化归与转化思想PPT教学课件

合集下载

高中数学方法转化与化归思想

高中数学方法转化与化归思想

(2)简单化原则:将复杂问题转化为简单问题,如三维空间问题 转化为二维平面问题,通过简单问题的解决思路和方法,获得 对复杂问题的解答启示和思路以达到解决复杂问题的目的. (3)具体原则:化归方向应由抽象到具体. (4)和谐统一性原则:转化问题的条件或结论,使其表现形式更 符合数与形内部所表示的和谐统一的形式;或者转化命题,使 其推演有利于运用某种数学方法或符合人们的思维规律. (5)正难则反的原则:当问题正面讨论遇到困难时,应想到问题 的反面;或问题的正面较复杂时,其反面一般是简单的;设法 从问题的反面去探求,使问题获得解决.
m 解 (1)对 f(x)求导,得 f′(x)=e - 2. x m x-1 当 f(x)在(1,2)上单调递减时, e - 2 ≤0 在[1,2]上恒成立, x
x-1
∴m≥x2ex-1 在[1,2]上恒成立. 令 h(x)=x2ex-1,则 h′(x)=ex-1(x2+2x)>0 在[1,2]上恒成 立,即 h(x)中[1,2]上单调递增, ∴h(x)=x2ex-1 在[1,2]上的最大值为 h(2)=4e,即 m≥4e. 故实数 m 的取值范围是[4e,+∞).
2 归纳拓展 本题如果从已知条件 a2 = a · a ⇒ ( a + 2 d ) = a1(a1 3 1 9 1 a1+a3+a9 +8d),解得 a1 与 d 的关系后,代入所求的式子: a2+a4+a10 a1+(a1+ 2d)+(a1+8d) = ,也能求解,但计算较繁锁, (a1+d)+(a1+ 3d)+ (a1+9d)
二、正难则反的转化与化归 例 2 已知三条抛物线: y=x2+4ax-4a+3, y=x2+(a-1)x +a2,y=x2+2ax-2a 中至少有一条与 x 轴相交,求实数 a 的取值范围.

转化与化归思想

转化与化归思想

正面与反面的转化 例 2:若抛物线 y=x2+4ax+3-4a,y=x2+(a-1)x +a2,y=x2+2ax-2a 中至少有一条与 x 轴相交,则实数 a 的取值范围是________.
第20讲 │ 要点热点探究
4 (1)-3,7 3 (2)-∞,-2∪[-1,+∞)
【解析】(1)g(x)=f′(x)=3x2+4x-a.g(x)=f′(x)在区间(-1,1) 上存在零点,等价于 3x2+4x=a 在区间(-1,1)上有解,等价于 a 的 取值范围是函数 y=3x2+4x 在区间(-1,1)上的值域,不难求出这个 4 4 函数的值域是-3,7.故所求的 a 的取值范围是-3,7. (2) 若 三 条 抛 物 线 均 不 与 x 轴 相 交 , 则
第20讲 │ 要点热点探究
x2 y2 (2)证明:由(1)知 a =3b ,所以椭圆 2+ 2=1 可化为 x2+3y2=3b2. a b → 设OM=(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),
2 2
x=λx1+μx2, ∴ y=λy1+μy2.
ቤተ መጻሕፍቲ ባይዱ
∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2, 2 2 即 λ2(x1+3y2)+μ2(x2+3y2)+2λμ(x1x2+3y1y2)=3b2. ① 1 2 a2c2-a2b2 3 2 3 3 2 1 2 由(1)知 x1+x2= c,a2= c ,b2= c ,∴x1x2= 2 = c. 2 2 2 8 a +b2 ∴x1x2+3y1y2=x1x2+3(x1-c)(x2-c) 3 9 =4x1x2-3(x1+x2)c+3c2= c2- c2+3c2=0. 2 2 2 又 x2+3y1=3b2,x2+3y2=3b2, 1 2 2 代入①得 λ2+μ2=1.故 λ2+μ2 为定值,定值为 1.

二轮复习-----转化与化归思想---课件(27张)(全国通用)

二轮复习-----转化与化归思想---课件(27张)(全国通用)
例3设f(x)是定义在R上的增函数,若f(1-ax-x2)≤f(2-a)对任意
x≤-1或x≥0
a∈[-1,1]恒成立,则x的取值范围为
.
解析 ∵f(x)在R上是增函数,
∴由f(1-ax-x2)≤f(2-a),
得1-ax-x2≤2-a,a∈[-1,1].
∴a(x-1)+x2+1≥0对a∈[-1,1]恒成立.
用、变形用)、角度的转化、函数的转化、通过正、余弦定理实现边
角关系的相互转化.
(2)换元法是将一个复杂的或陌生的函数、方程、不等式转化为简
单的或熟悉的函数、方程、不等式的一种重要的方法.
(3)在解决平面向量与三角函数、平面几何、解析几何等知识的交
汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言
解析 设 f(p)=(x-1)p+x2-4x+3,则当 x=1 时,f(p)=0.所以 x≠1.
(0) > 0,
f(p)在 0≤p≤4 上恒正,等价于
(4) > 0,
(-3)(-1) > 0,
即 2
解得 x>3 或 x<-1.
-1 > 0,
第一部分
四、转化与化归思想
思想方法•聚焦诠释
命题热点一
∴-4<2C-4 <
2].
高频考点•探究突破
预测演练•巩固提升
-10-
第一部分
四、转化与化归思想
思想方法•聚焦诠释
命题热点一
命题热点二
命题热点三
高频考点•探究突破
预测演练•巩固提升
-11-
命题热点四
题后反思在应用化归与转化的思想方法去解决数学问题时,没有

转化划归

转化划归

题的有效策略,同时也是成功的思维方式.常见的转化方
法有:
(1)直接转化法:把原问题直接转化为基本定理、基本公式
或基本图形问题.
思想方法概述
(2)换元法:运用“换元”把式子转化为有理式或使整式降幂
等,把较复杂的函数、方程、不等式问题转化为易于解决的基
本问题.
(3)数形结合法:研究原问题中数量关系(解析式)与空间形式
(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转
化方法的一个重要途径.
(8)类比法:运用类比推理,猜测问题的结论,易于确定.
本 讲
(9)参数法:引进参数,使原问题转化为熟悉的形式进行解
栏 目
决.
开 关
(10)补集法:如果正面解决原问题有困难,可把原问题的结
果看做集合A,而把包含该问题的整体问题的结果类比为全
转化与化归思想在高考中占有十分重要的地位,数学问题
的解决,总离不开转化与化归,如未知向已知的转化、新
知识向旧知识的转化、复杂问题向简单问题的转化、不同
数学问题之间的互相转化、实际问题向数学问题的转化

等.各种变换、具体解题方法都是转化的手段,转化的思
讲 栏
想方法渗透到所有的数学教学内容和解题过程中.
热点分类突破
类型二 相等与不等的转化
例 2 若关于 x 的方程 9x+(4+a)·3x+4=0 有解,则实数 a 的
取值范围是________.

讲 栏
可采用换元法,令t=3x,将问题转化为关于t
目 开
的方程有正解进行解决.

热点分类突破
解析 设 t=3x,则原命题等价于关于 t 的方程
t2+(4+a)t+4=0 有正解,分离变量 a 得

高中数学方法转化与化归思想

高中数学方法转化与化归思想

变式训练 4 设 g(x)=px-qx-2f(x),其中 f(x)=ln x,且 g(e) =qe-pe-2(e 为自然对数的底数).
(1)求 p 与 q 的关系;
(2)若 g(x)在其定义域内为增函数,求 p 的取值范围. 解 (1)由题意 g(x)=px-qx-2ln x, ∴g(e)=pe-qe-2, ∴pe-qe-2=qe-pe-2, ∴(p-q)e+(p-q)1e=0, ∴(p-q)e+1e=0, 而 e+1e≠0,∴p=q.
由aa≤ 2+21≥4 得aa≤ ≥2 3或a≤- 3 , ∴a≤- 3或 3≤a≤2. 即 A∩B=∅时,a 的取值范围为 a≤- 3或 3≤a≤2. 而 A∩B≠∅时,a 的取值范围显然是其补集,从而所求范围 为{a|a>2 或- 3<a< 3}.
三、抽象问题与具体问题的转化
例 3 已知等差数列{an}的公差 d≠0,且 a1、a3、a9 成等比
归纳拓展 本题的求解涉及两类题型和求解的方法:(1)求参 数的范围问题,方法是通过对函数单调性的研究,转化为不等 式的恒成立问题,进而转化为求函数的最值问题求解.(2)研 究函数的零点问题,方法是通过研究函数在某区间有最大(或 最小)值 f(t),而函数又在此区间有零点,则结合图形分析,可 得 f(t)≥0(或 f(t)≤0).
变式训练 1 1e64 ,2e55 ,3e66 (其中 e 为自然常数)的大小关系是 _1e_64_<__2_e5_5 _<__3e_66_.
解析 由于1e64 =e442,2e55 =5e52,3e66 =e662,故可构造函数 f(x) =xe2x,于是 f(4)=1e64 ,f(5)=2e55 ,f(6)=3e66 . 而 f′(x)=exx2′=ex·x2-x4 ex·2x=ex(x2x-4 2x),令 f′(x)>0

转化与化归的数学思想【优质PPT】

转化与化归的数学思想【优质PPT】

2021/10/10
19
• 题目改成什么样的时候又不能用上述方法 呢?
2021/10/10
20
• 若不等式x2+px>4x+p-3对一切 0≤x≤4均成立,试求实数p的取值范围.
2021/10/10
21
练 7、多习 元向少元转化
已(知 x2)22y21,则 2y23x的最大 __值 _ . _是 _
A

●D
B ● ●C
→x+y=3 →x+y=1
30
• 目标函数又可转化为 y 1 x u 22

利处用有图最像 小知 值在 答点 案是A A 54
,
11 5
2021/10/10
31
8.其它形式的转化
2021/10/10
32
2021/10/10
33
2021/10/10
34
2021/10/10
则a的值为
A.-2
B.-4
C.-8
D.不能确定
动手就是希望!
2021/10/10
10
2021/10/10
11
3. 正面与反面的转化
在处理某一问题时,按习惯思维从正面思考比较困难,这时 用逆向思维的方式从反面去考虑,往往使问题变得比较简单。
例 3.若二f次 (x)函 4x2数 2(p2)x2p2p1在区
2021/10/10
4
化归思维模式:问题→新问题→解决新问题 →解决原问题.
化归的五原则:(1)熟悉化原则; (2)简单化原则; (3)和谐化原则; (4)直观化原则; (5)正难则反原则
2021/10/10
5
3.化归与转化应遵循的基本原则:

转化与化归思想ppt完美课件 通用

转化与化归思想ppt完美课件 通用

b=(1+sin2x+cos 2x,0),
∴f(x)=a·b=(1-tan x)(1+sin 2x+cos 2x)
cosxsinx•(2cos2 x2sinxcosx) cosx
2(cos2 xsin2 x) 2cos2x.
定义域为 xx
k
2,kz.
(2)因f ( ) 2cos(2 ) 2,
8
转 化 与 化 归 思想pp t完美课 件 通 用
转 化 与 化 归 思想pp t完美课 件 通 用
故有
f f
((2)2)0,0.即2(21(1x2x)2)
2x 1 2x 1
0, 0.
解得 7 1 x 3 1.
2
2
从而实数x的取值范围是( 7 1, 3 1). 22
【例2】(2008·南通调研)已知向量a=(1-
待解决的问题A
应用 问题A的解
观察、分析 类比、联想
容易解决的问题B
还原
解决 问题B的解
其中的问题B是化归目标或化归方向,转化的手段 是化归策略. 2.化归与转化思想的核心是将生疏的问题转化为熟 知的问题,解题的过程就是一个缩小已知与求解 之间差异的过程,是未知向已知转化的过程,也 是目标向问题靠拢的过程.
tanx,1),b=(1+sin 2x+cos 2x,0),记f(x)=a·b.
(1)求f(x)的解析式并指出它的定义域;
(2 )若 f( )2 ,且 (0 ,)求 ,f( ).
85
2
转 化 与 化 归 思想pp t完美课 件 通 用
转 化 与 化 归 思想pp t完美课 件 通 用
解 (1)∵a=(1-tan x,1),

专题三 第4讲 转化与化归思想

专题三  第4讲 转化与化归思想
2.在处理多变元的数学问题时,我们可以选取其中的常 数(或参数),将其看作是“主元”,实现主与次的转化,即常 量与变量的转化,从而达到减元的目的.
返回
[应用体验] 设 y=(log2x)2+(t-2)log2x-t+1,若 t∈[-2,2]时,y 恒取正 值,则 x 的取值范围是________.
第4讲 转化与化归思想
Contents
1 应用1 正与反的转化 2 应用2 常量与变量的转化 3 应用3 特殊与一般的转化 4 应用4 函数、方程、不等式间的转化 5 应用5 形体位置关系的相互转化
返回
“抓基础,重转化”是学好中学数学的金钥匙.事实上, 数学中的转化比比皆是,如未知向已知转化,复杂问题向简单 问题转化,新知识向旧知识转化,命题之间的转化,数与形的 转化,空间向平面转化,高维向低维转化,多元向一元转化, 高次向低次转化,函数与方程的转化等,都是转化思想的体现.
则①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成
立.
由①得3x2+(m+4)x-2≥0,即m+4≥
2 x
-3x在x∈(t,3)上
恒成立,∴m+4≥2t -3t恒成立,则m+4≥-1,即m≥-5;
返回
由②得 m+4≤2x-3x 在 x∈(t,3)上恒成立, 则 m+4≤23-9,即 m≤-337. ∴函数 g(x)在区间(t,3)上总不为单调函数的 m 的取值范 围为-337<m<-5.
答案:B
返回
2.设四边形 ABCD 为平行四边形,|―A→B |=6,|―A→D |=4.若点
M,N 满足―BM→=3―M→C ,―D→N =2―N→C ,则―AM→·―NM→=
A.20
B.15

《转化与化归思想》课件

《转化与化归思想》课件

配方法:将复杂式子转 化为简单式子
换元法:将复杂式子转 化为简单式子
待定系数法:通过设定未 知系数,将复杂式子转化 为简单式子
数学归纳法:通过归纳推 理,将复杂式子转化为简 单式子
反证法:通过反证法,将 复杂式子转化为简单式子
方程的转化方法
代数变形: 通过代数 运算,将 方程转化 为更简单 的形式
转化与化归思想包括化归法和转化法两种方法,化归法是将复杂问题转化 为简单问题,转化法是将未知问题转化为已知问题。
转化与化归思想在数学解题中有广泛的应用,可以帮助我们解决许多复杂 的数学问题。
转化与化归思想的核心思想是将复杂问题转化为简单问题,将未知问题转 化为已知问题,从而解决问题。
转化与化归思想的重要性
几何图形的转化方法
平移:将图形沿水平或垂直方向移动
旋转:将图形绕某一点旋转一定角度
反射:将图形沿某一直线或平面进行反 射
缩放:将图形按比例放大或缩小
剪切:将图形沿某一直线或平面进行剪 切
拼接:将多个图形拼接成一个新的图形
转化与化归思想在解题 中的应用
代数题中的转化与化归
转化与化归思想:将复杂问题转化为简单问题,将未知问题转化为已知问题 代数题中的转化:将复杂代数式转化为简单代数式,将未知数转化为已知数 代数题中的化归:将复杂问题转化为简单问题,将未知问题转化为已知问题 代数题中的转化与化归的应用:解决复杂代数问题,提高解题效率
转化与化归思想 的核心内容还包 括对问题的深入 理解和分析,以 及对问题的转化 和化归方法的掌 握。
展望转化与化归思想的发展方向
应用领域:数学、物理、化学等 学科
发展趋势:更加注重理论与实践 的结合
研究热点:转化与化归思想的新 方法、新应用

§4 转化与化归思想

§4 转化与化归思想

变式训练 3 已知定义在实数集 R 上的函数 y=f(x)恒不为 零,同时满足 f(x+y)=f(x)· f(y),且当 x>0 时,f(x)>1,
④ 那么当 x<0 时,一定有________(填序号).
①f(x)<-1;②-1<f(x)<0;③f(x)<1;④0<f(x)<1.
解析 设 f(x)=2x, ,则符合题意,结合图象知④正确.
§4 转化与化归思想 方法解读
1.转化与化归思想 所谓转化与化归思想,就是将待解决的问题和未解决的 问题,采取某种策略,转化归结为一个已经能解决的问 题;或者归结为一个熟知的具有确定解决方法和程序的 问题;归结为一个比较容易解决的问题,最终求得原问 题的解. 2.转化与化归思想的原则 (1)熟悉已知化原则:将陌生的问题转化为熟悉的问题, 将未知的问题转化为已知问题,以便于我们运用熟知的 知识、经验和问题来解决.
归纳拓展 本题如果从已知条件 a2=a1·9⇒(a1+2d)2=a1(a1 a 3 a1+a3+a9 +8d),解得 a1 与 d 的关系后,代入所求的式子: a2+a4+a10 a1+(a1+2d)+(a1+8d) = ,也能求解,但计算较繁锁, (a1+d)+(a1+3d)+(a1+9d) 易错. 因此, 把抽象数列转化为具体的简单的数列进行分析, 可以很快得到答案.
(6)类比法:运用类比推理,猜测问题的结论,易于确定转 化途径. (7)特殊化方法:把原问题的形式向特殊化形式转化,并证 明特殊化后的结论适合原问题. (8)等价问题法:把原问题转化为一个易于解决的等价命题, 达到转化的目的. (9)加强命题法:在证明不等式时,原命题难以得证,往往 把命题的结论加强,即命题的结论加强为原命题的充分条 件,反而能将原命题转化为一个较易证明的命题,比如在证 明不等式时,原命题往往难以得证,这时常把结论加强,使 之成为原命题充分条件,从而易证. (10)补集法:如果正面解决问题有困难,可把原问题结果看 作集合 A,而包含问题的整体问题的结果类比为全集 U,通 过解决全集 U 及补集∁ UA 使原问题得以解决.

第二轮第7讲化归与转化的思想

第二轮第7讲化归与转化的思想

第二轮第7讲化归与转化的思想一、知识整合1.解决数学咨询题时,常遇到一些咨询题直截了当求解较为困难,通过观看、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原咨询题转化为一个新咨询题〔相对来讲,对自己较熟悉的咨询题〕,通过新咨询题的求解,达到解决原咨询题的目的,这一思想方法我们称之为〝化归与转化的思想方法〞。

2.化归与转化思想的实质是揭示联系,实现转化。

除极简单的数学咨询题外,每个数学咨询题的解决差不多上通过转化为的咨询题实现的。

从那个意义上讲,解决数学咨询题确实是从未知向转化的过程。

化归与转化的思想是解决数学咨询题的全然思想,解题的过程实际上确实是一步步转化的过程。

数学中的转化比比皆是,如未知向转化,复杂咨询题向简单咨询题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,差不多上转化思想的表达。

3.转化有等价转化和非等价转化。

等价转化前后是充要条件,因此尽可能使转化具有等价性;在不得已的情形下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

4.化归与转化应遵循的差不多原那么:〔1〕熟悉化原那么:将生疏的咨询题转化为熟悉的咨询题,以利于我们运用熟知的知识、体会和咨询题来解决。

〔2〕简单化原那么:将复杂的咨询题化归为简单咨询题,通过对简单咨询题的解决,达到解决复杂咨询题的目的,或获得某种解题的启发和依据。

〔3〕和谐化原那么:化归咨询题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。

〔4〕直观化原那么:将比较抽象的咨询题转化为比较直观的咨询题来解决。

〔5〕正难那么反原那么:当咨询题正面讨论遇到困难时,可考虑咨询题的反面,设法从咨询题的反面去探求,使咨询题获解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个定点的距离之和为定值却是一个熟悉的结论,即动点的轨迹是椭圆,而动点 P 是两条直线的交点,这又是一个熟悉的问题,因此,本题就转化为,两条直线交点 的轨迹是否为椭圆的问题.解题的方向明确了.求出直线方程,再求交点的轨迹,然 后判断这一轨迹是否为椭圆,其焦点是否为定点.
因为 c (0,a) , i (1,0) ,,所以 c i ,a , i 2c 1,2a.
4.化归与转化思想
化归与转化的思想确是指在解决问题时,采用某种手段使之转化,进而使问 题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思 想方法,化归与转化思想的核心是把生题转化为熟题。事实上,解题的过程就 是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是 未知向熟知转化的过程,因此每解一道题,无论是难题还是易题,都离不开化 归。例如,对于立体几何问题,通常要转化为平面几何问题,对于多元问题, 要转换为少元问题,对于高次函数,高次方程问题,转化为低次问题,特别是 熟悉的一次,二次问题,对于复杂的式子,通过换元转化为简单的式子问题等 等.事实上,前面讲的函数和方程思想就是把表面不是函数的问题化归为函数问 题求解,分类与整合思想是把一个复杂的题目分解成若干个小题求解,而数形结 合思想则是把代数问题转化为图形求解,或者把几何问题转化为代数运算求解.
r2 a ex1
2
2 2 x1 ,
所以,
r1r2
2
1 2
x12
,

这里, r1 与 r2 的积用 x1 的代数式来表示.
直线方程为
y
y1
x1 2 y1
x
x1
,
即 x1x 2 y1 y 2 y12 x1 0 ,

因为
A x1,
y1 为椭圆
x2 2
y2
1上的点,则
x12
2 y12
2
于是, 直线方程②化为 x1x 2 y1y 2 0 ,
由 y 5x2 知, y1 5x12, y2 5x22 ,代入①得 x1x2 25x12x22 0,

由②式,还有 3 个参数: x1, x2, y0 ,
下面就要求出 y0 与 x1, x2 的关系,这要从 M,Q, N 共线去寻找.
因为 M ,Q, N 共线,则有 kMQ kMN ,
且要求 r1r2d 为常数.显然,需要把 x, y, x1, y2 在运算过程中去掉,并且要借助这些
字母来表示 r1, r2, d .这就是我们的解题方向.
由椭圆方程可知, a 2,b 1,c 1,e 2 . 2
而 r1, r2 分别为点 A 的焦半径,于是由焦半径公式得
2 r1 a ex1 2 2 x1 ,
x2 y2 x3 y3
xn1 yn1 1
的分式的和转化为熟知的数列的和,这正是解决本问的努力方向.
由 xn1 xn 得 yn1 yn , yn1 yn xn1 xn
yn1 1 yn 1 yn1 xn1 yn xn yn1 xn1 xn1 n1
xn1
xn
xn1
xn
yn xn
【分析及解】设 M x1, y1, N x2, y2 ,
因为 OM ,ON 不共线,且 MON 为锐角,则OM ON 0,
即 x1x2 y1y2 0,

本题要求 y0 的取值范围,这时,就涉及到 5 个参数:x1, x2, y1, y2, y0 ,而题目的最
终结果是只有一个参数 y0 ,需要去掉 4 个参数,
xk 1
xk
yk yk 1
即 xk2 xk1 ,因此, n k 1时,不等式成立。 yk 2 yk 1
由(1),(2),对所有的 n N ,不等式 xn1 xn 成立。 yn1 yn
第(Ⅲ)问要证明一个分式不等式
x1 y1 x2 y2 xn yn n N ,关键在于能否把不等式的左边
原点 O 以 c i 为方向向量的直线与经过定点 A(0, a) 以 i 2c 为方向向量的直 线相交于点 P ,其中 R ,试问:是否存在两个定点 E, F ,使得 PE PF 为 定值,若存在,求出 E, F 的坐标,若不存在,说明理由。
【分析及解】本题是一个存在性问题,又是一个定点和定值问题:“是否存在 两个定点 E, F ,使得 PE PF 为定值”,这是一个生疏的问题,但是,一个动点到
y0
5 x2
x1 ,

【例
3】设
A x1,
y1 为椭圆
x2 2
y2
1上任意一点,过点
A
作一条斜率为
x1 2 y1
的直线 l ,又设 d 为原点到直线 l 的距离,r1, r2 分别为点 A 到两个焦点的距离,试
证明: r1r2 d 为常数.
【分析及解】题目中出现的字母有 x, y, x1, y2, r1, r2, d ,而求证中只有 r1, r2, d ,而
数 F x Px Qx 的图象与 x 轴没有交点,即函数 F x 的图象或者永远在 x
轴的上方, 或者永远在 x 轴的下方.
不妨设函数 F x 的图象或者永远在 x 轴的上方.
因 此 , 要 证 明 方 程 P P x Q Q x 没 有 实 数 解 , 只 要 证 明
P P x Q Q x 永远大于零或永远小于零就可以.
a2a4
得 a32
a1
a3 2
2a3a5 a3 a5
,因为 a3
0 ,则 a3
a1 a3 a5 , a3 a5
整理得 a32 a1a5 .因此, a1, a3, a5 成等比数列.
【例 2】已知 y 5x2 的图象是曲线C1 ,,过坐标原点 O 作OM ,ON 交C1 于
M , N 两点,直线 MN 交 y 轴于点Q0, y0 ,当 MON 为锐角时,求 y0 的取值范围.
1.把未知转化为已知或熟知 解题的过程就是一个把生题转化为熟题的过程,有一些题目,初看比较陌 生,过去未解过,未见过,在制定解题计划时,就要设法转化,使之成为一个 曾经解过的熟悉的问题,或曾经见过的类似的问题.
【例 1】已知 P x,Q x 是两个实系数多项式,且对所有实数 x ,满足恒等

P Q x Q P x .
即 解得
y1 y0 y2 y1 , x1 0 x2 x1
x1
x2 x1
把此等式代入②得
y0 5
y02
0,
这时就只剩下一个参数 y0 了.
解③得
y0 0 ,

y0
1 5
,
于是,
y0 的取值范围是 , 0
1 5
,
5x12 x1
因为 d 为原点到直线 l 的距离,则
d 2 ,

x12 4 y12
这里, d 是用 x1 和 y1 表示的.
对照①式,需要从③式中消去 y1 ,由 x12 2 y12 2 ,③式化为
在高考中,对化归思想的考查,总是结合对演绎证明,运算推理,模式构建 等理性思维能力的考查进行,因此可以说高考中的每一道试题,都在考查化归 意识和转化能力.
运用化归与转化的思想,有这样的三个问题必须明确: (1) 化归的对象:解题中需要变更的部分; (2) 化归的目标:把化归的对象化为熟知的问题,规范性的问题; (3) 化归的途径:从未知到熟知,从多元到少元,从空间到平面,从高维道 低维,从复杂到简单。
于是,方程无实数解得问题就转化为函数图象永远在 x 轴的上方, 或者永远 在 x 轴的下方的问题,方程的问题化归为函数图象问题.
这一思路,使我们获得了下面的解法.
因为方程 Px Qx 没有实数解,,不妨设 F x Px Qx 0 , 由 P Q x Q P x 得 P Px Q Qx P Px Q Px Q Px Q Qx
而第(Ⅱ)问证明的关键就是能否把递推式 xn1 xn 转化为等比数列,以及
xn
xn1
对 不 等 式 yn1 yn 能 类 比 等 比 数 列 求 解 . 或 者 由 求 证 的 不 等 式
yn
yn1
xn1 xn n N 是一个与正整数 n 有关的命题,而选择数学归纳法.这两种证明
yn1 yn 方法都是把生题转化为熟题的方法.
P P x Q P x P Qx Q Q x
0.
于是, 方程 P P x Q Q x 没有实数解.
【例 2】 (2006 天津卷,理)已知数列xn,yn 满足 x1 x2 1, y1 y2 2 ,并且
xn1 xn , yn1 yn ( 为非零参数, n 2,3, 4, )
因此,直线 OP 和 AP 的方程分别为 y ax 和 y a 2ax .
消去参数 得到方程 y( y a) 2a2x2 .
把这个方程朝着椭圆方程的目标整理,得
x2 1
y a
a 2 2
2
1.

8 2
因为 a 0, 所以
(1)当 a 2 时,方程①是圆方程,故不存在合乎题意的定点 E 和 F ; 2
之间有什么关系,因此, a2 , a4 对求解目标是多余的,需要从多元向少元化归, 即在解题时,设法把 a2 , a4 消去.
由题设,
a2
a32
a1 a3 , 2
a2a4 ,
为消去
2
1
1
.
a2 , a4
,








a2
a1
2
a3

a4 a3 a5
a4
2a3a5 a3 a5
,代入 a32
解法 1. 由已知, 0 , x1 x2 1, y1 y2 2 ,可得 xn 0, yn 0 ,
于是有,
xn1 xn 2 xn1 n1 x2 n1,
相关文档
最新文档