微分方程ppt
合集下载
第-节 高阶线性微分方程【高等数学PPT课件】
其中 k按 i 不是特征根,是单根依次取0,1.
m maxl, n
Rm ( x),Qm ( x) 都是x的m次多项式, 其系数待定.
例4 设 y 5 y 6 y f ( x)
(1) f ( x) sin x 写出 y 的形式.
(2) f ( x) x cos x
Pm ( x) 为x的m次多项式. 其中 为常数,
分析: 设 y Q( x)ex 是原方程的解,则代入
原方程,整理得
Q (2 p)Q (2 p q)Q Pm ( x) ()
综上,对 f ( x) Pm ( x)ex 型
令 y x kQm ( x)ex
y p1( x) y p2 ( x) y f1( x) f2 ( x) 的特解.
定理5 若 y1( x), y2( x) 是方程(10)的两个解, 则 y1( x) y2( x) 是方程(9)的解.
例3 设 y1 x, y2 x 2 , y3 x3 是方程 y p1( x) y p2( x) y f ( x)
定理2 若 y1( x), y2( x)是方程(9)的两个线性无关
( y1 y2
常数) 的解,
则 C1 y1( x) C2 y2( x) 是 (9)的通解.
上述定理可推广到n阶线性齐次方程。
若已知方程 y p1( x) y p2( x) y 0 有一特解 y1( x), 要求其通解, 则只要再求出该方程的另一个与 y1( x) 线性无关的特解 y2 ( x) 即可. 用降阶法求 y2( x) :
第四节 高阶线性微分方程 二、线性齐次微分方程解的结构
二阶线性齐次微分方程:
y p1( x) y p2( x) y 0 ——(9) 定理1 若 y1( x), y2( x) 是方程(9)的两个解, 则
m maxl, n
Rm ( x),Qm ( x) 都是x的m次多项式, 其系数待定.
例4 设 y 5 y 6 y f ( x)
(1) f ( x) sin x 写出 y 的形式.
(2) f ( x) x cos x
Pm ( x) 为x的m次多项式. 其中 为常数,
分析: 设 y Q( x)ex 是原方程的解,则代入
原方程,整理得
Q (2 p)Q (2 p q)Q Pm ( x) ()
综上,对 f ( x) Pm ( x)ex 型
令 y x kQm ( x)ex
y p1( x) y p2 ( x) y f1( x) f2 ( x) 的特解.
定理5 若 y1( x), y2( x) 是方程(10)的两个解, 则 y1( x) y2( x) 是方程(9)的解.
例3 设 y1 x, y2 x 2 , y3 x3 是方程 y p1( x) y p2( x) y f ( x)
定理2 若 y1( x), y2( x)是方程(9)的两个线性无关
( y1 y2
常数) 的解,
则 C1 y1( x) C2 y2( x) 是 (9)的通解.
上述定理可推广到n阶线性齐次方程。
若已知方程 y p1( x) y p2( x) y 0 有一特解 y1( x), 要求其通解, 则只要再求出该方程的另一个与 y1( x) 线性无关的特解 y2 ( x) 即可. 用降阶法求 y2( x) :
第四节 高阶线性微分方程 二、线性齐次微分方程解的结构
二阶线性齐次微分方程:
y p1( x) y p2( x) y 0 ——(9) 定理1 若 y1( x), y2( x) 是方程(9)的两个解, 则
第6章-微分方程
kt
dQ dt
kQ .
解得
Q t Ce .
把t = 0代入其中求得C= Q0. 由条件得Q(240) = 0.9Q0,代入得 0.9 Q0 = Q0 e240k, 解得 k = ( ln 0.9)/240 -0.000439. 因此,所求特解为 Q(t) = Q0e-0.000439t.
例5(陨石的挥发)
陨石挥发的速度与陨石的表
面积成正比. 若假设陨石是质量均匀的球体,试求出 陨石的质量m关于时间t的函数表达式.
解 设t时刻陨石的半径为r(t),质量为m(t),表面积为s(t). 由题意得
s t 4 r
d m (t ) dt
2
ks t 其 中 k 0 .
u
2
x
2
u
2
y
2
0.
把常微分方程称为微分方程或简称为方程.
微分方程中出现的未知函数的最高阶导数的 阶数,叫做该方程的阶 ,例如
x2y + 2xy - y + 5y = e x 和 y(5) + 3y(4) -5xy - y = 0 分别是3阶和5阶微分方程. n阶微分方程的一般形式是 F(x, y, y,…,y(n)) = 0,
利息,同时每个月获得的利息存在银行也可生利息).
如果存款时间很长,可把资金看成时间的连续函数. 假定该款存入后在时刻t的资本总额(连本带利)为
s(t). 于是,资金函数s(t)就是如下初值问题的解:
r s '( t ) 1 0 0 s ( t ) . s |t 0 s 0
例7(Logistic模型 )设对某种传染病,某个居民区有
y
x0
dQ dt
kQ .
解得
Q t Ce .
把t = 0代入其中求得C= Q0. 由条件得Q(240) = 0.9Q0,代入得 0.9 Q0 = Q0 e240k, 解得 k = ( ln 0.9)/240 -0.000439. 因此,所求特解为 Q(t) = Q0e-0.000439t.
例5(陨石的挥发)
陨石挥发的速度与陨石的表
面积成正比. 若假设陨石是质量均匀的球体,试求出 陨石的质量m关于时间t的函数表达式.
解 设t时刻陨石的半径为r(t),质量为m(t),表面积为s(t). 由题意得
s t 4 r
d m (t ) dt
2
ks t 其 中 k 0 .
u
2
x
2
u
2
y
2
0.
把常微分方程称为微分方程或简称为方程.
微分方程中出现的未知函数的最高阶导数的 阶数,叫做该方程的阶 ,例如
x2y + 2xy - y + 5y = e x 和 y(5) + 3y(4) -5xy - y = 0 分别是3阶和5阶微分方程. n阶微分方程的一般形式是 F(x, y, y,…,y(n)) = 0,
利息,同时每个月获得的利息存在银行也可生利息).
如果存款时间很长,可把资金看成时间的连续函数. 假定该款存入后在时刻t的资本总额(连本带利)为
s(t). 于是,资金函数s(t)就是如下初值问题的解:
r s '( t ) 1 0 0 s ( t ) . s |t 0 s 0
例7(Logistic模型 )设对某种传染病,某个居民区有
y
x0
全版微分方程.ppt
将 y 和 y 代入原方程得C( x)e P( x)dx Q( x),
积分得 C( x) Q( x) e P( x)dxdx C,
.精品课件.
24
C( x) Q( x) e P( x)dxdx C,
故一阶线性非齐次微分方程的通解为:
y
C(
x)e
P(
x )dx
[ Q( x)e P( x)dxdx C]e P( x)dx
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
.精品课件.
1
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
x
微分方程的解为 sin y ln x C. x
.精品课件.
19
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.
解
dy dx
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
.精品课件.
17
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
dx
积分得 C( x) Q( x) e P( x)dxdx C,
.精品课件.
24
C( x) Q( x) e P( x)dxdx C,
故一阶线性非齐次微分方程的通解为:
y
C(
x)e
P(
x )dx
[ Q( x)e P( x)dxdx C]e P( x)dx
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
.精品课件.
1
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
x
微分方程的解为 sin y ln x C. x
.精品课件.
19
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.
解
dy dx
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
.精品课件.
17
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
dx
高数微分方程PPT
应用
描述了许多自然现象,如生态模型、化学反应等。
二阶常系数线性微分方程
定义
形如 $y'' + py' + qy = 0$ 的微分方程称为二阶常系数 线性微分方程。
解法
通过求解特征方程,得到通 解。
应用
在物理学、工程学等领域有 广泛应用,如弹簧振动、电 磁波等。
04
高阶微分方程
BIG DATA EMPOWERS TO CREATE A NEW
参数法
总结词
通过引入参数,将微分方程转化为更易于求 解的形式。
详细描述
参数法是通过引入参数,将微分方程转化为 更易于求解的形式。这种方法适用于具有特 定形式的高阶微分方程。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分 方程,简化求解过程。
详细描述
积分因子法是通过寻找积分因子,将微分方 程转化为积分方程,从而简化求解过程。这 种方法适用于具有特定形式的一阶线性微分
高阶微分方程
包含多个导数的微分方程。
微分方程的应用
物理问题
描述物理现象的变化规律,如 振动、波动、流体动力学等。
经济问题
描述经济现象的变化规律, 如供求关系、市场均衡等。
工程问题
在机械、航空、化工等领域中 ,微分方程被用来描述各种动 态过程。
生物问题
描述生物种群的增长规律、 生理变化等。
02
一阶微分方程
经济增长模型
在经济学中,微分方程可以用来描述一个国家或地区的经济增长率 与人口、技术、资本等因素之间的关系。
生物问题中的应用
1 2 3
种群动态
微分方程可以用来描述种群数量的变化规律,如 Logistic增长模型、捕食者-猎物模型等。
《微分方程 》课件
总结词
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。
微分方程ppt
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个VI月P,生发效起放每数量月发由放您一购次买,赠 V不 我I送 清 的P生每 零 设效月 。 置起自 随1每5动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我IP送 清的生每 零设效月 。置起1自随每5次动时月共续取发享费消放文,。一档前次下往,载我持特的续权账有,号效自-
分 方 程
z z xy z2 x y
zx 5z4 0
常微分方程
偏微分方程
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个VI月P,生发效起放每数量月发由放您一购次买,赠 V不 我I送 清 的P生每 零 设效月 。 置起自 随1每5动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我IP送 清的生每 零设效月 。置起1自随每5次动时月共续取发享费消放文,。一档前次下往,载我持特的续权账有,号效自-
分 方 程
z z xy z2 x y
zx 5z4 0
常微分方程
偏微分方程
一.平衡微分方程(共39张PPT)
由平衡方程式得出应力分量由极坐标向直角坐 标的变换(biànhuàn)公式:
x cos2 sin2 2 sin cos
y sin2 cos2 2 sin cos
xy ( )sin cos (cos2 sin2 ) 参看图(b)假设 x , y , x为y 已知,
正应力(正应变)分量仅是半径ρ的函数,与φ无关,并且切应力(切
应变)为零,称为轴对称应力(应变)。
1.应力函数 (半逆解法) 仅是径向坐标的函数:
()
2. 相容方程(fāngchéng) 简化为:
2
d
d
2
1
d
d
0
d2
( d 2
1
d d2
d )( d 2
1
d )
d
0
展开
4
d4
d 4
2 3
d3
d 3
PA
d
线段PB,变形后为P'B',B'点
ρ方向上的位移为零。
PB正应变为
(v
v
d)
v
PB PB PB
d
v
PB方向线1, PB方向线2. PB的
转角POP':(向角外转为负)
v
第三页,共三十九页。
二.几何(jǐ 方程 hé)
u
总和上述两个方向(fāngxiàng)的应变,得
到:
u
1
v
物理 方 三.
jiǎo zuò biāo)的关系:
x
x cos , y sin
得到(dé dào) x cos , y sin ,
x
y
x
y
2
sin
,
x cos2 sin2 2 sin cos
y sin2 cos2 2 sin cos
xy ( )sin cos (cos2 sin2 ) 参看图(b)假设 x , y , x为y 已知,
正应力(正应变)分量仅是半径ρ的函数,与φ无关,并且切应力(切
应变)为零,称为轴对称应力(应变)。
1.应力函数 (半逆解法) 仅是径向坐标的函数:
()
2. 相容方程(fāngchéng) 简化为:
2
d
d
2
1
d
d
0
d2
( d 2
1
d d2
d )( d 2
1
d )
d
0
展开
4
d4
d 4
2 3
d3
d 3
PA
d
线段PB,变形后为P'B',B'点
ρ方向上的位移为零。
PB正应变为
(v
v
d)
v
PB PB PB
d
v
PB方向线1, PB方向线2. PB的
转角POP':(向角外转为负)
v
第三页,共三十九页。
二.几何(jǐ 方程 hé)
u
总和上述两个方向(fāngxiàng)的应变,得
到:
u
1
v
物理 方 三.
jiǎo zuò biāo)的关系:
x
x cos , y sin
得到(dé dào) x cos , y sin ,
x
y
x
y
2
sin
,
高等数学上册第七章微分方程
n 个函数, 若存在不全为 0 的常数
使得
则称这 n个函数在 I 上线性相关, 否则称为线性无关.
例如,
在( , )上都有
故它们在任何区间 I 上都线性相关;
又如,
若在某区间 I 上
必需全为 0 ,
在I 上都 线性无关.
DMU
第五节 二阶线性微分方程解的结构
两个函数在区间 I 上线性无关的充要条件:
(1) 当p2 4 q 0 时, ②有两个相异实根
则微分
方程有两个线性无关的特解:
因此方程的通解为 y C1 er1 x C2 er2 x
DMU
第六节 常系数齐次线性微分方程
(2) 当p2 4 q 0 时, 特征方程有两个相等实根
则微分方程有一个特解
设另一特解
( u (x) 待定)
代入方程得:
可化为变量分离方程的类型
• 形如 dy g的(方y )程,称为齐次方程 dx x
如何求解满足上述条件的齐此方程
令 y u, y ux x
du u x du ,
dx
dx
x du g(u) u dx
du g(u) u
dx
x
化为一个变量可分离的方程
DMU
第二节 可分离变量的微分方程 齐次方程
第一节 微分方程的概念
微分方程的预备知识
➢ 微分方程
y P(x) y Q(x)y f (x)
➢ 阶:最高阶导数的阶数 ➢ 解:使方程成为恒等式的函数
➢ 通解: y (c1, c2, , cn )
➢ 特解:满足初始条件的解 ➢ 初始条件:
y(x0 ) y0, y(x0 ) y1, , y(n1) (x0 ) yn1
高等数学微分方程的基本概念教学ppt讲解
(9)
2
这就是初速度为0的物体垂直下落时距离
s与时间t之间的函数关系.
Nanjing College of Information and Technology
9
第六章 常微分方程
二、微分方程的定义
第一节 微分方程的基本概念
微分方程: 凡含有未知函数的导数或微分的方程叫微分方程.
例 y xy, y 2 y 3 y e x , (t 2 x)dt xdx 0,
分类1:按自变量的个数,分为常微分方程和偏微分方程.
如果其中的未知函数只与一个自变量有关,就 称为常微分方程。
如 y′= x2 , y′+ xy2 = 0 , 都是常微分方程;
y(4) 4 y ' 4 y xex
Nanjing College of Information and Technology
11
第六章 常微分方程
第一节 微分方程的基本概念
如果未知函数是两个或两个以上自变量的函数, 并且在方程中出现偏导数
如
2u x2
2u y2
2u z2
0
就是偏微分方程;
本章我们只介绍常微分方程。
Nanjing College of Information and Technology
第六章 常微分方程
第一节 微分方程的基本概念
第六章 常微分方程
第一节 微分方程的基本概念 第二节 一阶微分方程 第三节 可降阶的高阶微分方程 第四节 二阶线性微分方程解的结构 第五节 二阶常系数线性齐次微分方程
Nanjing College of Information and Technology
微分方程PPT(罗兆富等编)第十章-变分迭代法简介全篇
)
g
(
)d
(10.1.02)
合并 un (t),un (t),un(t), 零, 得到关于,,,
的同类项, 然后让它们的系数等于
在条件 =t下的等式,由此解出().
3
机动 目录 上页 下页 返回 结束
再将()代入(10.1.02)并取消变分就得到递推公式
un1(t) un (t)
t 0
(
)
Lun
(1 ( ) x )un (x, y) ()un (, y)d
1 ( ) x 0
(
) x
0
( ) 1.
5
机动 目录 上页 下页 返回 结束
例1. 求解一阶偏微分方程
ux yu 0,u(x,0) 1,u(0, y) 1.
解: 方程的修正泛函为
un1(x, y) un (x, y)
2!
3!
.......................................
un
(
x,
t
)
cosh
x
t
cosh
x
1t 2!
2
cosh
x
(1)n 1 tn cosh x 3!
所以方程的精确解为
u2
(ux(,xt),
t)
conlsimhxun(txc, ot )shxet
c1ots2hcxo.sh 2!
0
2
2 x2
x2t
t
(
t)
0 x2
d
x2t
x2
t3
0
3!
u2 (x,t) u1(x,t)
t
(
0
t
)(
《高数全微分方程》课件
参数方程法
总结词
参数方程法是通过引入参数,将全微分 方程转化为参数微分方程,然后求解参 数的微分,最后得到原全微分方程的解 。
VS
详细描述
参数方程法的步骤包括引入参数、将全微 分方程转化为参数微分方程、求解参数的 微分、将参数的解代回原方程,最后得到 原全微分方程的解。这种方法适用于具有 参数形式的全微分方程,能够简化求解过 程。
变量分离法
总结词
变量分离法是将全微分方程转化为可分离变量的微分方程,然后分别求解每个变量的微分,最后得到 原全微分方程的解。
详细描述
变量分离法的步骤包括将全微分方程转化为可分离变量的微分方程、分别求解每个变量的微分、将各 个变量的解代回原方程,最后得到原全微分方程的解。这种方法适用于具有可分离变量形式的全微分 方程,能够简化求解过程。
总结词
全微分方程描述了曲线的斜率在各个方向上的变化情 况。
详细描述
全微分方程可以表示曲线上任意一点的切线斜率的变 化情况,即该点处曲线在各个方向上的弯曲程度。通 过求解全微分方程,可以了解曲线的弯曲程度,从而 更好地理解曲线的几何特性。
曲线的弯曲程度与全微分方程
总结词
全微分方程描述了曲线的弯曲程度在各个方向上的变 化情况。
二阶全微分方程实例
总结词
二阶全微分方程是描述物理现象和工程问题的重要工具,具有丰富的数学性质和实际应 用价值。
详细描述
二阶全微分方程的一般形式为 d²y/dx² = f(x, y, dy/dx),其中 f(x, y, z) 是关于 x、y 和 z 的函数。通过求解二阶全微分方程,可以找到满足特定边界条件的解,从而解决实际
高数全微分方程目录来自• 全微分方程简介 • 全微分方程的求解方法 • 全微分方程的实例分析 • 全微分方程的几何意义 • 全微分方程的扩展知识
微分方程ppt课件
❖ 这里a和N为正参数,a为x较小时的总量增长 率,而N代表一种“理想”总量或“承载 量”。 验证: 当x较小时, ax(1-x/N) ≈1,即x΄=ax。 当x>N时,则有x΄<0,满足假设。
注意:满足假设的方程有很多,这里只是选取 了最简单的。
8
假设N=1,即选取单位舍得承载量为1的总量, x(t)则代表了在t时刻的总量占理想总量的比例。
❖ 方程简化为x΄= f(a x)=ax(1-x) 此方程称为一阶、自治、非线性微分方程。 一阶: x΄ 自治:右端只与x有关,与t无关。 非线性:f(a x)是x的非线性函数。
问:x΄=ax是什么方程? (一阶、自治、线性微分方程)
9
解微分方程x΄=ax(1-x)。t=0时x=x(0)。
❖
微分方程的通解为
4
❖ 在方程x΄=ax中,a看做参数,当a变化时, 方程也变化,其解随之改变。
1)若a>0,当k>0时,lim keat = ;当k<0 时,lim keat =- 。 t
t
2)若a=0,keat 是常数。
3)若a<0,lim keat =0 t
1)当a>0时,所有非零解都随t的增加而远离 平衡点; 2)当a<0时,所有非零解都随t的增加而趋于 平衡点;
从图上看,所有对应于x(0)>0的解都趋于 x(t) ≡1,与假设吻合,当x(0)<0 时,解将趋 于-∞。
11
从 f(a x)=ax(1-x) 的图像上认识:
❖ 该图像与x轴交与x=0与x=1两点,对应于两个 平衡点。
❖ 当0<x<1,f(a x)>0。从而在满足0<x<1的(t,x) 处,斜率为正数,从而解在这个区域将增加, 而在x>0或x>1时,f(a x)<0,故解将减小。
注意:满足假设的方程有很多,这里只是选取 了最简单的。
8
假设N=1,即选取单位舍得承载量为1的总量, x(t)则代表了在t时刻的总量占理想总量的比例。
❖ 方程简化为x΄= f(a x)=ax(1-x) 此方程称为一阶、自治、非线性微分方程。 一阶: x΄ 自治:右端只与x有关,与t无关。 非线性:f(a x)是x的非线性函数。
问:x΄=ax是什么方程? (一阶、自治、线性微分方程)
9
解微分方程x΄=ax(1-x)。t=0时x=x(0)。
❖
微分方程的通解为
4
❖ 在方程x΄=ax中,a看做参数,当a变化时, 方程也变化,其解随之改变。
1)若a>0,当k>0时,lim keat = ;当k<0 时,lim keat =- 。 t
t
2)若a=0,keat 是常数。
3)若a<0,lim keat =0 t
1)当a>0时,所有非零解都随t的增加而远离 平衡点; 2)当a<0时,所有非零解都随t的增加而趋于 平衡点;
从图上看,所有对应于x(0)>0的解都趋于 x(t) ≡1,与假设吻合,当x(0)<0 时,解将趋 于-∞。
11
从 f(a x)=ax(1-x) 的图像上认识:
❖ 该图像与x轴交与x=0与x=1两点,对应于两个 平衡点。
❖ 当0<x<1,f(a x)>0。从而在满足0<x<1的(t,x) 处,斜率为正数,从而解在这个区域将增加, 而在x>0或x>1时,f(a x)<0,故解将减小。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G( y) C1 F( x) C2 , 即 G( y) F( x) C (C 为任意常数)
称为所给可分离变量微分方程的隐函数形式的通解.
例1 求微分方程 dy 2 xy 的通解. dx
解
分离变量
dy 2xdx, y
( y0)
两端积分
dy y
2 xdx,
ln y x2 C1, y eC1e x2 , y eC1e x2 ,
(t 2 x)dt xdx 0,
2z x y.
xy
如果在微分方程中,自变量的个数只有一(个即未知函
数是一元函数), 则称这种微分方常程微分为方程.
一般形式为F( x, y, y, , y(n) ) 0
自变量的个数为两个或两个以上的微分方程称为
偏微分方程 .
微分方程的阶: 微分方程中出现的未知函数的最高
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
k2
x
0的解.
并求满
足初始条件 x t 0
A,
dx dt
t 0
0的特解.
解
dx dt
kC1
sinkt
kC2
cos kt,
d2x dt 2
k 2C1
cos
kt
k 2C2
sinkt,
将
d2 dt
x
2
和x的表达式代入原方程,
k 2 (C1 cos kt C2 sinkt) k 2 (C1 cos kt C2 sinkt) 0.
I 上的一个解.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且独立任
意常数的个数与微分方程的阶数相同.
n 个常数C1,C2 , ,Cn 独立指的是:它们不能 通过四则运算合并而使得常数的个数减少. 例如
C1 xC2 , C1 sin x C2 cos x 中C1,C2 是独立的. 而C1 C2 x C x , C1 C2 x C x ,
则称原微分方程为可分离变量的微分方程.
例如
dy
4
2x2 y5
dx
4
y 5dy
2 x 2dx,
可分离变量的微分方程
g( y)dy f ( x)dx (*) 解法: 对(*) 两边求不定积分,得
g( y)dy f ( x)dx
设 G(t) g(t), F(t) f (t) , 则
2. 方程可能有解而无通解. ( y)2 y2 0 只有特解 y 0 . 3. 通解不一定能包含所有的解.
( y)2 xy y 0 有通解 y Cx C 2 ,
另一方面解y x2 不在通解内(不能由通解得到). 4
思考题
函数 y 3e2x 是微分方程 y 4 y 0
齐次方程的通解为 y Ce P( x)dx .
2. 再求线性非齐次方程 dy P( x) y Q( x) 的通解: dx
讨论 dy Q( x) dx P( x)dx, 由于 y 是 x 的函数,
yy
可令 Q( x) ( x),
y
并设 ( x)dx ( x) C1,
由 y(0) 0,得C 1,
故该初值问题的解(为2 e y )(1 x) 1 .
二. 齐 次 方 程
如果 F (tx, ty) t k F ( x, y), t 0 成立, 则 F( x, y) 称为k 次齐次函数.
当k 0 时,F(tx, ty) F( x, y), 则 F( x, y) 称
( x uxcosu)dx x cos u(udx xdu) 0,
cos udu dx , sinu ln x C ,
x
微分方程的解为 sin y ln x C. x
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.
解
dy dx
注意: 在n 阶微分方程中,y(n) 必须出现, 而 x, y, y, y, , y(n1) 等变量可以不出现. 例如n 阶微分方程y(n) 1 0 中,除 y(n) 外, 其他变量都没有出现.
线性与非线性微分方程:
如果方程F( x, y, y, , y(n) ) 0 的左端为
的什么解?
思考题解答
y 6e2x , y 12e2 x ,
y 4 y 12e2x 4 3e2x 0,
y 3e2x 中不含任意常数,
故为微分方程的特解.
6.2 一阶微分方程
一阶微分方程的一般形式是
F( x, y, y) 0
如果一阶导数可解出,则可写为
1
dx 1 x
,
两边积分
dy
dx
2e y 1 1 x
,
e ydy dx
2e y
, 1 x
d(2 e y ) 2e y
d(1 x) , 1 x
ln 2 e y
ln1
x
C1
,
ln (2 e y )(1 x) C2, 得通解:(2 e y )(1 x) C.
三. 一阶线性微分方程
一阶线性微分方程的标准形式:
dy P( x) y Q( x) (1) dx
当Q( x) 0, (1) 称为齐次方程 .
yy 2xy 3,
y cos y 1,
非线性的.
当Q( x) 0, (1) 称为非齐次方程.
方程 dy P( x) y 0 (2) dx
微分方程的解: 代入微分方程能使方程成为恒 等式的函数称之为微分方程的解.
设 y ( x) 在区间I 上有直到n 阶的导数,
如果把( x) 代入方程F( x, y, y, , y(n) ) 0 使其在I 上为恒等式即,
F( x,( x),( x), , (n)( x)) 0 . ( x I ) 则称 y ( x) 为方程F( x, y, y, , y(n) ) 0 在
dx
dx
代入原方程,得 u x du f (u), dx
即 x du f (u) u 可分离变量的微分方程 . dx
求出解后,以u y 代入即得原方程的通解. x
例 3 求解微分方程
( x y cos y )dx x cos y dy 0.
x
x
解 令u y ,即 y xu, 则 dy xdu udx, x
称为对应于方程(1) 的齐次方程.
例如 dy y x2 , dx x sint t 2 , 线性的;
dx
dt
一阶线性微分方程的解法
1. 先求线性齐次方程 dy P( x) y 0 的通解: dx
用分离变量法
dy P( x)dx, y
dy y
P(
x)dx,
ln y P( x)dx C1, ( C eC1 )
变易成x 待定函数C(x), 就可得非齐次方程的解
的形式: y C( x)e P( x)dx .
进而定出函数C ( x) ,便可求出非齐次方程的通解.
y C( x)e P( x)dx C( x)[P( x)]e P( x)dx ,
u(u 1)(u 2) x 2 u 2 u u 2 u 1
x
ln u 1 3 ln(u 2) u 2 1 ln u ln x ln C ,
2
2
u1 3 Cx.
u(u 2)2
微分方程的解为 ( y x)2 Cy( y 2 x)3 .
y及y, y, , y(n) 的一次有理整式则,称此方程 为n 阶线性微分方程.
不是线性方程的方程称为非线性微分方程.
例如 y P( x) y Q( x) 是一阶线性微分方程.
x( y)2 2 yy x 0, y 7sin y 0 .
都是非线性微分方程.
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
du 2u2 u u x dx 1 u u2 ,
(u 1 u2 )du dx , [1 ( 1 1 ) 2 1 ]du dx ,
为0 次齐次函数. 取 t 1 ,
x
对0 次齐次函数F( x,
y)
F (1,
y )
f(
y ).
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
对上式积分,得ln y ( x) C1 P( x)dx,
即 y e( x)C1 e P( x)dx C ( x) e P( x)dx .
称为所给可分离变量微分方程的隐函数形式的通解.
例1 求微分方程 dy 2 xy 的通解. dx
解
分离变量
dy 2xdx, y
( y0)
两端积分
dy y
2 xdx,
ln y x2 C1, y eC1e x2 , y eC1e x2 ,
(t 2 x)dt xdx 0,
2z x y.
xy
如果在微分方程中,自变量的个数只有一(个即未知函
数是一元函数), 则称这种微分方常程微分为方程.
一般形式为F( x, y, y, , y(n) ) 0
自变量的个数为两个或两个以上的微分方程称为
偏微分方程 .
微分方程的阶: 微分方程中出现的未知函数的最高
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
k2
x
0的解.
并求满
足初始条件 x t 0
A,
dx dt
t 0
0的特解.
解
dx dt
kC1
sinkt
kC2
cos kt,
d2x dt 2
k 2C1
cos
kt
k 2C2
sinkt,
将
d2 dt
x
2
和x的表达式代入原方程,
k 2 (C1 cos kt C2 sinkt) k 2 (C1 cos kt C2 sinkt) 0.
I 上的一个解.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且独立任
意常数的个数与微分方程的阶数相同.
n 个常数C1,C2 , ,Cn 独立指的是:它们不能 通过四则运算合并而使得常数的个数减少. 例如
C1 xC2 , C1 sin x C2 cos x 中C1,C2 是独立的. 而C1 C2 x C x , C1 C2 x C x ,
则称原微分方程为可分离变量的微分方程.
例如
dy
4
2x2 y5
dx
4
y 5dy
2 x 2dx,
可分离变量的微分方程
g( y)dy f ( x)dx (*) 解法: 对(*) 两边求不定积分,得
g( y)dy f ( x)dx
设 G(t) g(t), F(t) f (t) , 则
2. 方程可能有解而无通解. ( y)2 y2 0 只有特解 y 0 . 3. 通解不一定能包含所有的解.
( y)2 xy y 0 有通解 y Cx C 2 ,
另一方面解y x2 不在通解内(不能由通解得到). 4
思考题
函数 y 3e2x 是微分方程 y 4 y 0
齐次方程的通解为 y Ce P( x)dx .
2. 再求线性非齐次方程 dy P( x) y Q( x) 的通解: dx
讨论 dy Q( x) dx P( x)dx, 由于 y 是 x 的函数,
yy
可令 Q( x) ( x),
y
并设 ( x)dx ( x) C1,
由 y(0) 0,得C 1,
故该初值问题的解(为2 e y )(1 x) 1 .
二. 齐 次 方 程
如果 F (tx, ty) t k F ( x, y), t 0 成立, 则 F( x, y) 称为k 次齐次函数.
当k 0 时,F(tx, ty) F( x, y), 则 F( x, y) 称
( x uxcosu)dx x cos u(udx xdu) 0,
cos udu dx , sinu ln x C ,
x
微分方程的解为 sin y ln x C. x
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.
解
dy dx
注意: 在n 阶微分方程中,y(n) 必须出现, 而 x, y, y, y, , y(n1) 等变量可以不出现. 例如n 阶微分方程y(n) 1 0 中,除 y(n) 外, 其他变量都没有出现.
线性与非线性微分方程:
如果方程F( x, y, y, , y(n) ) 0 的左端为
的什么解?
思考题解答
y 6e2x , y 12e2 x ,
y 4 y 12e2x 4 3e2x 0,
y 3e2x 中不含任意常数,
故为微分方程的特解.
6.2 一阶微分方程
一阶微分方程的一般形式是
F( x, y, y) 0
如果一阶导数可解出,则可写为
1
dx 1 x
,
两边积分
dy
dx
2e y 1 1 x
,
e ydy dx
2e y
, 1 x
d(2 e y ) 2e y
d(1 x) , 1 x
ln 2 e y
ln1
x
C1
,
ln (2 e y )(1 x) C2, 得通解:(2 e y )(1 x) C.
三. 一阶线性微分方程
一阶线性微分方程的标准形式:
dy P( x) y Q( x) (1) dx
当Q( x) 0, (1) 称为齐次方程 .
yy 2xy 3,
y cos y 1,
非线性的.
当Q( x) 0, (1) 称为非齐次方程.
方程 dy P( x) y 0 (2) dx
微分方程的解: 代入微分方程能使方程成为恒 等式的函数称之为微分方程的解.
设 y ( x) 在区间I 上有直到n 阶的导数,
如果把( x) 代入方程F( x, y, y, , y(n) ) 0 使其在I 上为恒等式即,
F( x,( x),( x), , (n)( x)) 0 . ( x I ) 则称 y ( x) 为方程F( x, y, y, , y(n) ) 0 在
dx
dx
代入原方程,得 u x du f (u), dx
即 x du f (u) u 可分离变量的微分方程 . dx
求出解后,以u y 代入即得原方程的通解. x
例 3 求解微分方程
( x y cos y )dx x cos y dy 0.
x
x
解 令u y ,即 y xu, 则 dy xdu udx, x
称为对应于方程(1) 的齐次方程.
例如 dy y x2 , dx x sint t 2 , 线性的;
dx
dt
一阶线性微分方程的解法
1. 先求线性齐次方程 dy P( x) y 0 的通解: dx
用分离变量法
dy P( x)dx, y
dy y
P(
x)dx,
ln y P( x)dx C1, ( C eC1 )
变易成x 待定函数C(x), 就可得非齐次方程的解
的形式: y C( x)e P( x)dx .
进而定出函数C ( x) ,便可求出非齐次方程的通解.
y C( x)e P( x)dx C( x)[P( x)]e P( x)dx ,
u(u 1)(u 2) x 2 u 2 u u 2 u 1
x
ln u 1 3 ln(u 2) u 2 1 ln u ln x ln C ,
2
2
u1 3 Cx.
u(u 2)2
微分方程的解为 ( y x)2 Cy( y 2 x)3 .
y及y, y, , y(n) 的一次有理整式则,称此方程 为n 阶线性微分方程.
不是线性方程的方程称为非线性微分方程.
例如 y P( x) y Q( x) 是一阶线性微分方程.
x( y)2 2 yy x 0, y 7sin y 0 .
都是非线性微分方程.
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
du 2u2 u u x dx 1 u u2 ,
(u 1 u2 )du dx , [1 ( 1 1 ) 2 1 ]du dx ,
为0 次齐次函数. 取 t 1 ,
x
对0 次齐次函数F( x,
y)
F (1,
y )
f(
y ).
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
对上式积分,得ln y ( x) C1 P( x)dx,
即 y e( x)C1 e P( x)dx C ( x) e P( x)dx .