(完整版)七年级上角平分线练习题及答案
角平分线模型对应练习(含答案)
角平分线模型对应练习1.如图,在ABC 中,ABC ∠的平分线与ACB ∠的外角平分线相交于D 点,50A ∠=,则(D ∠= ) A .1?5B . 25C . 30D . 302.如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是△A 1BD 的角平分线CA 2是△A 1CD 的角平分线,BA 3是A 2BD△的角平分线,CA 3是△A 2CD 的角平分线,若△A 1=α,则△A 2013为( ) A .B .C .D .3.如图,在∆ABC 中,∠A=80︒,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为() A .54B .58C .516D .5324.如图,已知BD ,CD 分别是ABC ∠和ACE ∠的角平分线,若45A ∠=︒,则D ∠的度数是( ) A .20 B .22.5 C .25 D .305.已知,如图△ABC 中,△A=50°,BE 、CD 分别是△ABC 、△BCE 的角平分线,则△CDE=__°.6.如图,在△ABC 中,△ABC ,△ACB 的角平分线相交于O 点. 如果△A=α,那么△BOC 的度数为____________.7.如图,在△ABC 中,BO 、CO 分别平分△ABC 、△ACB .若△BOC=110°,则△A=_____.8.如图,在△ABC 中,AI 和CI 分别平分△BAC 和△BCA ,如果△B=58°,那么△AIC=____________.9.如图,在△ABC 中,△B =42°,△ABC 的外角△DAC 和△ACF 的平分线交于点E ,则△AEC =____________.10.如图,在ABC 中,B ∠,C ∠的外角平分线相交于点O ,若74A ∠=,则O ∠=________度.11.如图,ABC 中,100A ∠=,BI 、CI 分别平分ABC ∠,ACB ∠,则BIC ∠=________,若BM 、CM 分别平分ABC ∠,ACB ∠的外角平分线,则M ∠=________.12.如图,ABC 中,30B ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠的度数为________.13.已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”. 在图2中,△DAB 和△BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .若△DAO=50°,△OCB=40°,△P=35°,△D = _________参考答案1.B【解析】【分析】根据角平分线的定义和三角形的外角的性质即可得到△D=12△A.【详解】解:△△ABC的平分线与△ACB的外角平分线相交于D点,△1=12△ACE,△2=12△ABC,又△D=△1-△2,△A=△ACE-△ABC,△△D=12△A=25°.故选B【点睛】此题综合考查了三角形的外角的性质以及角平分线定义,熟练掌握这些知识是解答此题的关键.2.D【详解】试题分析:根据角平分线的定义可得△A1BC=△ABC,△A1CD=△ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得△ACD=△A+△ABC,△A1CD=△A1BC+△A1,整理即可得解,同理求出△A2,可以发现后一个角等于前一个角的,根据此规律即可得解.解:△A1B是△ABC的平分线,A1C是△ACD的平分线,△△A1BC=△ABC,△A1CD=△ACD,又△△ACD=△A+△ABC,△A1CD=△A1BC+△A1,△(△A+△ABC)=△ABC+△A1,△△A1=△A,△△A1=α.同理理可得△A2=△A1=α则△A 2013=.故选D .点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键. 3.C 【详解】△△ABC 与△ACD 的平分线交于点A 1, △△A 1BC=12△ABC ,△A 1CD=12△ACD , 由三角形的外角性质,△ACD=△A+△ABC , △A 1CD=△A 1+△A 1BC ,△12(△A+△ABC )=△A 1+△A 1BC=△A 1+12△ABC , 整理得,△A 1=12△A=12×80°=40°,同理可得△A 2=12△A 1=12×40°=20°;……其规律为:△A n =(12)n △A=(802n )o . 当n=8时,∠A 8=(12)3△A=(8802)o =(516)o .故选C. 【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定义并求出后一个角是前一个角的12是解题的关键. 4.B 【分析】由外角关系与角平分线定义得2321A ∠=∠+∠和31D ∠=∠+∠可推出2A D ∠=∠即可. 【详解】解:1∠,2∠,3∠,4∠如图所示,△BD 是ABC ∠的角平分线, △12∠=∠,△CD 是ACE ∠的角平分线, △ 34∠=∠,△ 3412A ∠+∠=∠+∠+∠,31D ∠=∠+∠, △ 2321A ∠=∠+∠,23212D ∠=∠+∠, △ 2A D ∠=∠, △ 45A ∠=, △ 14522.52D ∠=⨯=. 故选择:B . 【点睛】本题考查角平分线的定义,三角形的外角的性质,掌握角平分线的定义,三角形的外角的性质,会利用外角构造等式解决问题是关键. 5.65 【解析】试题分析:根据三角形内角和定理可得:△ABC+△ACB=180°-50°=130°,根据角平分线的性质可得:△DBC+△DCB=130°÷2=65°,则根据三角形的外角的性质可得:△CDE=△DBC+△DCB=65°. 6.90°+12α 【解析】△△ABC 、△ACB 的角平分线相交于点O ,△△OBC=12△ABC ,△OCB=12△ACB , △△OBC+△OCB=12(△ABC+△ACB)=12(180°-△A)=90°-12△A ,△在△OBC 中,△BOC=180°-△OBC -△OCB ,△△BOC=180°-(90°-12△A)=90°+12△A=90°+12.7.40°【分析】先根据角平分线的定义得到△OBC=12△ABC,△OCB=12△ACB,再根据三角形内角和定理得△BOC+△OBC+△OCB=180°,则△BOC=180°﹣12(△ABC+△ACB),由于△ABC+△ACB=180°﹣△A,所以△BOC=90°+12△A,然后把△BOC=110°代入计算可得到△A的度数.【详解】解:△BO、CO分别平分△ABC、△ACB,△△OBC=12△ABC,△OCB=12△ACB,而△BOC+△OBC+△OCB=180°,△△BOC=180°﹣(△OBC+△OCB)=180°﹣12(△ABC+△ACB),△△A+△ABC+△ACB=180°,△△ABC+△ACB=180°﹣△A,△△BOC=180°﹣12(180°﹣△A)=90°+12△A,而△BOC=110°,△90°+12△A=110°△△A=40°.故答案为40°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.8.119°【详解】试题分析:根据△B=58°以及△ABC的内角和定理可得△BAC+△BCA=180°-58°=122°,根据角平分线的性质可得:△IAC+△ICA=122°÷2=61°,则根据△IAC的内角和定理可得:△AIC=180°-61°=119°.考点:(1)、角平分线的性质;(2)、三角形内角和定理9.69°.【解析】试题分析:△AEC=180°-△EAC-△ECA,因为△ABC的外角△DAC和△ACF的平分线交于点E,所以△EAC=12△DAC,△ECA=12△ACF,所以△AEC=180°-12△DAC-12△ACF=12(360°-△DAC-△ACF)=12(180°-△DAC+180°-△ACF)=12(△BAC+△ACB)=12(180°-△B)=69°.10.53【解析】【分析】根据三角形的内角和定理,得△ACB+△ABC=180°-74°=106°;再根据邻补角的定义,得两个角的邻补角的和是360°-106°=254°;再根据角平分线的定义,得△OCB+△OBC=127°;最后根据三角形的内角和定理,得△O=53°.【详解】解:△△A=74°,△△ACB+△ABC=180°-74°=106°,△△BOC=180°-12(360°-106°)=180°-127°=53°.故答案为53【点睛】此题综合运用了三角形的内角和定理以及角平分线定义.注意此题中可以总结结论:三角形的相邻两个外角的角平分线所成的锐角等于90°减去第三个内角的一半,即△BOC=90°-1 2△A.11.14040【解析】【分析】首先根据三角形内角和求出△ABC+△ACB的度数,再根据角平分线的性质得到△IBC=1 2△ABC,△ICB=12△ACB,求出△IBC+△ICB的度数,再次根据三角形内角和求出△I的度数即可;根据△ABC +△ACB 的度数,算出△DBC +△ECB 的度数,然后再利用角平分线的性质得到△1=12△DBC ,△2=12ECB ,可得到△1+△2的度数,最后再利用三角形内角和定理计算出△M 的度数. 【详解】 △△A =100°.△△ABC +△ACB =180°﹣100°=80°. △BI 、CI 分别平分△ABC ,△ACB ,△△IBC =12△ABC ,△ICB =12△ACB ,△△IBC +△ICB =12△ABC +12△ACB =12(△ABC +△ACB )=12×80°=40°,△△I =180°﹣(△IBC +△ICB )=180°﹣40°=140°;△△ABC +△ACB =80°,△△DBC +△ECB =180°﹣△ABC +180°﹣△ACB =360°﹣(△ABC +△ACB )=360°﹣80°=280°.△BM 、CM 分别平分△ABC ,△ACB 的外角平分线,△△1=12△DBC ,△2=12ECB ,△△1+△2=12×280°=140°,△△M =180°﹣△1﹣△2=40°. 故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出△ABC +△ACB 的度数. 12.75︒ 【分析】本题先通过三角形内角和求解△BAC 与△BCA 的和,继而利用邻补角以及角分线定义求解△EAC 与△ECA 的和,最后利用三角形内角和求解此题. 【详解】 △30B ∠=︒,△+150BAC BCA ∠∠=︒,又△180BAC DAC ︒∠=-∠,=180BCA FCA ∠-∠︒, △210DAC FCA ∠+∠=︒.△三角形的外角DAC ∠和ACF ∠的平分线交于点E , △12EAC DAC ∠=∠,12ECA ACF ∠=∠, △+105EAC ECA ∠∠=︒, 即18010575AEC ∠=︒-︒=︒. 故填:75︒. 【点睛】本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可. 13.30° 【解析】△△DAB 和△BCD 的平分线AP 和CP 相交于点P ,△DAO=50°,△OCB=40°, △△DAP=△PAB=25°,△DCP=△PCB=20°,在△DAM 和△PCM 中,根据三角形的内角和定理可得△DAM+△D=△DCP+△P ,即可求得△D=30°.点睛:本题考查了三角形内角和定理,角平分线的定义,对顶角相等的性质,整体思想的利用是解题的关键.。
初一数学三角形的高中线与角平分线试题
初一数学三角形的高中线与角平分线试题1.如图所示,AD、AE分别是△ABC的角平分线和高,若∠B=50°,∠C=70°,求∠DAC的度数.【答案】10°【解析】本题主要考查了三角形的内角和定理和角平分线的性质.解:∵∠B=50°,∠C=70°,∴∠BAC=60°,又∵AD是△ABC的角平分线∴∠BAD=.又∵AE是△ABC的高∴∠BAE=180°-∠B-∠AEB=40°,∴∠DAC=∠BAE-∠BAD=10°2.如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80º,∠BCD=70º,则∠AED= .【答案】75º【解析】本题考查的是角平分线的性质由∠ABC、∠BCD根据四边形的内角和即可求得∠BAD∠ADC的度数,再由AE平分∠BAD,DE平分∠ADC,即可求得∠BAE∠ADE的度数,最后根据三角形的内角和即可求得结果。
∠ABC=80º,∠BCD=70º,∠BAD∠ADC∠ABC∠BCD,AE平分∠BAD,DE平分∠ADC,∠BAE∠ADE,∠AED∠BAE∠ADE3.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】C【解析】本题考查的是三角形的高的概念作出一个直角三角形的高线进行判断,就可以得到.一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选C.4.如图,在∆ABC中,AM是中线,AD是角平分线,AH是高,则有下列结论:(1)BM== ;(2)∠CAD=∠=______________;(3)∠=∠=90°.【答案】(1)CM,BC;(2)∠BAD,∠BAC;(3)∠AHB,∠AHC【解析】本题考查的是三角形的角平分线、中线、高(1)根据三角形的中线的定义知:中线平分该中线所在的线段;(2)根据三角形角平分线的定义知:角平分线平分该角;(3)根据三角形的高的定义知,高与垂足所在的直线垂直.(1)∵AM是△ABC的中线,;(2)∵AD是△ABC的角平分线,∴∠CAD∠BAD∠BAC;(3)∵AH是△ABC的高,∴AH⊥BC,∴∠AHB=∠AHC=90°;故答案是:(1)CM,BC;(2)∠BAD,∠BAC;(3)∠AHB,∠AHC。
七年级数学上册4.3角平分线练习题(附答案)
七年级数学上册4.3角平分线练习题一、单选题1.已知70AOB ∠=°,以O 为端点作射线OC ,使42AOC ∠=°,则BOC ∠的度数为( )A.28°B.112°C.28°或112°D.68°2.如图,将一个三角尺60︒角的顶点与另一个三角尺的直角顶点重合,12740'∠=︒,则2∠的大小是( )A.2740'︒B.5740'︒C.5820'︒D.6220'︒3.如图,点O 在直线AB 上,若159.7AOD ∠=︒,5130'BOC ∠=︒,则COD ∠的度数为( )A.3112'︒B.3130'︒C.3012'︒D.3030'︒4.点C 在AOB ∠内部,现有四个等式1,2COA BOC BOC AOB ∠=∠∠=∠,12,2AOB COA ∠=∠2AOB AOC ∠=∠,其中能表示OC 是角平分线的等式的个数是( ) A.1 B.2 C.3 D.45.如图,115∠=︒,90AOC ∠=︒,点,,B O D 在同一条直线上,则2∠的度数为( )A.75︒B.15︒C.105︒D.165︒6.如图,AOB COD ∠=∠,则( )A.12∠>∠B.12∠=∠C.12∠<∠D.1∠与2∠的大小无法比较7.若40.4,404'αβ∠=︒∠=︒,则α∠与β∠的大小关系为( )A.αβ∠=∠B.αβ∠<∠C.αβ∠>∠D.以上都不对8.如图是我们常用的一副三角尺.用一副三角尺可以拼出的角度是( )A.70°B.135°C.140°D.55°9.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中,,A B D 三点在同一直线上,BM 为CBE ∠的平分线,BN 为DBE ∠的平分线,则MBN ∠的度数是( )A.60°B.67.5°C.75°D.85°二、解答题10.如图,130,AOB OE ∠=°平分,BOC OF ∠平分AOC ∠,求EOF ∠的度数.三、填空题11.如图,已知62AOB ∠=°,1(32)x ∠=-° ,2(12)x ∠=+°,则1∠= .12.若40, 30AOB BOC ∠=∠=°°.则AOC ∠的度数为 .13.已知100AOB ∠=°,:2:5AOC AOB ∠∠=.则BOC ∠的度数是 .14.如图所示,直线,AB CD 交于点,O OB 平分DOE ∠,若40BOE ∠=︒,则COE ∠= 度.参考答案1.答案:C解析:如图,分两种情况:当OC 在AOB ∠的内部时,11704228BOC AOB AOC ∠=∠-∠=︒-︒=︒;当OC 在AOB ∠的外部时,227042112BOC AOB AOC ∠=∠+∠=︒+︒=︒.2.答案:B解析:因为60,12740'BAC ∠=︒∠=︒,所以3220'EAC ∠=︒因为90EAD ∠=︒,所以290903220'5740'EAC ∠=︒-∠=︒-︒=︒.故选B.3.答案:A解析:因为159.715942'AOD ∠=︒=︒,所以15942'5130'1803112'COD AOD BOC AOB ∠=∠+∠-∠=︒+︒-︒=︒4.答案:C解析:能表示OC 是角平分线的等式有1,2COA BOC BOC AOB ∠=∠∠=∠,2AOB AOC ∠=∠,共3个.故选C.5.答案:C解析:因为1901575BOC AOC ∠=∠-∠=︒-︒=︒,所以218075105BOD BOC ∠=∠-∠=︒-︒=︒.6.答案:B解析:因为AOB COD ∠=∠,所以AOB BOD COD BOD ∠-∠=∠-∠,即12∠=∠,故选B.7.答案:C解析:因为40.44024',404'αβ∠=︒=︒∠=︒,所以αβ>∠.8.答案:B解析:用一副三角尺可以拼出的角的度数为135°的倍数.9.答案:C解析:因为1801803045105CBE ABC DBE ∠=-∠-∠=--°=°°°,BM 为CBE ∠的平分线, BN 为DBE ∠的平分线, 所以114522.522EBN EBD ∠=∠=⨯=°°,1110552.522EBM CBE ∠=∠=⨯=°°, 所以52.522.575MBN MBE EBN ∠=∠+∠=+︒=︒.10.答案:解:因为OE 平分,BOC OF ∠平分AOC ∠, 所以11,,22EOC BOC FOC AOC ∠=∠∠=∠ 所以EOF EOC FOC ∠=∠+∠=11()22BOC AOC AOB ∠+∠=∠1130652=⨯=°° 解析:11.答案:37° 解析:因为62AOB ∠=°,1(32)x ∠=-° ,2(12)x ∠=+°,所以(32)(12)62x x ++︒=︒-︒.即321262x x -++=.解得13x =.所以1(32)37x ∠=-=°°.12.答案:10°或70°解析:当OC 在AOB ∠内时,如图(1)所示,10AOC AOB BOC ∠=∠∠=-°;当OC 在AOB ∠外时,如图(2)所示,70AOC AOB BOC ∠=∠+∠=°.13.答案:60°或140°解析:因为100AOB ∠=°,:2:5AOC AOB ∠∠=,所以40AOC ∠=°.如图,①若OC 在OA 左边,则40100140BOC ∠=︒+︒=︒:②若OC 在OA 右边,则1004060BOC ∠=︒-=°°.14.答案:100解析:因为OB 平分DOE ∠,所以2DOE BOE ∠=∠因为40BOE ∠=︒,所以24080DOE ∠=⨯︒=︒所以180********COE DOE ∠=︒-∠=︒-︒=︒.。
角的平分线的性质同步练习含答案解析
角的平分线的性质同步练习含答案解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)依照角平分线性质推出即可;(2)依照角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】第一依照△ABD的面积运算出DE的长,再依照角平分线上的点到角两边的距离相等可得DE=DF,然后运算出DF的长,再利用三角形的面积公式运算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题要紧考查了角平分线的性质,关键是把握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题要紧考查角平分线的性质和三角形面积的求法,难度不大,作辅助线专门关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,依照角平分线性质得出DM=DN ,依照三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直截了当依照角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】依照角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,依照角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再依照BC=BD+DE代入数据进行运算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】依照三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后依照角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,依照三角形的角平分线相交于一点作辅助线并判定出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)依照角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再依照全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】依照“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】依照角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后依照全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,依照角平分线上的点到角的两边的距离相等可得DE=DF,然后依照三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,=AB•DE+BC•DF=90,∴S△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)依照角平分线性质得出OR=OQ=OP,依照勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。
最新七年级上角平分线练习题及答案教学文案
角平分线相关练习题答案:1、∠DOC=30°解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为∠AOB的角平分线,因为∠AOB=60°,所以∠DOC=∠EOC=30°2、∠BOC=50°解析:由题知,∠AOE=∠BOE=½∠AOB=45°,∠BOD=∠EOD-∠BOE=70°-45°=25°,∠BOC=2∠BOD=50°3、D解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。
4、S△BDC=½mn解析:通过D点向BC边作垂线段,交BC于点E,则DE为△BDC的高线,由于DA⊥AB且DE⊥BC,BD是角平分线,故得知线段AD=DE=m,S△BDC=½BC×DE=½mn5、A解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=36、∠COE=75°解析:∠AOC=∠BOC=∠BOD=½×90°=45°,因为∠BOD=3∠DOE,所以∠BOE=⅔∠BOD=⅔×45°=30°,∠COE=∠BOC+∠BOE=45°+30°=75°7、∠BOD=75°解析:∠COD=∠AOD=½∠AOC=½(∠AOB-∠BOC)=½(90°-60°)=15°,∠BOD=∠BOC+∠COD=60°+15°=75°8、∠AOC=140°解析:∠AOC=∠AOB+∠BOC=2∠BOD+2∠BOE=2∠BOD+2(∠DOE-∠BOD)=2∠DOE=2×70°=140°it 6 Science and Technolo t I Warmingescript.Thai silk is known for its beauty and elegance. But a research team has found a new use for it. A bulletproof vest made of si s put to the test at a shooting range in Thailand. After several rounds of gunfire, the vest was examined. The bullets were stu he first layer of fifteen pieces of silk. A member of the research team says while silk threads may be soft, they can be used duce a stronger yarn than copper threads, the material used in regular bulletproof ves American and Japanese researchers say they are a step closer to predicting severe weather in and around the Indian Ocea earchers have analyzed weather data from the region over the past 40 years and they've discovered a strong connecti ween extreme weather and conditions in the ocean. A BBC science correspondent says the findings could make it easier dict droughts or, indeed, periods of heavy rainfa The world chess champion Garry Kasparov began a match against the rest of the world on the Internet. Kasparov made his fi ve with a meter-high pawn before an audience of chess fans at a park in New York. The move was immediately posted on cial website set up by the Microsoft corporation. Visitors to the site have 24 hours to vote on their counter move helped bym of young chess experts who will suggest strategie Few scientific advances of this or any millennium can rival in significance the discovery of the structure of DNA, the bas lecule of life. Knowledge of the structure of DNA helps explains many things, including genetic mutation and , through lution. Understanding its code has helped to unlock the mechanics of inherited disease, as well as beneficial biological tra h as intelligence and body strength. The discovery of the DNA molecule also paved the way for many of today’s cutting-ed ences, including genetic engineering, a controversial branch of knowledge that raises new ethical and moral questions that a ain to be with us far into the next millennium.Some say it's hard to find good help these days, but a Japanese electronics firm thinks it's found the answer. It's a robot th s and understands orders. The robot from NEC can record and send video mail through the Internet and switch on TVs a Rs. And if it's becoming a bit warm for you, one simple command and the robot will switch on the air conditioner. escript:. Yes, you see, it's the force of attraction between any two objects. The strength of the force depends on the mass of the objec the distance between them. Er... the most obvious effect is the way objects on the surface of the earth are attracted towards t ter of the earth . as it comes down it goes relatively slowly 100 to 1,000 miles per hour and you can't see it, but the return stroke goes up fro earth to the cloud and it goes at over 87,000 miles per hour and that's the one you can see, you see, the one that goes back u really just a very large, powerful spark. The distance in miles you are away from it is the time in seconds between it and t nd you hea .. Well, they were first discovered in 1895 and they can penetrate matter that is opaque to light. Some matter is mo nsparent to them than others, which means you can see inside somebody. They are actually quite dangerous and people w rk with them wear special protective clothing . ordinary light consists of electromagnetic waves of different frequencies and phase(s). This is a。
七年级上角平分线练习题及答案
角平分线相关练习题如图,^AOB=6Q°, CD 丄04 于 D , CE1.OB 于 E,且 CD=CE> 则 ZDOC= ___________A3、如图,已知OE. OD 分别平分厶商 和ZBOC,若 厶OEW ,Z^OZ>=70% 求ZBOC 的度数.3. 如图9F 平分ZAOB,PC 丄O £PD 丄O 乩垂足分别是6D.下列结论中错误的是(4、如图 4,在△ABE 中 ZA=90° , 若AD=m, BCn,求△BDC 的面积.5、(2007浙江义乌课改)如图,点F 是£BAC 的平分线上一点,FE 丄理C 于点E.已知FE3 则点戸到川办的距离是(A. 3B. 4C. 5D. 6A. PC=PDC. ZCPO= ZDPO B. OC = OD D ・ OC=PC区(7 分)如图,ZAOB=ZCOD=903J OC平分ZAOB, ZB0D = 3ZD0E 试求ZCOE的度数.B了如图,已知ZAOB = 90% ZBOC=60°, OD是ZAOC的平分线,求ZBOD的度数•鼠如图,已知/DOE=70°, ZDOB=40\OD平分ZA OB 9OE 平分Z" OG 求Z4 OCA答案:1、/DOC=30 °解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为/AOB 的角平分线,因为/ AOB=60 °,所以zDOC= ZEOC=30 °2、/BOC=5O °解析:由题知,/ AOE= ZBOE=? Z AOB=45。
,启OD= ZEOD-Z BOE=70。
-45 °25。
,启OC=2 ZBOD=50 °3、D解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。
4、S^BDC=? mn解析:通过D点向BC边作垂线段,交BC于点E,贝V DE为ABDC的高线,由于DA丄AB且DE丄BC, BD是角平分线,故得知线段AD=DE=m , S4BDC=? BCXDE=? mn5、A解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=36、"OE=75 °解析:Z AOC= ZBOC= ZBOD=? X 90 ° =45 °,因为Z BOD=3 ZDOE,所以Z BOE=? ZBOD= ? X45 °=30 ° , ZCOE= ZBOC+ ZBOE=45 °+30 °757、/BOD=75 °解析:Z COD=Z AOD=?Z AOC=?(Z AOB-Z BOC)=?(90°-60°)=15°,ZBOD= ZBOC+ ZCOD=60 °+15 °758、/AOC=14O °解析:Z AOC= Z AOB+ Z BOC=2 Z BOD+2 Z BOE=2 Z BOD+2 (Z DOE-Z BOD)=2 Z DOE=2 X70 °=140 °。
角平分线练习题
角平分线练习题一.选择题〔共22小题〕1.如图,BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是〔〕A.2 B.3 C.4 D.62.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=〔〕A.30° B.35° C.45° D.60°3.观察图中尺规作图痕迹,以下说法错误的选项是〔〕A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,假设BD=2,则AB长为〔〕A.2 B.2C.2D.35.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,假设CD=2,AB=8,则△ABD的面积是〔〕A.6 B.8 C.10 D.126.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于〔〕A.30 B.24 C.15 D.10=15,7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD则CD的长为〔〕A.3 B.4 C.5 D.68.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则以下结论中错误的选项是〔〕A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,假设ON=8cm,则OM长为〔〕A.4cm B.5cm C.8cm D.20cm10.在正方形网格中,∠AOB的位置如下图,到∠AOB两边距离相等的点应是〔〕A.M点B.N点C.P点D.Q点11.如图,直线l、l′、l″表示三条相互穿插的公路,现方案建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有〔〕A.一处B.二处C.三处D.四处12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,假设CD=BD,点D到边AB的距离为6,则BC的长是〔〕A.6 B.12 C.18 D.2413.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有以下结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的选项是〔〕个.A.1 B.2 C.3 D.414.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建的位置是〔〕A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是〔〕A.SAS B.AAA C.SSS D.HL16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.假设BC=4cm,CD=3cm,则点D到AB的距离是〔〕A.2cm B.3cm C.4cm D.5cm17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是〔〕A.1 B.2 C.3 D.418.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,以下结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是〔〕A.①②④B.①②③C.②③④D.①③19.如下图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在〔〕A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则以下结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有〔〕A.2个B.3个C.4个D.1个21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为〔〕A.12 B.18 C.20 D.2422.如图,AD是△ABC的角平分线,DE⊥AB于点E,S=10,DE=2,AB=4,则△ABCAC长是〔〕A.9 B.8 C.7 D.6评卷人得分二.填空题〔共13小题〕=9,23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,假设AB=5,BC=6,S△ABC则DE的长为.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.25.如图,△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是.26.如图,△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,假设AD=6,DE⊥AB,则DE 的长为.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.31.如图,点O在△ABC,且到三边的距离相等,假设∠A=60°,则∠BOC=.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,假设BD=2,AC=8,则△ACD的面积为.33.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.34.把命题“角平分线上的点到这个角两边的距离相等〞改写成“如果…,则…、〞的形式:如果,则.35.Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,假设BC=32,且BD:CD=9:7,则D到AB的距离为.评卷人得分三.解答题〔共5小题〕36.如图,DE⊥AB于E,DF⊥AC于F,假设BD=CD、BE=CF.〔1〕求证:AD平分∠BAC;〔2〕直接写出AB+AC与AE之间的等量关系.37.如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:〔1〕∠ECD=∠EDC;〔2〕OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.〔1〕说明OF与CF的大小关系;〔2〕假设BC=12cm,点O到AB的距离为4cm,求△OBC的面积.40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.〔1〕求证:AC=AE;〔2〕假设点E为AB的中点,CD=4,求BE的长.2018年09月23日tcq372的初中数学组卷参考答案与试题解析一.选择题〔共22小题〕1.如图,BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是〔〕A.2 B.3 C.4 D.6【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,应选:D.2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=〔〕A.30° B.35° C.45° D.60°【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,应选:B.3.观察图中尺规作图痕迹,以下说法错误的选项是〔〕A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.应选:C.4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,假设BD=2,则AB长为〔〕A.2 B.2C.2D.3【解答】解:如图,过B点作BE⊥OA于E,∵OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,BD=2,∴BE=BD=2,在直角△ABE中,∵∠AEB=90°,∠A=45°,∴AB=BE=2.应选:C.5.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,假设CD=2,AB=8,则△ABD的面积是〔〕A.6 B.8 C.10 D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.应选:B.6.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于〔〕A.30 B.24 C.15 D.10【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.应选:C.=15,7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD则CD的长为〔〕A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S=AB•DE=×10•DE=15,△ABD解得DE=3.应选:A.8.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则以下结论中错误的选项是〔〕A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,应选:C.9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,假设ON=8cm,则OM长为〔〕A.4cm B.5cm C.8cm D.20cm【解答】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,应选:C.10.在正方形网格中,∠AOB的位置如下图,到∠AOB两边距离相等的点应是〔〕A.M点B.N点C.P点D.Q点【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.应选A.11.如图,直线l、l′、l″表示三条相互穿插的公路,现方案建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有〔〕A.一处B.二处C.三处D.四处【解答】解:如下图,加油站站的地址有四处.应选:D.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,假设CD=BD,点D到边AB的距离为6,则BC的长是〔〕A.6 B.12 C.18 D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,应选:C.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有以下结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的选项是〔〕个.A.1 B.2 C.3 D.4【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED〔HL〕,∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的选项是①②③④共4个.应选:D.14.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建的位置是〔〕A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.应选:C.15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是〔〕A.SAS B.AAA C.SSS D.HL【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP中,∴Rt△ADP≌△AEP〔HL〕,应选:D.16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.假设BC=4cm,CD=3cm,则点D到AB的距离是〔〕A.2cm B.3cm C.4cm D.5cm【解答】解:过D作DE⊥AB于E,∵在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,∴DE=DC=3cm,应选:B.17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是〔〕A.1 B.2 C.3 D.4【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.应选:B.18.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,以下结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是〔〕A.①②④B.①②③C.②③④D.①③【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.应选:A.19.如下图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在〔〕A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.应选:B.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则以下结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有〔〕A.2个B.3个C.4个D.1个【解答】解:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.应选:B.21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为〔〕A.12 B.18 C.20 D.24【解答】解:过D作DE⊥AB,∵Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=,应选:B.=10,DE=2,AB=4,则22.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABCAC长是〔〕A.9 B.8 C.7 D.6【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,=AB×DE=×4×2=4,∵S△ADB∵△ABC的面积为10,∴△ADC的面积为10﹣4=6,∴AC×DF=6,∴AC×2=6,∴AC=6应选:D.二.填空题〔共13小题〕23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,假设AB=5,BC=6,S=9,△ABC则DE的长为.【解答】解:作DF⊥AB于F,∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,,即×5×DE+×6×DE=9,∴×AB×DF+×BC×DE=S△ABC解得,DE=,故答案为:.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为 3 .【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.25.如图,△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是96 .【解答】解:过O作OM⊥AB,ON⊥AC,连接AO,∵OB,OC分别平分∠ABC和∠ACB,∴OM=ON=OD=6,∴△ABC的面积为:×AB×OM+BC×DO+NO=〔AB+BC+AC〕×DO=32×6=96.故答案为:96.26.如图,△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是42 .【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB +S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×〔AB+AC+BC〕=×4×21=42,故答案为:42.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为4cm .【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是16 .【解答】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=16〔角平分线性质〕,故答案为:16.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,假设AD=6,DE⊥AB,则DE的长为 3 .【解答】解:∵∠BAC=60°,AD平分∠BAC,∴∠DAE=∠BAC=30°.在Rt△ADE中,DE⊥AB,∠DAE=30°,∴DE=AD=3.故答案为:3.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 4 处.【解答】解:∵△ABC角平分线的交点到三角形三边的距离相等,∴△ABC角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故答案为:4.31.如图,点O在△ABC,且到三边的距离相等,假设∠A=60°,则∠BOC= 120°.【解答】解:∵点O在△ABC,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=〔∠ABC+∠ACB〕=〔180°﹣∠A〕=〔180°﹣60°〕=60°,在△BCO中,∠BOC=180°﹣〔∠OBC+∠OCB〕=180°﹣60°=120°.故答案为:120°.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,假设BD=2,AC=8,则△ACD的面积为8 .【解答】解:作DH⊥AC于H,∵CD是∠ACD的平分线,∠B=90°,DH⊥AC,∴DH=DB=2,∴△ACD的面积=×AC×DH=×8×2=8,故答案为:8.33.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF= 150°.【解答】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°34.把命题“角平分线上的点到这个角两边的距离相等〞改写成“如果…,则…、〞的形式:如果一个点在角的平分线上,则它到这个角两边的距离相等.【解答】解:如果一个点在角平分线上,则它到角两边的距离相等.35.Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,假设BC=32,且BD:CD=9:7,则D到AB的距离为14 .【解答】解:如图,过点D作DE⊥AB于E,∵BC=32,BD:CD=9:7,∴CD=32×=14,∵∠C=90°,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14.故答案为:14.三.解答题〔共5小题〕36.如图,DE⊥AB于E,DF⊥AC于F,假设BD=CD、BE=CF.〔1〕求证:AD平分∠BAC;〔2〕直接写出AB+AC与AE之间的等量关系.【解答】〔1〕证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;〔2〕AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.37.如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:〔1〕∠ECD=∠EDC;〔2〕OE是CD的垂直平分线.【解答】证明:〔1〕∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∴∠ECD=∠EDC;〔2〕在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE〔HL〕,∴OC=OD,又∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.【解答】解:分别作CG⊥AB与G,CH⊥AD与H,∵AC为∠BAD的角平分线,∴CG=CH,∵AB=AD,∴△ABC面积=△ACD面积,又∵AE=DF,∴△AEC面积=△CDF面积,∴△BCE面积=△ABC面积﹣△AEC面积,△BCE面积=△ACD面积﹣△CDF面积,∴△BCE面积=△ACF面积,∵四边形AECF面积=△AEC面积+△ACF面积,四边形AECF面积=△AEC面积+△BCE面积,∴四边形AECF面积=△ABC面积,又∵四边形ABCD面积=△ABC面积+△ACD面积,又∵四边形ABCD面积=2△ABC面积,∴四边形AECF面积为四边形ABCD面积的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.〔1〕说明OF与CF的大小关系;〔2〕假设BC=12cm,点O到AB的距离为4cm,求△OBC的面积.【解答】解:〔1〕OF=CF.理由:∵BE=EO,∴∠EBO=∠EOB,∵△ABC中,∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∴∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;〔2〕过点O作OM⊥BC于M,作ON⊥AB于N,∵△ABC中,∠ABC与∠ACB的平分线交于点O,点O到AB的距离为4cm,∴ON=OM=4cm,=BC•OM=×12×4=24〔cm2〕.∴S△OBC40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.〔1〕求证:AC=AE;〔2〕假设点E为AB的中点,CD=4,求BE的长.【解答】〔1〕证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,在△ACD和△AED中∴△ACD≌△AED,∴AC=AE;〔2〕解:∵DE⊥AB,点E为AB的中点,∴AD=BD,∴∠B=∠DAB=∠CAD,∵∠C=90°,∴3∠B=90°,.∴∠B=30°,∵CD=DE=4,∠DEB=90°,∴BD=2DE=8,由勾股定理得:BE==4.。
新人教版七年级数学上册:中点及角平分线(随堂测试及答案)
中点及角平分线(随堂测试)1.已知线段AB=10 cm,点C是线段AB的中点,点D是线段AC的中点,求线段CD的长.2.已知:如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.3.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.4.如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上的高AE,并求AE的长.5.如图,已知CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长之差是多少?6.如图,AD、AE分别是△ABC中∠A的内角平分线和外角平分线,它们有什么关系?7.如图,△ABC中(AB>BC),AB=2AC,AC边上中线BD把△ABC的周长分成30和20两部分,求AB和BC的长.8.已知BD是△ABC的中线,AC长为5cm,△ABD比△BDC的周长多2cm,AB长为15cm,求BC 的长和△ABC的周长.9.如图,AD、AE、AF分别是△ABC的中线、角平分线和高,请你指出图中相等的角及相等的线段.10.如图所示的三个△ABC中的∠ABC有什么不同?这三个△ABC的边BC上的高AD在各自三角形的什么位置?你能说出其中的规律吗?11.如图,△ABC的三条高AD、BE、CF相交于点O.(1)在△BOC中,OB边上的高是,OC边上的高是,BC边上的高是.(2)在△AOC中,OA边上的高是,OC边上的高是,AC边上的高是.(3)在△AOB中,OA边上的高是,OB边上的高是,AB边上的高是.【参考答案】1. 2.5 cm2.45°3.解:由题意画图可得:4.解:如图,过点A作BC边上的高线AE,交CB延长线于点E.∵BC•AE=AC•BD,AC=8,BC=4,高BD=3,∴×4AE=×8×3,则AE=6.5.解:∵CD是△ABC的中线,∴AD=BD,∵△ACD周长=AC+CD+AD,△BCD周长=BC+CD+BD,∴△ACD周长﹣△BCD周长=(AC+CD+AD)﹣(BC+CD+BD)=AC﹣BC=9﹣3=6(cm),即△ACD和△BCD的周长之差是6cm.6.解:AD⊥AE,理由如下:∵AD、AE分别是△ABC中∠A的内角平分线和外角平分线,∴∠DAE=∠DAC+∠EAC=∠BAC+∠CAF=(∠BAC+∠CAF)=×180°=90°,∴AD⊥AE.7.解:设AC=x,则AB=2x,∵BD是中线,∴AD=DC=x,由题意得,2x+x=30,解得,x=12,则AC=12,AB=24,BC=20﹣×12=14.答:AB=24,BC=14.8.解:如图所示:∵BD是△ABC的中线,AC长为5cm,∴AD=DC=2.5cm,∵△ABD比△BDC的周长多2cm,∴AB比BC多2cm,∵AB长为15cm,∴BC=13cm,∴△ABC的周长为:15+13+5=33(cm).答:BC的长为13cm,△ABC的周长为:33cm.9.解:∵AD是△ABC的中线,∴BD=DC,∵AE是△ABC的角平分线,∠BAE=∠CAE,AF是△ABC的和高,∠AFB=∠AFC=90°,∴图中相等的角:∠BAE=∠CAE,∠AFB=∠AFC,相等的线段:BD=DC.10.解:图(1)中的∠ABC是锐角,图(2)中的∠ABC是直角,图(3)中的∠ABC是钝角;图(1)中△ABC的边BC上的高AD在三角形的内部,图(2)中△ABC的边BC上的高AD在三角形的边上,图(3)中△ABC的边BC上的高AD在三角形的外部;规律:锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.11.解:(1)由图可得,在△BOC中,OB边上的高是CE,OC边上的高是BF,BC边上的高是OD.(2)由图可得,在△AOC中,OA边上的高是CD,OC边上的高是AF,AC边上的高是OE.(3)由图可得,在△AOB中,OA边上的高是BD,OB边上的高是AE,AB边上的高是OF.故答案为:CE,BF,OD;CD,AF,OE;BD,AE,OF.。
角的平分线问题专项训练(30道)
角的平分线问题专项训练(30道)【题型1 单角平分线型】1.如图,已知∠AOB=90°,∠BOC=60°,OD平分∠AOC.求∠BOD的度数.2.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC 的度数.∠EOC,若∠DOE=3.如图,OB,OE是∠AOC内的两条射线,OD平分∠AOB,∠BOE=1255°,∠AOC=140°,求∠EOC的度数.4.如图,O是直线AB上的一点,∠AOE=∠FOD=90°,OB平分∠COD,且∠BOC=28°.(1)求∠DOE和∠BOF的度数;(2)求∠COE+∠DOE的度数.5.如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数;∠DOB,求∠AOC的度数.(2)如图2,若∠COE=136.如图,已知∠AOB﹣∠COD=60°,OB是∠DOE的平分线.设∠AOC的度数为x,(1)用含x的式子表示∠BOD的度数;(2)若∠DOE+∠AOC=97°16',求∠AOC的度数.7.如图,点A、O、C在一直线上,OE是∠BOC的平分线,∠EOF=90°,∠1比∠2大75°.(1)求∠2的度数.(2)求∠COF的度数.8.如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC;(填“互余”“相等”“互补”或“没有特殊关系”)(2)OF是∠BOC的平分线吗?为什么?(3)反向延长射线OA至G,∠COG与∠FOG的度数比为2:5,求∠AOD的度数.9.已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=10°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数;(3)试猜想∠AOM与∠NOC之间的数量关系,并说明理由.10.如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON 的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.【题型2 双角平分线(不交叉型)】11.如图,∠AOC:∠COD:∠DOB=3:4:5,OM平分∠AOC,ON平分∠DOB,且∠MON =96°,求∠AOB的度数.12.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD与∠EOC具有的数量关系并说明理由.13.如图,已知∠AOD=156°,∠DON=48°,射线OB,OM,ON在∠AOD内部,OM平分∠AOB,ON平分∠BOD.(1)求∠MON的度数;(2)若射线OC在∠AOD内部,∠NOC=23°,求∠COM的度数.14.已知:OC,OD是∠AOB内部的射线,OE平分∠AOC,OF平分∠BOD.(1)若∠AOB=120°,∠COD=30°,如图∠,求∠EOF的度数;(2)若∠AOB=α,∠COD=β,如图∠,如图∠,请直接用含α、β的式子表示∠EOF的大小;图∠结论:;图∠结论:.15.已知OD、OE分别是∠AOB、∠AOC的角平分线.(1)如图1,OC是∠AOB外部的一条射线.∠若∠AOC=32°,∠BOC=126°,则∠DOE=°;∠若∠BOC=164°,求∠DOE的度数;(2)如图2,OC是∠AOB内部的一条射线,∠BOC=n°,用n的代数式表示∠DOE的度数.16.如图,已知∠AOB内部有三条射线,若OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=100°,求∠EOC的度数;(2)若∠AOB=70°,如果将题中“平分”的条件改为∠EOA=14∠AOD,∠DOC=23∠DOB且∠DOE:∠DOC=3:2,求∠EOC的度数.17.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON 的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.18.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.19.将一副三角尺OAB与OCD进行如下按摆放,其中两三角尺的一顶点重合于点O,∠AOB =60°,∠COD=45°,OM平分∠AOD,ON平分∠COB.(1)当点D在OB边上时(如图1),求∠MON的度数;(2)当点D不在OB边上时(如图2或3),其中∠BOD=a,求∠MON的度数.20.已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【题型3 双角平分线(交叉型)】21.如图,O为直线AB上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,若∠BOC=54°,求∠COE和∠DOF的度数.22.如图,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)若∠AOB=100°,∠BOC=60°,求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).23.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,求∠MON的度数.(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=°.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?请说明理由.24.如图,∠AOC=5∠BOC,OD平分∠AOB,OE平分∠AOD,且∠COE=70°.(1)求∠AOB的度数;(2)若∠BOD+∠BOF=90°,求∠BOF的度数.25.如图,已知∠AOB是直角,∠BOC在∠AOB的外部,且OF平分∠BOC,OE平分∠AOC.(1)当∠BOC=60°时,求∠EOF的度数;(2)当∠BOE=20°,求∠BOC的度数.26.已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE.(1)如图1,若OC平分∠AOD,且∠BOE=3∠DOE,∠COE=70°,求∠BOE的度数.(2)如图2,若∠BOD:∠COD=3:2,过点O引射线OF平分∠COD,OE是∠BOC的平分线,且∠DOE=12°,求∠EOF的度数.27.已知:如图∠所示,OC是∠AOB内部一条射线,且OE平分∠AOC,OF平分∠BOC.(1)若∠AOC=80°,∠BOC=50°,则∠EOF的度数是.(2)若∠AOC=α,∠BOC=β,求∠EOF的度数,并根据计算结果直接写出∠EOF与∠AOB 之间的数量关系.(写出计算过程)(3)如图∠所示,射线OC在∠AOB的外部,且OE平分∠AOC,OF平分∠BOC.试着探究∠EOF与∠AOB之间的数量关系.(写出详细推理过程)28.如图,已知O为直线AD上一点,OB是∠AOC内部的一条射线且满足∠AOB与∠AOC 互补,OM,ON分别为∠AOC,∠AOB的平分线.(1)∠COD与∠AOB相等吗?请说明理由;(2)∠AOB=30°,试求∠MON的度数;(3)若∠MON=α,请直接写出∠AOC的度数.(用含α的式子表示)29.如图,已知∠AOB=58°,∠AOC在∠AOB外部,ON、OM分别平分∠AOC、∠BOC.(1)若∠AOC=32°,则∠MON=;(2)若∠AOC=n°(0<n<90°),ON、OM依旧分别平分∠AOC、∠BOC,∠MON的大小是否改变?;(3)试说明(2)的结论的理由.30.已知∠AOD=160°,OB为∠AOD内部的一条射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,∠MON的度数为;(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.。
角平分线的性质专项练习(含解析)
角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
《角平分线》计算题及答案(提高)
《角平分线》计算题及答案(提高)1.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC度数是α,∠MON的大小是否发生改变?为什么?2.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.3.如图,BD平分∠ABC,BE把∠ABC分成2:5的两部分,∠DBE=21°,求∠ABC的度数.4.(1)如图①,∠AOB和∠COD都是直角,请你写出∠AOD和∠BOC之间的数量关系,并说明理由;(2)当∠COD绕点O旋转到如图②所示的位置时,上述结论还成立吗?并说明理由.(3)如图③,当∠AOB=∠COD=β(0°<β<90°)时,请你直接写出∠AOD和∠BOC之间的数量关系.(不用说明理由)5.小丽将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,求∠CBD的度数.6.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.7.小倩把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,∠AOD与∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,∠AOD和∠BOC的和是多少度?8.如图,点C 为线段AB 上一点, AC ︰CB =3︰2,D 、E 两点分别为AC 、AB 的中点,若线段DE =2cm ,求AB 的长.9.如图,点C 是线段AB 上一点,线段AC =8,BC =20,点N 为AC 的中点,点M 是线段CB 上一点,且CM :BM =1:4,求线段MN 的长.10.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB.若AB =24 cm ,求线段CE 的长.《角平分线》计算题参考答案1.解:(1)∵∠AOB 是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM 是∠BOC 的平分线,ON 是∠AOC 的平分线,∴,.∴∠MON=∠MOC ﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变.∵=,又∠AOB 是直角,不改变,∴. 2.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =45°. (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12α. (3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=12α.3.解:设∠ABE =2x°,则∠CBE =5x°,∠ABC =7x°.因为BD 为∠ABC 的平分线,所以∠ABD =12∠ABC =72x°, 所以∠DBE =∠ABD -∠ABE =72x°-2x°=32x°=21°. 所以x =14,所以∠ABC =7x°=98°.4.解:(1)∠AOD 与∠BOC 互补.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°,所以∠BOD =∠AOD -∠AOB =∠AOD -90°,∠BOD =∠COD -∠BOC =90°-∠BOC ,所以∠AOD -90°=90°-∠BOC ,所以∠AOD +∠BOC =180°,所以∠AOD 与∠BOC 互补.(2)成立.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°.因为∠AOB +∠BOC +∠COD +∠AOD =360°,所以∠AOD +∠BOC=180°,所以∠AOD与∠BOC互补.(3)∠AOD+∠BOC=2β.5. 90°6.解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.7.解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.8. 8cm9.解:因为点N 是AC 的中点,所以NC =12AC =12×8=4. 因为点M 是线段CB 上一点,且CM :BM =1:4,所以CM =15BC =15×20=4. 所以MN =MC +CN =4+4=8.即线段MN 的长为8.10.解:因为点C 是AB 的中点,所以AC =BC =12AB =12×24=12(cm). 所以AD =23AC =23×12=8(cm).所以CD =AC -AD =12-8=4(cm).因为DE =35AB =35×24=14.4(cm), 所以CE =DE -CD =14.4-4=10.4(cm).。
初一数学角与角平分线含答案
角、角平分线中考要求例题精讲一、角的定义定义1:有公共端点的两条射线组成的图形叫角,这个公共端点是角的顶点,这两条射线是角的两条边.角的大小只与开口的大小有关,而与角的边画出部分的长短无关.这是因为角的边是射线而不是线段.定义2:角由一条射线绕着它的端点旋转到另一个位置所成的图形,处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边.(1) 如果角的终边是由角的始边旋转半周而得到,这样的角叫平角. (2) 如果角的终边是由角的始边旋转一周而得到,这样的角叫周角. 注意:由角的定义可知:(1) 角的组成部分为:两条边和一个顶点; (2) 顶点是这两条边的交点;(3) 角的两条边是射线,是无限延伸的.(4) 射线旋转时经过的平面部分称为角的内部,平面的其余部分称为角的外部.角平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
二、角的表示方法① 利用三个大写字母来表示,如图1.1.∠AOB图1.1注意:顶点一定要写在中间.也可记为BOA ∠,但不能写成BAO ∠或ABO ∠等. ② 利用一个大写字母来表示,如图1.2.∠A图1.2A注意: 用一个大写字母来表示角的时候,这个大写字母一定要表示角的顶点,而且以它为顶点的角有且只有一个.③ 用数字来表示角,如图2.1.∠1图2.11③用希腊字母来表示角,如图2.2.∠α图2.2α三、单位换算1度=60分(160︒=') 1分=60秒(160'=")四、角的度量(1)度量角的工具常用量角器用量角器注意:对中(顶点对中心)、重合(角的一边与量角器上的零刻度重合)、读数(读出角的另一边所在线的度数)(2)角的度量单位及其换算角的度量单位是度、分、秒.把平角分成180等份,每一份就是一度的角,记做1︒.把一度的角60等分,每一份叫做1分的角,记做1'.把一分的角60等分,每一份叫做1秒的角,记做1''.角度之间的关系1周角=360︒1平角=180︒1直角=90︒1周角=2平角1平角=2直角角的分类:锐角α(090α<<︒),直角α(90α=︒),钝角α(90180α︒<<︒).五、两角的和、差、倍、分(1)两角的和、差、倍、分的度数等于它们的度数的和、差、倍、分.(2)从一个角的顶点出发,把它分成两个相等角的射线叫做这个角的平分线.(3)角平分线的画法:①用量角器②用折叠法在一张透明纸上画一个角,记为∠PQR,折线使射线QR与射线QP重合,把纸展开,以Q为端点,沿折痕画一条射线,这条射线就是∠PQR的平分线.说说为什么这条线平分∠PQR?六、用尺规做已知角的平分线方法作法:(1)以O点为圆心,以任意长为半径,交角的两边于A B、两点;(2)分别以A、B两点为圆心,以大于12AB长为半径画弧,画弧交于C点;(3)过C点作射线OC。
七年级数学上册角平分线几何综合题汇总
七年级数学上册角平分线几何综合题汇总角平分线是几何学中的一个重要概念,涉及到角的计算。
在研究过线段射线的基础上,学生需要掌握方法和技巧,加强分析解题的能力并规范书写。
题1:直线AB、CD是经同一点O的不同直线,OE是∠BOD的角平分线,OF是∠COE的角平分线,求∠COF的度数。
已知∠1=100°,解题过程如下:∵∠1=100°,所以∠BOD=180°-100°=80°。
因为OE是∠BOD的角平分线,所以∠DOE=1/2×∠BOD=40°。
同理,∠COE=180°-40°=140°,OF 是∠COE的角平分线,所以∠COF=1/2×∠COE=70°。
题2:已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数。
解题过程如下:∵∠BOC=2∠AOC,∠AOC=40°,所以∠BOC=2×40°=80°。
因此,∠AOB=∠BOC+∠AOC=80°+40°=120°。
由于OD平分∠AOB,所以∠AOD=1/2×∠AOB=1/2×120°=60°。
最后,∠COD=∠AOD-∠AOC=60°-40°=20°。
题3:已知∠AOD=150°,∠AOB=40°,∠COD=70°,OM、ON分别是∠AOB、∠COD的平分线,求∠MON的度数。
解题过程如下:∵∠AOB=40°,∠COD=70°,所以∠AOM=1/2×∠AOB=1/2×40°=20°,∠DON=1/2×∠COD=1/2×70°=35°。
角平分线练习题
角平分线练习一、选择题1。
已知:如图1,B E,C F是△ABC的角平分线,B E,CF相交于D,若∠A=50°,则∠BDC=()A。
70° B。
120° C.115° D。
130°2。
已知:如图2,△ABC中,AB = AC,BD为∠ABC的平分线,∠BDC = 60°,则∠A =( )A。
10° B. 20°C。
30° D. 40°3.三角形中,到三边距离相等的点是()A.三条高线交点B.三条中线交点C。
三条角平分线的交点 D。
三边的垂直平分线的交点4.已知P点在∠AOB的平分线上,∠AOB = 60°,OP = 10 cm,那么P点到边OA、OB的距离分别是()A。
5cm 、cm B. 4cm、5cmC. 5cm、5cm D。
5cm、10cm5。
下列四个命题的逆命题是假命题的是()A。
直角三角形的两个锐角互余B.等腰三角形的两个底角相等C。
全等三角形的对应角相等 D.相等的两个角是对顶角6.已知:如图3,△ABC中,∠C = 90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB = 10cm,BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于( )cmA. 2、2、2 B。
3、3、3C. 4、4、4D. 2、3、5二、填空题1。
命题:“两直线平行,同旁内角互补”的逆命题是 ,它是命题。
2.角平分线可以看作是的点的集合。
3。
已知:△ABC中,∠C = 90°,角平分线AD分对边BD:DC = 3:2,且BC = 20cm,则点到AB的距离是cm。
4.命题“如果a = b,那么| a | = | b |"的命题是 ,它是命题。
三、简答题1。
已知:如图4,△ABC的外角∠FAC的平分线为AE,∠1=∠2,AD = AC求证:DC∥AE2。
(完整版)七年级上角平分线练习题及答案
角平分线相关练习题答案:1、∠DOC=30°解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为∠AOB 的角平分线,因为∠AOB=60°,所以∠DOC=∠EOC=30°2、∠BOC=50°解析:由题知,∠AOE=∠BOE=½∠AOB=45°,∠BOD=∠EOD-∠BOE=70°-45°=25°,∠BOC=2∠BOD=50°3、D解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。
4、S△BDC=½mn解析:通过D点向BC边作垂线段,交BC于点E,则DE为△BDC的高线,由于DA⊥AB且DE⊥BC,BD是角平分线,故得知线段AD=DE=m,S△BDC=½BC×DE=½mn5、A解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=36、∠COE=75°解析:∠AOC=∠BOC=∠BOD=½×90°=45°,因为∠BOD=3∠DOE,所以∠BOE=⅔∠BOD=⅔×45°=30°,∠COE=∠BOC+∠BOE=45°+30°=75°7、∠BOD=75°解析:∠COD=∠AOD=½∠AOC=½(∠AOB-∠BOC)=½(90°-60°)=15°,∠BOD=∠BOC+∠COD=60°+15°=75°8、∠AOC=140°解析:∠AOC=∠AOB+∠BOC=2∠BOD+2∠BOE=2∠BOD+2(∠DOE-∠BOD)=2∠DOE=2×70°=140°。
七年级数学上册角平分线几何综合题汇总
七年级数学上册角平分线几何综合题汇总角平分线定义和角的有关计算,既是教学中的重点,也是难点。
需要学生掌握方法和技巧,在学习了线段射线的基础上加强学生分析解题的能力,规范书写。
1、如图所示,直线AB 、CD 是经同一点O 的不同直线,OE 是∠BOD 的角平分线,OF 是∠COE 的角平分线,当∠1=100°时,求∠COF 的度数解:∵∠1=100°,∴∠BOD=180°-100°=80°,∵OE 是∠BOD 的角平分线,∴∠DOE=∠BOD=40°,12∴∠COE=180°-40°=140°,∵OF 是∠COE 的角平分线,∴∠COF=∠COE=70°.122、如图,已知∠BOC=2∠AOC ,OD 平分∠AOB ,且∠AOC=40°,求∠COD 的度数解:∵∠BOC=2∠AOC ,∠AOC=40°,∴∠BOC=2×40°=80°,∴∠AOB=∠BOC+∠AOC=80°+40°=120°,∵OD 平分∠AOB ,∴∠AOD=∠AOB=×120°=60°,12∴∠COD=∠AOD-∠AOC=60°-40°=20°.3、.如图,∠AOD=150°,∠AOB=40°,∠COD=70°,OM 、ON 分别是∠AOB 、∠COD 的平分线,求∠MON 的度数解:∵∠AOB=40°,∠COD=70°,OM 、ON 分别是∠AOB 、∠COD 的平分线,∴∠AOM=∠AOB=×40°=20°,1212∠DON=∠COD=×70°=35°,1212∴∠MON=∠AOD-∠AOM-∠DON=150°-20°-35°=95°.4、已知:如图,∠AOB 是直角,∠AOC=40°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线.(1)求∠MON 的大小;(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小是否发生改变?为什么?解:(1)∵∠AOB 是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM 是∠BOC 的平分线,ON 是∠AOC 的平分线,∴∠MOC =∠BOC =65°,∠NOC =∠AOC =20°.1212∴∠MON=∠MOC-∠NOC=65°-20°=45°,(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变.∵∠MON =∠MOC −∠NOC =∠BOC −∠AOC =(∠BOC −∠AOC )=∠AOB ,121212 12又∠AOB 是直角,不改变,∴∠MON =∠AOB =45°.125、如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB 是直角,∠BOC=60°时,∠MON 的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON 与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON 与α、β有数量关系吗?如果有,指出结论并说明理由.解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°1212∴∠MON=∠MOC-∠NOC=45°(2)如图2,∠MON=α,12理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°121212∴∠MON=∠MOC-∠NOC=(α+30°)-30°=α12126、如图1,∠AOB=140°,∠AOD 在∠A OB 的内部,OC 平分∠AOD ,OE 平分∠BOD .(1)若∠AOD=28°,则∠COE 的度数为(直接写出答案)(2)若∠AOD=x°,求∠COE 的度数?(3)如图2,若将题中的“∠AOB=140°”改为“∠AOB=m°”,将“∠AOD 在∠A OB 的内部”改为“∠AOD 在∠AOB 的外部”,其它条件不变,当∠AOD=x°时,求∠COE 的度数?解:(1)∵OC 平分∠AOD ,OE 平分∠BOD .∴∠COD=∠AOD ,∠EOD=∠BOD ,1212∴∠COE=∠COD+∠EOD=(∠AOD+∠BOD )=∠AOB=1212×140°=70°.12故答案是:70°;(2)∠COE=∠AOB=70°,与∠AOD 的度数无关,12答:若∠AOD=x°,则∠COE 的度数为:70°.(3)∵∠AOB=m°,OE 平分∠BOD .∴∠DOE=m +x 2∵∠AOD=x°,OC 平分∠AOD ,∴∠COD=x°12∴∠COE=∠DOE-∠COD=-x°=m°m +x 21212答:∠COE 的度数为:m°.127、已知:如图,线段OA 、OB 、OC 、OD 、OE 在同一平面内,且∠AOE=110°,∠AOB=20°.(1)若OB 平分∠AOC ,求∠COE 的度数.(2)在(1)条件下,若OD 也平分∠BOE ,求∠COD 的度数.(3)若线段OA 与OB 分别为同一钟表上某一时刻与分针,则经过多少时间,OA 与OB 第一次垂直.解:(1)∵OB 平分∠AOC ,∠AOB=20°,∴∠AOC=2∠AOB=40°,∵∠AOE=110°,∴∠COE=∠AOE-∠AOC=70°(2)∵∠AOE=110°,∠AOB=20°,∴∠BOE=∠AOE-∠AOB=90°,∵OD 平分∠BOE ,OB 平分∠AOC ,∴∠BOD=12∠BOE=45°,∠BOC=∠AOB=20°,∴∠COD=∠BOD-∠BOC=25°;(3)设经过x 分钟,OA 与OB 第一次垂直.由题意得,6x-x=90+20,解得x=20.12答:经过20分钟,OA 与OB 第一次垂直.9、点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=65°,将一直角三角板的直角顶点放在点O 处.(1)如图①,将三角板MON 的一边ON 与射线OB 重合时,则∠MOC=(2)如图②,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的角平分线,求旋转角∠BON 和∠CON 的度数;(3)将三角板MON 绕点O 逆时针旋转至图③时,∠NOC=∠AOM ,求∠NOB 的度14数.。
七年级角的平分线易错题总结(含答案)
七年级角的平分线易错题总结(含答案)一、选择题(本大题共1小题,共3.0分)1.如图,点O是直线AB上的一点,∠AOE=∠FOD=90°,OB平分∠DOC,图中互补的角有()A. 10对B. 11对C. 12对D. 13对【答案】D【解析】解:图中互补的角有:∠AOF与∠BOF,∠AOF与∠COE,∠DOE与∠BOF,∠DOE 与∠COE,∠AOE与∠EOB,∠AOE与∠DOF,∠DOF与∠EOB,∠BOD与∠AOD,∠EOF与∠AOD,∠BOC与∠AOD,∠BOD与∠AOC,∠EOF与∠AOC,∠BOC与∠AOC,有13对.故选:D.根据补角的定义和同角或等角的补角相等解答即可.本题考查了补角的定义,性质:同角或等角的补角相等.二、填空题(本大题共2小题,共6.0分)2.如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有______对互补的角.【答案】6【解析】解:∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.根据互补的定义进行解答,找到两个角之和为180°角的对数.本题主要考查余角和补角、角平分线的知识点,两角之和为90,两角互余,两角之和为180,两角互补,解答此题的关键是找全互补的角.3.如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有_________对互补的角.【答案】6【解析】【分析】本题主要考查余角和补角、角平分线的知识点,两角之和为90°,两角互余,两角之和为180°,两角互补,解答此题的关键是找全互补的角.根据互补的定义进行解答,找到两个角之和为180°的角的对数.【解答】解:∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE都互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD都互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.三、解答题(本大题共13小题,共104.0分)4.已知∠AOC和∠BOC是互为邻补角,∠BOC=50∘,将一个三角板的直角顶点放在点O处(注:∠DOE=90∘,∠DEO=30∘).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=______.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.∠AOE时,求∠BOD的(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14度数.(4)将图1中的三角板绕点O以每秒5∘的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.【答案】(1)40°,(2)∵OE平分∠AOC,∠COA,∴∠COE=∠AOE=12∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.【解析】【解析】∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°,故答案为:40°;(2)见答案;(3)见答案.(4)见答案.(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD= 90°,推出∠COD=∠DOB,即可得出答案;(3)根据平角等于180°求出即可;(4)分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O 旋转了140°;当OE与射线OC重合时,三角板绕点O旋转了320°;依此列出方程求解即可.本题考查了角平分线定义和角的计算,能根据图形和已知求出各个角的度数是解此题的关键.5.(1)已知∠AOB=25°42′,则∠AOB的余角为____,∠AOB的补角为____;(2)已知∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,用含α,β的代数式表示∠MON的大小;(3)如图,若以OA、OB中的一条为钟表上的时针,另一条为分针,且∠AOB=65°,时针在3点到4点之间,求此刻的时间.【答案】解:(1)64°18′;154°18′;(2)①如图1:∵∠AOB=α,∠BOC=β,∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,∴∠MON=∠BOM+∠CON=α+β2;②如图2,∠MON=∠BOM−∠BON=α−β2;③如图3,∠MON =∠BON −∠BOM =β−α2. ∴∠MON 为α+β2或α−β2或β−α2.(3)设在下午3点至4点之间,从下午3点开始,经过x 分钟,时针与分针成65°角. ①当分针在时针上方时,由题意得:(3+x 60)×30−6x =65,解得:x =5011②当分针在时针下方时,由题意得:6x −(3+x 60)×30=65解得:x =31011.∴此刻的时间为3点5011分或3点31011分.【解析】【分析】此题考查了余角和补角,角的计算以及钟面角,解题时注意:分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.(1)根据余补角的定义解答;(2)分三种情况,分别画出图形,根据角平分线的定义解答即可;(3)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)∵∠AOB =25°42′,∴∠AOB 的余角=90°−25°42′=64°18′,∠AOB 的补角=180°−25°42′=154°18′;故答案为:64°18′,154°18′;(2)见答案;(3)见答案.6.如图所示,射线ON,OE,OS,OW分别表示从点O出发向北、东、南、西四个方向,点A在点O的北偏东45°方向,点B在点O的北偏西30°方向.(1)画出射线OB,若∠BOC与∠AOB互余,请在图中画出∠BOC.(2)在(1)的条件下,若OP是∠AOC的平分线,直接写出∠AOP的度数(不需要计算过程).【答案】解:(1)如图所示,射线OB,∠BOC与∠BOC′即为所求;(2)∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC′=60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.【解析】此题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【解答】(1)∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=∠BOC′=15°,故射线OB,∠BOC与∠BOC′即为所求;(2)见答案.7.如图,OC,OB,OD是∠EOA内三条射线,OB平分∠DOA,OC平分∠EOA.(1)已知∠EOD=80°,∠AOB=20°,求∠BOC的度数.(2)设∠EOD=α,用含α的代数式表示∠BOC.(3)若∠EOD与∠BOC互余,求∠BOC的度数.【答案】解:(1)∵OB平分∠DOA,OC平分∠EOA.∴∠AOB=∠BOD=12∠AOD,∠EOC=∠AOC=12∠EOA,∵∠EOD=80°,∠AOB=20°,∴∠EOA=80°+20°×2=120°,∴∠EOC=∠AOC=12∠EOA=60°,∴∠BOC=∠AOC−∠AOB=60°−20°=40°.(2)∵∠BOC=∠AOC−∠AOB=∠DOE−∠COD−∠BOD=∠DOE−∠BOC,∴2∠BOC=∠DOE,∴∠BOC=12∠DOE=12α,(3)∵∠EOD与∠BOC互余,∴∠EOD+∠BOC=90°,∵∠BOC=12∠DOE,∴∠BOC=13×90°=30°.【解析】本题主要考查角平分线的意义,互余的意义,根据图形直观得出各个角的和或差是得出结论的前提,等量代换起到非常关键的作用.(1)根据角平分线和∠EOD=80°,∠AOB=20°,求出各个角,得出答案;(2)由特殊到一般,根据角平分线的意义,和各个角之间的和差关系,等量代换得出∠EOD 与∠BOC的数量关系,(3)利用(2)中的结论和∠EOD与∠BOC互余,求出∠BOC的度数.8.(1)已知∠1与∠2互为补角,且∠2的13比∠1小15∘,则∠1的余角为多少?(2)已知∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数.【答案】解:(1)设∠1=x°,由题意可得,解得x=2254;(2)若OC在∠AOB内部,则∠MON=12∠AOB=45°,若OC在∠AOB外部,则∠MON=12(∠AOB+∠AOC)−12∠AOC=45°.【解析】本题考查了余角和补角,角平分线的定义以及角的计算,熟练掌握相关概念是解答本题的关键.(1)设∠1=x°,根据题意可列出方程,即可解答;(2)分两种情况:当若OC在∠AOB内部,当若OC在∠AOB外部进行分析.9.已知:∠AOD=156°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,则∠MON的大小为______;(2)如图2,若∠BOC=24°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=30°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值【答案】解:(1)78°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠COM=12∠AOC,∠BON=12∠BOD,∴∠MON=∠BON+∠COM−∠BOC=12∠AOC+12∠BOD−24°=12(∠AOC+∠BOD)−24°,∴∠MON=12(∠AOD+∠BOC)−24°=12×180°−24°=66°;(3)∵∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒,OM平分∠AOC,ON平分∠BOD,∴∠AOC=(54+2t)°,∠AOM=(27+t)°,∠BOD=(126−2t)°,∠DON=(63−t)°,若∠AOM=2∠DON时,即27+t=2(63−t),∴t=33;若2∠AOM=∠DON,即2(27+t)=63−t,∴t=3;∴当t=3或t=33时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍.【解析】【分析】本题考查了角平分线的定义,一元一次方程的应用,分类讨论思想,利用一元一次方程解决问题是本题的关键.(1)由角平分线的定义可得∠BOM=12∠AOB,∠BON=12∠BOD,即可求∠MON的大小;(2)由角平分线的定义可得∠COM=12∠AOC,∠BON=12∠BOD,即可求∠MON的大小;(3)由题意可得∠AOC=(54+2t)°,∠AOM=(27+t)°,∠BOD=(126−2t)°,∠DON=(63−t)°,分∠AOM=2∠DON,∠DON=2∠AOM两种情况讨论,列出方程可求t的值.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∵∠MON=∠BOM+∠BON=12∠AOD,∴∠MON=78°故答案为:78°(2)见答案;(3)见答案.10.如图,直线EF、CD相交于点O,OA⊥OB,OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=30°,请直接写出∠BOD的度数;(3)观察(1)(2)的结果,猜想∠AOE和∠BOD的数量关系,并说明理由.【答案】解:(1)∵∠AOE+∠AOF=180°,∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=12∠AOF=70°,∴∠EOD=∠FOC=70°;∵OA⊥OB,∴∠AOB=90°,∵∠BOE=∠AOB−∠AOE=50°,∴∠BOD=∠EOD−∠BOE=20°;(2)∵∠AOE+∠AOF=180°,∠AOE=30°,∴∠AOF=150°;又∵OC平分∠AOF,∴∠FOC=12∠AOF=75°,∴∠EOD=∠FOC=75°;∵∠BOE=∠AOB−∠AOE=60°,∴∠BOD=∠EOD−∠BOE=15°;(3)∠BOD=12∠AOE,理由如下:∵∠AOE+∠AOF=180°,∴∠AOF=180°−∠AOE;又∵OC平分∠AOF,∴∠FOC=12∠AOF=90°−12∠AOE,∴∠EOD=∠FOC=90°−12∠AOE;∵OA⊥OB,∴∠AOB=90°,∵∠BOE=∠AOB−∠AOE=90°−∠AOE,∴∠BOD=∠EOD−∠BOE=(90°−12∠AOE)−(90°−∠AOE)=12∠AOE;∴∠BOD=12∠AOE.【解析】本题考查了邻补角、对顶角、角平分线定义等知识点.(1)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(2)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(3)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案.11.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是______.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.【答案】解:(1)35°;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90°−∠HOE=90°−x∠BOE=180°−∠AOE=180°−2x所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF−∠FOH=1∠BOF−(∠AOH−∠AOF)=12(180°−∠AOF)−12∠AOE+∠AOF=90°−12∠AOF−12(90°+∠AOF)+∠AOF=90°−12∠AOF−45°−12∠AOF+∠AOF=45°;所以∠GOH的度数为45°;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE 因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF+∠FOH=12∠BOF+∠AOH+∠AOF=12(180°−∠AOF)+12∠AOE+∠AOF=90°−12∠AOF+12(90°−∠AOF)+∠AOF=90°−12∠AOF+45°−12∠AOF+∠AOF=135°;所以∠GOH的度数为135°;综上所述:∠GOH的度数为45°或135°.【解析】解:(1)因为∠AOD=90°,∠DOE=20°所以∠AOE=∠AOD+∠DOE=110°因为OH平分∠AOE所以∠HOE=12∠AOE=55°所以∠FOH=90°−∠HOE=35°;故答案为35°;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90°−∠HOE=90°−x∠BOE=180°−∠AOE=180°−2x 所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=1∠BOF所以∠GOH=∠GOF−∠FOH=12∠BOF−(∠AOH−∠AOF)=12(180°−∠AOF)−12∠AOE+∠AOF=90°−12∠AOF−12(90°+∠AOF)+∠AOF=90°−12∠AOF−45°−12∠AOF+∠AOF=45°;所以∠GOH的度数为45°;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE 因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF+∠FOH=1∠BOF+∠AOH+∠AOF=12(180°−∠AOF)+12∠AOE+∠AOF=90°−12∠AOF+12(90°−∠AOF)+∠AOF=90°−12∠AOF+45°−12∠AOF+∠AOF=135°;所以∠GOH的度数为135°;综上所述:∠GOH的度数为45°或135°.(1)根据∠AOD=90°,∠DOE=20°得∠AOE=∠AOD+∠DOE=110°,再根据OH平分∠AOE,即可求解;(2)可以设∠AOH=x,根据OH平分∠AOE,可得∠HOE=∠AOH=x,进而∠FOH= 90°−∠HOE=90°−x,∠BOE=180°−∠AOE=180°−2x,即可得结论;(3)分两种情况解答:当OE落在∠BOD内时,OF落在∠AOD内,当OE落在其他位置时,根据OH平分∠AOE,OG平分∠BOF即可求解.本题考查了余角和补角、角平分线定义,解决本题的关键是掌握角平分线定义,进行角的和差计算.12.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)(2)(3)中你能看出什么规律?【答案】解:(1)因为OM平分∠AOC,所以∠MOC=12∠AOC.又ON平分∠BOC,所以∠NOC=12∠BOC.所以∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12∠AOB.而∠AOB=90°,所以∠MON=45°;(2)当∠AOB=80°,其他条件不变时,∠MON=12×80°=40°;(3)当∠BOC=60°,其他条件不变时,则∠MON=45°;(4)分析(1)、(2)、(3)的结果和(1)的解答过程可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小变化无关.【解析】本题考查角的平分线,难度不大.(1)根据题意,可得∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12∠AOB,即可得解;(2)根据题意,即可得解;(3)根据题意,即可得解;(4)分析可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小变化无关,即13.(1)如图1所示,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB=_________(2)如图2所示,将三个正方形的一个顶点重合放置,求∠1的度数.(3)如图3所示,将三个正方形的一个顶点重合放置,若OF平分∠DOB,则OE平分∠AOC吗?为什么?【答案】解:(1)140°;(2)如图,由题意知,∠1+∠2=50°①,∠1+∠3=60°②,又∠1+∠2+∠3=90°③,①+②−③得∠1=20°;(3)OE平分∠AOC,理由如下:∵∠COD=∠AOB,∴∠COA=∠DOB(等角的余角相等).同理:∠EOA=∠FOB.∵OF平分∠DOB,∴∠DOF=∠FOB=12∠DOB,∴∠EOA=12∠DOB=12∠COA,∴OE平分∠AOC.【分析】本题考查了角的计算,余角和补角以及正方形的性质,根据所给出的图形,找到角与角的关系是本题的关键.(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB−∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3−(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【解答】解:(1)∵两个图形是正方形,∴∠COD=90°,∠AOB=90°,∴∠COD+∠AOB=180°,∵∠AOD=40°,∴∠COB=∠COD+∠AOB−∠AOD=140°.故答案为140°;(2)见答案;(3)见答案.14.如图,已知∠AOB=2∠BOC,又OD,OE分别为∠AOB和∠BOC的平分线,若∠DOE=66∘.求∠AOB的度数.【答案】解:∵OE,OD分别是∠BOC、∠AOB的平分线,∴∠BOC=2∠BOE,∠AOB=2∠DOB,∵∠DOE=66°,∴∠AOB+∠BOC=2∠DOB+2∠BOE=2∠DOE=132°,∵∠AOB=2∠BOC,×132°=88°.∴∠AOB=23【解析】本题考查的是角平分线的定义,角的计算有关知识,根据角平分线定义得出∠BOC=2∠BOE,∠AOB=2∠DOB,根据∠DOE=66°求出∠AOB+∠BOC=132°,根据∠AOB=2∠BOC求出即可.15.已知∠AOB是锐角,∠AOC=2∠BOD.(1)如图,射线OC,射线OD在∠AOB的内部(∠AOD>∠AOC),∠AOB与∠COD互余.①若∠AOB=60°,求∠BOD的度数.②若OD平分∠BOC,求∠BOD的度数.(2)若射线OD在∠AOB的内部,射线OC在∠AOB的外部,∠AOB与∠COD互补.方方同学说:∠BOD的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下∠BOD的度数是确定的,另一种情况下∠BOD的度数不确定.你认为谁的说法正确?为什么?【答案】解(1)①∵∠AOB=60°,∠AOB与∠COD互余,∴∠COD=30°,∵∠AOC=2∠BOD,∴∠BOD=10°.②设∠BOD=x°,∵OD平分∠BOC,∠AOC=2∠BOD,∴∠BOD=∠COD=1∠BOC,∠AOC=2x°,2∵∠AOB与∠COD互余,∴4x+x=90,解得:x=18,∴∠BOD=18°.(2)设∠BOD=x,∠AOD=y.当射线OD在∠AOC内部时(如图1),由题意,得∠AOB+∠COD=180°,即x+y+2x−y=3x=180°,此时∠BOD=60°,确定.当射线OD在∠AOC外部时(如图2),由题意,得∠AOB+∠COD=180°,即x+y+y+2x=3x+2y=180°,此时∠BOD不确定;∴圆圆的说法正确.【解析】本题考查了角平分线的定义以及角的计算,还用到了方程的思想.注意(2)要根据射线OD的位置不同,分类讨论,分别求出∠BOD的度数.(1)①根据∠AOB=60°,∠AOB与∠COD互余,可得∠COD=30°,再根据∠AOC=2∠BOD,可得∠BOD的度数;②先设∠BOD=x°,则4x+x=90,求出x的值,进而可得出结论;(2)分射线OD在∠AOC的内部与在∠AOC的外部两种情况进行讨论.16.已知,直线AB与直线CD相交于点O,OB平分∠DOF.(1)如图,若∠BOF=40°,求∠AOC的度数;(2)作射线OE,使得∠COE=60°,若∠BOF=x°(0<x<90),求∠AOE的度数.(用含x的代数式表示)【答案】解:(1)∵OB平分∠DOF,∴∠BOD=∠BOF=40°,∴∠AOC=40°;(2)∵OB平分∠DOF,∴∠BOD=∠BOF,∵∠BOF=x°,∴∠BOD=x°,∴∠AOC=∠BOD=x°,如图1,∵∠COE=60°,∴∠AOE=∠AOC+∠COE=(60+x)°(0<x<90);如图2,当0<x≤60时,∵∠COE=60°,∴∠AOE=∠COE−∠AOC=(60−x)°(0<x≤60),当60<x<90时,∵∠COE=60°,∴∠AOE=∠AOC−∠COE=(x−60)°(60<x<90).由图2可得:∠AOE=|x−60|°(0<x<90),综上所述:∠AOE的度数为(60+x)°或|60−x|°.【解析】(1)根据角平分线的定义可得∠BOD的度数,再根据对顶角相等可得答案;(2)此题分两种情况,首先画出图形,再计算角度.此题主要考查了对顶角和角平分线定义,关键是掌握对顶角相等.。
角平分线专项练习30题(有答案)ok
角平分线专项练习30题(有答案)1.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.2.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+∠BAC.3.如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.4.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.5.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.求证:BC=AB+AE.6.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.7.如图,CD是Rt△ABC斜边上的高,∠BAC的平分线分别交BC、CD于点E、F.(1)求证:△ACF∽△ABE;(2)若AC=6cm,AF=3cm,AB=10cm,求出AE的长度.8.如图,CD∥AB,∠ABC,∠BCD的角平分线交于E点,且E在AD上,CE交BA的延长线于F点.(1)BE与CF互相垂直吗?若垂直,请说明理由;(2)若CD=3,AB=4,求BC的长.9.如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,(1)求证:AB∥CD;(2)在(1)的条件下,求∠AEM的度数.10.如图,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分别为B、C,E为线段AB上一点,(1)用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹);(2)若BE=3,请写出此时线段AE与AF的数量关系,并说明理由.11.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,(1)分别作出D到BA、BC的距离DE、DF;(2)求证:∠A+∠C=180°.12.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F,求证:BE=FC.13.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.14.如图,点D、B分别在∠A的两边上,C是∠DAB内一点,AB=AD,BC=CD,CE⊥AD于E,CF⊥AF于F,求证:CE=CF.15.如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.16.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.18.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC于D,PH⊥BA于H,求证:AP平分∠HAD.19.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB、AC于E、F两点.求证:AD⊥EF.(2)若∠MON=80°,求∠PAB的度数.21.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.22.如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D 到PE的距离与D到PF的距离相等.23.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.证明:BE=CF;(提示:连接线段BD、CD)25.如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.(2)ED=BC+BD.29.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.30.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM与DM相等,试说明你的理由.参考答案:1.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.2.证明:连接AP,且延长至G,∵PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,∴点P是△ABC三角平分线的交点,∴AP平分∠BAC,∴∠CAG=∠BAG=∠BAC,∵CP平分∠ACB,BP平分∠ABC,∴∠ACP=∠ACB,∠ABP=∠ABC,∴∠CPG=∠BAG+∠ABP=(∠BAC+∠ACB),∠BPG=∠BAG+∠ABP=(∠BAC+∠BC),∴∠BPC=∠CPG+∠BPG=(∠BAC+∠ACB)+(∠BAC+∠ABC)=∠BAC+(180°﹣∠BAC)=90°+∠BAC.3.证明:∵BD⊥AC,CE⊥AB,∠CDF=∠BEF=90°,在△CDF与△BEF中,,∴DF=EF,又∵BD⊥AC,CE⊥AB,∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上)4.解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.5.解:∵∠BAC=90°,BE平分∠ABC,DE⊥BC于D,∴AE=DE,∵BE是公共边,∴△BDE≌△BAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE6.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.7.(1)证明:∵∠ACB=90°,∠CDB=90°,∴∠ACD=90°﹣∠DCB,∠B=90°﹣∠DCB,∴∠ACD=∠B,(2分)∵AE平分∠CAB,∴∠CAE=∠EAB,(3分)∴△ACF∽△ABE;(7分)(2)解:∵△ACF∽△ABE,∴,(9分)∴AE===5cm8.解:(1)垂直.∵CD∥AB,∴∠ABC+∠BCD=180°,∵∠ABC,∠BCD的角平分线交于E点,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠EBC+∠ECB=∠ABC+∠BCD=(∠ABC+∠BCD)=90°,∴∠CEB=90°,∴BE与CF互相垂直.(2)∵∠CEB=90°,∴∠FEB=90°,在△FBE和△CBE中,∵,∴△FBE≌△CBE(ASA),∴BF=BC,EF=EC,∵CD∥AB,∴∠DCE=∠AFE,∵∠FEA=∠CED,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB,∴BF=BC=7.9.(1)证明:∵∠1+∠2+∠FEG=180°,∵∠1=50°,∠2=65°,∴∠FEG=65°,∵EG平分∠BEF,∴∠BEF=2∠FEG=130°,∴∠BEF+∠1=180°,∴AB∥CD.(2)∵∠AEM=∠BEF,∵∠BEF=130°,∴∠AEM=130°,答:∠AEM的度数是130°10.解:(1)以D为圆心,DE为半径交AN于F1或F2,如图,∵AD平分∠MAN,BD⊥AM,CD⊥AN,∴DB=DC,∵DE=DF,∴Rt△CDF≌Rt△BDE(HL);(2)∵DB=DC,DA=DA,∴Rt△DBA≌Rt△DCA(HL);∴AB=AC,∵Rt△CDF≌Rt△BDE,∴BE=CF,∴当F点在F1时,AF=AE;当F点在F2时,AF2=AC+CF2=AB+CF2=AE+BE+BE,∴AF﹣AE=2BE=6.11.解:(1)如图所示:.(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,∴DE=DF,∠E=∠DFC=90°,∴在Rt△DEA和Rt△DFC中∴Rt△DEA≌Rt△DFC(HL),∴∠C=∠EAD,∵∠BAD+∠EAD=180°,∴∠BAD+∠C=180°12.证明:过点E作EG⊥AB于点G,过F点作FH⊥AC于点H,∵△ABC中,∠ABC=90°,∴∠C+∠BAC=90°,∵BD⊥AC于D,∴∠ADB=90°,∴∠BAC+∠ABD=90°,∴∠C=∠ABD,∵点E在∠BAC的平分线上,∴GE=DE,∵EF∥DC且BD⊥AC于D,FH⊥AC于D∴ED=FH,∴GE=FH,在△BEG与△CFH中,,∴△BEG≌△CFH(AAS),∴BE=CF.13.证:(1)作CE⊥OB于E,∵∠A+∠OBC=180°,∠OBC+∠CBE=180°∴∠A=∠CBE,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴CD=CE,∴OC平分∠AOB.(2)∵OD=3DA=6,∴AD=BE=2,在Rt△ODC和Rt△OEC中∵∴Rt△ODC≌Rt△OEC(HL),∴OE=OD=6,∴OB=OE﹣BE=4.14.证明:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∵CE⊥AD于E,CF⊥AF于F,∴CE=CF15.解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB..设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.16.证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和CEQ中,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.17.证明:连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,EM=EN,∠EMB=∠ENC=90°.在Rt△BME和Rt△CNE中,∵BE=EC,EM=EN,∴Rt△BME≌Rt△CNE(HL)∴BM=CN.18.证明:过P作PF⊥BE于F,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF(角平分线上的点到角的两边距离相等).又∵CP平分∠ACE,PD⊥AC于D,PF⊥BE于F,∴PF=PD(角平分线上的点到角的两边距离相等).∴PD=PH(等量代换).∴AP平分∠HAD(到角的两边距离相等的点在这个角的平分线上).19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA,∵DE=DF,∴AD⊥EF三线合一)20.(1)证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于A,PB⊥ON于B,∴OP平分∠MON(到角的两边距离相等的点在角的平分线上);(2)解:∵∠MON=80°,PA⊥OM于A,PB⊥ON于B,∴∠APB=360°﹣90°×2﹣80°=100°,∵∠PAB=∠PBA,∴∠PAB=(180°﹣100°)=40°21.证明:(1)如图,过点P作PE⊥AB于E,∵∠1=∠2,PF⊥BC,∴PE=PF,在△APE和△CPF中,,∴△APE≌△CPF(HL),∴∠PAE=∠PCB,∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°;(2)∵△APE≌△CPF,∴AE=FC,∵BC=12cm,AB=6cm,∴AE=×(12﹣6)=3cm,BE=AB+AE=6+3=9cm,在Rt△PAE中,PE==4cm,在Rt△PBE中,PB==cm.22.证明:∵PE∥AB,PF∥AC,∴∠EPD=∠BAD,∠DPF=∠CAD,∵△ABC中,AD是它的角平分线,∴∠BAD=∠CAD,∴∠EPD=∠DPF,即DP平分∠EPF,∴D到PE的距离与D到PF的距离相等23.证明:连接BD,CD,∵AD平分∠BAC,且DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDE是直角三角形,∵,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线25.解:∵∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=50°;∴∠BOC=180°﹣50°=130°26.证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.28.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2;(2)在△AED和△ACF中,,∴△AED≌△ACF(ASA),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.29.证明:如图,连接CM,设AB、CD相交于点E,则CM是斜边上的中线,MC=MB=AM,∴∠MCB=∠B,∵CD平分∠ACB,∠C=90°,∴∠BCD=×90°=45°,∴∠MCD=∠MCB﹣45°=∠B﹣45°,又∵∠DEM=∠BEC=180°﹣∠B﹣45°=135°﹣∠B,∴∠D=90°﹣∠DEM=∠B﹣45°,∴∠D=∠MCD,∴MD=MC,∴MD=AM.30.解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,∴PC=PD,∵OM是公共边,∴△POC≌△POD(HL),∴OC=OD,∴△COM≌△DOM(SAS),∴CM=DM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线相关练习题
答案:
1、∠DOC=30°
解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为∠AOB 的角平分线,因为∠AOB=60°,所以∠DOC=∠EOC=30°
2、∠BOC=50°
解析:由题知,∠AOE=∠BOE=½∠AOB=45°,∠BOD=∠EOD-∠BOE=70°-45°=25°,∠BOC=2∠BOD=50°
3、D
解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。
4、S△BDC=½mn
解析:通过D点向BC边作垂线段,交BC于点E,则DE为△BDC的高线,由于DA⊥AB且DE⊥BC,BD是角平分线,故得知线段AD=DE=m,S△BDC=½BC×DE=½mn
5、A
解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=3
6、∠COE=75°
解析:∠AOC=∠BOC=∠BOD=½×90°=45°,因为∠BOD=3∠DOE,所以∠BOE=⅔∠BOD=⅔×45°=30°,
∠COE=∠BOC+∠BOE=45°+30°=75°
7、∠BOD=75°
解析:∠COD=∠AOD=½∠AOC=½(∠AOB-∠BOC)=½(90°-60°)=15°,
∠BOD=∠BOC+∠COD=60°+15°=75°
8、∠AOC=140°
解析:∠AOC=∠AOB+∠BOC=2∠BOD+2∠BOE=2∠BOD+2(∠DOE-∠BOD)=2∠DOE=2×70°=140°。