奥数:7-6计数方法与技巧综合
奥数 数字排列组合解题技巧
奥数数字排列组合解题技巧在奥数(奥林匹克数学竞赛)中,数字排列组合是一个常见的考查点,涉及到的技巧和方法有很多。
以下是一些常见的解题技巧:1. 全排列与重复排列:-全排列:n个元素的全排列有n!种情况,其中n!表示n的阶乘。
-重复排列:有重复元素时,全排列的总数要除以重复元素的阶乘。
2. 循环置换:-对于n个元素的排列,可以通过循环置换的方式进行计算。
循环置换的计算可以借助循环节的长度和总元素个数。
3. 组合公式:-对于从n个元素中选取m个元素的组合数,使用二项式系数的组合公式:C(n, m) = n! / (m! * (n-m)!)4. 二项式定理:-利用二项式定理展开多项式,特别是在计算特殊值时,如计算(x+y)^n的展开式。
5. 递推关系:-有时候可以通过递推关系,找到某一项与前面项之间的关系,从而简化计算。
6. 逆向思维:-有时候可以从目标结果出发,逆向思考,找到排列组合的解。
7. 利用对称性:-利用对称性质,减少计算量。
例如,当问题中存在对称性时,可以利用对称性简化问题。
8. 鸽巢原理:-当分配的对象多于容器的个数时,至少有一个容器中含有两个或两个以上的对象。
这个原理在一些排列组合问题中经常被使用。
9. 图论中的排列组合:-在一些图论问题中,可以利用排列组合的知识,特别是在解决路径计数等问题时。
10. 二叉树与组合数学的关系:-一些问题可以通过构建二叉树的方式来求解,从而转化为组合数学的问题。
总的来说,对于奥数中的数字排列组合问题,关键是灵活运用数学知识,善于发现问题中的规律,并通过巧妙的思考和计算得到正确的结果。
四年级高思奥数之计数综合一含答案
第22讲计数综合一内容概述巩固以前学过的各种方法,综合运用分类与分步思想、排列与组合公式及枚举法来解决较复杂的计数问题;学会使用排阵法、捆绑法、插空法解决排队问题.典型问题兴趣篇1.现有面值1元的钞票3张,面值5元的钞票1张,面值10元的钞票2张.如果从中取出一些钞票(至少取1张),可能凑出多少种不同的总钱数?2.一本书从第1页开始编排页码,到最后一页结束时共用了1983个数码.这本书共有多少页?3.费叔叔带着小悦、冬冬、阿奇一起到圆明园游玩.他们四人站成一排照相,其中费叔叔要站在最左边或者最右边,一共有多少种不同的站法?4.有13个球队参加篮球比赛.比赛分两个组,第一组7个队,第二组6个队.各组内先进行单循环赛(即每队都要与本组中其他各队比赛一场),然后由两组的第1名再比赛一场决定冠亚军.请问:一共需要比赛多少场?5.从5瓶不同的纯净水,2瓶不同的可乐和6瓶不同的果汁中,拿出2瓶不同类型的饮料,共有多少种不同的选法?6.从4台不同型号的等离子电视和5台不同型号的液晶电视中任意取出3台,其中等离子电视与液晶电视至少要各有1台,共有多少种不同的取法?7.从1至9中取出7个不同的数,要求它们的和是36,共有多少种不同的取法?8.用0、1、2、3、4这五个数字可以组成多少个没有重复数字的五位数?9.用两个1、一个2、一个3、一个4可以组成多少个不同的五位数?10.在所有不超过1000的自然数中,数字9一共出现了多少次?拓展篇1.把自然数1至2008依次写成一排,得到一个多位数12345678910111213…0620072008.请问:(1)这个多位数一共有多少位?(2)从左向右数,这个多位数的第2008个数字是多少?2.商场里举行抽奖活动,在一个大箱子里放着9个球.其中红色的、黄色的和绿色的球各有3个,而且每种颜色的球都分别标有1、2、3号.顾客从箱子里摸出3个球,如果3个球的颜色全相同或者各不相同,就可以中奖.已知这两种中奖方式分别被设定为一等奖和二等奖,并且一等奖比二等奖少.问:到底哪种中奖方式是一等奖,哪种是二等奖呢?3.工厂某日生产的10件产品中有2件次品,从这10件产品中任意抽出3件进行检查,问:(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有一件是次品的抽法有多少种?(3)抽出的3件中至少有一件是次品的抽法有多少种?4.如图22-1,在半圆弧及其直径上共有9个点,以这些点为顶点可画出多少个三角形?5.6名学生和4名老师分成红、蓝两队拔河,要求每个队都是3名学生和2名老师,一共有多少种分队的方法?6.10个人围成一圈,从中选出3个人.要求这3个人中恰有2人相邻,一共有多少种不同选法?7.用0、1、2、3、4、5这六个数字可以组成多少个没有重复数字的四位数?其中偶数有多少个?8.用l、2、3、4这四个数字可以组成多少个没有重复数字的三位数?这些三位数的和是多少?9.用两个1、两个2、两个3可以组成多少个不同的六位数?10.5名同学站成一排,在下列不同的要求下,请分别求出有多少种站法:(1)5个人站成一排;(2)5个人站成一排,小强必须站在中间;(3)5个人站成一排,小强、大强必须有一人站在中间;(4)5个人站成一排,小强、大强必须站在两边;(5)5个人站成一排,小强、大强都没有站在边上.11.6名小朋友A、B、C、D、E、F站成一排.若A,B两人必须相邻,一共有多少种不同的站法?若A、B两人不能相邻,一共有多少种不同的站法?12.学校乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排照相,请问:(1)如果要求男生不能相邻,一共有多少种不同的站法?(2)如果要求女生都站在一起,一共有多少种不同的站法?超越篇1.有6种不同颜色的小球,请问:(1)如果每种颜色的球都只有1个,从这些球中取出3个排成一列,共有多少种方法?(2)如果每种颜色的球都只有1个,从这些球中取出3个装到袋中,共有多少种方法?(3)如果每种颜色的球的数量都足够多,从这些球中取出3个排成一列,共有多少种方法?(4)如果每种颜色的球的数量都足够多,从这些球中取出3个装到袋中,共有多少种方法?2.有一些四位数的4个数字分别是2个不同的奇数和2个不同的偶数,而且不含有数字0.这样的四位数有几个?3.用l、2、3、4这四个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2414是满足条件的,而1212、3334和3333都不满足条件.请问:一共能组成多少个满足条件的四位数?4.四年级三班举行六一儿童节联欢活动.整个活动由2个舞蹈、2个演唱和3个小品组成.请问:(1)如果要求同类型的节目连续演出,那么共有多少种不同的出场顺序?(2)如果第一个和最后一个节目不能是小品,那么共有多少种不同的出场顺序?5.在一次合唱比赛中,有身高互不相同的8个人要站成两排,每排4个人,且前后对齐.而且第二排的每个人都要比他身前的那个人高,这样才不会被挡住.一共有多少种不同的排队方法?6.有9张同样大小的圆形纸片.其中标有数字“1”的纸片有1张;标有数字“2”的纸片有2张;标有数字“3”的纸片有3张;标有数字“4”的纸片也有3张.把这9张圆形纸片如图22-2所示放置在一起,要求标有相同数字的纸片不许靠在一起.请问:(1)如果在M处放置标有数字“3”的纸片,一共有多少种不同的放置方法?(2)如果在M处放置标有数字“2”的纸片,一共有多少种不同的放置方法?7.从三个0、四个1、五个2中挑选出五个数字,能组成多少个不同的五位数?8.8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种?第22讲 计数综合一内容概述巩固以前学过的各种方法,综合运用分类与分步思想、排列与组合公式及枚举法来解决较复杂的计数问题;学会使用排阵法、捆绑法、插空法解决排队问题.典型问题兴趣篇1.现有面值1元的钞票3张,面值5元的钞票1张,面值10元的钞票2张.如果从中取出一些钞票(至少取1张),可能凑出多少种不同的总钱数?答案:23种分析 :根据题意,钱数的可能范围为1-28元,其中4元,9元,14元,19元,24元是不可能出现的。
小学奥数 几何计数(三) 精选练习例题 含答案解析(附知识点拨及考点)
1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
奥数:7-6计数方法与技巧综合
7 计数综合7-6 计数方法与技巧综合 7-6-1归纳法7-6-2整体法7-6-3对应法7-6-3-1图形中的对应关系 7-6-3-2数字问题中的对应关系 7-6-3-3对应与阶梯型标数法 7-6-3-4不完全对应关系7-6-4递推法前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.模块一、归纳法从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系. 【例 1】 (难度等级※※)一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n 条直线时,最多可将平面分成2+2+3+4+…+n=()12n n ++1个部分. 方法二:如果已有k 条直线,再增加一条直线,这条直线与前k 条直线的交点至多k 个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k 条直线最多将平面分成:1+1+2+…+k=()12k k ++1个部分,所以五条直线可以分平面为16个部分.例题精讲教学目标计数方法与技巧综合【巩固】(难度等级※※)平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,……a 0=1a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 ……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【例 2】 (难度等级 ※※)平面上10个两两相交的圆最多能将平面分割成多少个区域? 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分.141312111098765432187652134431221从图中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,…… 可以发现k a 满足下列关系式:()121k k a a k -=+-.实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k 个圆与前面()1k -个圆共产生2(1)k ⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-. 那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯=12122...272829a =+⨯+⨯++⨯+⨯+⨯ ()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【例 3】 10个三角形最多将平面分成几个部分?【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯.3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯.…… 一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n =+⨯+⨯++-⨯=++++-⨯=-+⎡⎤⎣⎦;特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【例 4】 (难度等级※※)一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.【小结】n 个图形最多可把平面分成部分数:直线:()112n n ⨯++;圆:()21n n +⨯-;三角形:()231n n +⨯⨯- ; 长方形:()241n n +⨯⨯-.【例 5】 (难度等级※※)在平面上画5个圆和1条直线,最多可把平面分成多少部分? 【解析】 先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【例 6】在一个西瓜上切6刀,最多能将瓜皮切成多少片?【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n次时,新增加的切割线与原来的切割线最多有()n-个交点.这21些交点将第n条切割线分成()n-,所以2121n-段,也就是说新增加的切割线使瓜皮数量增加了()在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【例 7】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成+=个部分.8715同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区1123411域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.模块二、整体法解决计数问题时,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题,反而有利于发现其中的数量关系.【例8】(难度等级※※※)一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【解析】 方法一:归纳法如下图,采用归纳法,列出1个点、2个点、3个点…时可剪出的三角形个数,需剪的刀数.不难看出,当正方形内部有n 个点时,可以剪成2n +2个三角形,需剪3n+l 刀,现在内部有1996个点,所以可以剪成2×1996+2=3994个三角形,需剪3×1996+1=5989刀.方法二:整体法.我们知道内部一个点贡献360度角,原正方形的四个顶点共贡献了360度角,所以当内部有n 个点时,共有360n+360度角,而每个三角形的内角和为180度角,所以可剪成(360n+360)÷180=2n+2个三角形.2n+2个三角形共有3×(2n+2)=6n+6条边,但是其中有4条是原有的正方形的边,所以正方形内部的三角形边有6n+6—4=6n+2条边,又知道每条边被2个三角形共用,即每2条边是重合的,所以只用剪(6n+2)÷2=3n+1刀.本题中n=1996,所以可剪成3994个三角形,需剪5989刀.【巩固】在三角形ABC 内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?【解析】 整体法.100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成()360100180180201⨯+÷=个小三角形.【例 9】 在一个六边形纸片内有60个点,以这60个点和六变形的6个顶点为顶点的三角形,最多能剪出_______个.【解析】 设正六边形内有n 个点,当1n =时有6个三角形,每增加一个点,就增加2个三角形,n 个点最多能剪出()()62122n n ++=+个三角形.60n =时,可剪出124个三角形.注:设最多能剪出x 个小三角形,则这些小三角形的内角和为180x ︒.换一个角度看,汇聚到正六边形六个顶点处各角之和为4180⨯︒,故这些小三角形的内角总和为603604180⨯︒+⨯︒.于是180603604180x ︒=⨯︒+⨯︒,解得124x =.模块三、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.一、图形中的对应关系【例 10】 (难度等级 ※※※)在8×8的方格棋盘中,取出一个由三个小方格组成的“L”形(如图),一共有多少种不同的方法?【解析】注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形每一种取法,有一个点与之对应,这就是图中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数由于在8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【例11】(难度等级※※※)在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形⨯长方形,所以棋盘上横、竖共有13⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方68296形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【巩固】(难度等级※※)用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【例12】(难度等级※※)图中可数出的三角形的个数为.【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C=个三角形.【例 13】如图所示,在直线AB上有7个点,直线CD上有9个点.以AB上的点为一个端点、CD上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB与CD之间的交点数.C D【解析】常规的思路是这样的:直线AB上的7个点,每个点可以与直线CD上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB上的任意两点M、N与直线CD上的任意两点P、Q都可以构成一个四边形MNQP,而这个四边形的两条对角线MQ、NP的交点恰好是我们要计数的点,同时,对于任意四点(AB与CD上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB与CD中有多少个满足条件的四边形MNQP就可以了!从而把问题转化为:在直线AB上有7个点,直线CD上有9个点.四边形MNQP有多少个?其中点M、N位于直线AB 上,点P、Q位于直线CD上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN有2721C=种选择方式,线段PQ有2936C=种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB与CD 之间共有756个交点.二、数字问题中的对应关系【例 14】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【巩固】 (难度等级 ※※※)三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【例 15】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【例 16】 (2019年国际小学数学竞赛)请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.三、对应与阶梯型标数法【例 17】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【例 18】 (2008年第一届“学而思杯”五年级试题)学学和思思一起洗5个互不相同的碗,思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【解析】 我们把学学洗的5个碗过程看成从起点向右走5步(即洗几个碗就代表向右走几步),思思拿5个碗的过程看成是向上走5步(即拿几个碗就代表向上走几步),摞好碗的摞法,就代表向右、向上走5步到达终点最短路线的方法.由于洗的碗要多余拿的碗,所以向右走的路线要多余向上走的路线,所以我们用下面的斜三角形进行标数,共有42种走法,即代表42种摞法.421A【例 19】 (第七届走美试题)一个正在行进的8人队列,每人身高各不相同,按从低到高的次序排列,现在他们要变成并列的2列纵队,每列仍然是按从低到高的次序排列,同时要求并排的每两人中左边的人比右边的人要矮,那么,2列纵队有种不同排法.【解析】 首先,将8人的身高从低到高依次编号为12345678、、、、、、、,现在就相当于要将这8个数填到一个42 的方格中,要求每一行的数依次增大,每一列上面的要比下面的大.下面我们将12345678、、、、、、、依次往方格中填,按照题目规则,很容易就发现:第二行填的的数字的个数永远都小于或等于第一行数字填的个数.也就是说,不能出现下图这样的情况.而这个正好是“阶梯型标数”题型的基本原则.于是,我们可以把原题转化成:在这个阶梯型方格中,横格代表在第一行的四列,纵格代表第二行的四列,那么此题所有标数的方法就相当于从A 走到B 的最短路线有多少条.例如,我们选择一条路线:它对应的填法就是:.最后,用“标数法”得出从A 到B 的最短路径有14种,如下图:【巩固】将1~12这12个数填入到2行6列的方格表中,使得每行右边比左边的大,每一列上面比下面的大,共有多少种填法?【解析】 根据对应关系,再运用阶梯型标数法画图如下:13242141455211111111329048422820149654321共有132种填法.四、不完全对应关系【例 20】 圆周上有12个点,其中一个点涂红,还有一个点涂了蓝色,其余10个点没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形;只包含红点(蓝点)的多边形称为红色(蓝色)多边形.不包含红点及蓝点的称无色多边形.试问,以这12个点为顶点的所有凸多边形(边数可以从三角形到12边形)中,双色多边形的个数与无色多边形的个数,哪一种较多?多多少个?【解析】 从任意一个双色的N 边形出发(5N ≥时),在去掉这个双色多边形中的红色顶点与蓝色顶点后,将得到一个无色的2N -边形;另一方面,对于一个任意的无色的M 边形,如果加上红色顶点和蓝色顶点,就得到一个双色的2M +边形,所以无色多边形与双色多边形中的五边形以上的图形是一一对应的关系,所以双色多边形的个数比较多,多的是双色三角形和双色四边形的个数.而双色三角形有10个,双色四边形有21045C =个,所以双色多边形比无色多边形多104555+=个.【例 21】 有一类各位数字各不相同的五位数M ,它的千位数字比左右两个数字大,十位数字也比左右两位数字大.另有一类各位数字各不相同的五位数W ,它的千位数字比左右两个数字小,十位数字也比左右两位数字小.请问符合要求的数M 与W ,哪一类的个数多?多多少?【解析】 M 与W 都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系.比如有一个符合要求的五位数M ABCDE =(A 不为0),那么就有一个与之相反并对应的五位数(9)(9)(9)(9)(9)A B C D E -----必属于W 类,比如13254为M 类,则与之对应的86754为W 类. 所以对于M 类的每一个数,W 类都有一个数与之对应.但是两类数的个数不是一样多,因为M 类中0不能做首位,而W 类中9可以做首位.所以W 类的数比M 类的数要多,多的就是就是首位为9的符合要求的数.计算首位为9的W 类的数的个数,首先要确定另外四个数,因为要求各不相同,从除9外的其它9个数字中选出4个,有49126C =种选法.对于每一种选法选出来的4个数,假设其大小关系为4321A A A A >>>,由于其中最小的数只能在千位和十位上,最大的数只能在百位和个位上,所以符合要求的数有2类:①千位、十位排1A 、2A ,有两种方法,百位、十位排3A 、4A ,也有两种方法,故此时共有4种;②千位、十位排1A 、3A ,只能是千位3A ,百位4A ,十位1A ,个位2A ,只有1种方法.根据乘法原理,首位为9的W 类的数有()12641630⨯+=个.故W 类的数比M 类的数多630个.【例 22】 用1元,2元,5元,10元四种面值的纸币若干张(不一定要求每种都有),组成99元有P 种方法,组成101元有Q 种方法,则Q P -= .【解析】 由于101992-=,所以对于组成99元的每一种方法,只要再加上一张2元的,即可组成101元;而对于组成101元的方法,如果其中包含有一张2元的,那么去掉这张2元的,即可得到一种组成99元的方法.可见组成99元的方法与组成101元的某些方法之间存在一一对应的关系,组成101元的所有方法中,除去这些与组成99元的方法对应的方法,剩下的都是不包含有2元纸币的组成方法.所以Q 比P 多的就是用1元,5元,10元这三种面值的纸币组成101元的方法的总数. 假设用x 张1元的,y 张5元的,z 张10元的可以组成101元,则510101x y z ++=. 由于10101z ≤,所以10z ≤.即10元的可以有0~10张. 如果10元的张数确定了,那么有()()5101101010152021x y z z z +=-=-+=-+,那么y 的值可以为0到()202z -,也就是对每一个z 的值,y 都可以有2021212z z -+=-种可能,相应地5元纸币的张数也有212z -种取法.而当10元和5元的张数都确定了以后,1元纸币的张数也就确定了,这样也就确定了组成101元的方法.所以只需要看取10元和5元的共有多少种取法.如果10元的取0张,即0z =,则21221z -=,即5元的有21种取法; 如果10元的取1张,即1z =,则21219z -=,即5元的有19种取法; 如果10元的取2张,即2z =,则21217z -=,即5元的有17种取法; ……如果10元的取10张,即10z =,则2121z -=,即5元的有1种取法; 所以总数为2211917111121++++==. 那么121Q P -=.。
四年级奥数.计数综合.几何计数
几何计数知识结构一、公式计算法几何计数内容很广,包括数线段的条数,角的个数,长方形、正方形、三角形、平行四边形、梯形等图形的个数,也包括数立体图形的个数。
图形的计数一般有两种思考方法:公式计算法和分类计数法。
三年级学习的线段、长方形和正方形的计数就属于公式计算法。
(1)一条线段有两个端点,若这条线段上有n个点,那么线段总数是(n-1)+(n+2)+…+3+2+1(2)如果一个长方形的长边上有n个小格,宽边上有m个小格,那么长方形的总数是(1+2+3+…+n)×(1+2+…+m)(3)如果把正方形各边都n等分,那么正方形的总数是n2+(n-1)2+(n-2)2+…+32+22+12上面计算线数的方法也可用于计算角的个数,而且,根据这些计数方法在以后还可以类推出立体图形的计算方法。
二、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.重难点(1)分类数图形。
(2)对应法数图形。
例题精讲一、分类数图形【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小棍?【巩固】如图所示,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【例 2】图中有______个正方形.【巩固】数一数:图中共有________ 个正方形。
【例 3】 右图中三角形共有 个.【巩固】 数一数图中有_______个三角形.【例 4】 图中共有多少个三角形?CB A【巩固】 下图是由边长为1的小三角形拼成,其中边长为4的三角形有_____个。
【例 5】 如图,每个小正方形的面积都是l 平方厘米。
则在此图中最多可以画出__________个面积是4平方厘米的格点正方形(顶点都在图中交叉点上的正方形)。
奥数学习方法与技巧归纳2篇
奥数学习方法与技巧归纳奥数学习方法与技巧归纳精选2篇(一)学习奥数的方法与技巧主要包括以下几点:1. 理解数学概念:首先要对基础的数学概念有深入的理解,包括数学运算、几何图形、代数方程等。
要充分掌握数学基础知识,才能更好地解决问题。
2. 多做题:做题是奥数学习的重中之重,通过反复做题可以加深对数学知识的理解和运用,提高解题能力。
可以选择一些奥数习题和模拟试题,按照规定的时间完成,并注意做题的顺序和方法。
3. 掌握解题技巧:奥数是有一定技巧的,包括提取信息、转化问题、化简等。
学习和掌握一些常用的解题技巧,可以帮助更快、更准确地解答问题。
4. 多思考、多交流:奥数培养的是学生的思维能力和创新能力,所以在学习过程中要注重思考和探索。
可以与同学、老师或者参加数学讨论班进行交流,分享解题思路和方法,相互学习、启发、进步。
5. 注重数学思维的培养:奥数学习强调培养学生的数学思维,如数学观察力、逻辑推理和创造力。
可以通过解决一些数学难题、开展数学实验等方式来培养数学思维。
总的来说,学习奥数需要坚持不懈、勤奋努力,同时注重基础知识的掌握和解题技巧的学习,多思考、多交流,发展创造性的数学思维能力。
奥数学习方法与技巧归纳精选2篇(二)奥数学习经验方法指导归纳:1. 了解考试要求:了解奥数考试的题型、难度和考试要求,以及所需知识点的范围,有助于学生有针对性地进行学习和练习。
2. 制定学习计划:根据自己的实际情况,制定一个合理的学习计划,包括每天的学习时间和内容安排。
要有规划性地进行系统学习,并分配足够的时间进行复习和练习。
3. 掌握基本概念和方法:夯实基础是学习奥数的关键,要深入理解和掌握基本概念和方法。
对于奥数常见的概念和方法,要反复学习和练习,直到熟练掌握为止。
4. 多做题:奥数的核心是解题能力,要多做题来提高解题技巧和思维能力。
可以选择一些经典的奥数题集和模拟题,按照题型和难度进行分类,有针对性地进行训练。
5. 注重思维训练:奥数不仅要求学生有扎实的知识基础,还要求学生具备灵活的思维能力和创造性的解题方法。
六年级奥数(1)第四讲--计数综合三
例题2-插空法
一场演讲比赛,一共7人参加,安排演讲顺序时 要求甲乙必须相邻,而丙和丁不能相邻,那么有 多少种不同的演讲顺序?
点击此处添加标题
单击此处添加段落文本单击此处添加段落文本单击此处添加段落文本单击此处
添加段落文本单击此处添加段落文本单击此处添加段落文本
练习2-插空法
有一天有8节不同的课,如果要求数学、语文和英语不能挨着,音乐、美术必须挨 着,那么这天课表有多少种不同的可能?
例题3-插板法
(1)20个苹果分给3个小朋友,每个小朋友在分 1个,共有多少种分法? 如果可以有小朋友没有分到苹果,又有多少种分 法?
例题3-插板法
(2)把10个苹果放入三个不同的盘子里,第一 个盘子可以不放,第二个盘子里至少放2个,第 三个盘子里至少放3个,请问一共有多少种不同 的放法?
练习3-插板法
龟丞相把7个顶级乌龟壳分给4只小乌龟,如果每 只小乌龟至少分一个,共有多少种分法? 如果可以有小乌龟没有分到乌龟壳,那么又有多 少种不同的分法呢?
如果一条街上有2009盏灯,为了节约用电,打算熄灭其中的1004盏,相邻两盏不能同 时熄灭,请问:一共有多少种不同的熄灯方案?
例题7-插板法的应用
一次自助餐,共有10种菜,每人都有4个盘子选菜,每个盘子只能装一种菜,但是可 以重复选菜,请问:一共有多少种选菜方案?
练习7-插板法的应用
8种灌装饮料,小明从中买了3瓶,如果每种饮料都可以买多瓶。请问:一共有多少种 购买方案?
例题4-插板法的应用
求方程 x1 x2 x3 ...... x5 10 所有自然数解的组数。
小学奥数解题方法完整版
幻灯片1小学奥数解题方法完整版幻灯片2解题方法1--分?类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。
幻灯片3可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。
一共有线段4+3+2+1=10(条)。
幻灯片4还可以把图中的线段按它们所包含基本线段的条数来分类。
(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。
幻灯片5有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。
如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。
设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。
幻灯片61、11 一种2、11 2、10 二种3、11 3、10 3、9 三种4、11 4、10 4、9 4、8 四种5、11 5、10 5、9 5、8 5、7 五种6、11 6、10 6、9 6、8 6、7 6、6 六种7、11 7、10 7、9 7、8 7、7 五种8、11 8、10 8、9 8、8 四种9、11 9、10 9、9 三种10、11 10、10 二种11、11 一种1+2+3+4+5+6+5+4+3+2+1=36种幻灯片7解题方法2--化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。
学而思想奥数全能版目录
第一专题:计算专题共34讲【强化篇17讲竞赛篇17讲】一、计算竞赛篇共17讲竞赛1-加减法巧算之凑整与组合思想之竞赛篇(第1讲)竞赛2-乘除法巧算之提取公因式与组合思想之竞赛篇(第2讲)竞赛3-四则混合巧算只综合技巧之竞赛篇(第3讲)竞赛4-定义新运算之速算与巧算之竞赛篇(第4讲)竞赛5-数列求和与公式技巧之竞赛篇(第5讲)竞赛6-多位计算与归纳思想之竞赛篇(第6讲)竞赛7-小数计算与换元思想之竞赛篇(第7讲)竞赛8-数表计算与代数公式应用之竞赛篇(第8讲)竞赛9-循环小数互化与错位相减技巧之竞赛篇(第9讲)竞赛10-分数(繁分数)计算综合与比例转化之竞赛篇(第10讲)竞赛11-比较与估算综合技巧之竞赛篇(第11讲)竞赛12-分数计算之拆分、裂项与通项归纳之竞赛篇(第12讲)竞赛13-分数计算之换元与缩放之竞赛篇(第13讲)竞赛14-定义新运算之复杂运算与抽象运算之竞赛篇(第14讲)竞赛15-四大杯赛中的计算综合思想之竞赛篇(第15讲)竞赛16-计算综合之复杂分数裂项计算综合之复杂整数裂项之竞赛篇(第16讲) 竞赛17-计算综合之复杂公式与复杂换元计算之竞赛篇(第17讲)二、计算强化篇共17讲第一讲加减法巧算之凑整与组合思想(第18讲)第二讲乘除法巧算之提取公因式与组合思想(第19讲)第三讲四则混合巧算只综合技巧(第20讲)第四讲定义新运算之速算与巧算(第21讲)第五讲数列求和与公式技巧(第22讲)第六讲多位计算与归纳思想(第23讲)第七讲小数计算与换元思想(第24讲)第八讲数表计算与代数公式应用(第25讲)第九讲循环小数互化与错位相减技巧(第26讲)第十讲分数(繁分数)计算综合与比例转化(第27讲)第十一讲比较与估算综合技巧(第28讲)第十二讲分数计算之拆分、裂项与通项归纳(第29讲)第十三讲分数计算之换元与缩放(第30讲)第十四讲定义新运算之复杂运算与抽象运算(第31讲)第十五讲四大杯赛中的计算综合思想(第32讲)第十六讲计算综合之复杂分数裂项与整数裂项(第33讲)第十七讲计算综合之复杂公式与复杂换元计算(第34讲)第二专题数论专题计算专题共38讲【强化篇19讲竞赛篇19讲】一、数论竞赛篇第一讲奇偶数的性质与应用之竞赛篇(第35讲)第二讲有趣余数之性质与周期之竞赛篇(第36讲)第三讲整数分拆之分类与计数之竞赛篇(第37讲)第四讲整数分拆之最值与应用之竞赛篇(第38讲)第五讲数的整除之性质与求法之竞赛篇(第39讲)第六讲数的整除之代数思想与运用之竞赛篇(第40讲)第七讲数的整除之四大判断法综合运用之竞赛篇(第41讲)第八讲质数、合数与两大约数定理之竞赛篇(第42讲)第九讲因数与倍数之最大公因数与最小公倍数之竞赛篇(第43讲)第十讲因数与倍数之综合应用之竞赛(第44讲)第十一讲完全平方数之竞赛篇(第45讲)第十二讲带余除法之竞赛篇(第46讲)第十三讲同余问题之竞赛篇(第47讲)第十四讲中国剩余定理之竞赛篇(第48讲)第十五讲进制与位值原理之竞赛篇(第49讲)第十六讲四大杯赛的数论综合思想之竞赛篇(第50讲)第十七讲数论综合之整除相关问题之竞赛篇(第51讲)第十八讲数论综合之余数相关问题之竞赛篇(第52讲)第十九讲数论在方程、计数、最值、行程等问题中的应用之竞赛篇(第53讲) 二、数论强化篇第一讲奇偶数的性质与应用(第54讲)第二讲有趣余数之性质与周期(第55讲)第三讲整数分拆之分类与计数(第56讲)第四讲整数分拆之最值与应用(第57讲)第五讲数的整除之性质与求法(第58讲)第六讲数的整除之代数思想与运用(第59讲)第七讲数的整除之四大判断法综合运用(第60讲)第八讲质数、合数与两大约数定理(第61讲)第九讲因数与倍数之最大公因数与最小公倍数(第62讲)第十讲因数与倍数之综合应用(第63讲)第十一讲完全平方数(第64讲)第十二讲带余除法(第65讲)第十三讲同余问题(第66讲)第十四讲中国剩余定理(第67讲)第十五讲进制与位值原理(第68讲)第十六讲四大杯赛中的数论综合思想(第69讲)第十七讲数论综合之整除相关问题(第70讲)第十八讲数论综合之余数相关问题(第71讲)第十九讲数论在方程、计数、最值、行程等问题中的应用之竞赛篇(第72讲) 第三专题行程专题计算专题共30讲【强化篇15讲竞赛篇15讲】一、行程竞赛篇第一讲基础行程之竞赛篇(第73讲)第二讲简单相遇、追及之竞赛篇(第74讲)第三讲复杂相遇、追及之竞赛篇(第75讲)第四讲猎狗追兔之竞赛篇(第76讲)第五讲火车过桥之竞赛篇(第77讲)第六讲多次相遇之竞赛篇(第78讲)第七讲多人行程之竞赛篇(第79讲)第八讲流水行船之竞赛篇(第80讲)第九讲简单环形之竞赛篇(第81讲) 第十讲复杂环形之竞赛篇(第82讲) 第十一讲接送问题之竞赛篇(第83讲) 第十二讲间隔发车之竞赛篇(第84讲) 第十三讲电梯问题之竞赛篇(第85讲) 第十四讲变速变道之竞赛篇(第86讲) 第十五讲综合行程之竞赛篇(第87讲) 二、行程强化篇第一讲基础行程(第88讲)第二讲简单相遇、追及(第89讲)第三讲复杂相遇、追及(第90讲)第四讲猎狗追兔(第91讲)第五讲火车过桥(第92讲)第六讲多次相遇(第93讲)第七讲多次行程(第94讲)第八讲流水行船(第95讲)第九讲简单环形(第96讲)第十讲复杂环形(第97讲)第十一讲接送问题(第98讲)第十二讲间隔发车(第99讲)第十三讲电梯问题(第100讲)第十四讲变速变道(第101讲)第十五讲综合行程(第102讲)第四专题应用题专题共16讲一应用题1和差倍问题(第103讲)盈亏问题(第104讲)二应用题2还原问题(第105讲)鸡兔同笼(第106讲)三应用题3年龄问题(第107讲)周期问题(第108讲)四应用题4平均数问题(第109讲)统筹与规划问题(第110讲)五应用题5分数百分数问题(第111讲)牛吃草(第112讲)六应用题6比和比例(第113讲)工程问题(第114讲)七应用题7经济问题(第115讲)浓度问题(第116讲)八应用题8方程解复杂应用题(第117讲)应用题综合(第118讲)第五专题:几何专题计算专题共4讲【5级2讲6级2讲】一、几何专题能力进阶五级:五大模型及常用思维与方法第一讲五大模型(第119讲)第二讲常用思维与方法(第120讲)二、几何专题能力进阶六级:曲线型与立体几何第一讲曲线型(第121讲)第二讲立体几何(第122讲)。
小学奥数教师版-7-6-4 计数之递推法
【例 10】 对一个自然数作如下操作:如果是偶数则除以 2,如果是奇数则加 1,如此进行直到得数为 1 操作停止.问经过 9 次操作变为 1 的数有多少个?
【考点】计数之递推法 【难度】4 星 【题型】解答 【解析】 可以先尝试一下,倒推得出下面的图:
5
10
3
6
11
12 24
1
2
4
8
在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法 【难度】3 星 【题型】解答 【解析】第一个月,有 1 对小兔子;第二个月,长成大兔子,所以还是 1 对;第三个月,大兔子生下一对小
兔子,所以共有 2 对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子, 共有 3 对;第五个月,两对大兔子生下 2 对小兔子,共有 5 对;……这个特点的说明每月的大兔子 数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为 上月的兔子数与上上月的兔子数相加. 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有 144 对兔子. 【答案】 144
数等于取到前三根火柴所有情况之和,以此类推,参照上题列表如下:
1 根 2 根 3 根 4 根 5 根 6 根 7 根 8 根 9 根 10 根 11 根 12 根 1 2 4 7 13 24 44 81 149 274 504 927 取完这堆火柴一共有 927 种方法. 【答案】 927
7-6-4.计数之递推法.题库
奥数解题方法总结
奥数解题方法总结奥数解题方法总结 11、直观画图法:解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。
我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。
奥数解题方法总结 2常见解题方法浓度问题变化多,有些题目难度较大,计算也较复杂。
要根据题目的条件和问题逐一分析,也可以分步解答,常见解题方法有以下三种!1、直接计算法在解决浓度问题时,关键要抓住题目中的不变量,有些题是溶质不变,有些题是溶剂不变。
抓住了不变量,我们就可以根据题意进行计算了!例、有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?2、“浓度三角”法(或“十字交叉”法。
)这种方法适用于浓度问题中两种不同浓度的溶液配比问题!我们先看一道题例、用浓度为45%和5%的两种盐水配制成浓度为30%的盐水4千克,需要这两种盐水各多少千克?3、方程法列方程一直是解应用题的通法,所以在浓度问题里面也是非常重要的解题方法,同样我们在列方程时要牢牢抓住题目中的不变量列方程!例、将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?奥数解题方法总结 31、繁分数的定义如分数形式,分子或分母含有分数,或分子与分母都含有分数的数,叫繁分数。
五年级奥数.计数综合.计数方法与技巧
计数方法与技巧知识结构(1)归纳法:从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系.(2)整体法:解决计数问题时,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题,反而有利于发现其中的数量关系.(3)对应法:将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.(4)递推法:对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法.例题精讲【例 1】一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【巩固】平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【例 2】平面上10个两两相交的圆最多能将平面分割成多少个区域?【巩固】10个三角形最多将平面分成几个部分?【例 3】一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【巩固】在平面上画5个圆和1条直线,最多可把平面分成多少部分?【例 1】一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【巩固】在三角形ABC内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?【例 4】在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【巩固】用一张如图所示的纸片盖住66 方格表中的四个小方格,共有多少种不同的放置方法?【例 5】有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【巩固】三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【例 6】学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有种不同的摞法.【巩固】学学和思思一起洗4个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,问学学摞好的碗一共有种不同的摞法。
奥数36个知识点
郑州小升初奥数可以分为计算、计数、数论、几何、应用题、行程、组合七大板块,小编整理了必须掌握的三十六个知识点,内容从和差倍问题、年龄问题到循环小数,包含了小学奥数七个模块的知识。
第一部分(知识点1-6)1、和差倍问题关键问题:根据题目中的条件确定并求出单一量;4、植树问题5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
第二部分(知识点7-11)7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学奥数七大模块知识体系梳理
小学奥数七大模块知识体系梳理起1 计算1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程2 数论1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题3 几何(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题4 行程1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题5 应用题1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题6 计数1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数7 杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。
小学奥数七大模块详解(超详细结构图)
重点小学内部奥数复习材料七大模块详解(七大模块:计算、数论、几何、行程、应用题、计数和杂题)模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。
奥数学习方法与技巧归纳
奥数学习方法与技巧归纳四年级奥数学习方法1、抓住课堂。
数学学习重在平日功夫,不适于突击复习。
平日学习最重要的是课堂40分钟,听讲要聚精会神,思维紧跟老师。
同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实思想方法远远重要于某道题目的解答。
2、高质量完成作业。
所谓高质量是指高正确率和高速度。
写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。
另外对于老师布置的思考题,也要认真完成。
如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。
最重要的是,这是一次挑战自我的机会。
成功会带来自信,而自信对于学习数学十分重要;即使失败,这道题也会给你留下深刻的印象。
3、勤思考,多提问。
首先对于老师给出的概念、规律,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的途径。
其次,学习任何学科都应抱着怀疑的态度,尤其是数学。
对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。
总之,思考、提问是清除学习隐患的途径。
4、总结比较,理清思绪。
(1)知识点的总结比较。
每学完一个单元都应将本章内容做以整理或在脑中过一遍,理顺出它们的关系。
对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。
(2)题目的总结比较。
同学们可以建立自己的题库。
我就有两本题集。
一本是错题,一本是精题。
对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。
我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。
时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。
最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。
5、认真地做课外练习。
课余时间对我们小学生来说是十分珍贵的,所以在做课外练习时要准而精,只要每天认真地做三两页,天长日久,你的数学学习就可以做到“积沙成塔”,收获丰硕。
六年级上册奥数试题——第九讲操作与计数技巧含解析人教版
第九讲操作与计数技巧教学目标操作类问题与计数类问题由于其灵活性和本身的趣味性,非常受出题和供题者青睐,如今各类数学竞赛的出题越来越趋向于新奇和趣味化,因此操作类问题和计数问题在竞赛中的比重将会加大。
鉴于操作类问题和计数问题没有一般性的算法或解题通式,本讲将以近年来各类竞赛以及小升初考试中的出现过的真题为例,引导学生发现关键并解决问题。
1.常见操作类问题2.计数技巧与操作经典精讲常见操作类题目【例1】(2006年《小学生数学报》读报竞赛)把一张正方形的餐巾纸先上下对折,再左右对折(如右图),然后用剪刀将所得的小正方形沿直线剪一刀。
问能把餐巾纸:⑴剪成2块吗?⑵剪成3块吗?⑶剪成4块吗?⑷剪成5块吗?如果你认为能剪成,请在下面图中各画出一种你的剪法;如果你认为不能,那么只需回答“不行”即可。
【分析】⑴剪开成两块,如下图:⑵剪开成3块,如下图:⑶剪开成4块,如下图:⑷剪开成5块,如下图:【巩固】(2008年华杯赛)将等边三角形纸片按图所示的步骤折迭3次(图中的虚线是三边中点的连线),然后沿两边中点的连线剪去一角。
将剩下的纸片展开、铺平,得到的图形是( ).【分析】折迭3次,纸片的厚度为4,所以剪去的面积即应等于4倍小三角形的面积,所以答案是A。
【例2】A、B、C、D四个盒子中依次放有6,4,5,3个球。
第1个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子;然后第2个小朋友找到放球最少的盒子,从其他盒子中合取一个球放入这个盒子;如此进行下去,……。
求当34位小朋友放完后,B盒子中放有球多少个?【分析】盒子A B C D初始状态 6 4 5 3第1人放过后 5 3 4 6第2人放过后 4 6 3 5第3人放过后 3 5 6 4第4人放过后 6 4 5 3第5人放过后 5 3 4 6由此可知:每经过4人,四个盒子中球的情况重复出现一次,因为34482÷=L L,所以第34次后的情况与第2次后的情况相同,即B盒子中有球6个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 计数综合7-6 计数方法与技巧综合 7-6-1归纳法7-6-2整体法7-6-3对应法7-6-3-1图形中的对应关系 7-6-3-2数字问题中的对应关系 7-6-3-3对应与阶梯型标数法 7-6-3-4不完全对应关系7-6-4递推法前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.模块一、归纳法从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系. 【例 1】 (难度等级※※)一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分? 【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n 条直线时,最多可将平面分成2+2+3+4+…+n=()12n n ++1个部分.方法二:如果已有k 条直线,再增加一条直线,这条直线与前k 条直线的交点至多k 个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多例题精讲教学目标计数方法与技巧综合将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k 条直线最多将平面分成:1+1+2+…+k=()12k k ++1个部分,所以五条直线可以分平面为16个部分.【巩固】(难度等级※※)平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分? 【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,……a 0=1 a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 ……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【例 2】 (难度等级 ※※)平面上10个两两相交的圆最多能将平面分割成多少个区域? 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分.141312111098765432187652134431221从图中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,…… 可以发现k a 满足下列关系式:()121k k a a k -=+-.实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k个圆与前面()1k -个圆共产生2(1)k ⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-. 那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯ =12122...272829a =+⨯+⨯++⨯+⨯+⨯()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【例 3】 10个三角形最多将平面分成几个部分? 【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯.3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯. ……一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n =+⨯+⨯++-⨯=++++-⨯=-+⎡⎤⎣⎦;特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【例 4】 (难度等级※※)一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.【小结】n 个图形最多可把平面分成部分数:直线:()112n n ⨯++;圆:()21n n +⨯-; 三角形:()231n n +⨯⨯- ; 长方形:()241n n +⨯⨯-.【例 5】 (难度等级※※)在平面上画5个圆和1条直线,最多可把平面分成多少部分?【解析】 先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【例 6】 在一个西瓜上切6刀,最多能将瓜皮切成多少片?【解析】 将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n 次时,新增加的切割线与原来的切割线最多有()21n -个交点.这些交点将第n 条切割线分成()21n -段,也就是说新增加的切割线使瓜皮数量增加了()21n -,所以在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【例 7】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成+=个部分.8715同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区1123411域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.模块二、整体法解决计数问题时,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题,反而有利于发现其中的数量关系.【例8】(难度等级※※※)一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【解析】方法一:归纳法如下图,采用归纳法,列出1个点、2个点、3个点…时可剪出的三角形个数,需剪的刀数.不难看出,当正方形内部有n 个点时,可以剪成2n +2个三角形,需剪3n+l 刀,现在内部有1996个点,所以可以剪成2×1996+2=3994个三角形,需剪3×1996+1=5989刀.方法二:整体法.我们知道内部一个点贡献360度角,原正方形的四个顶点共贡献了360度角,所以当内部有n 个点时,共有360n+360度角,而每个三角形的内角和为180度角,所以可剪成(360n+360)÷180=2n+2个三角形.2n+2个三角形共有3×(2n+2)=6n+6条边,但是其中有4条是原有的正方形的边,所以正方形内部的三角形边有6n+6—4=6n+2条边,又知道每条边被2个三角形共用,即每2条边是重合的,所以只用剪(6n+2)÷2=3n+1刀.本题中n=1996,所以可剪成3994个三角形,需剪5989刀.【巩固】在三角形ABC 内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形? 【解析】 整体法.100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成()360100180180201⨯+÷=个小三角形.【例 9】 在一个六边形纸片内有60个点,以这60个点和六变形的6个顶点为顶点的三角形,最多能剪出_______个. 【解析】 设正六边形内有n 个点,当1n =时有6个三角形,每增加一个点,就增加2个三角形,n 个点最多能剪出()()62122n n ++=+个三角形.60n =时,可剪出124个三角形.注:设最多能剪出x 个小三角形,则这些小三角形的内角和为180x ︒.换一个角度看,汇聚到正六边形六个顶点处各角之和为4180⨯︒,故这些小三角形的内角总和为603604180⨯︒+⨯︒.于是180603604180x ︒=⨯︒+⨯︒,解得124x =.模块三、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.一、图形中的对应关系【例10】(难度等级※※※)在8×8的方格棋盘中,取出一个由三个小方格组成的“L”形(如图),一共有多少种不同的方法?【解析】注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形每一种取法,有一个点与之对应,这就是图中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数由于在8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【例11】(难度等级※※※)在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯长方形68296⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【巩固】(难度等级※※)用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【例12】(难度等级※※)图中可数出的三角形的个数为.【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3 856C=个三角形.【例 13】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数.CD【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.二、数字问题中的对应关系【例 14】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【巩固】 (难度等级 ※※※)三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【例 15】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种? 【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【例 16】 (2008年国际小学数学竞赛)请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.三、对应与阶梯型标数法【例 17】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱? 【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【例 18】 (2008年第一届“学而思杯”五年级试题)学学和思思一起洗5个互不相同的碗,思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【解析】 我们把学学洗的5个碗过程看成从起点向右走5步(即洗几个碗就代表向右走几步),思思拿5个碗的过程看成是向上走5步(即拿几个碗就代表向上走几步),摞好碗的摞法,就代表向右、向上走5步到达终点最短路线的方法.由于洗的碗要多余拿的碗,所以向右走的路线要多余向上走的路线,所以我们用下面的斜三角形进行标数,共有42种走法,即代表42种摞法.42111A【例 19】 (第七届走美试题)一个正在行进的8人队列,每人身高各不相同,按从低到高的次序排列,现在他们要变成并列的2列纵队,每列仍然是按从低到高的次序排列,同时要求并排的每两人中左边的人比右边的人要矮,那么,2列纵队有种不同排法.【解析】 首先,将8人的身高从低到高依次编号为12345678、、、、、、、,现在就相当于要将这8个数填到一个42 的方格中,要求每一行的数依次增大,每一列上面的要比下面的大.下面我们将12345678、、、、、、、依次往方格中填,按照题目规则,很容易就发现:第二行填的的数字的个数永远都小于或等于第一行数字填的个数.也就是说,不能出现下图这样的情况.而这个正好是“阶梯型标数”题型的基本原则.于是,我们可以把原题转化成:在这个阶梯型方格中,横格代表在第一行的四列,纵格代表第二行的四列,那么此题所有标数的方法就相当于从A走到B的最短路线有多少条.例如,我们选择一条路线:它对应的填法就是:.最后,用“标数法”得出从A到B的最短路径有14种,如下图:【巩固】将1~12这12个数填入到2行6列的方格表中,使得每行右边比左边的大,每一列上面比下面的大,共有多少种填法?【解析】根据对应关系,再运用阶梯型标数法画图如下:13242141455211111111329048422820149654321共有132种填法.四、不完全对应关系【例 20】 圆周上有12个点,其中一个点涂红,还有一个点涂了蓝色,其余10个点没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形;只包含红点(蓝点)的多边形称为红色(蓝色)多边形.不包含红点及蓝点的称无色多边形.试问,以这12个点为顶点的所有凸多边形(边数可以从三角形到12边形)中,双色多边形的个数与无色多边形的个数,哪一种较多?多多少个? 【解析】 从任意一个双色的N 边形出发(5N ≥时),在去掉这个双色多边形中的红色顶点与蓝色顶点后,将得到一个无色的2N -边形;另一方面,对于一个任意的无色的M 边形,如果加上红色顶点和蓝色顶点,就得到一个双色的2M +边形,所以无色多边形与双色多边形中的五边形以上的图形是一一对应的关系,所以双色多边形的个数比较多,多的是双色三角形和双色四边形的个数.而双色三角形有10个,双色四边形有21045C =个,所以双色多边形比无色多边形多104555+=个.【例 21】 有一类各位数字各不相同的五位数M ,它的千位数字比左右两个数字大,十位数字也比左右两位数字大.另有一类各位数字各不相同的五位数W ,它的千位数字比左右两个数字小,十位数字也比左右两位数字小.请问符合要求的数M 与W ,哪一类的个数多?多多少? 【解析】 M 与W 都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系.比如有一个符合要求的五位数M ABCDE =(A 不为0),那么就有一个与之相反并对应的五位数(9)(9)(9)(9)(9)A B C D E -----必属于W 类,比如13254为M 类,则与之对应的86754为W 类.所以对于M 类的每一个数,W 类都有一个数与之对应.但是两类数的个数不是一样多,因为M 类中0不能做首位,而W 类中9可以做首位.所以W 类的数比M 类的数要多,多的就是就是首位为9的符合要求的数.计算首位为9的W 类的数的个数,首先要确定另外四个数,因为要求各不相同,从除9外的其它9个数字中选出4个,有49126C =种选法.对于每一种选法选出来的4个数,假设其大小关系为4321A A A A >>>,由于其中最小的数只能在千位和十位上,最大的数只能在百位和个位上,所以符合要求的数有2类:①千位、十位排1A 、2A ,有两种方法,百位、十位排3A 、4A ,也有两种方法,故此时共有4种;②千位、十位排1A 、3A ,只能是千位3A ,百位4A ,十位1A ,个位2A ,只有1种方法.根据乘法原理,首位为9的W 类的数有()12641630⨯+=个.故W 类的数比M 类的数多630个.【例 22】 用1元,2元,5元,10元四种面值的纸币若干张(不一定要求每种都有),组成99元有P 种方法,组成101元有Q 种方法,则Q P -= .【解析】 由于101992-=,所以对于组成99元的每一种方法,只要再加上一张2元的,即可组成101元;而对于组成101元的方法,如果其中包含有一张2元的,那么去掉这张2元的,即可得到一种组成99元的方法.可见组成99元的方法与组成101元的某些方法之间存在一一对应的关系,组成101元的所有方法中,除去这些与组成99元的方法对应的方法,剩下的都是不包含有2元纸币的组成方法.所以Q 比P 多的就是用1元,5元,10元这三种面值的纸币组成101元的方法的总数. 假设用x 张1元的,y 张5元的,z 张10元的可以组成101元,则510101x y z ++=. 由于10101z ≤,所以10z ≤.即10元的可以有0~10张.如果10元的张数确定了,那么有()()5101101010152021x y z z z +=-=-+=-+,那么y 的值可以为0到()202z -,也就是对每一个z 的值,y 都可以有2021212z z -+=-种可能,相应地5元纸币的张数也有212z -种取法.而当10元和5元的张数都确定了以后,1元纸币的张数也就确定了,这样也就确定了组成101元的方法.所以只需要看取10元和5元的共有多少种取法.如果10元的取0张,即0z =,则21221z -=,即5元的有21种取法; 如果10元的取1张,即1z =,则21219z -=,即5元的有19种取法; 如果10元的取2张,即2z =,则21217z -=,即5元的有17种取法; ……如果10元的取10张,即10z =,则2121z -=,即5元的有1种取法; 所以总数为2211917111121++++==.那么121Q P -=.模块四、递推法对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法.【例 23】 (难度等级 ※※※)有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法? 【解析】 取1根火柴有1种方法,取2根火柴有2种方法,取3根火柴有4种取法,以后取任意根火柴的种数等于取到前三根火柴所有情况之和,以此类推,参照上题列表如下:取完这堆火柴一共有927种方法.【巩固】 (难度等级 ※※※)一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法? 【解析】 取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种。