移动通信数字调制解调技术要点

合集下载

移动通信调制技术介绍

移动通信调制技术介绍
卫星通信:使用调制技术实现卫星与地面站之间的 无线数据传输。
无线传感器网络(WSN):使用调制技术实现传 感器节点之间的无线数据传输。
卫星通信中的应用
01
01
卫星通信系统:利用卫星作为 中继站进行通信
02
02
卫星调制技术:将信号调制到 卫星通信频率上
03
03
卫星通信的优点:覆盖范围广, 传输速度快,抗干扰能力强
04
04
卫星通信的应用领域:军事、 航空、航海、应急通信等
4
更高效的调制技术
更高阶的调制技术: 如64QAM、 256QAM等,可 以提高频谱效率
更先进的多天线技 术:如MIMO、 波束赋形等,可以 提高传输速率和覆 盖范围
更智能的调制技术: 如自适应调制、动 态功率控制等,可 以提高系统灵活性 和性能
01
提高信号传输效 率
2
幅度调制技术
幅度调制技术是一
1
种通过改变信号的
幅度来传递信息的
技术。
常见的幅度调制技
2
术包括:调幅
(AM)、调频
(FM)和调相
(PM)。
调幅技术通过改变
3
信号的幅度来传递
信息,具有较高的
抗干扰能力。
调频技术通过改变
4
信号的频率来传递
信息,具有较高的
传输速率和较低的
误码率。
更绿色的调制技术: 如低功耗、低辐射 等,可以降低能耗 和保护环境
更灵活的调制技术
自适应调制技术:根据信道条件自动调整调制方式, 提高传输效率
多载波调制技术:将多个载波组合在一起,提高传 输速率和频谱利用率
智能天线技术:利用多天线阵列,实现空间分集和 波束赋形,提高传输可靠性和覆盖范围

移动通信中的调制解调(2023版)

移动通信中的调制解调(2023版)

移动通信中的调制解调移动通信中的调制解调1.引言1.1 背景1.2 目的2.调制的概述2.1 调制的定义2.2 调制的目的2.3 调制的基本原理3.调制的分类3.1 模拟调制3.1.1 AM调制3.1.2 FM调制3.2 数字调制3.2.1 ASK调制3.2.2 FSK调制3.2.4 QAM调制4.调制器种类4.1 调幅器4.2 调频器4.3 调相器4.4 调性器5.解调的概述5.1 解调的定义5.2 解调的目的5.3 解调的基本原理6.解调的分类6.1 模拟解调6.1.1 按幅度解调 6.1.2 按频率解调 6.1.3 按相位解调 6.2 数字解调6.2.2 FSK解调6.2.3 PSK解调6.2.4 QAM解调7.解调器种类7.1 幅度解调器7.2 频率解调器7.3 相位解调器7.4 多解调器8.调制解调在移动通信中的应用8.1 调制解调在2G移动通信中的应用 8.2 调制解调在3G移动通信中的应用 8.3 调制解调在4G移动通信中的应用8.4 调制解调在5G移动通信中的应用9.未来发展趋势9.1 调制解调技术的进一步创新9.2 调制解调在物联网中的应用9.3 调制解调在中的应用附件:无法律名词及注释:1.调制:将信号按照一定规律调整成为适合传输的波形。

2.解调:从接收到的波形中还原出原始信号。

3.AM调制:调制信号的幅度随着原始信号的变化而变化。

4.FM调制:调制信号的频率随着原始信号的变化而变化。

5.ASK调制:调制信号的振幅随着原始信号的变化而变化。

6.FSK调制:调制信号的频率随着原始信号的变化而变化。

7.PSK调制:调制信号的相位随着原始信号的变化而变化。

8.QAM调制:将多个调制信号组合成一个符号,符号中的振幅和相位都可变化。

本文档涉及附件:无。

移动通信中的调制解调

移动通信中的调制解调

移动通信中的调制解调引言移动通信是一种无线通信技术,可以实现移动设备之间的语音、数据和图像传输。

在移动通信中,调制解调起着重要的作用。

调制解调是将数字信号转换为模拟信号,或将模拟信号转换为数字信号的过程。

调制的目的调制是为了适应信道传输的要求和提高信号的抗干扰能力。

由于信道通常是模拟的,而数字信号是离散的,在信道传输时需要将数字信号转换为模拟信号。

调制的目的是将数字信号转换为模拟信号,以便在信道输。

调制的分类调制可以分为模拟调制和数字调制两种类型。

模拟调制是将模拟信号调制为模拟载波进行传输,常见的模拟调制方式有调幅(AM)、调频(FM)和调相(PM)。

数字调制是将数字信号调制为数字载波进行传输,常见的数字调制方式有二进制振幅移键(ASK)、二进制频移键(FSK)和二进制相移键(PSK)。

解调的目的解调是将调制过的信号恢复为原始的数字信号。

在信道传输中,信号会受到噪声和干扰的影响,解调的目的是将接收到的调制信号恢复为原始的数字信号,以便进行后续的处理和分析。

解调的分类解调可以分为模拟解调和数字解调两种类型。

模拟解调是将模拟调制信号恢复为模拟载波,常见的模拟解调方式有包络检波、相干解调和同步解调。

数字解调是将数字调制信号恢复为数字信号,常见的数字解调方式有ASK解调、FSK解调和PSK解调。

调制解调技术在移动通信中的应用调制解调技术在移动通信中扮演着重要的角色。

在移动通信中,调制解调技术被广泛应用于无线传输系统中,如GSM、CDMA和LTE 等。

调制解调技术可以通过提高信号的抗干扰能力和提高传输效率,实现可靠和高效的无线通信。

移动通信中的调制解调是实现无线通信的关键技术之一。

调制是将数字信号转换为模拟信号的过程,解调是将调制信号恢复为原始的数字信号的过程。

调制解调技术在移动通信中有着广泛的应用,能够提高通信系统的效率和可靠性。

不断的技术创新和发展将进一步推动移动通信技术的进步和应用。

调制解调

调制解调

2.2 数字频率调制
2.2.1 移频键控(FSK)调制 设输入到调制器的比特流为{an}, an=±1,
n=-∞~+∞。 FSK的输出信号形式(第n个比特区间)为
cos(1t 1 ) an 1 s (t ) cos(2t 2 ) an 1
(2 - 23)
即当输入为传号“ +1 ”时,输出频率为 f 1 的正弦波; 当输入为空号“-1”时,输出频率为f2的正弦波。
在大信噪比情况下, 即Uc>>V(t), 有
(2 - 14)
V (t ) (t ) c t (t ) sin (t ) (t ) Uc (2 - 15) y (t ) c t (t ) Uc
鉴频器的输出为
d(t ) d (t ) 1 dy(t ) uout (t ) c dt dt U c dt 1 dy(t ) k f um (t ) U c dt
调制技术
第二代移动通信是数字移动通信,其中的关键技
术之一是数字调制技术。对数字调制技术的主要要求
是:已调信号的频谱窄和带外衰减快(即所占频带窄,
或者说频谱利用率高);易于采用相干或非相干解调; 抗噪声和抗干扰的能力强;以及适宜在衰落信道中传 输。 数字信号调制的基本类型分为振幅键控 (ASK) 、 频移键控 (FSK)和相移键控 (PSK)。此外,还有许多由 基本调制类型改进或综合而获得的新型调制技术。
差为σ2n的高斯随机过程。
发“+1”时: y1(t) = a cos(ω1t+φ1)+nc1(t) cos(ω1t+φ1)
-ns1(t) sin(ω1t+φ1) 发“-1”时:

第3章数字调制解调技术

第3章数字调制解调技术
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
3.2 数字频率调制
3.2.1 二进制数字频移键控(2FSK) 设输入到调制器的信号比特流为{an},an=“1”或
“0” n=-∞~+∞。当输入为传号“1”时,输出频率为f1 的正弦波;当输入为空号“0”时,输出频率为f2的正弦波。 FSK信号分为相位连续的FSK信号和相位跳变的FSK信号。 FSK信号的波形及功率谱如图3-3所示。
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
移动通信中的数字调制技术应具有以下特点: (1)要有窄的功率谱和高的频谱利用率。移动通信是 一种多波道系统,调制信号功率谱带外辐射对邻道产生干 扰,使性能下降。为了保证数字信息传输质量,信号功率 与干扰功率之比应大于20dB,考虑到移动台运动时的衰落 深度可达20~40dB,所以要求已调信号在邻道的总辐射干 扰低于20~40dB。 (2)误码性能好。移动通信环境以衰落、噪声、干扰 为特点,包括多径瑞利衰落、频率选择性衰落、多普勒频 移和障碍物阻挡的联合影响。因此,必须根据抗衰落和干 扰能力来优选调制方案。误码性能的好坏实际上反映了信 号的功率利用率的高低。
MSK调制器的原理框图如图3-6所示。
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
图3-6 MSK调制器的原理框图
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术 4.频谱特点 MSK信号的功率谱如图3-7所示,图中还给出了QPSK
信号的功率谱。从图中可以看出,与QPSK相比,MSK信号 的功率谱具有较宽的主瓣,其第一个零点出现在(f-fc)=0.75 处,而QPSK信号的第一个零点出现在(f-fc)=0.5处。当(ffc)→∞时,MSK的功率谱以[(f-fc)Tb]-4 QPSK的衰减速率[(f-fc)Tb]-2快得多。MSK信号可以采用 鉴频器解调,也可以采用相干解调。

移动通信中的数字调制技术

移动通信中的数字调制技术
移动通信数字调制技术介绍

2020/2/29
1/4
• 培训的目的
1.了解数字调制原理和特点 2.了解移动通信系统中的各种调制技术
2020/2/29
2/4
• 调制的概念
将待传送的基带信号加到高频载波上进行传输的过程,即按照 调制信号(基带信号)的变化规律去改变载波的某些参数的过程。
其简单模型可以表示为:
2020/2/29
9/4
• 码元速率
码元:数字信号中每一个符号的通称。即可以用二进制表示,也可以用其 它进制的数表示。 码元传输速率,又称为码元速率或传码率。码元速率又称为波特率,指每 秒信号的变化次数。若数字传输系统所传输的数字序列恰为二进制序列, 则等于每秒钟传送码元的数目,而在多电平中则不等同。单位为"波特",常 用符号"Baud"表示,简写为"B"
31/4
2020/2/29
32/4
传输数字信号时也有三种基本的调制方式:幅移键控(ASK)、 频移键控(FSK)和相移键控(PSK)。 它们分别对应于用载波(正弦波)的幅度、频率和相位来传递数 字基带信号,可以看成是模拟线性调制和角度调制的特殊情况。 理论上,数字调制与模拟调制在本质上没有什么不同,它们都是 属正弦波调制。但是,数字调制是调制信号为数字型的正弦波调 制,而模拟调制则是调制信号为连续型的正弦波调制。 在数字通信的三种调制方式(ASK、FSK、PSK)中,就频带利用率 和抗噪声性能(或功率利用率)两个方面来看,一般而言,都是 PSK系统最佳。所以PSK在中、高速数据传输中得到了广泛的应用。
2020/
1.符号速率 符号速率*扩频因子=码片速率,符号速率=码片速率/扩频因子
2020/2/29

移动通信第2讲调制

移动通信第2讲调制
h=0.5是移频键控为保证良好误码性能所允许的最小调制指数 h=0.5时,波形相关系数为0,信号是正交的
MSK也是一类特殊形式的OQPSK,用半正弦脉冲取代 OQPSK的基带矩形脉冲

信号表达式: S (t ) cos ct ak t xk 2Tb
2PSK
Eb 4N0
Eb 2N0

2FSK
BER
-6 -7 -8 -9 -10 -11
2PSK
-12 0
1
1 P 3 5 6erfc9 10 2b 4 7 8 Eb/N0 (dB) 2
Eb 11 12 13 N0
14
移动通信中常用的调制技术
2.数字调制方法的分类
3. 基本调制方法原理及性能简要分析
2ASK、2FSK、2PSK和2DPSK调制原理波形如下图所示。
基带信号 1 0 1 1 0 0 1
2ASK
2FSK
2PSK
2DPSK
性能简要分析
欧式空间距离法 将二进制的已调信号矢量表达为二维欧式空间的距离,显 然距离越大,抗干扰性就越强。 2ASK 当基带信号为“0”时,不发送载波,记A0=0V; 当基带信号为“1”时,发送归一化载波,记A1=1V; 则可用下列图型表示
高斯滤波器满足以上要求
输入数据 预调制滤波器 FM 调制器 调制指数为0.5
不归零(NRZ)
图 2 - 11 GMSK信号的产生原理
1. 高斯低通滤波器
冲击响应为:
g(t) 1.0
h(t ) exp( a t )
2 2 2
BT = bb 0.7 0.4 0.3

2 Bb 1n 2

数字调制解调技术

数字调制解调技术

抗多径干扰能力主要取决于调制解调 算法的设计和实现,以及信号处理技 术的运用。常用的抗多径干扰技术包 括RAKE接收、信道估计与均衡、多 天线技术等。这些技术的应用可以有 效抑制多径干扰的影响,提高数字信 号的传输质量和稳定性。
05
数字调制解调技术的未 来发展
高频谱效率的调制解调技术
总结词
随着通信技术的发展,对频谱效率的要求越来越高,高频谱效率的调制解调技术成为研 究热点。
02
通过将多个载波信号进行调制 ,多载波调制能够提高信号传 输的效率和可靠性。
03
多载波调制具有频谱利用率高 、抗多径干扰能力强等优点, 因此在无线通信、宽带接入等 领域得到广泛应用。
03
数字解调技术
相干解调
相干解调是一种基于相位的解调方法,它利用发送信号的相位信息来恢复原始信 号。在相干解调中,接收到的信号与本地振荡器产生的信号进行相位比较,以恢 复原始信号的相位信息。
抗多径干扰能力
抗多径干扰能力
总结词
详细描述
抗多径干扰能力是指数字调制解调技 术在存在多径干扰的情况下仍能保持 正常工作的能力。多径干扰是无线通 信中常见的问题,良好的抗多径干扰 能力能够提高通信质量。
抗多径干扰能力是评估数字调制解调 技术性能的重要指标,尤其在无线通 信中,它直接影响到通信的质量和稳 定性。
思路。
多模态调制解调技术
总结词
随着通信环境的多样化,多模态调制解 调技术成为研究的热点,以满足不同通 信环境下的需求。
VS
详细描述
多模态调制解调技术是指能够处理多种通 信模式的调制解调技术。目前已经出现了 一些多模态调制解调技术,如OFDM (Orthogonal Frequency Division Multiplexing,正交频分复用)和SC-FDE (Single Carrier Frequency Domain Equalization,单载波频域均衡)等。这 些技术通过融合不同的通信模式,提高了 通信系统的灵活性和适应性,为未来通信 技术的发展提供了新的方向。

移动通信中的调制解调

移动通信中的调制解调

移动通信中的调制解调移动通信中的调制解调1、简介1.1 调制解调的概念1.2 调制解调在移动通信中的作用2、调制技术2.1 模拟调制2.1.1 AM调制2.1.2 FM调制2.1.3 PM调制2.2 数字调制2.2.1 ASK调制2.2.2 FSK调制2.2.3 PSK调制2.2.4 QAM调制3、调制解调器3.1 调制解调器的基本原理 3.2 调制解调器的分类3.2.1 数字调制解调器 3.2.2 模拟调制解调器3.2.3 混合调制解调器4、调制解调过程4.1 发送端调制过程4.1.1 信号处理4.1.2 调制方法选择4.2 接收端解调过程4.2.1 信号接收4.2.2 解调方法选择5、调制解调的性能评估5.1 误码率性能5.2 谱效率5.3 传输延迟6、调制解调在移动通信中的应用6.1 调制解调在无线局域网中的应用6.2 调制解调在蜂窝网络中的应用7、附件本文档附带有以下附件:- 模拟调制示例代码- 数字调制解调器原理图8、法律名词及注释- 调制:将原始信号转换为适合传输的信号形式。

- 解调:将接收到的信号恢复为原始信号。

- AM调制:幅度调制,利用信号的幅度变化来表示信息。

- FM调制:频率调制,利用信号的频率变化来表示信息。

- PM调制:相位调制,利用信号的相位变化来表示信息。

- ASK调制:振幅假定键控调制,通过改变振幅来表示数字信号。

- FSK调制:频移键控调制,通过改变频率来表示数字信号。

- PSK调制:相位假定键控调制,通过改变相位来表示数字信号。

- QAM调制:正交幅度调制,利用正交信号的幅度和相位变化来表示数字信号。

移动通信中的调制解调

移动通信中的调制解调

移动通信中的调制解调AM和FM射频信号被用来传递信息,信息有可能是音频,数据或者其他格式,该信息被调制(modulate)到载波信号上,并通过射频传送到接收器,在接收器端,信息从载波上分离出来,这个被称为解调(demodulation)。

而载波本身并不带有任何信息。

调制方法多种多样,简单的一般有幅度调制,频率调制和相位调制,尽管调频和调相本质上是相同的。

每种调制方法都有其有缺点。

了解每种调制方法的基础是很重要的,尽管大家更为关注的是移动通信系统的调制方法。

复习这些简单技术可以让大家对它们的优缺点有更好的认识。

载波无线通信的基础是载波,基本的载波如下图所示,这个信号在发射器部分产生,并不带有任何信息,在接收器部分也作为不变的信号出现。

调幅调制最显而易见的的方式就是调幅了,通过调整信号幅度大小传递信息。

最简单的调制是OOK(on–off keying,开关键控),载波以开关的形式传递信息。

这个是数字调制的基础,并用在传递莫斯(Morse)电码上面,莫斯在早期的“无线”应用上广为采用,通过开或关的长度传递码元。

在音频或其他领域应用更为常见的是,整个信号的幅度通过载波体现,如下图,这个被称为幅度调制(AM)。

AM解调音频信号的过程十分简单,只需要一个简单的二极管包络检波电路就可以实现,如图3-3,在这个电路中二极管只允许无线信号的半波通过,一个电容被作为低通滤波器来去除信号的高频部分,只留下音频信号。

这个信号直接通过放大后输出至扬声器。

该解调电路十分简单和易于实现,在目前的AM收音机接收上面还在广泛采用。

AM解调过程同样可以用更为有效的同步检波电路实现。

如图3-4,射频信号被本地载波振荡信号混频。

该电路的优点是比二极管检波器有更好的线性度,而且对失真和干扰的抵抗比较好。

产生本振信号的方法很多,其中最简单的就是把接收到的无线信号通过高通滤波器,从而滤掉调制信号保留精确频率和相位的载波,再与无线信号混频滤波就能得到原始音频信号。

移动通信中的调制解调

移动通信中的调制解调

移动通信中的调制解调移动通信中的调制解调⒈引言⑴背景介绍⑵研究目的⑶文档组织结构⒉通信调制解调概述⑴调制的基本概念⑵解调的基本概念⑶调制解调的作用和意义⒊调制技术⑴模拟调制⒊⑴幅度调制(AM)⒊⑵频率调制(FM)⒊⑶相位调制(PM)⑵数字调制⒊⑴脉冲调制(PCM)⒊⑵正交调制(QAM)⒊⑶正交频分复用(OFDM)⒋解调技术⑴模拟解调⒋⑴幅度解调⒋⑵频率解调⒋⑶相位解调⑵数字解调⒋⑴采样与重建⒋⑵数字信号处理⒋⑶解调算法⒌调制解调中的关键技术⑴信道编码⑵交织与反交织⑶误码纠正⑷同步技术⒍移动通信中的调制解调⑴ 2G移动通信标准⒍⑴ GSM调制解调⒍⑵ CDMA调制解调⑵ 3G移动通信标准⒍⑴ WCDMA调制解调⒍⑵ CDMA2000调制解调⑶ 4G移动通信标准⒍⑴ LTE调制解调⑷ 5G移动通信标准⒍⑴ NR调制解调⒎调制解调在移动通信中的应用案例⑴数据传输⑵语音通话⑶视频传输⑷其他应用领域⒏结论⑴主要观点总结⑵研究成果评价⑶进一步研究的建议本文档涉及附件:附件1:调制解调实验数据附件2:调制解调算法代码本文所涉及的法律名词及注释:⒈调制(Modulation):指通过改变载波的某种特性来携带信号信息的过程。

⒉解调(Demodulation):指将调制信号还原为原始信号的过程。

⒊幅度调制(AM):调制信号的幅度与原始信号的幅度成正比。

⒋频率调制(FM):调制信号的频率与原始信号的频率成正比。

⒌相位调制(PM):调制信号的相位与原始信号的相位成正比。

⒍脉冲调制(PCM):将模拟信号转换为离散信号的一种编码方式。

⒎正交调制(QAM):通过调节信号的幅度和相位来传输多个比特信息。

⒏正交频分复用(OFDM):将高速数据信号分成多个低速子信号,通过不同的载波频率传输。

移动通信中的调制解调

移动通信中的调制解调

移动通信中的调制解调移动通信中的调制解调一、调制与解调的基本概念在移动通信系统中,调制(Modulation)是指将要传输的数字信号转换为模拟信号的过程,而解调(Demodulation)则是将接收到的模拟信号转换回数字信号的过程。

调制解调技术在移动通信中起着至关重要的作用,它们决定了无线信号在传播过程中的可靠性和效率。

调制解调技术的核心思想是利用模拟信号的某些特性来表示数字信号,以便于在传输过程中保持信号的完整性。

常见的调制方式有频移键控(FSK)、相移键控(PSK)、振幅移键控(ASK)等。

解调过程则是将接收到的调制信号恢复成原始的数字信号。

二、调制解调器的工作原理调制解调器(Modem)是实现调制解调功能的设备或软件。

它一般由调制器和解调器两个部分组成。

调制器负责将数字信号转换为模拟信号,并在发送端将信号发送出去;解调器则负责将接收到的模拟信号转换回数字信号,并在接收端进行解码等后续处理。

调制器通常包含一个调制器算法,用于将数字信号转换为模拟信号。

常见的调制算法有调相(PSK)和调频(FSK)等。

调制器通过改变模拟信号的频率、振幅或相位等特性,将数字信号转换为模拟信号,然后发送出去。

解调器则是对调制过程的逆过程。

它接收到经过传输过程中受到噪声和干扰后的模拟信号,通过解调算法将其转换为数字信号。

解调器还会对接收到的信号进行解码、纠错等处理,以提高接收到的数字信号的质量。

三、调制解调技术在移动通信中的应用调制解调技术在移动通信中发挥着重要的作用。

在无线通信系统中,调制技术用于将数字数据转换为模拟信号,以便于在无线信道中传输。

解调技术则负责将接收到的模拟信号转换回数字数据,以便于后续处理和解码。

在移动通信系统中,调制解调技术不仅用于语音通信,还广泛应用于数据通信。

例如,在3G和4G网络中,调制解调技术被用于将高速的数字数据转换为适合无线信道传输的模拟信号。

调制解调技术的性能直接影响着数据传输的速度和可靠性。

移动通信第2章调制与解调

移动通信第2章调制与解调

调制信号的功率谱
f
7
2.1.5 数字调制分类的方法
数字式调制
不恒定包络
ASK(移幅键控) QAM(正交幅度调制) MQAM(星座调制)
FSK BFSK(二进制移频键控) (移频键控) MFSK(多进制移频键控)
BPSK(二进制移相键控)
恒定包络
PSK (移相键控)
DPSK(差分二进制移相键控)
QPSK (正交四相 移相键控)
• 当采用较高传输速率时,要求更为紧凑的功率谱才能满足 对邻道辐射功率低于-60dB~-80dB的要求
23
2.2.12 GMSK
• GMSK是GSM的优选方案
– 实现简单,在原MSK调制器增加前置滤波器,得到平滑后的某 种新的波形后再进行调频,就可以得到良好的频谱特性
– 对前置滤波器的要求 • 带宽窄且为锐截止型,以滤除基带信号中的高频成分 • 有较低的过脉冲响应,防止已调波瞬时频偏过大 • 保持输出脉冲响应的面积不变,使调制指数为1/2
11
第2章 调制与解调
2.1 概述 2.2 数字频率调制
– 二进制频移键控BFSK – 最小频移键控MSK) – 高斯最小频移键控GMSK
2.3 数字相位调制
– 二进制移相键控调制2PSK – 四相移键控调制QPSK
• 交错四相移键控调制OQPSK • /4- DQPSK调制
2.4 正交振幅调制QAM 2.5 扩频调制技术 2.6 多载波调制
S(t)
1
-1 -1
1
1
1
0
f2
f1
f1
f2
f2
f2
k
2π +1 -1
-1 +1 +1 +1

4.3 数字调制技术

4.3 数字调制技术

功率谱密度
4.3.5 GMSK
要求带外辐射功率为-60~要求带外辐射功率为-60~-80dB GMSK是GSM的优选方案 GMSK是GSM的优选方案
实现简单,在原MSK调制器增加前置滤波器 实现简单,在原MSK调制器增加前置滤波器 对前置滤波器的要求
带宽窄且为锐截止型 有较低的过脉冲响应 保持输出脉冲的面积不变
第一准则:抽样点无失真, 第一准则:抽样点无失真,升余弦滚降滤波 第二准则: 第二准则:转换点无失真 第三准则: 第三准则:脉冲波形面积保持不变
移动通信中的脉冲成型技术
升余弦滚降滤波 高斯脉冲成型滤波器
4.3.2 升余弦滚降滤波器
升余弦滚降滤波器的传递函数见书P61 升余弦滚降滤波器的传递函数见书P61
4.3.5 FSK和CPFSK FSK和
2FSK
调制指数: 调制指数: 当h=0.5时,S0与S1为正交信号 h=0.5时 CPFSK(连续相位移频键控) CPFSK(连续相位移频键控) 在时间T 在时间Tb内,相位是线形变化的,每经过时间Tb,相 相位是线形变化的,每经过时间T 位变化π/2,且在t=kT 位变化π/2,且在t=kTb时相位连续
MSK也是一类特殊形式的OQPSK,用半正弦脉冲 MSK也是一类特殊形式的OQPSK,用半正弦脉冲 取代OQPSK的基带矩形脉冲 取代OQPSK的基带矩形脉冲 信号表达式: 信号表达式:
4.3.5 MSK的调制和解调 MSK的调制和解调
4.3.5 MSK信号的特征和功率谱密度 MSK信号的特征和功率谱密度
4.3.6 OQPSK的调制和解调 OQPSK的调制和解调
4.3.6 π/4QPSK
4.3.7 各种调制的BER性能 各种调制的BER性能

通信系统中的调制解调技术

通信系统中的调制解调技术

通信系统中的调制解调技术随着科技的不断进步,我们生活中越来越多的信息需要传递,这些信息有语音、图像、视频、文本等多种形式。

这些信息的传输需要依靠通信系统,而通信系统中的调制解调技术就是其中非常重要的一环。

一、调制技术调制技术是将需要传输的信息通过一定的方式转换成符合传输特定介质条件的信号,从而使该信号能在通信链路上进行传播并到达目的地。

调制技术的主要作用是将信息转换成高频电信号进行传输,以提高信号的传输效率和传输质量。

常见的调制有幅度调制、频率调制、相位调制等,其中最常用的是调频调制技术。

调频调制技术是将模拟信号通过调频器将其转换为高频带通信号,主要是通过改变高频信号的载波频率来携带信息,具有传输距离长、传输速率快、抗干扰能力强的优点,被广泛采用于广播、电视等领域。

二、解调技术解调技术是将调制后的信号转换回原始信息信号的技术。

解调技术的主要作用是恢复传输中失真的信息,以得到原始的准确的信息,较好地保护了信息的准确性和完整性。

常见的解调技术有包络检波、同步检波、相干检波等。

其中最常用的是相干解调技术。

相干解调技术是通过对调制信号进行解调以恢复原始信号,它依赖于原始信息在相位和频率上的稳定性,可以获得高解调质量,通常被用于数字通信网络中。

三、调制解调技术在通信系统中的应用调制解调技术的应用在我们日常生活中无处不在,如电话、电视、无线局域网、移动通信等。

在通信系统中,调制解调技术是信息传输的核心,直接影响着信息传输的质量和速度。

以移动通信为例,调制解调技术是保证移动通信系统有效运行的关键技术之一。

在移动通信系统中,信号传输距离远,干扰较大,而调制技术可以提高信号的抗干扰能力和传输效率,解调技术则可以保障传输数据的准确性和完整性。

四、调制解调技术面临的挑战随着通信技术的不断发展,调制解调技术也面临着新的挑战。

其中一个挑战就是高速度通信。

在高速通信中,传输数据量大,时间短,同时要求精度高,这对调制解调技术的要求也更高了。

通信技术中的信号调制与解调技术

通信技术中的信号调制与解调技术

通信技术中的信号调制与解调技术信号调制与解调技术是现代通信系统中不可或缺的关键技术之一。

它负责将要传输的信息信号转换为适合传输的载波信号,并在接收端将收到的信号还原为原始的信息信号。

本文将介绍信号调制与解调技术的基本原理、常见调制解调方法以及其在通信系统中的应用。

一、信号调制的基本原理信号调制是指将要传输的信息信号和高频载波信号相结合,以便在传输过程中提高信号的抗干扰能力和传输效率。

调制技术的基本原理可以归纳为将低频的信息信号调制到高频的载波信号上,产生调制后的信号。

二、常见调制解调方法1. 幅度调制(Amplitude Modulation,AM)幅度调制是最简单的一种调制方法,它是通过改变载波信号的振幅来传输信息。

在AM调制中,原始信号的幅度变化会导致载波信号的幅度随之变化。

接收端通过解调将幅度变化还原为原始信号。

2. 频率调制(Frequency Modulation,FM)频率调制是一种通过改变载波信号的频率来传输信息的调制方法。

FM调制中,原始信号的振幅不变,而是通过改变载波信号的频率来传输信息。

接收端通过解调将频率变化还原为原始信号。

3. 相位调制(Phase Modulation,PM)相位调制是一种通过改变载波信号的相位来传输信息的调制方法。

PM调制中,原始信号的振幅和频率不变,而是通过改变载波信号的相位来传输信息。

接收端通过解调将相位变化还原为原始信号。

三、调制解调技术的应用1. 无线通信系统中的调制解调技术调制解调技术广泛应用于无线通信系统中,如移动通信、卫星通信、无线局域网等。

在这些系统中,调制技术能够提高信号的传输距离和抗干扰能力,使得移动设备能够稳定地进行通信。

2. 数字通信系统中的调制解调技术调制解调技术在数字通信系统中也具有重要作用。

在数字通信中,信息信号经过模数转换器转换为数字信号后,需要通过调制技术将其转换为模拟信号进行传输。

在接收端,通过解调技术将模拟信号转换为数字信号进行处理和解码。

第3章 移动通信数字调制解调技术

第3章  移动通信数字调制解调技术

上述由0与1组成的基带二进制进一步推广至PSK和MQAM调制。
ASK信号波形
FSK信号波形
PSK信号波形
3.2 最小移频键控-相位连续的FSK
设要发送的数据为 ak 1 ,码元长度为 Tb ,在一个码元时间 f 2 的正弦信号表示,例如: 内,它们分别用两个不同频率 f1 、
3.2 最小移频键控-相位连续的FSK
Tb 可以重写一个码元内2FSK信号表达式为: 根据 ak、h 、
h s FSK t coswc t a k wd t k cos w t a t k k coswc t k t c Tb
调制。
3.1 调制技术概述
移动通信系统中信号为什么要进行调制,什么是调制? 调制的目的就是使携带信息的信号与信道特性相匹配以及有 效的利用信道。
蜂窝移动通信系统对数字调制技术的要求: ① 为了在衰落条件下获得所要求的误码率(BER),需要 好的载噪比(C/N)和载干比 (C/I)性能。 ② 所用的调制技术必须在规定频带约束内提供高的传输速 率,以(bit/s)/Hz为单位。 ③ 应使用高效率的功率放大器,而带外辐射又必须降低到 所需要求(−60dB~−70dB)。 ④ 恒定包络。 ⑤成本低,易于实现。
3.1 调制技术概述
数字调制是将数字基带信号通过正弦型载波相乘调制成带通 型信号,其基本原理是用数字基带信号0或1去控制正弦载波 中的一个参量,若控制载波的幅度就称为振幅键控ASK,若
控制载波的频率就称为频率键控FSK,若控制载波的相位就
称为相位键控PSK,若联合控制载波的幅度与相位两个参量 就称为幅度相位调制(又称为正交幅度调制QAM)。若将
现在相同调制指数h情况下,CPFSK的带宽要比一般的2FSK带宽
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1.5 调幅与调频
单边带调幅系统只传送一个边带(上边带 或下边带),所以只占用普通调幅系统一 半的带宽。 单边带调制技术对移动通信还是非常有用 的。 随着数字信号处理、大规模集成电路和新 的单边带调制解调技术的进步,单边带在 移动通信中的应用还是很有前途的。
6.1 数字调制技术概述
6.1.1 6.1.2 6.1.3 要求 6.1.4 6.1.5 概述 数字调制的性能指标 蜂窝移动通信系统对数字调制技术的
数字调制技术分类 调幅与调频
6.1.1 概述
第二代数字移动通信系统都使用数字调制 技术。 超大规模集成电路(VLSI)和数字信号处 理(DSP)技术的发展使数字调制比模拟 调制的传输系统更有效。
第6章 移动通信数字调制解调 技术
本章提示
调制在通信系统中占有十分重要的地位。 只有经过调制才能将基带信号转换成适合 于信道传输的已调信号,而且它对系统的 传输有效性和可靠性都有很大的影响。
本章提示
数字调制与模拟调制本质上并无什么不 同,它们同属正弦载波调制。但是数字调 制的调制信号为数字型正弦调制,模拟调 制的调制信号为连续性正弦调制。模拟信 号传输的质量标准是信噪比(S/N),数字 信号传输的质量标准是误码率(Pe)。
1.线性调制方式 线性调制方式主要有各种进制的PSK和 QAM等。 线性调制方式又可分为频谱高效和功率高 效两种。
2.恒定包络调制方式
恒定包络调制方式主要有MSK、TFM(平 滑调频)、GMSK等。 其主要特点是这种已调信号具有包络幅度 不变的特性,其发射功率放大器可以在非 线性状态而不引起严重的频谱扩散。
6.1.2 数字调制的性能指标
由香农(Shannon)定理: 骣 S÷ C=B lb ç 1+ ÷ ( 6-3 ) ç ç 桫 N÷ 式中,C为信道容量;B为RF带宽;S/N为 信噪比;lb = loga,a = 2。
6.1.2 数字调制的性能指标
因此,最大可能的BMAX为 C S BMAX = = lb(1 + ) (6-4) B N 对于GSM,B = 200kHz,SNR = 10dB, 则有:

本章提示
由于带宽资源受限,目前所有调制技术 的主要设计思路就是最小化传输带宽。相 反,扩频技术使用的传输带宽比要求的最 小信号带宽大几个数量级。在多用户系统 中,事实证明在多址干扰(MAI)环境,扩 频系统能获得很高的频谱利用率。
第6章 移动通信数字调制解调技术
6.1 数字调制技术概述 6.2 线性数字调制技术 6.3 恒包络调制 *6.4 “线性”和“恒包络”相结合的调制技 术
C = = lb(1 + 10) = 3.46(kbit/s)/Hz B
骣 S÷ C = B lb ç 1+ ÷ = 200 lb(1 + 10) = 691.886kbit/s ç ÷ ç 桫 N hBMAX
6.1.3 蜂窝移动通信系统对数字调制技术 的要求
(1)数字调制的目的在于使传输的数字信 号与信道特性相匹配 (2)移动通信要求采用恒定包络数字调制 技术 (3)应尽量避免幅-相转换(AM/PM)效 应 (4)要求调制方式具有最小的功率谱占用 率
Eb P = (6-1) N0
6.1.2 数字调制的性能指标
带宽有效性B是反映调制技术在一定的频 带内数字有效性的能力,可表述成在给定 带宽条件下每赫兹的数据通过率: R B = ((bit/s) / Hz) (6-2) B
式中,R为数据速率(bit/s),B为调制射 频RF信号占用带宽。
6.1.1 概述
新的多用途可编程数字信号处理器使得数 字调制器和解调器完全用软件来实现成为 可能。 嵌入式软件实现方法可以在不重新设计和 替换调制解调器的情况下改变和提高性能。
6.1.2 数字调制的性能指标
数字调制的性能指标通常通过功率有效性 p(Power Efficiency)和带宽有效性B (Spectral Efficiency)来反映。 功率有效性p是反映调制技术在低功率电 平情况下保证系统误码性能的能力,可表 述成每比特的信号能量与噪声功率谱密度 之比:
6.1.5 调幅与调频
早期VHF频段的移动通信电台大都采用调 幅方式,调幅是使高频载波信号的振幅随 调制信号的瞬时变化而变化,其所占带宽 为BAM=2fm,其中,fm为音频的上限频率。 由于信道快衰落会使模拟调幅产生附加调 幅而造成失真,目前已很少采用。
6.1.5 调幅与调频
调频是使高频载波信号的瞬时频率随调制 信号的变化而变化,其所占带宽为B FM= 2(FM+1)fm,其中FM为调制指数。 调频制在抗干扰和抗衰落性能方面优于调 幅制,对非线性信道有较好的适应性,世 界上几乎所有的模拟蜂窝系统都使用频率 调制。
6.1.3 蜂窝移动通信系统对数字调制技术 的要求
具体地讲,数字调制技术应满足如下特性 要求。 ① 为了在衰落条件下获得所要求的误码率 (BER),需要好的载噪比(C/N)和载干 比 (C/I)性能。 ② 所用的调制技术必须在规定频带约束内 提供高的传输速率,以(bit/s)/Hz为单位。
本章提示
第一代蜂窝移动通信系统采用模拟调频 (FM)传输模拟语音,其信令系统采用 2FSK数字调制。第二代数字蜂窝移动通信 系统传送的语音都是经过语音编码和信道 编码后的数字信号。GSM系统采用GMSK 调制;IS-54系统和PDC系统采用/4 DQPSK调制;IS-95 CDMA系统的下行信 道采用QPSK调制,其上行信道采用 OQPSK调制。第三代蜂窝移动通信系统将 采用MQAM、QPSK或8PSK调制。
6.1.3 蜂窝移动通信系统对数字调制技术 的要求
③ 应使用高效率的功率放大器,而带外辐 射又必须降低到所需要求(−60dB~ −70dB)。 ④ 恒定包络。 ⑤ 低的载波与同道干扰(CCI)的功率比。 ⑥ 必须满足快速的比特再同步要求。 ⑦ 成本低,易于实现。
6.1.4 数字调制技术分类
相关文档
最新文档