,传热过程的热阻等。

被控对象的容量系数,表示了被控对象抵抗扰动的能力,如水箱的横截面积大,同样流入量下,水位上升得就慢。

电路的电容量大,在同样充电电流下,电压上升得就慢。

惯性环节的惯性,其根本原因就是因为它具有存贮能力。

但这并不是决定惯性大小的唯一因素。

还有另一个因素就是阻力系数。

阻力系数是对流入存贮元件净流入量的制约。

在R-C充电电路里,它限制了流入电容器的电流,在单容水箱中,它限制了水箱的净进水量。

惯性环节因为其具备了自平衡能力,在其动态参数上,用时间常数来表示,而单容积分环节则不存在阻力系数,只用容量系数就可以表征其特性。

描述有自平衡能力单容被控对象的参数有两个:放大系数K和时间常数T,称为被控对象的特性参数。

放大系数K表示输入信号通过被控对象后稳态输出是输入的K倍。

对于同样的输入信号,放大系数大,对应的输出信号就大。

K表示了被控对象的稳态放大能力,是被控对象的稳态参数。

T是描述被控对象惯性大小的参数,时间常数T越大,被控对象在输入作用下的输出变化得越慢。

T是单容被控对象的动态参数。

无自平衡能力的被控对象在输入作用下不会达到新的稳定状态,描述其性能的参数只有一个动态参数:飞升速度。

3控制器参数的整定3.1 参数的确定控制器参数的整定,对PID控制规律来说,就是恰当选择比例度(或比例放大系数)、积分时间常数和微分时间常数的值。

控制器参数整定的方法有两类,一类是理论计算法,一类是工程整定法。

已知被控对象较准确的数学模型,可以应用理论计算法。

用传统的时域法、频率法、根轨迹法都可以进行整定,利用计算机进行参数整定和优化的方法也很多。

往往由于数学模型的原因,理论计算得到的数据精度不高,但它却可以为工程整定法提供指导。

工程整定法易于掌握,是比较实用的方法。

常用的工程整定法有稳定边界法、衰减曲线法、响应曲线法等。

稳定边界法又称为临界比例度法。

具体过程是,先将控制器变为比例控制器,逐渐减小比例带,直到出现等幅振荡。

这是的比例度称为临界比例度,记为。

记下两个波峰相距的时间(临界振荡周期),根据和,按表一进行计算。

表一稳定边界法计算公式表(衰减率)控制规律比例度(%)积分时间(min) 微分时间(min)衰减曲线法。

衰减曲线法是使系统产生衰减振荡,根据衰减振荡参数来确定控制器参数。

工程上认为,衰减率(衰减比为4:1)时,系统的动态过程较适宜。

因此,一般都采用4:1衰减曲线来进行整定。

具体过程是:先将控制器变成比例控制器,比例度取较大的值,给定值为阶跃函数,观察曲线的衰减情况。

然后逐渐减小比例度,直到衰减比为4:1,此时的比例度为,衰减周期为,如图5所示图5 4:1衰减曲线根据和,按表二进行计算。

表二衰减曲线法计算表控制规律比例度(%)积分时间(min) 微分时间(min)响应曲线法与以上两种方法不同。

以上两种方法都是在闭环系统下进行的,而响应曲线法则要测出系统的开环阶跃响应。

把控制系统从控制器输出点断开。

在调节阀上加一个阶跃输入,测量变送器的输出作为响应曲线。

响应曲线一般的形式如图6所示。

根据响应曲线可近似求出如下传递函数图6 系统的开环阶跃响应根据求出的 K,T和值,按表三计算。

表三响应曲线计算表(衰减率)被控对象控制规律3.2 电动机的数学模型直流电动机的数学模型。

直流电动机可以在较宽的速度范围和负载范围内得到连续和准确地控制,因此在控制工程中应用非常广泛。

直流电动机产生的力矩与磁通和电枢电流成正比,通过改变电枢电流或改变激磁电流都可以对电流电机的力矩和转速进行控制。

在这种控制方式中,激磁电流恒定,控制电压加在电枢上,这是一种普遍采用的控制方式。

设为输入的控制电压电枢电流为电机产生的主动力矩为电机轴的角速度为电机的电感为电枢导数的电阻为电枢转动中产生的反电势为电机和负载的转动惯量根据电路的克希霍夫定理整理后式中:称为直流电动机的电气时间常数;称为直流电动机的机电时间常数;,为比例系数。

直流电动机电枢绕组的电感比较小,一般情况下可以忽略不计,可简化为3.3 控制系统的数学模型图7 过程控制系统结构图传递函数为控制器参数的确定测的该控制系统开环阶跃响应的参数后得到的近似传递函数为3.4 PID控制器的参数计算minmin4 控制系统的校正在工业生产过程中,被控对象的特性并不是不变的。

当被控对象特性发生变化后,原定整定的PID控制参数就不是最合适的参数了,必须重新整定。

这将给连续化的生产带来不利的影响。

有一种控制系统,能根据被控对象特性的变化或其他条件的变化,自动调整控制系统的控制规律和控制器的控制参数,使控制系统始终处于最佳状态,我们称这种控制系统为自适应控制系统。

能对控制器参数进行自动整定的自适应控制系统成为自校正系统或自整定系统。

图8 自校正系统的工作原理图8是自校整系统的工作原理图。

相关文档
最新文档