高三文科数学考前训练(2)
【高三数学试题】高三数学试题2(文科)及参考答案
8题图高三数学试题2(文科)参考公式: 棱锥的体积公式13V Sh=,其中S 是底面面积,h 是高. 一、选择题:1.设全集{|15}U x Z x =∈-≤≤,{1,2,5}A =,}41|{<<-∈=x N x B ,则U BC A =A .{}3B .{}0,3C .{}0,4D .{}0,3,42.已知i 为虚数单位,则复数2(1)(1)i i -+等于 A .22i -+ B .22i -- C .22i + D .22i - 3.若||1,||2,a b c a b ===+且c a ⊥,则向量a 与b 的夹角为A. 030B. 060C. 0120D. 0150 4.到定点(0,)(p 其中0)p >的距离等于到定直线y p =-的距离的轨迹方程为A. px y 22=B. py x 22=C.px y 42= D.py x 42= 5.已知下列四个命题:① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直; ② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直; ④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直; 其中真命题的序号是A .①②B .②③C .②④D .③④6.若函数2()f x x bx c =++的图象的对称轴为2x =,则函数()f x 的导函数()f x '的图象不经过 A .第一象限 B .第二象限 C .第三象限 D .第四象限7. 下列说法错误的是A. 命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”B. “1x >”是“0x >”的充分不必要条件C. 若p q ∨为真命题,则p 、q 均为真命题D. 若命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥”. 8.右图是一个几何体的三视图,根据图中的数据,可得该几何体的表面积是A. 32πB. 16πC. 12πD. 8π第16题图第11题9.在△ABC 中,角C B A ,,的对边分别为c b a ,,,已知0,453A aB π===则b =A. 2B. 3C. D. 410.若干个球中含有至少3个红球和3个黑球,从中摸出3个球,其中含有红球的概率为0.5,含有黑球的概率为0.8,问摸到的3个球中既有红球也有黑球的概率为A. 0.2B. 0.3C. 0.4D. 0.5 二、填空题:11. 一个算法的程序框图如右图所示,则该程序输出的结果为_________.12.设等比数列{}n a 的公比21=q ,前n 项和为n S ,则 44a S = .13.若点Q P ,分别是圆22221,(3)(2)1x y x y +=-++= 上的动点,则PQ的最大值为14.不等式组260300x y x y x +-≤⎧⎪+-≥⎨⎪≥⎩所表示的平面区域的面积为 .三、解答题: 15.已知函数()2()sin cos cos 2f x x x x =++,x R∈.(Ⅰ) 求()f x 的最小正周期以及()f x 的值域; (Ⅱ) 函数()21g x x =+的图象经过怎样的变换得到函数()x f 的图象?16.从某学校高三年级800名学生中 随机抽取50名测量身高,据测量被 抽取的学生的身高全部介于155cm 和 195cm 之间,将测量结果按如下方式 分成八组:第一组[)155,160.第二组[)160,165;…第八组[]190,195,1C1B1A1DCBADFE第17题图右图是按上述分组方法得到的条形图. (Ⅰ) 根据已知条件填写下面表格:组别 1 2 3 4 5 6 7 8 样本数 (Ⅱ) 估计这所学校高三年级800名学生中身高在180cm 以上(含180cm )的人数;(Ⅲ) 在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少? 17.在棱长为a 的正方体1111ABCD A B C D -中,E 是线段11A C 的中点,AC BD F =.(Ⅰ) 求证:CE ⊥BD ;(Ⅱ) 求证:CE ∥平面1A BD;21世纪教育网 (Ⅲ) 求三棱锥1D A BC-的体积.18. 已知{}n a 是等比数列,12a =,318a =;{}n b 是等差数列,12b =,1234b b b b +++=12320a a a ++>.(Ⅰ) 求数列{}n a 的前n 项和nS 的公式;(Ⅱ) 求数列{}n b 的通项公式;(Ⅲ) 设14732n n P b b b b -=++++,10121428n n Q b b b b +=++++,其中1,2,3,n =,试比较nP 与nQ 的大小,并证明你的结论.19.已知点P 是函数y =.(Ⅰ) 是否存在两个定点,使P 到它们的距离之和为常数,若存在,求出这两个定点的坐标; (Ⅱ) 设点Q 的坐标为()0,1-,求PQ 最大值.20.已知定义在()0,+∞的函数()ln ()af x x a R x =-∈,当1=a 时,()f x 在区间()2,1上有一个零点;现给出下面参考数据:x1 1.25 1.375 1.5 1.75 ()f x 1- 0.58-0.44-0.26- 0.012-x1.76573 1.78125 1.81251.875 2 ()f x 0.0020.020.0430.0950.193请你回答下列问题(Ⅰ)求出函数x x x f 1ln )(-=在区间(1,2)上的零点(要求误差不超过0.1);(Ⅱ)若方程0)(=x f 恰有2个不同的实数解,求实数a 的取值范围.高三数学试题2(文科)参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案BDCDDBCCCB二、填空题11.45 12.15 1314.92三、解答题: 15.解: ()sin 2cos 21)14f x x x x π=++=++(Ⅰ)函数()f x 的最小正周期22T ππ==值域为[1;(Ⅱ)函数()21g x x =+图象向左平移8π个单位得到函数()x f 的图象16.(本题满分12分)解: (Ⅰ)由条形图得第七组频率为:1(0.0420.0820.220.3)0.06,0.06503-⨯+⨯+⨯+=⨯=∴第七组的人数为3人组别 1 2 3 4 5 6 7 8 样本中人数 2 4 10 10 15 4 3 2 (Ⅱ)由条形图得前五组频率为 (0.008+0.016+0.04+0.04+0.06)×5=0.82, 后三组频率为1-0.82=0.18估计这所学校高三年级身高在180cm 以上(含180cm )的人数800×0.18=144(人)(Ⅲ)第二组四人记为a 、b 、c 、d ,其中a 为男生,b 、c 、d 为女生,第七组三人记为1、2、3, 其中1、2为男生,3为女生,基本事件列表如下:a b c d 1 1a 1b 1c 1d 2 2a 2b 2c 2d 3 3a 3b 3c 3d所以基本事件有12个恰为一男一女的事件有1b ,1c ,1d ,2b ,2c ,2d ,3a ;共7个1C1B1A1DCBADFE因此实验小组中,恰为一男一女的概率是712.17.(本题满分14分)解: (Ⅰ)证明:根据正方体的性质BD AC ⊥, 因为1AA ABCD BD ABCD⊥⊂平面,平面,所以1BD AA ⊥,又1ACAA A=所以11BD ACC A ⊥平面,11CE ACC A ⊂平面,所以CE ⊥BD ;(Ⅱ)证明:连接1A F,因为111111////AA BB CC AA BB CC ==,,所以11ACC A 为平行四边形,因此1111//AC AC AC AC=,由于E 是线段11A C 的中点,所以1//CE FA ,因为1FA ⊂面1A BD,CE ⊄平面1A BD,所以CE ∥平面1A BD(Ⅲ)1131136D A BC A BCDBCD a V V S A A --∆==⋅⋅=18.(本题满分14分)解:(Ⅰ)设{}n a 的公比为q ,由231a a q =得2319a q a ==,3q =± 当3q =-时,12326181420a a a ++=-+=<,这与12320a a a ++>矛盾,故舍去;当3q =时,12326182620a a a ++=++=>,故符合题意.从而数列{}n a 的前n 项和()2133113n n n S -==--(Ⅱ)设数列{}n b 的公差为d ,由123426b b b b +++=,得14626b d +=,又12b =解得3d =,所以31n b n =-;(Ⅲ)14732,,,,n b b b b -组成以3d 为公差的等差数列,所以()211953222n n n P nb d n n -=+⋅=-10121428,,,,n b b b b +组成以2d 为公差的等差数列,1029b =,所以()210123262n n n Q nb d n n -=+⋅=+,22953()(326)(19)222n n P Q n n n n n n -=--+=-所以对于任意正整数n ,当20n ≥时,n nP Q >; 当19n =时,n nP Q =; 当18n ≤时,n nP Q <.19.(本题满分14分)解:(Ⅰ)由y =221(0)4x y y +=≥所以P是半个椭圆上的动点,这个椭圆的焦点坐标为())根据椭圆的定义P 到这两个焦点的距离之和为4,所以存在两个定点使P 到它们的距离之和为常数,这两个定点的坐标分别为());(Ⅱ)设P 点坐标为(),x y ,则2PQ =()221x y ++因为y =2244x y =-,2PQ =()221x y ++=2325y y -++ 当[]10,13y =∈时,2PQ 取最大值163,PQ20.(本题满分14分)解:(Ⅰ)假设x x x f 1ln )(-=在区间()2,1上的零点为0x ,因为(1)10,(2)0.1930,(1.5)0.260f f f =-<=>=-<,所以0x(1.5,2)∈ 因为(1.75)0.0120f =-<,所以0x(1.75,2)∈, 因为(1.875)0.0950f =>,所以0x(1.75,1.875)∈因为1.875 1.750.06250.12-=<,所以可以取0 1.8125x =函数x x x f 1ln )(-=在区间()2,1上的零点近似值是:1.8125(说明:由于(1.8125)0.0430f =>,所以区间(1.75,1.85)内的数均可以是合乎要求的解)(Ⅱ)∵21()a f x x x '=+, ∴当0a ≥时,()0(0,)f x x '>∈+∞,即),0(ln )(+∞+=在x ax x f 为单调增函数,故),0(0)(+∞=在x f 不可能有两实根, ∴0a <,令()0f x '=,解得x a =-当0x a <<-时,()0,()f x f x '<递减,当x a >-时,()0()f x f x '>,递增,∴()f x 在x a =-处取到极小值1)ln(+-a 又当0()x f x →→+∞,,当,()x f x →+∞→+∞要使0x >时,()f x 与x 轴有两个交点当且仅当ln()10a -+<.解得01<<-a e ,故实数a 的取值范围⎪⎭⎫ ⎝⎛-0,1e。
2022届山西省太原五中(太原市)高三下学期4月模拟考试(二)数学(文)试题(PDF版)
2022年高三年级模拟考试(二)数学试卷(文科)第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2M x Z x =∈≤,()(){}1230N x x x =+->,则R M N ⋂=ð( ) A .{}1,0-B .{}1,0,1-C .{}0,1,2D .{}2,1,2--2.设z =3-i ,则2z -=( )A .0B .1C D .23.甲、乙两台机床生产同一种零件,根据两台机床每天生产零件的次品数,绘制了如下茎叶图,则下列判断错误的是( )A .甲的平均数大于乙的平均数B .甲的众数大于乙的众数C .甲的方差大于乙的方差D .甲的性能优于乙的性能4.已知命题p :若1x >,则21x>;命题q :0x ∀>,lg 0x >.那么下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝5.已知函数()22cos 14f x x π⎛⎫=--⎪⎝⎭,则下列说法正确的是( ) A .()f x 是最小正周期为π的奇函数 B .()f x 是最小正周期为π的偶函数 C .()f x 是最小正周期为2π的奇函数 D .()f x 是最小正周期为2π的偶函数 6.我国古代数学名著《数书九章》中有“米谷粒分”问题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒.则这批米内夹谷约为( ) A .134石B .156石C .169石D .238石7.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,()6cos 13cos B b A =-,则bc=( )A .B .CD .38.已知双曲线()222210,0x y a b a b-=>>的渐近线与圆()2223x y -+=相切,则双曲线的离心率为( )A .2B .3C .32D .529.在三棱柱111ABC A B C -中,各棱长都相等,侧棱垂直于底面,点D 是1BC 与1B C 的交点,则AD 与平面11BB C C 所成角的正弦值是( )A .35B C D .1210.已知函数()112f x x x =--,则( ) A .()f x 在(),2-∞上单调递增 B .()f x 在()2,+∞上单调递减 C .()y f x =的图象关于直线x =1对称D .()y f x =的图象关于点()1,0对称11.过抛物线28x y =焦点F 的直线交抛物线于M ,N 两点,若MF FN λ=u u u r u u u r,9MN =,则λ的值为( )A .13B .12C .13或3 D .12或2 12.已知32a=,53b=,则下列结论正确的有( ) ①a b <;②11a b a b+<+;③2a b ab +<;④b a a a b b +<+. A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.试题中包含两空的,答对第一空的给3分,全部答对的给5分,13.曲线()32ln f x x x x =+-在点()()1,1f 处的切线方程为______.14.已知向量a r ,b r 满足323a b ==r r ,若2a b +=r ra r ,b r 夹角的余弦值为______.15.已知数列{}n a 的首项为1,前n 项和为n S ,且()12n n nS n S +=+,则数列{}n a 的通项公式n a =______. 16.2021年9月,我国三星堆遗址出土国宝级文物“神树纹玉琮”,如图所示,该玉琮由整块灰白色玉料加工而成,外方内圆,中空贯通,形状对称.为计算玉琮的密度,需要获得其体积等数据.已知玉琮内壁空心圆柱的高为h ,且其底面内直径为d ,正方体(四个侧面与圆柱外壁均相切)的棱长为a ,且d a h <<,则玉琮的体积为______.(忽略表面磨损等)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)已知数列{}n a 为公差大于0的等差数列,2512a a +=,且1a ,3a ,13a 成等比数列. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=⋅,数列{}n b 的前n 项和为n S ,若2041m S =,求m 的值.18.(本小题满分12分)某网络营销部门随机抽查了某市200名网友在“双11”时的网购金额,所得数据如下表:已知网购金额不超过3千元与超过3千元的人数比恰为3:2. (1)试确定x ,y ,p ,q 的值,并补全频率分布直方图(如图); (2)估计网购金额的中位数;(3)在一次网购中,小芳和小红随机从“微信,支付宝,银行卡”三种支付方式中任选一种方式进行支付,求两人恰好选择同一种支付方式的概率. 19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧面11ACC A 是矩形,AC ⊥AB ,12AB AA ==,AC =3,1120A AB ∠=︒,E ,F 分别为棱11A B ,BC 的中点,G 为线段CF 的中点. (1)证明:1AG ∥平面AEF ; (2)求点C 到平面AEF 的距离.20.(本小题满分12分) 已知函数()ln a f x x x=+,()sin xg x e x =+,其中a ∈R . (1)讨论函数()f x 的单调性;(2)若a =1,证明:()()g x f x x<.21.(本小题满分12分)已知椭圆C :()222210x y a b a b+=>>的左焦点为1F ,离心率为12,过1F 的直线与椭圆交于A ,B 两点,当AB ⊥x 轴时,3AB =. (1)求椭圆C 的方程;(2)设经过点()0,1H -的直线l 与椭圆C 相交于P ,Q 两点,点P 关于y 轴的对称点为M ,直线MQ 与y 轴交于点N ,求△PQN 面积的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin ,cos sin x y θθθθ=+⎧⎨=-⎩(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫-= ⎪⎝⎭. (1)将曲线C 和直线l 化为直角坐标方程;(2)过原点O 引一条射线,分别交曲线C 和直线l 于A ,B 两点,射线上另有一点M 满足2OA OM OB =⋅,求点M 的轨迹方程.23.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()12f x x x a =+--的最大值为M ,正实数m ,n 满足m +n =M . (1)若不等式()10f x +≤有解,求a 的取值范围;(2)当12a =时,对任意正实数p ,q ,证明:≤太原市2022年高三年级模拟试题(二)数学试题(文)参考答案一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13.y =1 14.23 15.n 16.()22344a h a d h a ππ-+-三、解答题(共70分) 17.(本小题满分12分)解:(1)数列{}n a 为公差d 大于0的等差数列,2512a a +=,且1a ,3a ,13a 成等比数列,所以()()112111412212a d a d a d a a d +++=⎧⎪⎨+=⋅+⎪⎩,解得112a d =⎧⎨=⎩ 整理得()12121n a n n =+-=- (2)由(1)得,()()1111212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭.所以12111111..1.23352121n n S b b b n n ⎛⎫=++⋯+=-+-+⋯+- ⎪-+⎝⎭11122121nn n ⎛⎫=-= ⎪++⎝⎭. 由于202141m m S m ==+,解得m =20.18.(本小题满分12分)解:(1)根据题意有162416242001624316142x y x x y ++++++=⎧⎪++⎨=⎪++⎩,解得8050x y =⎧⎨=⎩.∴800.4200p ==,500.25200q ==, 补全频率分布直方图如图所示:(2)由(1)可知,网购金额不高于3千元的频率为0.08+0.12+0.4=0.6,所以网购金额的中位数在(]2,3内, 放网购金额的中位数约为0.13 2.750.4-=千元. (3)设“微信、支付宝、银行卡”三种支付方式分别为A 、B 、C ,则两人从中任选一种支付方式共有9种等可能的结果,即AA 、AB 、AC 、BB 、BA 、BC 、CA 、CB 、CC , 其中两人恰好选择同一种支付方式的有3种, ∴P (两人恰好选择同一种支付方式)3193==. 19.(本小题满分12分)(1)证明:连1A B 交AE 于点M ,连MF .∵F 为BC 的中点,G 为CF 的中点,∴2BFFG=, ∵1A E BA ∥,112A E BA =,∴1A EM BAM ∽△△, ∴112BM BA A M A E ==,∴1BF BMFG MA =,∴1FM AG ∥. 又∵1AG ⊂/平面AEF ,FM ⊂平面AEF ∴1AG ∥平面AEF .(2)解:∵F 为BC 中点 ∴C 到平面AEF 距离等于B 到平面AEF 距离相等 由条件知AC ⊥面11ABB A ∴11AC ⊥⊥面11ABB A ,11AC AE ⊥, ∵1160AA B ∠=︒,11A E =,12A A = ∴11AE A B ⊥, ∴AE ⊥平面111A B C ,即AE ⊥平面ABC ,又∵AE =AF =B 到平面AEF 的距离为h ,由C AEF B AEF F ABE V V V ---==,得11113232ABC AE AF h S AE ⋅⋅⋅⋅=⋅⋅⋅△,1232h =⋅⋅∴h ==即C 到平面AEF 20.(本小题满分12分) 解:(1)函数()ln af x x x=+的定义域为()0,+∞, ∵()221a x af x x x x-'=-=, 当0a ≤时,()0f x '>,()f x 在()0,+∞上单调递增,当0a >时,令()0f x '>,解得x a >,令()0f x '<解得0x a <<, 综上,当0a ≤时,()f x 在()0,+∞上单调递增,无递减区间 当0a >时.()f x 在()0,a 上单调递减,在(),a +∞上单调递增.(2)证明:∵a =1,∴()1ln f x x x =+,即证:1sin ln x e xx x x++<,∵0x >,即证sin ln 10xe x x x +-->, 当()0,1x ∈时,1xe >,sin 0x >,ln 0x x <,∴sin ln 1110xe x x x +-->-=,当[)1,x ∈+∞时,令()sin ln 1xg x e x x x =+--,则()cos ln 1xg x e x x '=+--,()1sin 110xg x e x e x''=--≥-->, ∴()cos ln 1xg x e x x '=+--在[)1,+∞上单调递增,()()1cos1010g x g e ''≥=+--> ()g x 在[)1,+∞上单调递增,∴()()1sin1010g x g e ≥=+-->,综上,()sin x e xf x x +<,即()()g x f x x<.21.(本小题满分12分)解:(1)由题意可知:12c e a ==,可得2b a =. 又左焦点()1,0F c -,当MN ⊥x 轴时,将x =-c 带入得422b y a=.∴223b MN a ==.由223,b a b a ⎧=⎪⎪⎨⎪=⎪⎩解得2,a b =⎧⎪⎨=⎪⎩ 所以椭圆C 的方程为22143x y +=.(2)由题意可知,直线l 斜率必存在且不为0,设直线l 的方程为()10y kx k =-≠.设()11,P x y ,()22,Q x y ,由221,1,43y kx x y =-⎧⎪⎨+=⎪⎩得()2243880k x kx +--=.()()()22284843192960k k k ∆=---+=+>,122843k x x k +=+,122843x x k -=+, ∵P 关于y 轴的对称点为F ,()11,F x y -,∴直线FQ 的方程为()211121y y y y x x x x --=++.令x =0,得()()122112211212121211213x kx x kx x y x y kx x y x x x x x x -+-+===-=-+++,∴()0,3G -.∴△PQG 的面积121212S NG x x x x =-=-===, 令t=)t ∈+∞,∴S t t==+,∵1t t ⎫+∈+∞⎪⎪⎝⎭,S ⎛∈ ⎝⎭,∴△PQG面积的取值范围⎛ ⎝⎭. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】解:(1)由C 的参数方程:()()2222cos sin cos sin 24x y θθθθ+=++-=,∴C :22182x y +=,由cos 4πρθ⎛⎫-= ⎪⎝⎭得cos sin 16ρθρθ+= ∴160x y +-=. (2)设(),M ρθ,()1,A ρθ,()2,B ρθ则222211cos sin 182ρθρθ+=,22cos sin 16ρθρθ+=,即222121cos sin 821cos sin 16θθρθθρ⎧=+⎪⎪⎨+⎪=⎪⎩, 由2OA OM OB =得221ρρρ=即22111ρρρ=,∴22cos sin cos sin 8216θθθθρ++= 即228216x y x y++=, ∵0ρ≠ ∴M 的轨迹方程为22280x y x y +--=(去掉()0,0).23.(本小题满分10分)【选修4-5:不等式选讲】(1)解:由绝对值不等式1212x x x x -≤-得121212x x x x x x --≤-≤-, 故()()111222f x x x a x x a a =+--≥-+--=-+, 当且仅当11022x a ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭时取“=” 所以不等式()10f x +≤有解的充要条件是1102a -+≤,解得32a ≤-或12a ≥,故实数a 的取值范围为31,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭(2)证明:由题可得()111112222f x x x x x ⎛⎫=+--≥-+--= ⎪⎝⎭, 当且仅当12x ≥时取“=”,故()max 1f x = 所以M =1.m +n =1.因为(2222220m p n q mn-=++=-≤所以(22≤故≤(注:以上各题其他正确解法相应赋分)。
2020年贵州省毕节市高考(文科)数学第二次模拟测试试卷 解析版
2020年高考数学第二次模拟试卷(文科)一、选择题1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5} 2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.274.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+15.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣17.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}二、填空题13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.14.计算:log10+log50.25﹣()=.15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为.16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5}【分析】求出集合M,N,由此能求出M∪N.解:∵集合M={x|≤0}={x|3≤x<7},N={x|x2﹣6x+5<0}={x|1<x<5},∴M∪N={x|1<x<7}.故选:A.2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:∵zi=(1﹣i)(2+i)=3﹣i,∴z=.故选:A.3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.27【分析】由题意利用分层抽样的定义,求得结果.解:设高三年级总人数为x,则由题意可得=,∴x=300(人),故选:B.4.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+1【分析】由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解:结合函数y=A sin(ωx+φ)+b在一个周期内的图象,可得A==2,b=1,•=﹣,∴ω=2.再根据五点法作图可得2×+φ=0,求得φ=﹣,故函数的解析式为y=2sin(2x ﹣)+1,故选:D.5.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.【分析】根据即可得出,进而可得出,然后根据B,P,N三点共线即可得出t的值.解:∵,∴,∴,且B,P,N三点共线,∴,解得.故选:C.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣1【分析】由已知利用同角三角函数基本关系式可求tanθ的值,进而利用二倍角公式,同角三角函数基本关系式化简所求即可求值得解.解:∵==3,∴tanθ=﹣2,∴sinθcosθ+cos2θ====﹣1.故选:D.7.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.【分析】先计算f(0),再根据恒等式寻找f(x)的周期或规律得出答案.解:取x=1,y=0,得3f(0)f(1)=f(1)+f(1)=,∴f(0)=,取x=n,y=1,有3f(n)f(1)=f(n+1)+f(n﹣1),即f(n)=f(n+1)+f(n﹣1),同理:f(n+1)=f(n+2)+f(n),∴f(n+2)=﹣f(n﹣1),∴f(n)=﹣f(n﹣3)=f(n﹣6)所以函数是周期函数,周期T=6,故f(2020)=f(3×336+4)=f(4).∵3f(x)f(y)=f(x+y)+f(x﹣y)令x=y=1,得3f2(1)=f(2)+f(0),可得f(2)=﹣,令x=2,y=1,得3f(2)f(1)=f(3)+f(1),解得f(3)=﹣,令x=3,y=1,得3f(3)f(1)=f(4)+f(2),解得f(4)=﹣.∴f(2020)=﹣;故选:C.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x【分析】由题意可得直线AB的方程为:y=(x﹣),与抛物线方程联立,利用韦达定理得到x A+x B=7p,由抛物线的定义可知:|AB|=x A+x B+p=8p=16,即可求出p的值,从而求出抛物线的方程.解:∵抛物线C:y2=2px,∴P(,0),∴直线AB的方程为:y=(x﹣),联立方程,消去y得:,∴x A+x B=7p,由|AB|=16,及抛物线的定义可知:|AB|=x A+x B+p=8p=16,∴p=2,∴抛物线的方程为:y2=4x,故选:C.9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π【分析】设三棱锥P﹣ABC的外接球的半径为R.由PB=PC=1,BC=,根据勾股定理的逆定理可得:PB⊥PC.根据AP⊥平面PBC,可得:AP⊥PB,AP⊥PC.可得三棱锥P﹣ABC的外接球的半径与三条棱长的关系,进而得出:三棱锥P﹣ABC的外接球体积.解:设三棱锥P﹣ABC的外接球的半径为R.∵PB=PC=1,BC=,∴PB2+PC2=BC2,∴PB⊥PC.又AP⊥平面PBC,∴AP⊥PB,AP⊥PC.∴(2R)2=12+12+22=6,解得:R=.则三棱锥P﹣ABC的外接球体积=π×=π.故选:D.10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题【分析】根据面面平行的判定方法及线面平行几何特征,可以判断P的真假;根据面面平行的定义及判定定理可得q的真假.解:如果平面内有无数条相互平行的直线都与平面平行,则两个平面不一定平行,故P 为假命题;如果平面内任意一条直线都与平面平行,由面面平行的判定定理,可得两个平面平行,故q为真命题.∴¬p∧¬q为假命题;“p∧q”为假命题;“¬p∧q”为真命题;“p∨¬q”为假命题.故选:C.11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或【分析】由已知结合正弦定理及和角公式进行化简可求A,然后结合正弦定理可求sin C,进而可求C.解:因为b=a(cos C+sin C),由正弦定理可得,sin B=sin A cos C+sin A sin C,所以sin A cos C+sin C cos A=sin A cos C+sin A sin C,所以sin A=cos A,即A=,因为a=1,c=,由正弦定理可得,,所以sin C=,因为c>a,所以C>A,故C=.故选:B.12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}【分析】函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即方程|e x﹣1|2﹣|e x﹣1|+k =0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0,作出函数t=|e x﹣1|的图象,可得方程t2﹣t+k=0有根的情况,然后分类利用根的分布分析,列关于k的不等式组求解.解:函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即f(x)=|e x﹣1|2﹣|e x﹣1|+k恰有1个零点,也就是方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0.作出函数t=|e x﹣1|的图象,要使方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,则方程t2﹣t+k=0有根的情况为:①两相等0根,该种情况不存在;②两相等大于等于1的根,该种情况也不存在;③一根大于等于1,而另一个小于0,此时,解得k<0.∴k的取值集合是{k|k<0}.故选:A.二、填空题:共4小题,每小题5分,共20分.13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.【分析】基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,由此能求出该居民会被处罚的概率.解:2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,则该居民会被处罚的概率为p=.故答案为:.14.计算:log10+log50.25﹣()=.【分析】由已知结合对数的运算性质及对数恒等式即可求解.解:log10+log50.25﹣()=2log510+log50.25﹣()=log5100×0.25﹣=2﹣.故答案为:15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为(﹣1,0].【分析】先求导,再令x=1,求出函数的解析式,再根据导数和函数的单调性的关系即可求出.解:∵f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,∴f′(x)=1﹣2f'(1)•﹣f(0)e x,令x=1可得f′(1)=1﹣2f'(1)•﹣f(0)e,由f(0)=﹣f(0),∴f(0)=0,∴f′(1)=1﹣f'(1),∴f′(1)=,∴f(x)=x﹣ln(x+1),x>﹣1,∴f′(x)=1﹣≤0,解得﹣1<x≤0,故答案为:(﹣1,0].16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为2.【分析】先利用FM与渐近线垂直,写出直线FM的方程,从而求得点P的坐标,利用|FM|=λ|PM,求得点M的坐标,最后由点M在渐近线上,代入得a、b、c间的等式,进而变换求出离心率.解:设F(c,0),则c2=a2+b2∵双曲线C:﹣=1的渐近线方程为y=±x,∴垂线FM的斜率为﹣,∴直线FM的方程为y=﹣(x﹣c),令x=0,得P的坐标(0,),设M(x,y),∵|FM|=λ|PM|,∴(x﹣c,y)=λ(﹣x,﹣y),∴x﹣c=﹣λx且y=﹣4y,即x=,y=,代入y=x,得,即λa2=b2,∴λa2=c2﹣a2,∴(λ+1)a2=c2,∴a=c,∵e=,∴λ=2,故答案为:2.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.【分析】(Ⅰ)由等差数列的通项公式、求和公式,以及等比数列的中项性质,解方程可得首项和公差,进而得到所求通项公式;(Ⅱ)由等比数列的通项公式可得b n﹣3a n,进而得到b n,再由数列的分组求和,结合等差数列和等比数列的求和公式,计算可得所求和.解:(Ⅰ)根据题意得:S4+S6=4a1+6d+6a1+15d=10a1+21d=31,由a1,a3,a9成等比数列可得,∴,∴,∵d≠0,∴a1=d=1,∴a n=1+(n﹣1)=n,n∈N*;(Ⅱ)由题意可得,即b n=3n﹣1+3a n,∴,∴T n=b1+b2+…+b n=(30+31+…+3n﹣1)+3(1+2+…n)=.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.【分析】(Ⅰ)根据已知数据和参考公式计算出这两个系数即可得到回归直线方程;(Ⅱ)先算出每组数据的残差,并判断出是否为”好数据“,然后结合古典概型,分别找出基本事件和总事件的个数,即可求出概率.解:(Ⅰ)由,可得t=4,,,,代入得,,∴回归直线方程为.(Ⅱ),,,,,共有3个“好数据”.设3个“好数据”为A,B,C,2个非“好数据”为D,E,从5个数据中选择3个的取法为ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,共10种;其中“好数据”的个数至少为2个的取法有7种,∴概率为.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.【分析】(Ⅰ)由N、M是BC和CE的中点,得MN∥BE,可得MN∥平面BEA1,再由已知结合平面与平面垂直的性质可得MD1⊥平面BCE,进一步得到MD1∥平面BEA1,然后利用平面与平面平行的判定可得平面MND1∥平面BEA1.(Ⅱ)连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,则点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,再由求解.【解答】(Ⅰ)证明:∵N、M是BC和CE的中点,∴MN∥BE,又∵MN⊄平面BEA1,BE⊂平面BEA1,∴MN∥平面BEA1,∵△A1BE,△BCE,△ECD1为正三角形,∴MD1⊥CE.又∵平面ECD1⊥平面BCE,平面ECD1∩平面BCE=CE,MD1⊂平面ECD1,∴MD1⊥平面BCE,又∵平面A1BE⊥平面BCE,MD1⊄平面BEA1,∴MD1∥平面BEA1,∵MD1∩NM=M,NM⊂平面MND1,MD1⊂平面MND1,∴平面MND1∥平面BEA1.(Ⅱ)解:连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,∴点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,∴,则.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).【分析】(Ⅰ)由题意离心率,及|MF|的值求出a,b,c的值,进而求出椭圆的方程;(Ⅱ)由(Ⅰ)可得A,B的坐标,设P的坐标,求出直线PA与x=﹣4联立求出S的坐标,同理可得T的坐标,进而求出数量积,为0,可证得以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).解:(Ⅰ)由题意和,得,又因为且a2=b2+c2,得a=2,c=1,,所以椭圆C的方程为.(Ⅱ)证明:设点P(m,n),则得,又设直线PA,PB的斜率分别为k1,k2,则,,所以,∴直线PA:y=k1(x+2),直线PB:,所以点S(﹣4,﹣2k1),,由,所以以线段ST为直径的圆过定点Q,同理,以线段ST为直径的圆过定点G.可证以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.【分析】(Ⅰ)求出f'(x)=e x﹣2a,通过切线的斜率,求解a,利用导函数为0.求解极值点即可.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a ﹣2aln2a﹣2a=﹣2aln2a<0,得到a的范围,判断函数的单调性,题目转化证明,利用分析法说明即证:h(x2)>h(2ln2a﹣x2),令g(x)=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),求出导函数,判断函数的单调性求解证明即可.解:(Ⅰ)f'(x)=e x﹣2a,f'(0)=1﹣2a=0,∴,∴f'(x)=e x﹣1,令f'(x)=0⇒x=0,f'(x)>0⇒x>0,f'(x)<0⇒x<0,∴f(x)的极小值为f(0)=0.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a﹣2aln2a﹣2a=﹣2aln2a<0,∴ln2a>0,∴2a>1,∴,又∵当x→+∞时,h(x)→+∞;当x→﹣∞时,h(x)→+∞,∴,此时,,∴,,∴,要证:(x1+1)(x2+1)<1,即证:,即证:,即证:x1+x2<2ln2a,即证:x1<2ln2a﹣x2,不妨设x1<x2,∴x1<ln2a<x2,∴x1<2ln2a﹣x2<ln2a,即证:h(x1)>h(2ln2a﹣x2),即证:h(x2)>h(2ln2a﹣x2),令g(x)=(e x﹣2ax﹣2a)﹣[e2ln2a﹣x﹣2a(2ln2a﹣x)﹣2a]=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),,当且仅当x=ln2a时取“=”,∴g(x)在(ln2a,+∞)上为增函数,∴g(x)>g(ln2a)=0,∴h(x2)>h(2ln2a﹣x2)成立,∴(x1+1)(x2+1)<1成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.【分析】(Ⅰ)由极坐标与直角坐标的互化公式可得A的直角坐标,画出图形,数形结合可得B与C的直角坐标;(Ⅱ)写出过BC的直线方程,点,由点到直线的距离公式写出点P到直线BC的距离,再由三角函数求最值可得点P到直线BC的距离的取值范围.解:(Ⅰ)由,且点A的极坐标为(4,),可得A点的直角坐标为,∵等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,∴B点的直角坐标为(﹣4,0),C点的直角坐标为;(Ⅱ)由B(﹣4,0),C,可得BC的直线方程为,设点,则点P到直线BC的距离为,∵0≤φ≤π,∴,∴,即点P到直线BC的距离的取值范围.一、选择题23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.【分析】(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可;(Ⅱ)根据分析法即可证明.解:(Ⅰ)①当x<﹣1时,不等式f(x)≥0可化为﹣x2+2x+3≥0,解得:﹣1≤x≤3,故此时x无解;②当﹣1≤x≤1时,不等式f(x)≥0可化为﹣x2+1≥0,解得:﹣1≤x≤1,故有﹣1≤x≤1;③当x>1时,不等式f(x)≥0可化为﹣x2+2x﹣3≥0,解得:﹣3≤x≤1,故此时x无解;综上,不等式f(x)≥0的解集M={x|﹣1≤x≤1}.(Ⅱ)要证|m+n|≤|mn+1|,即证|m+n|2≤|mn+1|2,即证m2+2mn+n2≤m2n2+2mn+1,即证m2+n2≤m2n2+1,即证m2n2﹣m2﹣n2+1≥0,即证(m2﹣1)(n2﹣1)≥0,∵m,n∈M,∴m2﹣1≤0,n2﹣1≤0,∴(m2﹣1)(n2﹣1)≥0成立.∴|m+n|≤|mn+1|成立.。
高三数学冲刺专题练习—排列组合概率(含答案详解) (2)
高三数学冲刺专题练习——排列组合概率1. 概率1.已知某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2125,则该队员每次罚球的命中率p 为 .【分析】根据题意,分析可得两次罚球中两次都名中的概率为21412525-=,由相互独立事件的概率公式可得关于p 的方程,解可得答案.【解答】解:根据题意,该队员在两次罚球中至多命中一次的概率为2125, 则两次罚球中两次都名中的概率为21412525-=, 则有2425p =,解可得25P =. 【点评】本题考查相互独立事件概率乘法公式和互斥事件概率加法公式,注意分析事件之间的关系,属于基础题.2.某市在创建“全国文明城市”活动中大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”、“可回收垃圾”、“其它垃圾”、“有害垃圾”四种不同的垃圾桶.一天,居民小陈提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有两袋垃圾投对的概率为 . 【分析】根据古典概率模型的概率公式即可求解.【解答】解:4袋不同垃圾投4个不同的垃圾桶有4424A =种不同投法, 而恰好有两袋垃圾投对的投法数为246C =, ∴恰好有两袋垃圾投对的概率61244P ==. 【点评】本题考查古典概率模型的概率公式,属基础题.3.某校为落实“双减”政策.在课后服务时间开展了丰富多彩的体育兴趣小组活动,现有甲、乙、丙、丁四名同学拟参加篮球、足球、乒乓球、羽毛球四项活动,由于受个人精力和时间限制,每人只能等可能的选择参加其中一项活动,则恰有两人参加同一项活动的概率为 .【分析】首先分析得到四名同学总共的选择为44个选择,然后分析恰有两人参加同一项活动的情况为2144C C ,则剩下两名同学不能再选择同一项活动,他们的选择情况为23A ,然后进行计算即可. 【解答】解:每人只能等可能的选择参加其中一项活动,且可以参加相同的项目,∴四名同学总共的选择为44个选择,恰有两人参加同一项活动的情况为2144C C ,剩下两名同学的选择有23A 种,∴恰有两人参加同一项活动的概率为21244349416C C A ⋅⋅=. 【点评】本题考查了古典概型及其概率的计算公式,解题的关键是能用排列组合的知识将满足条件的选择方案数计算出来.4.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,则甲、乙分在同一组的概率是 . 【分析】本题是一道平均分组问题,将7个人(含甲、乙)分成三个组,一组3人,另两组2人,有两个组都是两个人,而这两个组又没有区别,所以分组数容易重复,甲、乙分到同一组的概率要分类计算【解答】解:不同的分组数为3227421052!C C C a ==甲、乙分在同一组的方法种数有(1)若甲、乙分在3人组,有122542152!C C C =种(2)若甲、乙分在2人组,有3510C =种,故共有25种, 所以25510521P ==. 【点评】平均分组问题是概率中最困难的问题,解题时往往会忽略有些情况是相同的5.从1到10这十个自然数中随机取三个数,则其中一个数是另两个数之和的概率是 .【分析】所有的取法有310120C =种,其中一个数是另两个数之和的取法用力矩发求得共计20种,由此求得一个数是另两个数之和的概率.【解答】解:所有的取法有310120C =种,其中一个数是另两个数之和的取法有(1,2,3)、(1,3,4)、(1,4,5)、(1,5,6)、(1,6,7)、(1,7,8)、(1,9,10)、(2,3,5)、(2,4,6)、(2,5,7)、(2,6,8)、(2,7,9)、(2,8,10)、(3,4,7)、(3,5,8)、(3,6,9)、(3,7,10)、(4,5,9)、(4,6,10),共计20种,故其中一个数是另两个数之和的概率是2011206=. 【点评】本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.6.把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚,且他们拿到的硬币数量互不相同,则甲同学恰好拿到两枚硬币的概率为.【分析】利用插空法和古典概型可解决此题.【解答】解:根据插空法得把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚的情况共2 1155C=种,其中甲、乙、丙三位同学拿到硬币有相同情况有(1,1,10),(1,10,1),(10,1,1),(2,2,8),(2,8,2),(8,2,2),(3,3,6),(3,6,3),(6,3,3),(4,4,4),(5,5,2),(5,2,5),(2,5,5)共计13种,故他们拿到的硬币数量互不相同的情况共有551342-=(种),甲同学恰好拿到两枚硬币的情况共有1936C-=(种),∴甲同学恰好拿到两枚硬币的概率为61 427=.【点评】本题考查插空法和古典概型,考查数学运算能力及抽象能力,属于中档题.7.2021年7月,我国河南省多地遭受千年一遇的暴雨,为指导防汛救灾工作,某部门安排甲,乙,丙,丁,戊五名专家赴郑州,洛阳两地工作,每地至少安排一名专家,则甲,乙被安排在不同地点工作的概率为.【分析】分郑州安排1名专家,洛阳安排4名专家,郑州安排2名专家,洛阳安排3名专家,郑州安排3名专家,洛阳安排2名专家,郑州安排4名专家,洛阳安排1名专家,四类分别求出每地至少安排一名专家和甲,乙被安排在不同地点工作的排法种数,从而得出答案.【解答】解:当郑州安排1名专家,洛阳安排4名专家,则有155C=种排法;郑州安排2名专家,洛阳安排3名专家,则有2510C=种排法;郑州安排3名专家,洛阳安排2名专家,则有3510C=种排法;郑州安排4名专家,洛阳安排1名专家,则有455C=种排法;所以每地至少安排一名专家共有51010530+++=种不同的排法,若甲,乙被安排在不同地点工作,当郑州安排1名专家,洛阳安排4名专家,则有122C=种排法;郑州安排2名专家,洛阳安排3名专家,则有11236C C⋅=种排法;郑州安排3名专家,洛阳安排2名专家,则有12236C C⋅=种排法;郑州安排4名专家,洛阳安排1名专家,则有13232C C ⋅=种排法; 所以甲,乙被安排在不同地点工作,共有266216+++=种不同的排法, 所以甲,乙被安排在不同地点工作的概率为1683015=. 【点评】本题考查古典概型及其计算公式,考查学生的分析解决问题的能力,属于中档题.8.为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着A ,B ,C 三个农业扶贫项目进驻某村,对仅有的四个贫困户进行产业帮扶.经过前期走访得知,这四个贫困户甲、乙、丙、丁选择A ,B ,C 三个项目的意向如表:扶贫项目 ABC选择意向贫困户甲、乙、丙、丁甲、乙、丙丙、丁若每个贫困户只能从自己登记的选择意向中随机选取一项,且每个项目至多有两户选择,则甲乙两户选择同一个扶贫项目的概率为 .【分析】由题意可知,甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以.所以分成三类将所有情况计算出来,套用概率公式计算即可.【解答】解:由题意:甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以. 由题意基本事件可分以下三类:(1)甲乙都选A ,则丁只能选C ,丙则可以选B ,C 任一个,故共有2种方法;(2)甲乙都选B ,则丁可以选A 或C ,丙也可选A 或C ,故共有11224C C =种方法. (3)甲乙分别选AB 之一,然后丁选A 时,丙只能选B 或C ;丁选C 时,丙则A ,B ,C 都可以选.故有211223()10A C C +=种方法.故基本事件共有241016++=种. 甲乙选同一种项目的共有246+=种. 故甲乙选同一项目的概率63168P ==. 【点评】本题考查了古典概型概率的计算方法,分类求基本事件时有一定难度.属于中档题, 9.在中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游参观,其中的每个人只去一个景点,每个景点至少要去一个人,则游客甲去梵净山的概率为 .【分析】分类计算游客甲去梵净山包含的基本事件的个数,代入古典概型的概率计算公式即可.【解答】解:设{A=游客甲去梵净山},则基本事件的总数为112321431236C CC AA⨯=个.事件A发生时①若甲单独去梵净山,有22326C A⨯个基本事件,②去梵净山的游客除甲外还有1人,则有12326C A⨯=个基本事件.P∴(A)661363+==.【点评】本题考查了古典概型的概率计算,在求事件A包含的基本事件个数时,牵扯到了平均分组问题,容易出错,本题为中档题.10.年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数2101-60岁至79岁的人数120133341380岁及以上的人数918149其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,1-代表“生活不能自理”.按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.则被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率是35(用分数作答).【分析】由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.列举出从这五人中抽取3人的选法,列举出恰有1位老龄人的健康指数不大于0的选法,代入古典概型概率公式求出.【解答】解;该小区健康指数大于0的老龄人共有280人,健康指数不大于0的老龄人共有70人,由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B.从这五人中抽取3人,结果有10种:(1,2,3),(1,2,4),(1,2,)B,(1,3,4),(1,3,)B,(1,4,)B,(2,3,4),(2,3,)B,(2,4,)B,(3,4,B,),其中恰有一位老龄人健康指数不大于0的有6种:(1,2,)B ,(1,3,)B ,(1,4,)B ,(2,3,)B ,(2,4,)B ,(3,4,B ,),∴被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率为63105= 故答案为:35【点评】本题考查概率的计算,考查学生利用数学知识解决实际问题,考查学生的计算能力,属于中档题. 11.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是 .【分析】根据等差数列前n 项和公式得出首项与公差m 的关系,列举得出所有的分配方案,从而得出结论. 【解答】解:由题意可知等级从低到高的5个诸侯所分的橘子个数组成等差为m 的等差数列, 设“男”分的橘子个数为1a ,其前n 项和为n S ,则51545802S a m ⨯=+⨯=, 即1216a m +=,且1a ,m 均为正整数, 若12a =,则7m =,此时530a =, 若14a =,6m =,此时528a =, 若16a =,5m =,此时526a =, 若18a =,4m =,此时524a =, 若110a =,3m =,此时522a =, 若112a =,2m =,此时520a =, 若114a =,1m =,此时518a =, ∴ “公”恰好分得30个橘子的概率为17. 【点评】本题考查了等差数列的性质,古典概型的概率计算,属于中档题.12.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为 .【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有42214-=种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有224⨯=种,42147P ∴==. 【点评】本题考查了古典概型的概率计算,是基础题.13.2022年2月4日第24届冬季奥林匹克运动会在北京盛大开幕,中国冬奥健儿在赛场上摘金夺银,在国内掀起一波冬奥热的同时,带动了奥运会周边产品的热销,其中奥运吉祥物冰墩墩盲盒倍受欢迎,已知冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个,买到隐藏款的概率为 . 【分析】利用古典概型、排列组合直接求解.【解答】解:冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个, 基本事件总数2721n C ==,买到隐藏款包含的基本事件个数11166m C C ==, ∴买到隐藏款的概率62217m P n ===. 【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 14.抛挪一枚硬币,每次正面出现得1分,反面出现得2分,则恰好得到10分的概率是 6831024. 【分析】分类讨论,依据独立重复试验公式即可求得恰好得10分的概率. 【解答】解:抛掷一枚硬币,得1分的概率为12,得2分的概率为12, 恰好得到10分可分为6种情况:5个2分,共抛掷5次,概率为55511()232C ⨯=; 4个2分,2个1分,共抛掷6次,概率为466115()264C ⨯=; 3个2分,4个1分,共抛掷7次,概率为377135()2128C ⨯=; 2个2分,6个1分,共抛掷8次,概率为28817()264C ⨯=;1个2分,8个1分,共抛掷9次,概率为19919()2512C ⨯=; 10个1分,共抛掷10次,概率为1011()21024=;故恰好得到10分的概率是1153579168332641286451210241024+++++=,故答案为:6831024. 【点评】本题考查了独立重复试验的应用及分类讨论的思想方法应用,属于中档题.15.六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是120. 【分析】本题是一个等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66A 种结果,满足条件的事件是后排每人均比其前排的同学身材要高,则身高高的三个同学在后排排列,其余三个同学在前排排列,据概率公式得到结果.【解答】解:由题意知,本题是等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66720A =种结果, 满足条件的事件是后排每人均比其前排的同学身材要高, 则身高高的三个同学在后排排列,其余三个同学在前排排列,共有3333A A 种结果, ∴后排每人均比前排同学高的概率是36172020=, 故答案为:120【点评】本题考查等可能事件的概率,站队问题是排列组合中的典型问题,解题时要先排限制条件多的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素.2. 排列组合1.五声音阶是中国古乐基本音阶,故有成语“五音不全“,中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上.排成一个五个音阶的音序.且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成 32 种不同的音序.【分析】根据角所在的位置,分两类,根据分类计数原理可得.【解答】解:若角排在一或五,有12A 种方法,再排商、徵,有22A 种方法,排宫、羽用插空法,有23A 种方法,利用乘法原理可得:12222324A A A =种, 若角排在二或四,同理可得:有222228A A =, 根据分类计数原理可得,共有24832+=种,故答案为:32.【点评】本题考查排列排列组合及简单计数问题,本题较抽象,计数时要考虑周详,本题以实际问题为背景,有着实际背景的题在现在的高考试卷上有逐步增多的趋势.2.从0,1,2,3,4,5中选出三个不同数字组成四位数(其中的一个数字用两次),如5224,则这样的四位数共有600个.【分析】根据题意,分当0被选用,且用两次;当0被选用,但用一次;当0没被选用三种情况讨论求解即可.【解答】解:当0被选用,且用两次,则先在个位,十位,百位这3个位置上选2个位置放0,再从剩下的5个数中选2个数字排在其他两个位置上,故有223560C A=个;当0被选用,但用一次,则先在个位,十位,百位这3个位置上选1个位置放0,再从剩下的5个数字中选2个数字,进而从选出的两个数字中选一个为出现两次的数字,最后在剩下的三个位置上选一个位置放置选出的2个数字中出现1次的数字,进而完成任务,故有12113523180C C C C=个;当0没被选用,则从1,2,3,4,5选3个数字,再从中选一个出现两次的数字,最后将其他两个数字选2个位置排序,故有312534360C C A=个所以,一共有60180360600++=个.故答案为:600.【点评】本题考查排列组合,考查学生推理能力,属于中档题.3.某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有36种(用数字作答).【分析】根据题意,分3步进行分析:①,先在4个社团中任选2个,有学生报名,②、将3名学生分为2组,③,进而将2组全排列,对应2个社团,分别求出每一步的情况数列,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①,根据题意,4个社团中恰有2个社团,即只有2个社团有人报名,则先在4个社团中任选2个,有学生报名,有246C=种选法,②、将3名学生分为2组,有233C=种分法,③,进而将2组全排列,对应2个社团,有222A=种情况,则恰有2个社团没有同学选报的报法数有63236⨯⨯=种; 故恰有2个社团没有同学选报的报法数有36种; 故答案为:36【点评】本题考查排列、组合的应用,涉及分步计数原理的应用,关键是正确进行分步分析.4.设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x ∈-,0,1},1i =,2,3,4,5},则集合A 中满足条件“123451||||||||||3x x x x x ++++”元素个数为 130 .【分析】从条件“123451||||||||||3x x x x x ++++”入手,讨论i x 所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由{1i x ∈-,0,1},1i =,2,3,4,5},集合A 中满足条件“123451||||||||||3x x x x x ++++”, 由于||i x 只能取0或1,因此5个数值中有2个是0,3个是0和4个是0三种情况: ①i x 中有2个取值为0,另外3个从1-,1中取,共有方法数:2352⨯; ②i x 中有3个取值为0,另外2个从1-,1中取,共有方法数:3252⨯; ③i x 中有4个取值为0,另外1个从1-,1中取,共有方法数:452⨯.∴总共方法数是:23324555222130⨯+⨯+⨯=.故答案为:130.【点评】本题考查了组合数的计算公式及其思想、集合的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.5.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,则使a b c d e +为奇数的不同排列方法有 180 种.【分析】按照分类讨论,先选后排的步骤,求出结果. 【解答】解:(分类讨论:先选后排)若a b c 为奇数,d e 为偶数时,有323336A A ⨯= 种; 若a b c 为偶数,d e 为奇数时,有2334144A A ⨯= 种; 故a b c d e +为奇数的不同排列方法有共36144180+=种, 故答案为:180.【点评】本题主要考查排列组合的应用,属于中档题.6.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有 40 种.【分析】根据题意,先排好7个空车位,注意空车位是相同的,其中有6个空位符合条件,考虑顺序,将3车插入6个空位中,注意甲必须在乙、丙两车之间,由倍分法分析可得答案.【解答】解:先排7个空车位,由于空车位是相同的,则只有1种情况,其中有6个空位符合条件,考虑三车的顺序,将3辆车插入6个空位中,则共有361120A ⨯=种情况, 由于甲车在乙、丙两车之间,则有符合要求的坐法有1120403⨯=种;故答案为:40.【点评】本题考查排列、组合的应用,对于不相邻的问题采用插空法.7.某翻译处有8名翻译,其中有小张等3名英语翻译,小李等3名日语翻译,另外2名既能翻译英语又能翻译日语,现需选取5名翻译参加翻译工作,3名翻译英语,2名翻译日语,且小张与小李恰有1人选中,则有 29 种不同选取方法【分析】据题意,对选出的3名英语教师分5种情况讨论:①若从只会英语的3人中选3人翻译英语,②若从只会英语的3人中选2人翻译英语,(包含小张),③若从只会英语的3人选小张翻译英语,④、若从只会英语的3人中选2人翻译英语,(不包含小张),⑤、若从只会英语的3人中选1人翻译英语,(不包含小张),每种情况中先分析其余教师的选择方法,由分步计数原理计算每种情况的安排方法数目,进而由分类计数原理,将其相加计算可得答案. 【解答】解:根据题意,分5种情况讨论: ①、若从只会英语的3人中选3人翻译英语,则需要从剩余的4人(不含小李)中选出2人翻译日语即可,则不同的安排方案有246C =种, ②、若从只会英语的3人中选2人翻译英语,(包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的3人(不含小李)中选出2人翻译日语即可,则不同的安排方案有11222312C C C ⨯⨯=种, ③、若从只会英语的3人选小张翻译英语,则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的2人(不含小李)中选出2人翻译日语即可,则不同的安排方案有22221C C⨯=种,④、若从只会英语的3人中选2人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的4人(小李必选)中选出2人翻译日语即可,则不同的安排方案有2112236C C C⨯⨯=种,⑤、若从只会英语的3人中选1人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的3人(小李必选)中选出2人翻译日语即可,则不同的安排方案有1212224C C C⨯⨯=种,则不同的安排方法有61216429++++=种.故答案为:29.【点评】本题考查排列、组合的运用,注意根据题意对“既会英语又会日语”的教师的分析以及小张与小李恰有1人选中,是本题的难点所在.8.有6张卡片分别写有数字1,1,1,2,3,4,从中任取3张,可排出不同的三位数的个数是34.(用数字作答)【分析】根据题意,按取出3张的卡片中写有1的卡片的张数分4种情况讨论,求出每种情况下排出不同的三位数的个数,由加法原理计算可得答案.【解答】解:根据题意,分4种情况讨论:①、取出3张的卡片全部是写有数字1的,有1种情况,②,取出3张的卡片有2张写有数字1的,有11339C C=种情况,③,取出3张的卡片有1张写有数字1的,有223318C A=种情况,④,取出3张的卡片没有写有数字1的,有336A=种情况,则一共有1918634+++=种情况,即可以排出34个不同的三位数;故答案为:34.【点评】本题考查排列、组合的应用,注意6张卡片中相同的情况.9.分配4名水暖工去3个不同的民居家里检查暖气管道,要求4名水暖工部分配出去,并每名水暖工只能去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有36种(用数字作答).【分析】根据题意,分2步分析:①,将4名水暖工分成3组,②,将分好的三组全排列,对应3个不同的居民家,由分步计数原理计算可得答案.【解答】解:根据题意,分2步分析:①,将4名水暖工分成3组,有246C=种分组方法,②,将分好的三组全排列,对应3个不同的居民家,有336A=种分配方法,则有6636⨯=种不同的分配方案;故答案为:36.【点评】本题考查排列、组合的应用,注意要先分组,再进行排列.10.3名男生和3名女生站成一排,要求男生互不相邻,女生也互不相邻且男生甲和女生乙必须相邻,则这样的不同站法有40种(用数字作答).【分析】根据题意,分2种情况讨论:①,六名学生按男女男女男女排列,②,六名学生按女男女男女男排列,分析每种情况的安排方法数,由加法原理计算可得答案.【解答】解:根据题意,要求3名男生和3名女站成一排,男生、女生各不相邻,则有2种情况;①,六名学生按男女男女男女排列,若男生甲在最左边的位置时,女生乙只能在其右侧,有1种情况,剩下的2名男生和女生都有222A=种情况,此时有1224⨯⨯=种安排方法,若男生甲不在最左边的位置时,女生乙可以在其左侧与右侧,有2种情况,剩下的2名男生和女生都有222A=种情况,此时有222216⨯⨯⨯=种安排方法;则此时有41620+=种安排方法;②,六名学生按女男女男女男排列,同理①,也有20种安排方法,则符合条件的安排方法有202040+=种;故答案为:40【点评】本题考查排列组合的应用,注意优先分析受到限制的元素.11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为.【分析】不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法,由此可得结论. 【解答】解:由题意,不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法, 故所求的取法共有332116441245601672472C C C C --=--= 故选:C .【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.12.因演出需要,身高互不相等的8名演员要排成一排成一个“波浪形”,即演员们的身高从最左边数起:第一个到第三个依次递增,第三个到第六个依次递减,第六、七、八个依次递增,则不同的排列方式有 .种【分析】依题意,重点要先排好3号位和6号位,余下的分类讨论分析即可. 【解答】解:上面的数字表示排列的位置,必须按照上图的方式排列,其中3号位必须比12456要高,1,6两处是排列里最低的,3,8两处是最高点,设8个演员按照从矮到高的顺序依次编号为1,2,3,4,5,6,7,8, 则 3号位最少是6,最大是8,下面分类讨论:①第3个位置选6号:先从1,2,3,4,5号中选两个放入前两个位置,余下的3个号中放入4,5,6号顺序是确定的只有一种情况,然后7,8号放入最后两个位置也是确定的,此时共2510C =种情况;②第3个位置选7号:先从1,2,3,4,5,6号中选两个放入前两个位置, 余下的4个号中最小的放入6号位置,剩下3个选2个放入4,5两个位置, 余下的号和8号放入最后两个位置,此时共226345C C =种情况;。
高三文科数学第二次月考模拟训练(2)
高三文科数学第二次月考选填题模拟训练(2)满分:75分 时间:45分钟一、选择题:(本大题10小题,每小题5分,共50分。
)1.复数23()1i i-=+( ) A. 34i - B.34i -+ C. 34i -- D.34i + 2.设集合A ={x |-3<x <1},B ={x |log 2|x |<1}则A ∩B 等( )A .(-3,0)∪(0,1)B .(-1,0)∪(0,1)C .(-2,1)D .(-2,0)∪(0,1)3.若程序框图如图所示,则该程序运行后输出k 的值是( )A. 5B. 6C. 7D. 84.给出下列五个命题:①将A B C 、、三种个体按3:1:2的比例分层抽样调查,如果抽取的A 个体为9个,则样本容量为30;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲;④已知具有相关关系的两个变量满足的回归直线方程为12y x =-,则x 每增加1个单位,y 平均减少2个单位;⑤10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为0.4 。
其中真命题为( )A .①②④B .②④⑤C .②③④D .③④⑤ 5.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解析式是 A .sin 2y x = B .cos 2y x = C .2sin(2)3y x π=+ D .sin(2)6y x π=- 6.已知α是ABC ∆的一个内角,且1sin cos 5αα+=,则2sin 2cos αα+的值为( ) A .35-B .825-C .3325D .35-或825-7.在△ABC 中,4cos 5A =,8AB AC ⋅=,则△ABC 的面积为 ( ) A.65 B.3 C.125D.6 8.设0.33log 3,2,log sin 6a b c ππ===,则( )A .a b c >>B .c a b >>C .b a c >>D .b c a >>9.函数⎩⎨⎧>+-≤-=1,341x ,22)(2x x x x x f 的图象与函数)1ln()(-=x x g 的图象的公共点有( )A.1个B.2个C.3个D.4个10.函数()f x 的定义域为{|1}x R x ∈≠,对定义域中任意的x ,都有(2)()f x f x -=,且当1x <时,2()2f x x x =-,那么当1x >时,()f x 的递减区间是( )A .5[,)4+∞B .5(1,]4C .7[,)4+∞D .7(1,)4二、填空题:(本大题共5小题,每小题5分,满分25分) 11.在集合{|,1,2,3,,10}6n x x n π==中任取一个元素,所取元素恰好满足方程1cos 2x =的概率是_________. 12.函数()2sin()4f x x π=-,[,0]x π∈-的单调递减区间为__________.13.已知0y x π<<<,且tan tan 2x y =,1sin sin 3x y =,则x y -=___ ___. 14.已知点(1,1)A 和点(1,3)B --在曲线32:C y ax bx d =++(,,a b d 为常数上,若曲线在点A 和点B 处的切线互相平行,则32a b d ++=_________.15.已知p :“对任意的[2,4]x ∈,2log 0x a -≥”;:q “存在x R ∈,2220x ax a ++-=”若,p q均为命题,而且“p 且q ”是真命题,则实数a 的取值范围是。
高三文科数学10月月考复习题(一、二、三)
7 ,求 ABAC 的值.
34.已知等差数列{an}的前 n 项和为 Sn,且满足:a2+a4=14,S7=70. (1)求数列{an}的通项公式; 2Sn+48 (2)设 bn= ,数列{bn}的最小项是第几项,并求出该项的值. n
27.等差数列{an}的前 n 项和为 Sn,若 a2=1,a3=3,则 S4=( A.12 B.10 C.8
) D.6
28.等差数列{an}中,a5=3,若其前 5 项和 S5=10,则其公差 d=______.
第 2 页 共 12 页来自29.已知数列{an}是等差数列,a3=18,a6=12. (1)求数列{an}的通项公式;(2)数列{an}的前多少项和最大,最大值是多少?
第 3 页 共 12 页
32.已知函数 f ( x)
(sin x cos x) sin 2 x . sin x
(1)求 f ( x ) 的定义域及最小正周期; (2)求 f ( x ) 的单调递增区间.
33.在△ ABC 中,角 A,B,C 的对边分别为 a,b,c,tanC=3 7 . (1)求 cosC;(2)若 CB CA
C.y=tan 2x
9.函数 y=|sin x|的一个单调增区间是( π π A. -4,4 π 3π B. 4 , 4
π 10.函数 y=tan 4-x的定义域为_______________. x π 11.函数 f(x)= 3sin 2-4,x∈R 的最小正周期为________. π 12 .要得到函数 y = 3sin 2x+4 的图象,只需将函数 y = 3sin2x 的图象向 ________ 平移 ________个单位. π π 13.把函数 y=sin 5x-2的图象向右平移4个单位,再把所得函数图象上各点的横坐标缩短 1 为原来的 ,所得的函数解析式为 2 3π A.y=sin 10x- 4 7π B.y=sin 10x- 2 3π C.y=sin 10x- 2 ( )
河南省郑州市2023届高三三模文科数学试题(2)
一、单选题二、多选题1. 在复平面内,与向量对应的复数为z ,则( )A.B.C.D.2.由数字组成的各位上没有重复数字的五位数中,从小到大排列第88个数为( )A .42031B .42103C .42130D .423013. 如图,函数、、的图象和直线将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数的图象经过的部分是④⑧,则可能是()A .y =x 2B.C.D .y=x -24. 已知a 为实数,复数为纯虚数,则A.B .1C.D .25. “”是“函数为偶函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 一组数据3,4,5,6,7的中位数是( )A .7B .6C .5D .47. 已知△ABC中,,动点P 自点C 出发沿线段CB 运动,到达点B 时停止,动点Q 自点B 出发沿线段BC 运动,到达点C 时停止,且动点Q 的速度是动点P 的2倍.若二者同时出发,且一个点停止运动时,另一个点也停止,则该过程中的最大值是( )A.B.C .4D .238. 设抛物线与直线交于点M (点M 在第一象限),且M 到焦点F 的距离为10,则抛物线C 的标准方程为( )A.B.C.D.9. 中国的华为公司是全球领先的(信息与通信)基础设施和智能终端提供商,其致力于把数字世界带给每个人、每个家庭、每个组织,构建万物互联的智能世界.其中华为的智能手机是全世界很多年轻人非常喜欢的品牌.为了研究某城市甲、乙两个华为智能手机专卖店的销售状况,统计了2020年4月到9月甲、乙两店每月的营业额(单位:万元),得到如下的折线图,则下列说法正确的是( )河南省郑州市2023届高三三模文科数学试题(2)河南省郑州市2023届高三三模文科数学试题(2)三、填空题四、解答题A .根据甲店的营业额折线图可知,该店月营业额的平均值在内B .根据乙店的营业额折线图可知,该店月营业额总体呈上升趋势C .根据甲、乙两店的营业额折线图可知乙店的月营业额极差比甲店小D .根据甲、乙两店的营业额折线图可知7、8、9月份的总营业额甲店比乙店少10.已知函数,若,则( )A .为偶函数B .在上为增函数C.D.11.已知点,若过点的直线交圆于两点,是圆上的动点,则( )A.的最小值为2B .的最大值为C.的最小值为D .当取最大值时,底边上的高所在的直线方程为12. 在某次高中学科知识竞赛中,从4000名考生的参赛成绩中随机选取400个成绩进行统计,可得到如图所示的频率直方图,其中60分以下视为不及格,则下列说法中正确的有()A.成绩在分内的考生人数最多B .4000名考生中约有1000名不及格C .估计考生竞赛成绩的平均分为70.5分D .估计考生竞赛成绩的中位数为75分13. 已知为虚数单位,则复数的虚部是______.14. 已知,关于x的不等式的解集为M ,设,当a 变化时,集合N 中的元素个数最少时的集合N 为______.15.若,则__________.16. 已知实数满足,方程表示双曲线.(1)若,命题为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.17. 已知数列满足.(1)求数列的通项公式;(2)求证:.18.如图,四棱锥中,底面为平行四边形,.(1)证明:;(2)若为等边三角形,求四棱锥的体积.19. 某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级标准果优质果精品果礼品果个数10304020(1)若将频率视为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.方案1:不分类卖出,售价为20元/kg;方案2:分类卖出,分类后的水果售价如下.等级标准果优质果精品果礼品果售价(元/16182224)从采购商的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取的是精品果的数量,求X的分布列及数学期望.20. 已知数列的前n项和为,,.(1)求数列的通项公式;(2)设的值;(3)设,数列的前n项和为,证明:.21. 近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从80后和90后的员工中随机调查了200位,得到数据如下表:愿意被外派不愿意被外派合计80后40408090后8040120合计12080200(1)根据调查的数据,是否有99%的把握认为“是否愿意被外派与年龄有关”,并说明理由;(2)该公司举行参观驻海外分支机构的交流体验活动,拟安排6名参与调查的80后、90后员工参加.80后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,从中随机选出3人,记选到愿意被外派的人数为x;90后员工中有愿意被外派的4人和不愿意被外派的2人报名参加,从中随机选出3人,记选到愿意被外派的人数为y,求的概率.参考数据:0.150.100.050.0250.0100.0052.072 2.7063.841 5.024 6.6357.879(参考公式:,其中)。
2021年高三下学期统一练习(二)文科数学含答案
2021年高三下学期统一练习(二)文科数学含答案一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 复数的虚部为(A)3 (B)(C)4 (D)2. 若a∈R,则“a=1”是“|a|=1”的(A)充要条件(B)必要而不充分条件(C)充分而不必要条件(D)既不充分又不必要条件3. 设向量a=(4,x),b=(2,-1),且a b,则x的值是(A)8 (B)8 (C)2 (D) -24. 双曲线的离心率为(A)(B)(C)(D)5. 下列四个函数中,最小正周期为,且图象关于直线对称的是(A)(B)(C)(D)6.某几何体的三视图如图所示,则该几何体的表面积为(A)24 (B)20+4(C)28(D)24+ 47.在平面区域内任取一点,若满足的概率大于,则的取值范围是(A)(B)(C)(D)8. 已知偶函数f(x)(x∈R),当时,f(x)=-x(2+x),当时,f(x)=(x-2)(a-x)().关于偶函数f(x)的图象G和直线:y=m()的3个命题如下:①当a=2,m=0时,直线与图象G恰有3个公共点;②当a=3,m=时,直线与图象G恰有6个公共点;③,使得直线与图象G交于4个点,且相邻点之间的距离相等.其中正确命题的序号是(A) ①②(B) ①③(C) ②③(D) ①②③第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 过点且与直线平行的直线方程为.10.已知变量具有线性相关关系,测得的一组数据如下:,其回归方程为,则的值等于.11.等差数列{a n}中,a3=5,a5=3,则该数列的前10项和S10的值是_______.12.若,则的值是 .13.若函数在[-2,1]上的最大值为4,最小值为m,则m的值是____.14. 已知直线x=2,x=4与函数的图象交于A,B两点,与函数的图象交于C,D两点,则直线AB,CD 的交点坐标是_________.三、解答题共6小题,共80分.解答要写出文字说明,演算步骤或证明过程.15. 本小题13分)已知的三个内角分别为A,B,C,且(Ⅰ)求A的度数;(Ⅱ)若求的面积S.16.(本小题13分)高三某班20名男生在一次体检中被平均分成两个小组,第一组和第二组学生身高(单位:cm)的统计数据用茎叶图表示(如图).(Ⅰ)求第一组学生身高的平均值和方差;(Ⅱ)从身高超过180cm的五位同学中随机选出两位同学参加校篮球队集训,求这两位同学在同一小组的概率.17. (本小题13分)如图,多面体EDABC中,AC,BC,CE两两垂直,AD//CE,,,M为BE中点.15161718 9 8 85 5 1 1 02 1 96 92 3 4 7 2 3 5第一组第二组(Ⅰ)求证:DM//平面ABC;(Ⅱ)求证:平面BDE平面BCD.18.(本小题13分)已知函数.(Ⅰ)若直线与曲线相切,切点是P(2,0),求直线的方程;(Ⅱ)讨论的单调性.19.(本小题14分)已知椭圆C:,其短轴的端点分别为A,B(如图),直线AM,BM分别与椭圆C 交于E,F两点,其中点M (m,) 满足,且.(Ⅰ)求椭圆C的离心率e;(Ⅱ)用m表示点E,F的坐标;(Ⅲ)证明直线EF与y轴交点的位置与m无关.20. (本小题14分)已知等差数列的通项公式为a n=3n-2,等比数列中,.记集合,,把集合U 中的元素按从小到大依次排列,构成数列.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前50项和;(Ⅲ)把集合中的元素从小到大依次排列构成数列,写出数列的通项公式,并说明理由.丰台区xx 年高三第二学期统一练习(二)数学(文科)一、选择题选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.9. 2x -y +2=0; 10.0.9; 11.25; 12. ; 13. 或; 14. (0,0). 三、解答题共6小题,共80分.解答要写出文字说明,演算步骤或证明过程. 15. 本小题13分) 已知的三个内角分别为A,B,C,且 (Ⅰ)求A 的度数; (Ⅱ)若求的面积S . 解: (Ⅰ), ……………………….2分sin 0,sin ,tan A A A A ≠∴=∴= ……………………….4分°. …………………….6分 (Ⅱ)在中,60cos 2222⨯⨯-+=AC AB AC AB BC , 或(舍),………….10分31023852160sin 21=⨯⨯⨯=⨯⨯=∴∆ AC AB S ABC . …………………….13分 16.(本小题13分)高三某班20名男生在一次体检中被平均分成两个小组,第一组和第二组学生身高(单位:cm )的统计数据用茎叶图表示(如图). (Ⅰ)求第一组学生身高的平均值和方差;(Ⅱ)从身高超过180cm 的五位同学中随机选出两位同学参加校篮球队集训,求这两位同学在同一小组的概率. 解: (Ⅰ)11(168168169170171171175175181182)17310x cm =+++++++++=, ………………………….3分()()()()()222222211168173168173169173...18117318217323.610S cm ⎡⎤=-+-+-++-+-=⎣⎦; ………………………….6分 答: 第一组学生身高的平均值为173cm ,方差为23.6。
上海2014高三数学(文科)二模备考填空题专练2
上海2014高三数学(文科)二模备考填空题专练21.已知复数z 满足1=+i z (其中i 为虚数单位),则z =2 . 2.已知集合A ={}2,1,2-,B ={}1,a a +,且B A ⊆,则实数a 的值是 1 . 3.某学校高一、高二、高三年级的学生人数之比为3:4:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 20 名学生.4.函数x x f 2log 1)(+=与)(x g y =的图像关于直线x y =对称,则=)3(g 4 .5.把三阶行列式13104302--x x x中第1行第3列元素的代数余子式记为)(x f ,则关于x 的不等式0)(<x f 的解集为 )4,1(- .6.若双曲线的渐近线方程为x y 3±=,它的一个焦点是)0,10(,则双曲线的标准方程是 1922=-y x . 7.若直线340x y m ++=与圆1)2()1(:22=++-y x C 有公共点,则实数m 的取值范围是 ]10,0[ .8.记直线n l :01)1(=-++y n nx 错误!未找到引用源。
(*N n ∈)与坐标轴所围成的直角三角形的面积为n S 错误!未找到引用源。
,则=++++∞→)(lim 321n n S S S S 错误!未找到引用源。
21 . 9.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若41cos ,7,2-==+=B c b a ,则=b 4 .10.已知实数,x y 满足约束条件2222221x y x y x y ⎧-≤+≤⎪-≤-≤⎨⎪+≥⎩,则不等式所围成的区域面积为 π-8 .11.方程0cos =x x 在区间[]6,3-上解的个数为 4 .12.某人从分别标有1、2、3、4的四张卡片中任意抽取两张,并按如下约定记录抽取结果:如果出现两个偶数或两个奇数,就将两数相加的和记录下来;如果出现一奇一偶,则记下它们的差的绝对值,则出现记录结果不大于3的概率为 32 . 13.如果M 是函数)(x f y =图像上的点,N 是函数)(x g y =图像上的点,且N M ,两点之间的距离MN 能取到最小值d ,那么将d 称为函数)(x f y =与)(x g y =之间的距离.按这个定义,函数x x f =)(和34)(2-+-=x x x g 之间的距离是 12- . 14.数列}{n a 满足1241+-=+n n n a a a (*∈N n ). ①存在1a 可以生成的数列}{n a 是常数数列;②“数列}{n a 中存在某一项6549=k a ”是“数列}{n a 为有穷数列”的充要条件; ③若{}n a 为单调递增数列,则1a 的取值范围是)2,1()1,( --∞;④只要k k k k a 232311--≠+,其中*∈N k ,则n n a ∞→lim 一定存在; 其中正确命题的序号为 ①④ .。
2021-2022年高三第二次数学模拟考试(文科)
2021年高三第二次数学模拟考试(文科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页,第II卷3至4页,答题纸5至7页,共150分。
测试时间120分钟。
第I卷(共60分)一、选择题:(本大题共12小题。
每小题5分。
共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合,则满足的集合B的个数为()A.1 B.3 C.4 D.82.已知,其中是实数,是虚数单位,则()A.B.C.D.3.已知,且,则()A.B.C.D.4.设函数,则()A.在区间内均有零点B.在区间内均无零点C.在区间内有零点,在区间内无零点D.在区间内无零点,在区间内有零点5.实数满足,则的值为()A.8 B.C.0 D.106.设函数为定义在R上的奇函数,当时,(为常数),则()A.3 B.1 C.D.7.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”。
给出下列函数①;②;③;④其中“互为生成函数”的是()A.①②B.①③C.③④D.②④8.在内,内角的对边分别是,若,,则A=()A.B.C.D.9.已知是实数,则函数的图象不可能是()10.设命题非零向量是的充要条件;命题“”是“”的充要条件,则()A.为真命题B.为假命题C.为假命题D.为真命题11.已知二次函数,满足:对任意实数,都有,且当时,有成立,又,则为()A.1 B.C.2 D.012.若,且,则下面结论正确的是()A.B.C.D.第II卷(非选择题共90分)二、填空题:本大题共4个小题,每小题4分,共16分。
(将答案填在答题纸上)13.设曲线在点处的切线与直线平行,则.14.如果,那么= .15.在中,,则.16.O是平面上一点,点是平面上不共线的三点。
平面内的动点P满足,若,则·的值等于.三、解答题:本大题共6个小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(将答案写在答题纸上。
高三文科数学综合卷2
文数综合卷2一、单选题1.i 为虚数单位,则()()13(i i -+= ) A .23i + B .22i -C .22i +D .42i -2.设集合122xA x ⎧⎫=⎨⎬⎩⎭,1|02x B x x +⎧⎫=≤⎨⎬-⎩⎭,则A B =( ) A .()1,2- B .[)1,2-C .(]1,2- D .[]1,2-3.函数()2ln 1y x=+的图象大致是( )A .B .C .D .4.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图(其中四边形是为体现直观性而作的辅助线)当“牟合方盖”的正视图和侧视图完全相同时,其俯视图可能为A .B .C .D .5.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .326.“2211og a og b <”是“11a b<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知向量()4,7a =-,()3,4b =-,则2a b -在b 方向上的投影为( ) A .2B .-2C.-D.8.设抛物线2:12C y x =的焦点为F ,准线为l ,点M 在C 上,点N 在l 上,且()0FN FM λλ=>,若4MF =,则λ的值( )A .32B .2C .5 2D .39.设a b c ,,分别是ABC △的内角A B C ,,的对边,已知()()()()sin sin sin b c A C a c A C ++=+-,则A ∠的大小为( )A .30B .60︒C .120︒D .150︒10.函数()3ln 8f x x x =+-的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,411.已知正三棱锥的高为6,内切球(与四个面都相切)表面积为16π,则其底面边长为( ) A .18B .12C.D.12.已知函数()()sin f x x ωϕ=+(其中0>ω)的最小正周期为π,函数()()4g x f x x π⎛⎫=+ ⎪⎝⎭,若对x R ∀∈,都有()3g x g π⎛⎫≤ ⎪⎝⎭,则ϕ的最小正值为( ) A .3πB .23π C .43π D .53π第II 卷(非选择题)二、填空题13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为_________.14.已知圆C 与y 轴相切,圆心在x 轴的正半轴上,并且截直线10x y -+=所得的弦长为2,则圆C 的标准方程是________.15.已知,αβ均为锐角且()()cos 3cos αβαβ-=+,则()tan αβ+的最小值________.16.若函数()2323020x x f x x ax x +⎧-≤=⎨-+>⎩,,有三个不同的零点则实数a 的取值范围______.三、解答题17.正项等比数列{}n a 中,已知34a =,426a a =+.()1求{}n a 的通项公式;()2设n S 为{}n a 的前n 项和,()()*41log n n b S S n N =+∈,求25850++b b b b ++⋯.18.某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:(Ⅰ)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取2名学生参加某项活动,问2名学生中有1名男生的概率是多少?(III )学生的学习积极性与对待班级工作的态度是否有关系?请说明理由.K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.已知椭圆()222210x y a b a b +=>>的离心率为2,且经过点()2,0A .()1求椭圆的标准方程;()2过点A 的动直线l 交椭圆于另一点B ,设()2,0D -,过椭圆中心O 作直线BD 的垂线交l 于点C ,求证:•OB OC 为定值.20.如图在多面体ABCDE 中,AC 和BD 交于一点除EC 以外的其余各棱长均为2.()1作平面CDE 与平面ABE 的交线l ,并写出作法及理由; ()2求证:BD CE ⊥;()3若平面ADE ⊥平面ABE ,求多面体ABCDE 的体积.21.已知函数()sin 2cos 2f x x x x ax =+++,其中a 为常数.()1若曲线()y f x =在2x π=处的切线斜率为-2,求该切线的方程;()2求函数()f x 在[]0,x π∈上的最小值.22.在平面直角坐标xOy 系中,曲线C 的参数标方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(其中t 为参数,且0t >),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为sin 3πρθ⎛⎫-=⎪⎝⎭()1求曲线C 的极坐标方程;()2求直线l 与曲线C 的公共点P 的极坐标.23.已知函数()21f x x x =-+,且,,a b c R ∈.()1若1a b c ++=,求()()()f a f b f c ++的最小值; ()2若1x a -<,求证:()()()21f x f a a -<+.参考答案1.D 2.A 3.D因为()2ln 1y x =+,满足偶函数f (﹣x )=f (x )的定义, 所以函数()2ln 1y x =+为偶函数,其图象关于y 轴对称,故排除B ,4.B∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖). ∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形, 5.D由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PA k +==最大. 6.D若2211og a og b <,则0a b <<,所以110a b >>,即“2211og a og b <”不能推出“11a b<”,反之也不成立,因此“2211og a og b <”是“11a b<”的既不充分也不必要条件.7.B向量()4,7a =-,()3,4b =-,∴221a b -=-(,),∴(2)a b -•b =()213,4--(,)=-10, |b;∴向量2a b -在向量b 方向上的投影为: |2a b -|cos <(2)a b -,b >=()2a b b b-⋅=105-=﹣2.8.D过M 向准线l 作垂线,垂足为M ′,根据已知条件,结合抛物线的定义得''MM FF =MN NF=1λλ-,又4MF =,∴|MM′|=4,又|FF′|=6,∴''MM FF =46=1λλ-,3λ∴=.9.C∵()()()()sin sin sin b c A C a c A C ++=+-,,∴由正弦定理可得:()()b a c b c a c +=+-(),整理可得:b 2+c 2﹣a 2=-bc , ∴由余弦定理可得:cosA=12-,∴由A ∈(0,π),可得:A=23π. 10.B 11.B如图,过点P 作PD ⊥平面ABC 于D ,连结并延长AD 交BC 于E ,连结PE ,△ABC 是正三角形, ∴AE 是BC 边上的高和中线,D 为△ABC 的中心. 此时球与四个面相切,如图D 、M 为其中两个切点, ∵S 球=16π, ∴球的半径r =2.又∵PD=6,OD=2,∴OP=4,又OM=2, ∴OPM ∠=30︒∴, ∴ AB=12, 故选B.12.B由函数()f x 的最小正周期为π,可求得ω=2∴f (x )=()sin 2x ϕ+,()()4g x f x x π⎛⎫=++ ⎪⎝⎭=()sin 2sin 24x x πϕϕ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=()() cos 2sin 2x x ϕϕ++=2sin (2x ϕ++6π), ∴()2sin26g x x πϕ=++,又()3g x g π⎛⎫≤ ⎪⎝⎭,∴x=3π是g(x)的一条对称轴,代入2x ϕ++6π中,有23πϕ⨯++6π=k 2ππ+(k Z),解得ϕ=k 3ππ-+(k Z),k=1时,23πϕ=,13.12∵高中部女教师与高中部男教师比例为2:3,按分层抽样方法得到的工会代表中,高中部女教师有6人,则男教师有9人,∴工会代表中高中部教师共有15人,又初中部与高中部总人数比例为2:3,∴工会代表中初中部教师人数与高中部教师人数比例为2:3,∴工会代表中初中部教师总人数为10,又∵初中部女教师与高中部男教师比例为7:3,工会代表中初中部男教师的总人数为10×30%=3; ∴工会代表中男教师的总人数为9+3=12, 14.()2239x y -+=设圆心为(t ,0),且t>0, ∴半径为r=|t|=t ,∵圆C 截直线10x y -+=所得的弦长为2,∴圆心到直线10x y -+=的距离∴t 2-2t-3=0, ∴t=3或t=-1(舍), 故t=3,∴()2239x y -+=. 故答案为()2239.x y -+= 15.由cos (α-β)=3cos (α+β),可得cosαcosβ+sinαsinβ=3cosαcosβ-3sinαsinβ,同时除以cosαcosβ, 可得:1+tanαtanβ=3-3tanαtanβ,则tanαtanβ=12,又()tan β1tan tan βtan tan ααβα++=-=2tan β2tan α+≥⨯故答案为: 16.()3,+∞因为0x ≤,由2230x +-=可得2230x log =-+<,即函数()f x 在0x ≤上有一个零点;所以函数()2323020x x f x x ax x +⎧-≤=⎨-+>⎩,,有三个不同的零点等价于方程320x ax -+=在()0,∞+上有两个不等实根,等价于方程22a x x=+在()0,∞+上有两个不等实根;即y a =与函数()22g x x x=+在()0,∞+上有两个不同交点; 由()22g x x x =+得()()()2´2221122x x x g x x x x-++=-=,由()´0g x >得1x >; 由()´0gx <得01x <<,即函数()22g x x x=+在()0,1上单调递减,在()1,∞+上单调递增, 所以()g x 最小值为()13g =,所以()[3)g x ∞∈+,, 因为y a =与函数()22g x x x=+在()0,∞+上有两个不同交点,所以3a >.故答案为()3,+∞17.()1 1*2,n n a n N -=∈ ()2221()1设正项等比数列{}n a 的公比为()0q q >,则由34a =及426a a =+得446q q =+,化简得22320q q --=,解得2q =或12q =-(舍去).所以{}n a 的通项公式为31*3•2,n n n a a qn N --==∈. ()2由122112n n n S -==--得,()414log log 22nn n n b S S =+==.所以()()25850117++b =2585025022124b b b ++⋯+++⋯+=+=. 18.(1) P =1950;(2) P =1021;(3) 故有99.9%的把握认为“学生的学习积极性与对待班级工作的态度”有关系.试题解析:(1)由题知,不积极参加班级工作且学习积极性不高的学生有19人,总人数为50人, 所以P =1950;(2)设这7名学生分别为a,b,c,d,e,A,B (大写为男生),则从中抽取两名学生的情况有: (a,b),(a,c),(a,d),(a,e),(a,A),(a,B),(b,c),(b,d),(b,e),(b,A),(B,b),(c,d),(c,e),(c,A),(c,B),(d,e),(d,A),(d,B),(e,A),(e,B),(A,B),共21种情况,其中有1名男生的有10种情况, ∴P =1021.(3)由题意得,K 2=50×(18×19−6×7)224×26×25×25≈11.538>10.828,故有99.9%的把握认为“学生的学习积极性与对待班级工作的态度”有关系.19.()1 22142x y += ()24,证明见解析()1因为椭圆的离心率2c e a ==,且2a =,所以c =又2222b a c =-=.故椭圆的标准方程为22142x y +=.()2设直线l 的方程为2x ty =+(t 一定存在,且0t ≠).代入2224x y +=,并整理得()22240t y ty ++=.解得242B t y t -=+,于是224222B B t x ty t -=+=+. 又()2,0D -,所以BD 的斜率为2224422222t tt t ⎛⎫--÷+=- ⎪++⎝⎭. 因为OC BD ⊥,所以直线的方程为2y t x=. 与方程2x ty =+联立,解得42,C t -⎛⎫- ⎪⎝⎭. 故22222481648•4222t t OB OC t t t -+=+==+++为定值.20.()1见解析()2见解析()3 2()1过点E 作AB (或CD )的平行线,即为所求直线l .AC 和BD 交于一点,,,,A B C D ∴四点共面.又四边形ABCD 边长均相等.∴四边形ABCD 为菱形,从而//AB DC .又AB ⊄平面CDE ,且CD ⊂平面CDE ,//AB ∴平面CDE .AB ⊂平面ABE ,且平面ABE ⋂平面CDE l =,//AB l ∴.()2证明:取AE 的中点O ,连结OB ,OD .AB BE =,DA DE =,OB AE ∴⊥,OD AE ⊥.又OB OD O ⋂=,AE ∴⊥平面OBD ,BD ⊂平面OBD ,故AE BD ⊥.又四边形ABCD 为菱形,AC BD ∴⊥.又AE AC A ⋂=,BD ∴⊥平面ACE .又CE ⊂平面ACE ,BD CE ∴⊥.()3解:平面ADE ⊥平面ABE ,DO ∴⊥平面ABE .故多面体ABCDE 的体积11222?•2232E ABCD E ABD D ABE V V V ---⎛==== ⎝.21.()1 220x y π+--= ()2 ()min 44,4,a f x a a πππ⎧≥⎪⎪=⎨⎪<⎪⎩()1求导得()cos sin f x x x x a -'=+,由122f a π⎛⎫=-=- ⎪⎝⎭'解得1a =-. 此时22f π⎛⎫= ⎪⎝⎭,所以该切线的方程为222y x π⎛⎫-=-- ⎪⎝⎭,即220x y π+--=为所求. ()2对[]0,x π∀∈,()sin 0f x x x '=-≤',所以()f x '在[]0,π区间内单调递减.当0a ≤时,()()00f x f a ''≤=≤,()f x ∴在区间[]0,π上单调递减,故()()min f x f a ππ==.当a π≥时,()()0f x f a ππ'='≥-≥,()f x ∴在区间[]0,π上单调递增,故()()min 04f x f ==.当0a π<<时,因为()00f a '=>,()0f a ππ='-<,且()f x '在区间[]0,π上单调递增,结合零点存在定理可知,存在唯一()00,x π∈,使得()00f x '=,且()f x 在[]00,x 上单调递增,在[]0,x π上单调递减.故()f x 的最小值等于()04f =和()fa ππ=中较小的一个值. ①当4a ππ≤<时,()()0f f π≤,故()f x 的最小值为()04f =. ②当40a π<<时,()()0f f π≤,故()f x 的最小值为()f a ππ=.综上所述,函数()f x 的最小值()min 44,4,a f x a a πππ⎧≥⎪⎪=⎨⎪<⎪⎩. 22.()1 2cos2444ππρθθ⎛⎫=-<< ⎪⎝⎭ ()26π⎛⎫ ⎪⎝⎭ ()1消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥.将cos x ρθ=,y sin ρθ=代入224x y -=,得()222cos 4sin ρθθ-=.所以曲线C 的极坐标方程为2cos2444ππρθθ⎛⎫=-<< ⎪⎝⎭. ()2将l 与C 的极坐标方程联立,消去ρ得242cos23sin πθθ⎛⎫-= ⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即6πθ=.代入sin 3πρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为6π⎛⎫ ⎪⎝⎭. 23.()173()2见解析 .【详解】 ()1由柯西不等式得,()22221433a b c a b c ++≥++=(当且仅当23a b c ===时取等号),所以()()()()()222473133f a f b f c a b c a b c ++=++-+++≥+=,即()()()f a f b f c ==的最小值为73; ()2因为1x a -<,所以()()()()22f x f a x a x a -=---=()()()()•11212112121x a x a x a x a a x a a a a -+-<+-=-+-≤-+-<++=+,故结论成立.。
2020高考文科数学考前提分冲刺模拟仿真卷2套带答案
高考最新模拟卷 文 科 数 学注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·延安模拟]已知集合{}2,x A y y x ==∈R ,(){}lg 2B x y x ==-,则A B =( )A .()0,2B .(],2-∞C .(),2-∞D .(]0,22.[2019·衡阳联考]在三个复数1i z a =+,211iz a a =-+-,()2321i z a a a =-++中,有且仅有一个纯虚数,则实数a 为( ) A .0或2B .0C .1D .23.[2019·山南模拟]以下说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“2x =”是“2320x x -+=”的充分不必要条件C .若命题:P 存在0x ∈R ,使得2010x x -+<,则p ⌝:对任意x ∈R ,都有210x x -+≥ D .若p 且q 为假命题,则p ,q 均为假命题 4.[2019·宣城期末]函数()2sin 2xf x x =-的图象可能是( ) A . B .C .D .5.[2019·南昌外国语]右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为16,20,则输出的a =( )A .0B .2C .4D .16.[2019·广州测试]已知1sin cos 5αα+=,其中,ππ2α⎛⎫∈ ⎪⎝⎭,则tan2α=( ) A .247- B .43-C .724D .2477.[2019·永州模拟]某几何体的三视图如图所示,则该几何体的体积为( )A .5π3B .4π3 C .π3D .2π38.[2019·益阳模拟]如图所示的三个统计图分别是随机抽查甲,乙,丙三地的若干个家庭教育年投入(万元),记A 表示众数,B 表示中位数,C 表示平均数,则根据图表提供的信息,下面的结论正确的是( )A .A A A ==甲乙丙,B B B ==甲乙丙 B .B B B >=甲乙丙,C C C ==甲乙丙 C .A A A >=甲乙丙,C C C >>甲乙丙D .A A A >=甲乙丙,B B B >>甲乙丙9.[2019·萍乡期末]矩形ABCD 中,4AB =,3BC =,沿AC 将ABCD 矩形折起,使面BAC ⊥面DAC ,则四面体A BCD -的外接球的体积为( ) A .125π6B .125π9C .125π12D .125π310.[2019·滨州期末]已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是PF 直线与抛物线C 的一个交点,若,则QF =( ) A .3B .83C .4或83D .3或411.[2019·陕师附中]已知函数()()221f x x x =∈+R ,若等比数列{}n a 满足120191a a =, 则()()()()1232019f a f a f a f a ++++=( )A .2019B .20192C .2D .1212.[2019·甘肃诊断]函数()y f x =的图象关于直线2x =对称,如图所示,则方程()()()2560f x f x -+=的所有根之和为( )A .8B .6C .4D .2第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2019·平罗中学]某中学为调查在校学生的视力情况,拟采用分层抽样的方法,从该校三个年级中抽取一个容量为30的样本进行调查,已知该校高一、高二、高三年级的学生人数之比为4:5:6,则应从高三年级学生中抽取______名学生.14.[2019·马鞍山二中]设实数x 、y 满足约束条件002x y x y x ⎧-≥+≥≤⎪⎨⎪⎩,则14x z y +=+的取值范围是______.15.[2019·德州模拟]数列{}n a 的前n 项和为n S ,若11a =,0n a ≠,131n n n S a a +=+,则2019a =_____.16.[2019·河南名校]已知函数()0ln ,e 0,x x f x x x ⎧≤⎪=⎨>⎪⎩,()()2g x f x x a =+-,若()g x 存在2个零点,则a 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·抚顺一模]已知a ,b ,c 分别是ABC △的三个内角A ,B ,C 的对边, 若10a =,角B 是最小的内角,且34sin 3cos c a B b A =+.(1)求sin B 的值;(2)若ABC △的面积为42,求b 的值.18.(12分)[2019·马鞍山一模]如图,四棱锥P ABCD -中,AB BC ⊥,AD BC ∥,PB AE ⊥,E 为CD中点,AB ,22BC AD ==. (1)证明:平面PAE ⊥平面PBD ;(2)若2PB PD ==,求三棱锥P ADE -的体积.19.(12分)[2019·福建毕业] “工资条里显红利,个税新政入民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得R (简称个税)改革迎来了全面实施的阶段.某IT 从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁35-岁(2009年2018-年)之间各年的月平均收入y (单位:千元)的散点图:注:年龄代码110-分别对应年龄2635-岁.(1)由散点图知,可用回归模型ln y b x a =+拟合y 与x 的关系,试根据有关数据建立y 关于x 的回归方程;(2)如果该IT 从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴交的个人所得税. 附注:1.参考数据:10155ii x==∑,101155.5ii y==∑,()102182.5ii x x =-=∑,()()10194.9iii x x yy =--=∑,10115.1ii t==∑,()10214.84ii tt=-=∑,()()10124.2ii i tty y =--=∑,其中ln i i t x =;取ln11 2.4=,ln36 3.6=.2.参考公式:回归方程v bu a =+中斜率和截距的最小二乘估计分别为()()()121ˆnii i nii uu v v buu ==--=-∑∑,ˆˆav bu =-. 3.新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:20.(12分)[2019·南开中学]已知(A,)B是椭圆()2222:10x y C a b a b+=>>上两点.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,M 为椭圆C 上一动点,点()3,0P ,线段PM 的垂直平分线交y 轴于点Q ,求OQ 的最小值.21.(12分)[2019·九江二模]已知函数()()()ln f x a x x a =-∈R . (1)试讨论函数()f x 的单调性; (2)若对任意()0,x ∈+∞,不等式()11f x x x<+-恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·玉溪一中]在平面直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x t y t ==⎧⎨⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy 有相同的长度单位,直线l的直角坐标方程为y =. (1)求曲线1C 的极坐标方程;(2)若曲线2C 的极坐标方程为8cos 0ρθ+=,与直线l 在第三象限交于A 点,直线l 与1C 在第一象限的交点为B ,求AB .23.(10分)【选修4-5:不等式选讲】[2019·唐山二模]已知()1124f x ax ax a =++---. (1)若()0f x ≥,求a 的取值范围;(2)若0a >,()y f x =的图像与x 轴围成的封闭图形面积为S ,求S 的最小值.高考最新模拟卷文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】∵{}{},20xA y y x y y ==∈=>R ,(){}{}lg 220B x y x x x ==-=-<{}()2,2x x =<=-∞,∴{}()020,2A B x x =<<=,故选A .2.【答案】D【解析】若1z 为纯虚数,则0a =,3z 也为纯虚数,不符合题意;1a ≠,2z 显然不为纯虚数, 故3z 为纯虚数,2a =,故选D . 3.【答案】D【解析】A 选项:根据逆否命题的定义可知:原命题的逆否命题为“若1x ≠,则2320x x -+≠”,可知A 正确;B 选项:由2320x x -+=,解得1x =,2,因此“2x =”是“2320x x -+=”的充分不必要, 可知B 正确;C 选项:根据命题的否定可知p ⌝:对任意x ∈R ,都有210x x -+≥,可知C 正确;D 选项:由p 且q 为假命题,则p ,q 至少有一个为假命题,因此D 不正确.故选D . 4.【答案】C【解析】∵()f x 的定义域为{x x ≠,关于原点对称,又∵()()2sin 2xf x f x x --==--,即函数()f x 是奇函数,∴()fx 的图象关于原点对称,排除A 、D , 当0x <<sin 0x >,220x -<,∴()2sin 02xf x x =<-,排除B ,故选C . 5.【答案】C【解析】输入a ,b 的值,分别为16,20,第一次循环:第一层判断:满足a b ≠,进入第二层选择结构, 第二层判断:不满足a b >,满足a b ≤,故20164b =-=;第二次循环:第一层判断:满足a b ≠,进入第二层选择结构, 第二层判断:满足a b >,故16412a =-=;第三次循环:第一层判断:满足a b ≠,进入第二层选择结构,第二层判断:满足a b >,故1248a =-=;第四次循环:第一层判断:满足a b ≠,进入第二层选择结构, 第二层判断:满足a b >,故844a =-=;第五次循环:第一层判断:满足4a b ==,故输出4,故选C . 6.【答案】D【解析】∵1sin cos 5αα+=,且()()22sin cos sin cos 2αααα++-=,∴()249sin cos 25αα-=, ∵,ππ2α⎛⎫∈ ⎪⎝⎭,∴7sin cos 5αα-=,因此4sin 5α=,3cos 5α=-,从而4tan 3α=-,22tan 24tan 271tan ααα==-,故选D . 7.【答案】D【解析】有三视图可知原几何体为:半个圆柱中间去掉半个圆锥, 则半个圆柱体积为:211π12π2V =⨯⨯=,半个圆锥体积为:2211π223π13V =⨯⨯⨯=,则几何体体积为:122π3V V V =-=,故选D . 8.【答案】C【解析】由甲地的条形图可知,家庭教育年投入的中位数为10万元,众数为10万元,平均数为10.32万元;由乙地的折线图可知,家庭教育年投入的中位数为10万元,众数为10万元,平均数为9.7万元; 由丙地的扇形图可知,家庭教育年投入的中位数为12万元,众数为12万元,平均数为12.4万元.结合选项可知C 正确,故选C . 9.【答案】A【解析】设AC 与BD 的交点为O 点,在矩形ABCD 中,可得OA OB OC OD ===, 当沿AC 翻折后,上述等量关系不会发生改变,∵四面体A BCD -的外接球的球心到各顶点的距离相等,∴点O 即为球心, 在ABC Rt △中,5AC =,故52R OA OB OC OD =====, ∴球的体积为34125ππ36V R ==,故选A .10.【答案】B【解析】设Q 到l 的距离为d ,则由抛物线的定义可得QF d =,∵3PF FQ =,∴4PQ d =,1Q x >,∴直线PF的斜率为=, ∵抛物线方程为24y x =,∴()1,0F ,准线:1l x =-, ∴直线PF的方程为)1y x =-,与24y x =联立可得53Q x =或35Q x =(舍去), ∴58133QF d ==+=,故选B . 11.【答案】A【解析】120191a a =,()()1201922120192211f a f a a a ∴+=+++21222111212222211111a a a a a =+=+=++++, {}n a 为等比数列,则212019220181009101110101a a a a a a a =====,()()220182f a f a ∴+=,,()()100910112f a f a +=,()10101f a =,即()()()()12320192100912019f a f a f a f a ++++=⨯+=.故选A .12.【答案】A【解析】∵()()()2560f x f x -+=,∴()2f x =或3,由函数()y f x =的图象得()2f x =有两个根1x ,2x ,且两个根关于直线2x =对称, ∴12224x x +=⨯=,同理()3f x =的两个根的和为34224x x +=⨯=, ∴方程()()()2560f x f x -+=的所有根之和为448+=,故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】12【解析】由分层抽样可得:应从高三年级学生中抽取63012456⨯=++名学生,故答案为12.14.【答案】13,42⎡⎤⎢⎥⎣⎦【解析】实数x 、y 满足约束条件002x y x y x ⎧-≥+≥≤⎪⎨⎪⎩的平面区域如图,∵14x z y +=+的表示区域内,点P 与()1,4D --点连线的斜率的倒数,由02x y x +==⎧⎨⎩,解得()2,2A -,当2x =,2y =-时,斜率最小值,此时z 取得最大值213242z +==-+; 当0x =,0y =时,z 取得最小值011044z +==+, ∴14x z y +=+的取值范围为13,42⎡⎤⎢⎥⎣⎦,故答案为13,42⎡⎤⎢⎥⎣⎦. 15.【答案】3028【解析】数列{}n a 的前n 项和为n S ,若11a =,131n n n S a a +=+①,当1n =时,整理得1112331S a a a ==⋅+,解得22a =, 当2n ≥时,1131n n n S a a --=⋅+②,①-②得:()113n n n n a a a a +-=-,由于0n a ≠,故113n n a a +--=(常数)故数列{}n a 的奇数项为首项为1,公差为3的等差数列,则11312n n a +⎛⎫=+- ⎪⎝⎭. 数列{}n a 的偶数项为首项为2,公差为3的等差数列,2312n n a ⎛⎫=+- ⎪⎝⎭,∴20192019113130282a +⎛⎫=+-=⎪⎝⎭.故答案为3028. 16.【答案】(],1-∞【解析】由()()20g x f x x a =+-=,得()2f x a x =-, 即方程()2f xx a =-+有两个不同的实数根.设()2g x x a =-+,则函数()y f x =的图象与函数()2g x x a =-+的图象有两个不同的交点.作出函数()0ln ,e 0,x x f x x x ⎧≤⎪=⎨>⎪⎩的图象,如下图所示,由图象可得,若两函数的图象有两个不同的交点,则需满足1a ≤. ∴实数a 的取值范围是(],1-∞.故答案为(],1-∞.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)3sin 5B =;(2)b = 【解析】(1)由34sin 3cos c a B b A =+、πA B C ++=, 及正弦定理可得:()3sin 4sin sin 3sin cos A B A B B A +=+, 由于sin 0A >,整理可得3cos 4sin B B =, 又sin 0B >,因此得3sin 5B =.(2)由(1)知3sin 5B =, 又ABC △的面积为42,且10a =,从而有13104225c ⨯⨯=,解得14c =,又角B 是最小的内角,∴0π3B <≤,且3sin 5B =,得4cos 5B =,由余弦定理得2224141021410725b =+-⨯⨯⨯=,即b = 18.【答案】(1)见解析;(2)14.【解析】(1)证明:由AB BC ⊥,AD BC ∥,AB =22BC AD ==, 可得2DC =,π3BCD ∠=,2BD =. 从而BCD △是等边三角形,π3BDC ∠=,BD 平分ADC ∠. E 为CD 中点,1DA DE ==,BD AE ∴⊥,又PB AE ⊥,PB BD B =,AE ∴⊥平面PBD .AE ⊂平面PAE ,∴平面PAE ⊥平面PBD .(2)解:由(1)知,AE ⊥平面PBD ,则平面PBD ⊥平面ABCD , 取BD 中点O ,连接PO ,则PO BD ⊥.平面PBD ⊥平面ABCD ,平面PBD平面ABCD BD =,PO ∴⊥平面ABCD .2PB PD BD ===,PO ∴又111sin1202ADE S =⨯⨯⨯︒=△,1134P ADE V -∴=.19.【答案】(1)5ln 8y x =+;(2)2130元.【解析】(1)10115.1 1.511010ii tt ====∑,101155.515.551010ii y y ====∑,则()()()101102124.254.84ii i i i tty y b t t ==--===-∑∑,15.555 1.518a y bt =-=-⨯=. ∴58y t =+.y ∴关于x 的回归方程为5ln 8y x =+.(2)该IT 从业者36岁时的月收入约为()5ln118100020000+⨯=元,若按旧个税政策,需缴纳个税为15003%300010%450020%750025%3120⨯+⨯+⨯+⨯=, 若按新个税政策,需缴纳个税为30003%900010%990⨯+⨯=,31209902130-=. ∴他36岁时每个月少缴交的个人所得税2130元.20.【答案】(1)22162x y +=;(2. 【解析】(1)代入A ,B 两点:221b =,2223116a a b +=⇒=,22b =,∴椭圆C 的标准方程为22162x y +=.(2)设M 坐标为()00,M x y ,则2222000016362x y x y +=⇒=-①线段PM 的中点003,22x y N +⎛⎫⎪⎝⎭,0031QN PM QN x k k k y -⋅=-⇒=, ∴0000332:2QNy x x l y x y -+⎛⎫-=- ⎪⎝⎭. 令0x =,并结合①式得222000000009333222222Q y x y y y y y y y -----=+=+=,0000232322Qy OQ y y y y --===+≥,当且仅当0032y y =,0y =时取等,∴OQ. 21.【答案】(1)见解析;(2)(),1-∞.【解析】(1)()()111a x f x a x x -⎛⎫'=-= ⎪⎝⎭,()0x >.当0a >时,函数()f x 在()0,1上单调递减,在()1,+∞上单调递增; 当0a <时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减; 当0a =时,函数()()00f x x =>,不具有单调性. (2)对任意()0,x ∈+∞,不等式()11f x x x <+-恒成立()1ln 10a x x x x⇔---+≤,()* 令()()1ln 1g x a x x x x =---+,()0x >.()()()221111111x a x g x a x x x ---⎡⎤⎛⎫⎣⎦'=-+-= ⎪⎝⎭, 当1a ≤时,∵0x >,∴()110a x --<,()001h x x '>⇔<<;()01h x x '<⇔>. ∴()h x 在()0,1上单调递增,在()1,+∞上单调递减.∴()()11h x h a ≤=-,要使不等式()*恒成立,则10a -<,即1a <. 当1a >时,()110h a =->,不等式()*不恒成立. 故实数a 的取值范围是(),1-∞.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)2221sin cos 4θθρ=+;(24+. 【解析】(1)由题意知1C 的直角坐标方程为2214y x +=,由cos sin x y ρθρθ==⎧⎨⎩,可得1C 的极坐标方程为2222sin cos 14ρθρθ+=,化简整理得222sin 1cos 4θθρ+=. (2)由题意得直线l 的极坐标方程为π3θ=,∴38cos 0πθρθ=+=⎧⎪⎨⎪⎩,可得3π4,A ⎛⎫- ⎪⎝⎭. 同理222π3sin 1cos 4θθθρ⎧⎪⎪⎨=+=⎪⎪⎩,可得3πB ⎫⎪⎪⎝⎭,4A B AB ρρ=-=+. 23.【答案】(1)1a ≤-;(2)8.【解析】(1)∵()()11112ax ax ax ax --++≥+-=,等号当且仅当()()110ax ax +-≤时成立,∴()f x 的最小值为22422a a --=--. 依题意可得,220a --≥,∴1a ≤-.(2)∵0a >,()1124f x ax ax a =++---,∴()1224,1122,1224,ax a x a f x a x a a ax a x a ⎧---≤-⎪⎪⎪=---<<⎨⎪⎪--≥⎪⎩, ∴()y f x =的图像与x 轴围成的封闭图形为等腰梯形ABCD ,如图所示:且顶点为21,0A a ⎛⎫-- ⎪⎝⎭,21,0B a ⎛⎫+ ⎪⎝⎭,1,22C a a ⎛⎫-- ⎪⎝⎭,1,22D a a ⎛⎫--- ⎪⎝⎭,从而()3321128S a a a a ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭=+.∵3a a+≥aa =S取得最小值8.高考最新模拟卷 文 科 数 学注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
四川省雅安市2022届高三学业质量监测(零诊)文科数学试题(2)
一、单选题二、多选题1. 已知是所在平面内一点,,现在内任取一点,则该点落在内的概率是( )A.B.C.D.2. 古希腊数学家欧几里德在其著作《几何原本》中定义了相似圆锥:两个圆锥的高与底面的直径之比相等时,则称这两个圆锥为相似圆锥.已知圆锥的底面圆的半径为3,其母线长为5.若圆锥与圆锥是相似圆锥,且其高为8,则圆锥的侧面积为( )A.B.C.D.3. 已知,则上的所有点全部向右移动个单位的函数解析式是( )A.B.C.D.4.已知,则( )A .7B .-7C.D.5.已知,则( )A.B.C.D.6. 从1,2,3,4,5,6这6个数中随机地取3个不同的数,3个数中最大值与最小值之差不小于4的概率为( ).A.B.C.D.7. 下列命题正确的是( )A .三点确定一个平面B .一条直线和一个点确定一个平面C .梯形可确定一个平面D .圆心和圆上两点确定一个平面8.已知随机变量,且,,则为( )A .0.1358B .0.1359C .0.2716D .0.27189. 在三棱锥P -ABC中,,,,O 为的外心,则( )A .当时,PA ⊥BCB .当AC =1时,平面PAB ⊥平面ABCC .PA 与平面ABC所成角的正弦值为D .三棱锥A -PBC的高的最大值为10. 图中阴影部分用集合符号可以表示为()A.四川省雅安市2022届高三学业质量监测(零诊)文科数学试题(2)四川省雅安市2022届高三学业质量监测(零诊)文科数学试题(2)三、填空题四、解答题B.C.D.11. 若直线与曲线相交于不同两点,,曲线在A ,点处切线交于点,则( )A.B.C.D .存在,使得12. 若两函数的定义域、单调区间、奇偶性、值域都相同,则称这两函数为“伙伴函数”.下列函数中与函数不是“伙伴函数”是( )A.B.C.D.13. 已知关于x的不等式的解集为,则的解集为______________.14. 在数列中,若,前项和,则的最大值为______.15. 在《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭”,蕴含了无限分割、等比数列的思想,体现了古人的智慧.如图,正方形的边长为,取正方形各边的中点、、、,作第二个正方形,然后再取正方形各边的中点、、、,作第三个正方形,依此方法一直继续下去,记第一个正方形的面积为,第二个正方形的面积为,,第个正方形的面积为,则前个正方形的面积之和为______________.16. 已知{a n }是各项为正数的等比数列,{b n }为公差是2a 1的等差数列,且a 2-b 2=a 3-b 3=b 4-a 4.(1)若a n >b n ,求n 的取值范围;(2)若a 1=1,求集合中元素的个数.17.如图,在正四棱柱中,,,E ,F分别是,的中点.(1)求直线与平面所成角的正弦值;(2)求二面角的余弦值.18. 已知等比数列的公比,且成等差数列.(1)求及;(2)设,求数列的前5项和.19. 1.2021年6月23日,交通运输部、国家邮政局、国家发展改革委、人力资源社会保障部、商务部、市场监管总局、全国总工会联合印发了《关于做好快递员群体合法权益保障工作的意见》,从保障合理的劳动报酬,完善社会保障、增强社会认同,压实快递企业主体责任,强化政府监管与服务四个方面,对切实保障快递员群体合法权益、促进快递业持续健康发展做出了部署.某大学生在某快递公司找到了一份临时派送大件快递的工作,有两种月工资方案供其选择,方案一,月固定工资1000元,每成功派送一单大件快递提成30元;方案二,月固定工资1000元,每月成功派送的前100单大件快递没有提成,超过100单的部分每成功派送一单大件快递提成80元.已知该大学生能干满一个月.(1)分别求方案一和方案二的月工资y(单位:元)与该月成功派送大件快递数量n(,单位:单)的表达式;(2)根据该快递公司所有派送大件快递的快递员10个月的成功派送记录,统计了月平均成功派送大件快递数量与月数的数据,如下表:月平均成功派送大件快递数量/单150155160165170月数23221由表格中的数据,分析该大学生选择哪种月工资方案比较合适,请说明理由.20.已知,.(1)若函数图象的两条相邻对称轴之间的距离为,求的值;(2)若函数的图象关于对称,且函数在上单调,求的值.21. 已知函数.(1)当时,判断函数的单调性;(2)若有两个极值点,证明:.。
湖北省示范性高中2014届高三考前模拟强化测试文科数学2
湖北省示范性高中2014届高三考前模拟强化测试文科数学2一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}13<<-=x x A ,{}1log 2<=x x B ,则B A 等于A .()()1,00,3 -B .()()1,00,1 -C .()1,2-D .()()1,00,2 - 2.已知()πθ2,0∈,复数θθθθsin i cos sin i cos -+=z ,则z =A .1B .θ4cosC .θ4sinD .θ4tan3.某程序框图如图所示,若输入的p 为24,则输出的,n S 的值分别为A .4,30n S ==B .4,45n S ==C .5,30n S ==D .5,45n S ==4.已知指数函数()x a x f =()1,0≠>a a 、对数函数()x x g b log =()1,0≠>b b 和幂函数()()Q ∈=c x x h c 的图象都经过点)2,21(P ,如果()()()4321===x h x g x f ,那么,+1x =+32x xA .67 B .56 C .45 D.23 5.函数()x f y =的图象如图所示,则导函 数)(x f y '=的图象的大致形状是6.设n m ,是两条不同的直线,,αβ是两个不同的平面,给出下列条件,能得到m β⊥的是D .A .B .C .22侧视图俯视图A .,m αβα⊥⊂B .,m ααβ⊥⊥C .,m n n β⊥⊂D .//,m n n β⊥ 7.如图,已知三棱锥的俯视图是边长为2的正 三角形,侧视图是有一直角边长为2的直角 三角形,则该三棱锥的正视图可能为8.如图,在OAB ∆中,120=∠AOB ,2=OA ,1=OB , C 、D 分别是线段OB 和AB 的中点,那么=⋅ A .2- B .23-C .21- D .439.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率是A .169 B .21 C .167 D .83 10.已知椭圆C :22221x y a b +=(a >b >0F 且斜率为k (k >0)的直线与C 相交于A 、B 两点.若FB AF 3=,则k = A .1 B C D .2二、填空题:本大题共5小题,每小题7分,共35分,请将答案填在答题卡对应题号的位置上.11.若命题“存在实数x ,使x 2+ax +1<0”的否定是真命题,则实数a 的取值范围为 . 12.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 (用n 表示). 13.已知直线l 在x 轴、y 轴上的截距分别是a 和b ()0,0>>b a ,且经过点()4,1M ,则b a +的最小值为. 14.某校高三年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),22 1 1 A .21 1B .211C .2 11D .… ① ② ③现用分层抽样的方法选取x 名学生参加某项课 外活动,已知从身高在[160,170)的学生中选取 9人,则x = .15.已知数列{}n a 是等差数列,首项391=a ,公差2-=d ,前n 项和为n S ;数列{}n b 是等比数列,首项51=b ,公比2=q ,前n 项和为n T .如果从第m 项开始,对所有的*∈N n 都有n m S T >,则=m .16.已知函数()x x x f 2cos 2sin 3-=,R ∈x ,给出以下说法:①函数()x f 的图像的对称轴是Z ∈+=k k x ,3ππ;②点)0,127(πP 是函数()x f 的图像的一个对称中心; ③函数()x f 在区间],2[ππ上的最大值是21;④将函数()x f 的图像向右平移12π个单位,得到函数()x x x g 2cos 32sin -=的图象. 其中正确说法的序号是 . 17.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量L /mg P 与时间t h间的关系为kt e P P -=0.如果在前5个小时消除了10%的污染物,则10小时后还剩__________%的污染物.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分12分) 在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,且满足cos (3)cos b C a c B =-. (Ⅰ)求B cos ;(Ⅱ)若4BC BA ⋅=,b =a ,c 的值.19.(本小题满分12分)为了了解甲、乙两名同学的数学学习情况,对他们的7次数学测试成绩(满分100分)进行统计,作出如下的茎叶图,其中,x y 处的数字模糊不清.已知甲同学成绩的中位数是83,乙同学成绩的平均分是86分. (Ⅰ)求x 和y 的值;(Ⅱ)现从成绩在[90,100]之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.20.(本小题满分13分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(Ⅰ)求异面直线DC 1和BB 1所成的角;C 1A 1B 1(Ⅱ)证明:平面BDC 1⊥平面BDC . 21.(本小题满分14分)已知直角坐标平面内一动点P 到点)0,2(F 的距离与直线2-=x 的距离相等. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点)0,(m M (0>m )作斜率为3的直线与曲线C 相交于B A ,两点,若AFB∠为钝角,求实数m 的取值范围;(Ⅲ)过点)0,(m M (0>m )作直线与曲线C 相交于B A ,两点,问:是否存在一条垂直于x 轴的直线与以线段AB 为直径的圆始终相切?若存在,求出m 的值;若不存在,请说明理由.22.(本大题满分14分)若函数()x f 满足:在定义域内存在实数0x ,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x +=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)在(Ⅱ)的条件下,当a 取最小整数时,求()x g 的单调区间,并证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n ()*∈N n ..参考答案及评分细则一、选择题:1.D 2.A 3.C 4.D 5.D 6.D 7.C 8.B 9.C 10.B二、填空题:11.]2,2[- 12.26+n 13.9 14.30 15.7 16.②④ 17.81三、解答题:18.解:(Ⅰ)由正弦定理和cos (3)cos b C a c B =-,得sin cos (3sin sin )cos B C A C B =-, 化简,得sin cos sin cos 3sin cos B C C B A B +=,即sin3sin cos B C A B +=(), 故sin 3sin cos A A B =.因为sin A ≠0,所以1cos =3B . ………………………………………………………6分 (Ⅱ)因为4BC BA ⋅=,所以4cos ||||=⋅⋅=⋅B BA BC BA BC .所以12BC BA ⋅=,即12ac =. ①又因为2221cos =23a cb B ac +-=, 整理,得2240a c +=. ②联立①② ⎩⎨⎧==+,12,4022ac c a ,解得⎩⎨⎧==,6,2c a 或⎩⎨⎧==.2,6c a ………………………………………………………12分19.解:(Ⅰ)甲同学成绩的中位数是83,∴3x =.乙同学的平均分是86分,∴1(78838380909196)867y +++++++=, ∴1y =.…………………………… 6分(Ⅱ)甲同学成绩在[90,100]之间的试卷有二份,分别记为1a ,2a , 乙同学成绩在[90,100]之间的试卷有三份,分别记为1b ,2b ,3b , “从这五份试卷中随机抽取两份试卷”的所有可能结果为:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()()2122,,,a b a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b ,共有10种情况.记“从成绩在[90,100]之间的试卷中随机抽取两份,恰抽到一份甲同学试卷”为事件M ,则事件M 包含的基本事件为:()11,a b ,()12,a b ,()13,a b ,()()2122,,,a b a b ,()23,a b ,共有6种情况.则63()105P M ==, 答:从成绩在[90,100]之间的试卷中随机抽取两份进行分析,恰抽到一份甲同学试卷的概率为35.……………………………………………………12分20.解:(Ⅰ)由题设知AA 1//BB 1,所以异面直线DC 1和BB 1所成的角为11DC A ∠. 因为侧棱垂直底面,9011=∠∴C DA .又AC =BC =12AA 1,D 是棱AA 1的中点,11C DA ∆∴ 是等腰直角三角形.∴ 4511=∠DC A .21.解:(Ⅰ)由抛物线的定义,知所求P 点的轨迹是以)0,2(F 为焦点,直线2-=x 为准线的抛物线.其方程为px y 22=,其中22=p,4=p . 所以,动点P 的轨迹C 的方程为x y 82=.………………………………………4分 (Ⅱ)由题意知,直线AB 的方程为)(3m x y -=. 代入x y 82=,得03)86(322=++-m x m x . 设),(),,(2211y x B y x A ,则22121,386m x x m x x =+=+. AFB ∠ 为钝角,0<⋅∴FB FA .C BAC 1A 1B 1又),2(11y x FA -=,),2(22y x FB -=,∴0)2)(2(2121<+--y y x x .即0])([34)(2221212121<++-+++-m x x m x x x x x x , 034))(32(422121<++++-∴m x x m x x .因此043632<--m m , 321418321418+<<-∴m . 综上,实数m 的取值范围是)321418,2()2,321418(+- .…………………8分(Ⅲ)设过点M 的直线方程为m y x +=λ,代入x y 82=,得0882=--m y y λ.设),(),,(2211y x B y x A ,则λ821=+y y ,m y y 821-=. 于是m m y y x x 282)(22121+=++=+λλ. AB ∴的中点坐标为)4,4(2λλm +.又2212221221))(1()()(y y y y x x AB -+=-+-=λ]4))[(1(212212y y y y -++=λ)3264)(1(22m ++=λλ.设存在直线0x x =满足条件,则=-+|4|202x m λ)3264)(1(22m ++λλ.化简,得028)816(020220=+--++mx x m m x λ.所以,028)816(020220=+--++mx x m m x λ对任意的λ恒成立,所以⎩⎨⎧=+--=+.028,081602020m x x m m x 解得20-=x ,2=m . 所以,当2=m 时,存在直线2-=x 与以线段AB 为直径的圆始终相切.……13分22.解:(Ⅰ)函数()22x x f x+=的定义域是R ,若是关于1可线性分解,则定义域内存在实数0x ,使得()()()1100f x f x f +=+.构造函数()()()()11f x f x f x h --+=()12212221----++=+x x x x()1221-+=-x x .∵()10-=h ,()21=h 且()x h 在[]1,1-上是连续的, ∴()x h 在()1,1-上至少存在一个零点.即存在()1,10-∈x ,使()()()1100f x f x f +=+. …………………………… 4分 另解:函数()22x x f x+=关于1可线性分解,由()()()11f x f x f +=+,得()3212221++=+++x x x x .即222+-=x x.作函数()x x g 2=与()22+-=x x h 的图象, 由图象可以看出,存在∈0x R ,使222+-=x x,即()()()1100f x f x f +=+)成立.………………………………………… 4分 (Ⅱ)()x g 的定义域为()+∞,0.由已知,存在00>x ,使()()()a g x g a x g +=+00. 即()()1ln 1ln 1ln 20000+-++-=++-+a a ax x a x a a x . 整理,得()1ln ln ln 00++=+a x a x ,即())e ln(ln 00ax a x =+.∴e 00ax x a =+,所以1e 0-=a ax . 由01e 0>-=a a x 且0>a ,得e1>a . ∴a 的取值范围是⎪⎭⎫ ⎝⎛+∞,e 1. ………………………………………… 10分 (Ⅲ)由(Ⅱ)知,a =1,()1ln +-=x x x g ,xx x x g -=-='111)(.。
四川省遂宁市第二中学校2023届高三上学期一诊模拟考试文科数学试卷(二)(含答案解析)
a
即 a c a b2 c2 a2 ,所以, a c a ,可得 c 2a ,
答案第 3页,共 12页
因此,该双曲线的离心率为
e
c a
2
.
故选:A.
11.D
【分析】画出 f (x) 的图象,结合图象可得答案.
四川省遂宁市第二中学校 2023 届高三上学期一诊模拟考试文 科数学试卷(二)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x | x 1 , B x | 3x 1 ,则( )
A. A I B x | x 0
科学的研究制定社会、经济、科教等各项发展政策,是国家科学决策的重要基础工作.
截止 2021 年 6 月,我国共进行了七次人口普查,下图是这七次人口普查的城乡人数和
增幅情况,下列说法错.误.的是( )
A.城镇人口数逐次增加
B.历次人口普查中第七次普查城镇人口最多
C.城镇人口比重逐次增加
D.乡村人口数逐次增加
故选:D。
4.A
【分析】计算得到
P
1 2
,
3
2
,在根据三角函数定义计算得到答案.
【详解】
P
cos
2π 3
,
sin
2π 3
,即
P
1 2
,
3 2
,则
sin
y x2 y2
3 2
,
tan
y x
3.
故 sin tan 3 . 2
故选:A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学考前训练(2)一、选择题(5×10=50分)1.若12(1)ai bi i +=-,其中a 、b R ∈,i 是虚数单位,则||a bi +=( )A .12i + BC.D .542. “3=x ”是“92=x ”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 3.某程序框图如图所示,现输入下列四个函数:1()f x x=,2()f x x x =+,23()log (1)f x x =+,()22xf x =-则输出的函数是( )A .1()f x x=B .2()f x x x =+ C . 23()log (1)f x x =+D .()22xxf x -=-4.等差数列{}n a 中,10120,S = 那么29a a +的值是( )A .12B .16C .24D .485.圆1)3()1(22=++-y x 的切线方程中有一个是( )A .0=-y xB .0=+y xC .0=xD .0=y 6.已知函数)2,0()sin(πϕωϕω<>+=x y 的部分图象如图,则( ) A .6,1πϕω== B .6,1πϕω-==C .6,2πϕω== D .6,2πϕω-==7.若曲线x x x f -=331)(在点P 处的切线平行于直线03=-y x ,则点P 的横坐标为( )A .2B .±2C .1D .1-8.若实数y x 、满足231x y x y ≤⎧⎪≤⎨⎪+≥⎩,则y x S +=2的最大值为( )A .3B .2C .6D .79.△ABC 的三个内角,C B A 、、的对边分别为c b a 、、,且1)(22=--bcc b a ,则=A ( )A .030 B .060 C .0120 D .015010.已知函数⎪⎩⎪⎨⎧<<≥+=20log 243)21()(2x x x x f x ,则((2))f f =( ) A .0 B .45C .1D .1- 二、填空题(5×5=25分)11.已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 .12.某高中共有学生1200人,其中高一年级有500人,高二年级有400人,高三年级有300人,采用分层抽样方法抽取一个容量为60的样本,那么高三年级抽取学生个数应为 .13.已知F 是双曲线C :)0,0(12222>>=-b a b y a x 的右焦点,O 是双曲线C 的中心,直线xm y =是双曲线C 的一条渐近线.以线段OF 为边作正三角形MOF ,若点M 在双曲线C 上, 则m 的值为14.已知R 是实数集,集合{}2|22,,12A y y x x x R x ==-+∈-≤≤,集合27|,13x B x x R x -⎧⎫=∈>⎨⎬-⎩⎭,任取x A ∈,则x A B ∈的概率等于15.四棱锥P ABCD -的顶点p 在底面ABCD 中的投影恰好是A ,其三视图如图所示,则四棱锥P ABCD -的表面积为三、解答题(75分)16.(本题满分13分)已知函数)(,2,2}{,1log )(*112N n a a a a x x x f nn n ∈==+-=+满足数列, (1)求数列{}n a 的通项公式n a ;(2)设)(n n a f b =求数列}{n b 的前n 项和n S 。
xy17.(本小题满分13分)在△ABC 中,角C B A 、、的所对应边分别为c b a 、、,且.sin 2sin ,3,5A C b a ===(1)求c 的值; (2)求32sin(π-A 的值.18.(本小题满分13分)某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分为150分),将成绩按如下方式分成六组,第一组[)100,90、第二组[)110,100…、第六组[]150,140. 下图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.(1)求第四和第五组频率,并补全频率分布直方图;(2)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面22⨯ 列联表(即填写空格处的数据),并判断是否有99﹪的把握认为“进入决赛的同学成为种子选手与专家培训有关”.19.(本小题满分12分)设.31)(23nx mx x x f ++=,32)()(--'=x x f x g 的图象关于2-=x 对称, (1)若2)0(='f ,求)(x f 的解析式;(2)求函数)(x f 的单调区间.20.(本小题满分12分) 如图,已知⊥PA ⊙O 所在的平面,AB 是⊙O 的直径,4AB =,C 是⊙O 上一点,且PA =BC AC =,PE PFPC PB λ==.(1)求证:ABC EF 面//;(2)求证:EF ⊥AE ;(3)当12λ=时,求三棱锥A CEF -的体积.21.(本小题满分12分)如图,在直角坐标系xOy 中,设椭圆)0(1:2222>>=+b a by a x C 的左右两个焦点分别为21F F 、,过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为()1,2M 。
(1)求椭圆C 的方程;(2)设椭圆C 的一个顶点为),0(b B -,直线2BF 交椭圆C 于另一点N ,求△BN F 1的面积。
高三数学考前训练(2)参考答案CADCC,DBDBA 11.9- 12.15 13.3+32 14.4315.2)22(a + 16.解:(1)21=+nn a a,{}n a ∴是公比为2首项为2的等比数列……2分 1(2221==⨯=∴-n a n n n 时,此式也满足)……6分(2)由(1)知n n n n a a f 2)1(122log )(2-+=+-=……9分[])222()1(32)()()(221n n n a f a f a f ⋅⋅⋅++-++⋅⋅⋅++=+⋅⋅⋅++∴=222)3(1+-++n n n ……13分 17.解:(1)因为A C sin 2sin =由正弦定理得a c 2=,又5=a ,所以52=c 。
……5分(2)5522cos 222=-+=bc a c b A ………8分 53sin cos 2cos ,54cos sin 22sin ,55sin ,022=-====∴<<A A A A A A A A π ……11分 103343sin 2cos 3cos 2sin )32sin(-=-=-∴πππA A A ………13分 18.解:(1)设第四,五组的频率分别为y x ,,则10005.02⨯+=x y ①10)035.002.0015.0005.0(1⨯+++-=+y x ②由①②解得15.0=x ,10.0=y从而得出直方图(如图所示) (2)依题意,进入决赛人数为24)05.010.015.0(05.04=++⨯,进而填写列联表如下:又由2224(51153) 3.75 6.635204168K ⨯-⨯==<⨯⨯⨯, 故没有99﹪的把握认为“进入决赛的同学成为种子选手与专家培训有关”.19.解:(1)n mx x x f ++=2)(2'…………………………1分3,21,2)(3)1(2)(2=-=-∴-=-+-+=m m x x g n x m x x g 对称的图象关于 ………4分2,2)0(=∴='n f ………………………5分x x x x f 2331)(23++=∴………………………6分 (2)设nx n x x f n n n n x x x f -+->---<⇒><∴<⇔>-=∆>++=93930)(99043606)('2'或时,当设增区间为),93(),93,(+∞-+-----∞n n减区间为)93,93(n n -+----…………………10分当上恒成立,在时R x f n 0)(,0,9'≥≤∆≥增区间为),(+∞-∞……………12分 20.(1)证明:连结1AC ,交1AC 于点O ,连结OD .由 111C B AABC -是直三棱柱, 得 四边形11ACC A 为矩形,O 为1AC 的中点. 又D 为BC 中点,所以OD 为1A BC △中位线,所以 1A B ∥OD , 因为 OD ⊂平面1ADC ,1A B ⊄平面1ADC , 所以 1A B ∥平面1ADC . ……6分 (2)解:由111C B A ABC -是直三棱柱,且90ABC ︒∠=,故1,,BB BC BA 两两垂直.所以二面角1C AD C --的余弦值为23……12分 21.[解法一] 因为l x ⊥轴,所以2F 的坐标为()0,2. ……1分由题意可知 ⎪⎩⎪⎨⎧=-=+,2,1122222b a ba 得 ⎩⎨⎧==.2,422b a 所以所求椭圆方程为12422=+y x . ……5分 [解法二]由椭圆定义可知a MF MF 221=+. 由题意12=MF ,121MF a =-. ……1分 又由Rt △21F MF 可知()122)12(22+=-a ,0>a ,2a =,又222=-b a ,得22=b .椭圆C 的方程为12422=+y x . ……5分[解] (2) 直线2BF 的方程为2-=x y . ……6分由 ⎪⎩⎪⎨⎧=+-=,124,222y x x y 得点N 的纵坐标为32. ……8分又2221=F F,118233F BN S ∆=⨯⨯=⎭. ……12分。