等差数列与等比数列的综合问题(完整资料).doc
等差数列与等比数列的综合-精品
![等差数列与等比数列的综合-精品](https://img.taocdn.com/s3/m/3b33775968eae009581b6bd97f1922791688be0f.png)
等差数列与等比数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)加,则%+(〃?-〃)d;(4)若s,/,p,g€N*,且s+Z=p+q,则公+4=即+劭,其中的,/,的是数列中的项,特别地,当s+f=2p时,有as+at=2cip;(5)若数列{斯},»〃}均是等差数列,则数列佃劭+幼〃}仍为等差数列,其中〃7,%均为常数.(6)斯,a n-ifa n-2f,•,,e m仍为等差数列,公差为-d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即20+1=斯+斯+2,2a t1=-川+斯+小,(〃2阳+1,n,〃氏N')(8)0〃,©〃+%,Clm+2k,4加+3”,…仍为等差数列,公差为Rd(首项不一定选).2、等比数列的性质.(1)通项公式的推广:a n=a m*q nn\(〃,mEN*).(2)若{〃“}为等比数列,且4+/=机+〃,(左,/,〃?,〃€N*),则四(3)若{如},{仇}(项数相同)是等比数列,则{入}(杉0),⑷,{斯出},仍是等比数列.a1>0(a[<01或,1={斯}是递增数列;q>l0<q<l减数列;夕=1。
0}是常数列;qV0={a〃}是摆动数列. ai>0 (<0或{〃〃}是递0<q<l [q>l(4)单调性:第1页共1页。
等差数列与等比数列的综合-高中数学知识点讲解(含答案)
![等差数列与等比数列的综合-高中数学知识点讲解(含答案)](https://img.taocdn.com/s3/m/02546c1bd5bbfd0a7856736e.png)
等差数列与等比数列的综合(北京习题集)(教师版)一.选择题(共7小题)1.(2017秋•通州区期末)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,5a 成等比数列,那么数列{}n a 的前10项和10S 等于( ) A .90B .100C .10或90D .10或1002.(2018•延庆县一模)若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,则a b +的值等于( ) A .4B .5C .6D .73.(2018•西城区校级模拟)已知等差数列{}n a 的公差和首项都不为0,且1a 、2a 、4a 成等比数列,则1143(a a a += ) A .2B .3C .5D .74.(2018秋•西城区校级期中)若1,a ,b 成等差数列,3,2a +,5b +,成等比数列,则等差数列的公差为() A .3B .3或1-C .3-D .3或3-5.(2017•东城区三模)已知数列{}n a 是公差为1-的等差数列,且4a 是2a 与5a 的等比中项,n S 为{}n a 的前n 项和,则6(S = ) A .90-B .45-C .0D .156.(2015秋•海淀区校级期末)已知等差数列1,a ,b ,又4,2a +,1b +为等比数列,求该等差数列的公差() A .1-B .0C .2D .17.(2016•东城区二模)成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( ) A .12n n b -=B .13n n b -=C .22n n b -=D .23n n b -=二.填空题(共8小题)8.(2017秋•房山区期末)等差数列{}n a 的首项为1,公差不为0,且2a ,3a ,6a 成等比数列,则6S = . 9.(2017秋•海淀区期末)已知公差为1的等差数列{}n a 中,1a ,2a ,4a 成等比数列,则{}n a 的前100项和为 . 10.(2018秋•东城区校级期中)若等差数列{}n a 与等比数列{}n b 中,若110a b =>,11110a b =>,则6a ,6b 的大小关系为 .11.(2018•海淀区校级三模)已知等差数列{}n a 中,公差0d ≠,12a =,1a ,2a ,4a 是等比数列{}n b 的前三项,则等差数列{}n a 的公差d = ,等比数列{}n b 的前n 项n S =12.(2017•北京)若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b = . 13.(2017•西城区二模)已知等差数列{}n a 的公差为2,且1a ,2a ,4a 成等比数列,则1a = ;数列{}n a 的前n 项和n S = .14.(2017春•海淀区期中)若数列{}n a 满足12312()()n n a a a a a a n +++⋯+=+,则数列{}n a 是等差数列.类比上述结论,可以猜想:若数列{}n b 满足 ,则数列{}n b 是等比数列.15.(2016•顺义区一模)国家新能源汽车补贴政策,刺激了电动汽车的销售,据市场调查发现,某地区今年Q 型电动汽车的销售将以每月10%的增长率增长;R 型电动汽车的销售将每月递增20辆,已知该地区今年1月份销售Q 型和R 型车均为50辆,据此推测该地区今年Q 型汽车销售量约为 辆;这两款车的销售总量约为 辆.(参考数据:111.1 2.9≈,121.1 3.1≈,131.1 3.5)≈等差数列与等比数列的综合(北京习题集)(教师版)参考答案与试题解析一.选择题(共7小题)1.(2017秋•通州区期末)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,5a 成等比数列,那么数列{}n a 的前10项和10S 等于( ) A .90B .100C .10或90D .10或100【分析】设{}n a 的公差为d ,且0d ≠,由等比中项的性质、等差数列的通项公式列出方程,求出d 的值,由等差数列的前n 项和公式求出{}n a 的前10项和10S . 【解答】解:设等差数列{}n a 的公差为d ,且0d ≠, 11a =且1a ,2a ,5a 成等比数列,2215()a a a ∴=,则2(1)1(14)d d +=+, 解得2d =或0d =(舍去), {}n a ∴的前10项和1010910121002S ⨯=⨯+⨯=, 故选:B .【点评】本题考查等差数列的通项公式、前n 项和公式,以及等比中项的性质,考查方程思想.2.(2018•延庆县一模)若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,则a b +的值等于( ) A .4B .5C .6D .7【分析】由二次方程的韦达定理可得0a >,0b >,由题意可得a ,2-,b 或b ,2-,a 成等比数列,a ,b ,2-或b ,a ,2-或2-,a ,b 或2-,b ,a 成等差数列,由中项的性质,可得a ,b 的方程,解方程即可得到所求和. 【解答】解:a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点, 可得a b p +=,ab q =,即有0a >,0b >,a ,b ,2-这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,即a ,2-,b 或b ,2-,a 成等比数列, 可得4ab =;又a ,b ,2-或b ,a ,2-或2-,a ,b 或2-,b ,a 成等差数列,可得22b a =-或22a b =-, 解得4a =,1b =或1a =,4b =, 可得5a b +=, 故选:B .【点评】本题考查等差数列、等比数列的中项的性质,以及二次方程的韦达定理,考查方程思想和运算能力,属于中档题.3.(2018•西城区校级模拟)已知等差数列{}n a 的公差和首项都不为0,且1a 、2a 、4a 成等比数列,则1143(a a a += ) A .2B .3C .5D .7【分析】利用等差数列以及等比数列的通项公式,求出数列首项与公比的关系,然后求解即可.【解答】解:由1a 、2a 、4a 成等比数列得2241a a a =, 2111()(3)a d a a d ∴+=+,21d a d ∴=, 0d ≠,1d a ∴=,则1141113111315523a a a a d a a a d a +++===+, 故选:C .【点评】本题考查数列的通项公式的应用,等差数列以及等比数列的应用,考查计算能力.4.(2018秋•西城区校级期中)若1,a ,b 成等差数列,3,2a +,5b +,成等比数列,则等差数列的公差为() A .3B .3或1-C .3-D .3或3-【分析】由题意列关于a ,b 的方程组,求得a ,b 后可得等差数列的公差. 【解答】解:1,a ,b 成等差数列,3,2a +,5b +成等比数列,则 221(2)3(5)a b a b =+⎧⎨+=+⎩,解得:47a b =⎧⎨=⎩或25a b =-⎧⎨=-⎩(舍). ∴等差数列的公差为3b a -=.故选:A .【点评】本题考查了等差数列的定义,考查了等差数列的通项公式,是基础题.5.(2017•东城区三模)已知数列{}n a 是公差为1-的等差数列,且4a 是2a 与5a 的等比中项,n S 为{}n a 的前n 项和,则6(S = ) A .90-B .45-C .0D .15【分析】由题意和等差数列的通项公式可得1a 的方程,解方程代入求和公式计算可得.【解答】解:由题意可得2425a a a =,公差1d =-, 2111(3)()(4)a d a d a d ∴+=++代入数据可得2111(3)(1)(4)a a a -=--, 解得15a =, 61656152S a d ⨯∴=+=. 故选:D .【点评】本题考查等差数列的求和公式和通项公式,属基础题.6.(2015秋•海淀区校级期末)已知等差数列1,a ,b ,又4,2a +,1b +为等比数列,求该等差数列的公差() A .1-B .0C .2D .1【分析】设等差数列的公差为d ,运用等差数列和等比数列的中项的性质,解方程可得2a =,3b =,即可得到公差1d =.【解答】解:设等差数列的公差为d , 由1,a ,b 成等差数列,可得21a b =+, 由4,2a +,1b +为等比数列,可得:24(1)(2)b a +=+, 解得2a =,3b =, 可得公差11d a =-=. 故选:D .【点评】本题考查等差数列和等比数列的中项的性质,考查等差数列的公差的求法,以及运算能力,属于基础题. 7.(2016•东城区二模)成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( ) A .12n n b -=B .13n n b -=C .22n n b -=D .23n n b -=【分析】设成等差数列的三个正数为a d -,a ,a d +,由题意可得2a =,再由等比数列的中项的性质,可得1d =,求得公比为2,由等比数列的通项公式计算即可得到所求. 【解答】解:设成等差数列的三个正数为a d -,a ,a d +, 即有36a =,解得2a =,由题意可得23d -+,26+,213d ++成等比数列, 即为5d -,8,15d +成等比数列, 即有(5)(15)64d d -+=, 解得1(11d =-舍去),即有4,8,16成等比数列,可得公比为2, 则数列{}n b 的通项公式为33132422n n n n b b ---===. 故选:A .【点评】本题考查等差数列和等比数列的中项的性质,考查等比数列的通项公式的运用,以及运算能力,属于中档题.二.填空题(共8小题)8.(2017秋•房山区期末)等差数列{}n a 的首项为1,公差不为0,且2a ,3a ,6a 成等比数列,则6S = 24- . 【分析】设等差数列{}n a 的公差为0d ≠,由2a ,3a ,6a 成等比数列.解得d ,然后求解前6项的和. 【解答】解:设等差数列{}n a 的公差为0d ≠,2a ,3a ,6a 成等比数列.2326a a a ∴=,2(12)(1)(15)d d d ∴+=+⨯+,解得2d =-.611665(2)242S ∴=⨯+⨯⨯⨯-=-.故答案为:24-.【点评】本题考查等差数列与等比数列的通项公式,数列求和,考查了推理能力与计算能力,属于基础题. 9.(2017秋•海淀区期末)已知公差为1的等差数列{}n a 中,1a ,2a ,4a 成等比数列,则{}n a 的前100项和为 5050 . 【分析】由已知列式求得等差数列的首项,然后代入等差数列的前n 项和公式得答案. 【解答】解:在公差为1的等差数列{}n a 中, 由1a ,2a ,4a 成等比数列,得:2111(1)(3)a a a +=+,即11a =. 100100991001150502S ⨯∴=⨯+⨯=. 故答案为:5050.【点评】本题考查等差数列的通项公式,考查了等比数列的性质,训练了等差数列的前n 项和的求法,是基础的计算题.10.(2018秋•东城区校级期中)若等差数列{}n a 与等比数列{}n b 中,若110a b =>,11110a b =>,则6a ,6b 的大小关系为 66a b .【分析】运用等差数列中项的性质和基本不等式,以及等比数列中项的性质,即可得到所求结论. 【解答】解:若等差数列{}n a 与等比数列{}n b 中,若110a b =>,11110a b =>, 由等差数列中项的性质可得11161112a a aa a +=66||b b =,当且仅当111a a =取得等号.故答案为:66a b .【点评】本题考查等差数列和等比数列中项的性质,以及基本不等式的运用,考查运算和推理能力,属于中档题. 11.(2018•海淀区校级三模)已知等差数列{}n a 中,公差0d ≠,12a =,1a ,2a ,4a 是等比数列{}n b 的前三项,则等差数列{}n a 的公差d = 2 ,等比数列{}n b 的前n 项n S =【分析】由已知列式求出等差数列的公差,进一步得到等比数列的公比,代入等比数列的前n 项和公式求等比数列{}n b 的前n 项n S .【解答】解:由12a =,1a ,2a ,4a 是等比数列{}n b 的前三项, 得2214a a a =,即2(2)2(23)d d +=+,解得2d =. 214a a d ∴=+=,则数列{}n b 是以2为首项,以2为公比的等比数列,∴12(12)2212n n n S +-==--.故答案为:2;122n +-.【点评】本题考查等差数列的通项公式,考查等比数列的性质及前n 项和,是中档题. 12.(2017•北京)若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b = 1 . 【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果. 【解答】解:等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==, 设等差数列的公差为d ,等比数列的公比为q . 可得:813d =-+,3d =,22a =;38q =-,解得2q =-,22b ∴=. 可得221a b =. 故答案为:1.【点评】本题考查等差数列以及等比数列的通项公式的应用,考查计算能力.13.(2017•西城区二模)已知等差数列{}n a 的公差为2,且1a ,2a ,4a 成等比数列,则1a = 2 ;数列{}n a 的前n 项和n S = .【分析】由题意可得1a ,12a +,16a +成等比数列,通过解方程求得1a 的值.然后求和.【解答】解:数列{}n a 是公差为2的等差数列,且1a ,2a ,4a 成等比数列,1a ∴,12a +,16a +成等比数列,2111(2)(6)a a a ∴+=+,解得12a =, 数列{}n a 的前n 项和2(1)222n n n S n n n -=+⨯=+. 故答案为:2;2n n +.【点评】本题主要考查等比数列的定义和性质,等差数列的通项公式的应用,属于基础题.14.(2017春•海淀区期中)若数列{}n a 满足12312()()n n a a a a a a n +++⋯+=+,则数列{}n a 是等差数列.类比上述结论,可以猜想:若数列{}n b 满足 21231()()n n n b b b b b b ⋯= ,则数列{}n b 是等比数列.【分析】把数列的项相加改成数列的项相乘,把结论的相乘的系数改成等比数列的指数,即可得到. 【解答】解:把数列的项相加改成数列的项相乘,把结论的相乘的系数改成等比数列的指数,可得: 若数列{}n b 满足21231()()n n n b b b b b b ⋯=,则数列{}n b 是等比数列. 故答案为:21231()()n n n b b b b b b ⋯=.【点评】本题考查等差数列与等比数列的综合,考查类比推理等基础知识与基本技能方法,属于基础题. 15.(2016•顺义区一模)国家新能源汽车补贴政策,刺激了电动汽车的销售,据市场调查发现,某地区今年Q 型电动汽车的销售将以每月10%的增长率增长;R 型电动汽车的销售将每月递增20辆,已知该地区今年1月份销售Q 型和R 型车均为50辆,据此推测该地区今年Q 型汽车销售量约为 1050 辆;这两款车的销售总量约为 辆.(参考数据:111.1 2.9≈,121.1 3.1≈,131.1 3.5)≈【分析】由题意可得,今年Q 型电动汽车的月销售量与R 型电动汽车的月销售量分别构成等比数列和等差数列,然后利用等比数列和等差数列的前n 项和求解.【解答】解:由题意可得,今年Q 型电动汽车的月销售量构成以50为首项,以1.1为公比的等比数列,则今年Q 型电动汽车的销售量为1250(111)10501 1.1-≈-;R 型电动汽车的月销售量构成以50为首项,以20为公差的等差数列,则R 型电动汽车的销售量为121112502019202⨯⨯+⨯=. ∴这两款车的销售总量约为:105019202970+=.故答案为:1050;2970.【点评】本题考查等差数列与等比数列的综合,考查了等差数列与等比数列的前n项和,是基础题.。
(完整版)等差等比数列求和与差的练习题
![(完整版)等差等比数列求和与差的练习题](https://img.taocdn.com/s3/m/f82e0124a66e58fafab069dc5022aaea988f4141.png)
(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。
解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。
题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。
解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。
题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。
解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。
题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。
解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。
以上是关于等差数列求和与差的练题的完整版文档。
高中数学必修5:等差数列与等比数列的综合问题 知识点及经典例题(含答案)
![高中数学必修5:等差数列与等比数列的综合问题 知识点及经典例题(含答案)](https://img.taocdn.com/s3/m/2670b033647d27284a735110.png)
等差与等比数列的综合问题【知识概述】一、两种数列综合考查有以下几种命题方式:1.嵌套式:将一种数列嵌套在另外一种数列中作为一个知识点进行考查;2.拼盘式:在一个综合问题中,将两种数列像一个拼盘一样拼在一起,来综合考查这两种数列的各种概念与性质3.引申式:将等差数列或者等比数列进行引申,将它与其他的数学知识产生联系,从而在考查数列知识的同时考查数学的其他相关知识二、等差数列与等比数列在一定情况下可以互相转换1.若{}n a 为等差数列{}(0,1)n a a a a ⇔>≠为等比数列;2.若{}n a 为等比数列{log }(0,1)a n a a a ⇔>≠为等差数列.【学前诊断】1.[难度] 易已知等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则4a = .2.[难度] 中设{}n a 为等差数列,{}n b 是各项都是正数的等比数列,111a b ==, 243a a b +=,243b b a =,求及{}n b 的前10项的和10S 及10T .3.[难度] 中设{}n a 是等差数列,1()2n a n b =,已知b 1+b 2+b 3=821,b 1b 2b 3=81. (1)求证:数列{b n }是等比数列;(2)求等差数列{a n }的通项a n .【经典例题】{}n a例1.设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和,已知37,S =且1233,3,4a a a ++构成等差数列.(1)求数列{}n a 的通项公式.(2)令31ln ,1,2n n b a n +==…, 求数列{}n b 的前n 项和n T .例2.已知数列{}n a 的前n 项和222n S n n =+,数列{}n b 的前n 项和2n n T b =-. (1)求数列{}n a 与{}n b 的通项公式;(2)设 2n n n c a b =,证明:当且仅当n ≥3时,1n c +< n c .例3.已知等差数列的公差d 不为0,设,(1)若 ,求数列的通项公式;(2)若成等比数列,求q 的值;(3)若.例4.已知数列{}n a 中,112a =,点*1(,2)()n n n a a n +-∈N 在直线y x =上. (1)令11n n nb a a +=--,求证数列{}n b 是等比数列;(2)求数列{}n a 的通项;(3)设n S ,n T 分别为数列{}n a 、{}n b 的前n 项和,是否存在实数λ使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭等差数列? 若存在,试求出λ,若不存在,则说明理由.【本课总结】}{n a 121-+++=n n n q a q a a S *1121,0,)1(N n q q a q a a T n n n n ∈≠-++-=-- 15,1,131===S a q }{n a 3211,,,S S S d a 且=*2222,1)1(2)1(1,1N n q q dq T q S q q n n n∈--=+--±≠)证明(1.等差和等比数列是两个基本的数列模型,是高考的重点和热点,将两种数列综合在一起进行考查是常见的命题形式,难度低中等,但若是在等差、等比数列的基础上引申和创新的问题,则一般难度较大,对考生的观察理解能力和灵活利用所学知识分析和解决问题的能力要求较高,命题的规律则通常是以一种类型数列为主导,兼顾另一种数列的相关知识,如中项公式等,目的是从基本量的角度给出确定数列的条件.解决等差数列与等比数列综合问题的关键,是能够熟练、准确和综合的运用相关的知识.注重总结常见问题的题型特征和命题规律以及相应的解题方法,并能比较深刻的理解和掌握问题中所蕴含的数学思想方法.2.请同学们体会如何将两种特殊数列进行综合,如何把他与其它的知识进行综合,不同的综合方式构成了不同难度的试题形式,当等差数列和等比数列综合的时候,要对这两个数列的基本知识进行很好的把握,把问题做适当的分解,便可以获得恰当的解题方法【活学活用】1.[难度] 中公差不为零的等差数列的前项和为.若是的等比中项, ,则等于 .2. [难度] 中已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列.(1)求数列{}n a 的通项;(2)求数列{}2n a 的前n 项和n S3. [难度] 难已知{}n a 是一个公差大于0的等差数列,且满足3655a a =,2716a a +=.(1)求数列{}n a 的通项公式: (2)若数列{}n a 和数列{}n b 满足等式:*312123()2222n n n b b b b a n =++++∈N ,求数列{}n b 的前n 项和n S .{}n a n n S 4a 37a a 与832S =10S。
等差数列与等比数列的综合应用题
![等差数列与等比数列的综合应用题](https://img.taocdn.com/s3/m/422e608f09a1284ac850ad02de80d4d8d05a0110.png)
等差数列与等比数列的综合应用题下面是2000字的文章,涉及到等差数列和等比数列的综合应用题。
等差数列和等比数列的综合应用题数列是数学中一个重要的概念,有着广泛的应用。
其中等差数列和等比数列是最常见的两种数列,它们在实际问题中有着丰富的应用。
本文将探讨其中一些有趣的综合应用题。
一、等差数列的综合应用1. 现有一连续数列,首项为a,公差为d,共有n项。
若已知该等差数列的和为Sn,则求出该数列的最后一项。
解析:根据等差数列的性质,我们知道等差数列的前n项和可以表示为Sn = (2a + (n-1)d) * n / 2。
将该式子中的Sn替换为已知的值,整理后得到一个关于未知数的一元二次方程,通过解方程,我们可以求得该数列的最后一项。
2. 小明上学迟到了,他每天比前一天迟到10分钟,第一天迟到15分钟,到第九天小明迟到多久?解析:这是一个等差数列的应用题,题目中已经给出了首项和公差,我们需要求出第九项。
根据等差数列的性质,我们知道第九项可以表示为a9 = a1 + (9-1)d。
将已知的值代入公式,计算得到小明第九天迟到了85分钟。
二、等比数列的综合应用1. 小明通过研究发现,他所在的城市每年的垃圾总量是前一年的1.5倍。
今年城市的垃圾总量为2000吨,请计算出5年后的城市垃圾总量是多少吨。
解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。
根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。
将已知的值代入公式,计算得到5年后的城市垃圾总量为3750吨。
2. 一颗植物的高度是前一天的2倍,已知第一天植物的高度为10厘米,请计算出第五天的植物高度。
解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。
根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。
专题05 等差等比综合(解析版)
![专题05 等差等比综合(解析版)](https://img.taocdn.com/s3/m/869f9d013069a45177232f60ddccda38376be1ba.png)
专题5 等差等比综合一、解答题1.已知等差数列{}n a 中,22a =,156a a +=. (1)求{}n a 的通项公式;(2)若2n an b =,求数列{}n b 的前n 项和n S . 【答案】(1)n a n =;(2)122n n S +=-.【解析】(1)先设等差数列的公差为d ,由题中条件,列出方程求出首项和公差,即可得出通项公式; (2)根据(1)的结果,得到n b ,再由等比数列的求和公式,即可得出结果. 【详解】(1)设等差数列{}n a 的公差为d ,因为22a =,156a a +=,所以112246a d a d +=⎧⎨+=⎩,解得11a d ==,所以1(1)n a n n ;(2)由(1)可得,22n a nn b ==,即数列{}n b 为等比数列,所以数列{}n b 的前n 项和()12122212n n n S +-==--.2.已知等差数列{}3log n a 的首项为1,公差为1,等差数列{}n b 满足()212n n b n n k +=++.(1)求数列{}n a 和数列{}n b 的通项公式; (2)若nn nb c a =,求数列{}n c 的前n 项和n S . 【答案】(1)3nn a =.1n b n =+(2)525443n nn S +=-⋅ 【解析】(1)由等差数列的通项公式及对数的运算可得数列{}n a 的通项公式,根据条件中的递推式求出123,,b b b ,利用它们成等差数列列方程求出k ,进而可得数列{}n b 的通项公式; (2)利用错位相减法求数列{}n c 的前n 项和n S . 【详解】解:(1)由条件可知,3log 11n a n n =+-=,3nn a ∴=.()212n n b n n k +=++,132k b +∴=,283k b +=,3154kb +=. 由题意{}n b 为等差数列,2132b b b ∴=+,解得1k =,()211n b n n ∴=+-=+; (2)由(1)知,13n n n n b n c a +==,2231333n n n S +∴=++⋅⋅⋅+① 则23112313333n n n S ++=++⋅⋅⋅+① ①-①可得23311221111525333333623n n n n n S ++++=+++⋅⋅⋅+-=-⋅,525443n nn S +∴=-⋅. 3.若数列{}n a 的前n 项和22n n S a =-,*n N ∈. (1)求数列{}n a 的通项公式;(2)若()221log *n n b a n N -=∈,求数列{}n b 的前n 项和n T . 【答案】(1)2n n a =;(2)2n T n =. 【解析】 【分析】(1)根据公式11(2,),(1)n n n S S n n N a a n *-⎧-≥∈=⎨=⎩,结合等比数列的定义、通项公式进行求解即可;(2)根据对数的运算性质,结合等差数列的定义、等差数列前n 项和公式进行求解即可. 【详解】(1)数列{}n a 的前n 项和22n n S a =-,*n N ∈.2n ≥时,()112222n n n n n a S S a a --=-=---,化为:12n n a a -=,1n =时,1122a a =-,解得12a =.∴数列{}n a 是等比数列,首项为2,公比为2. 2n n a ∴=.(2)221log 21n n b a n -==-.因为12n nb b ,∴数列{}n b 是等差数列,首项为1,公差为2,所以 21()(1+21)22n n n a a n n T n +-∴===. 4.在等差数列{}n a 中,138a a +=,且2429a a a =⋅ (1)求数列{}n a 的首项、公差; (2)设()()1218n n n a a b -+=,若13mm m bb b +++=,求正整数m 的值.【答案】(1)数列{}n a 的首项是4,公差为0或首项是1,公差为3;(2)6. 【解析】 【分析】(1)根据条件,列出两个关于首项和公差的方程,然后解方程即可;(2)由(1)求出数列{}n a 的通项,然后再求出n b ,再根据13m m m b b b +++=求出m .【详解】(1)设等差数列{}n a 的公差为d ,前n 项和为n S ,由已知可得:1121112284(3)()(8)0a d a a d a d a d d ⎧+==⎧⇒⎨⎨+=++=⎩⎩或113a d =⎧⎨=⎩, 即数列{}n a 的首项是4,公差为0或首项是1,公差为3. (2)由(1)可知4n a =或13(1)32n a n n =+-=- 当4n a =时,(41)(42)118n b -+==,又13m m m b b b +++=,而1121+=>不满足题意;当32n a n =-时,(321)(322)(1)182n n n n n b ---+-==,又13m m m b b b +++=,所以(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为m 为正整数,所以m =6.5.已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①①①中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:①数列是等差数列;①213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】选①①作条件证明①,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明. 选①①作条件证明①选①①作条件证明①时,an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①①作条件证明①:[方法一]:待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d =-,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①①作条件证明①:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+==,)1n =+=所以是等差数列. 选①①作条件证明①: [方法一]:定义法(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a +-03a-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =,因为也为等差数列,所以公差1d()11n d -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意. 【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①①时,法一:利用等差数列的通项公式是关于n(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①①证明①的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d 12d a =,进而得到213a a =;选①①时,按照正常的思维求出公差,表示出n S进行证明;选①①时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a前两项的差1d利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.已知正项数列{}n a 的前n 项和为n S ,且11a =,n a =*n ∈N 且2n ≥). (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =- (2)21n n T n =+ 【解析】 【分析】(1)由1(2)n n n a S S n -=-≥及题意可得数列为等差数列,从而求出2n S n =,从而可求出答案;(2)利用裂项相消法即可求出答案. (1)①1(2)n n n a S S n -=-≥,①2)n a n =≥,又)*2,,0n n a n n a ≥∈>N ,1(2)n ≥,①数列1==为首项,1为公差的等差数列,1(1)n n =+-=,①2n S n =,当2n ≥时,()221121n n n a S S n n n -=-=--=-, 当1n =时,11a =,满足上式, ①数列{}n a 的通项公式为21n a n =-;(2)由(1)可知,21n a n =-, 12233411111n n n T a a a a a a a a +=++++ 11111335572121n n =++++⨯⨯⨯(-)(+)1111111221213351n n ⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=⨯- ⎪+⎝⎭ 21nn =+, ①当*n ∈N 时,21n nT n =+. 7.已知数列{an }满足1a =1,an +1=2an +1,bn =an +1(n ①N*). (1)求证:{ bn }是等比数列; (2)求{ an }的通项公式.【答案】(1)证明见解析;(2)an =2n -1. 【解析】 【分析】(1)由题意可得an +1+1=2(an +1),利用等比数列的定义即可证明. (2)利用等比数列的通项公式即可求解. 【详解】(1)证明:①an +1=2an +1,①an +1+1=2(an +1),即bn +1=2bn , ①b 1=1a +1=2≠0.①bn ≠0,①1n nb b +=2,①{bn }是等比数列. (2)由(1)知{bn }是首项b 1=2,公比为2的等比数列, ①bn =2×2n -1=2n ,即an +1=2n ,①an =2n -1.8.已知等差数列{}n a 的公差为正数,11a =,其前n 项和为n S ,数列{}n b 为等比数列,12b =,且2212b S =,2310b S +=.(1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T . (3)设1n n n c b S =+,n *∈N,求数列{}n c 的前2n 项和. 【答案】(1)n a n =;2nn b =;(2)()1122n n T n +=-⋅+;(3)212221n n +-+. 【解析】【分析】(1)假设公差d 和公比q ,由等差和等比数列通项与求和公式可构造方程求得,d q ,由等差和等比通项公式可求得结果;(2)由(1)可得2nn n a b n ⋅=⋅,利用错位相减法可求得结果;(3)由(1)可得11221nn c n n ⎛⎫=+⨯- ⎪+⎝⎭,利用分组求和的方法,结合等比数列求和公式和裂项相消法可求得结果. 【详解】(1)设等差数列{}n a 的公差为()0d d >,等比数列{}n b 公比为q ,()()22112311222123323310b S b q a d q d b S b q a d q d ⎧=+=+=∴⎨+=++=++=⎩,解得:21q d =⎧⎨=⎩,()111n a n n ∴=+-⨯=;1222n n n b -=⨯=;(2)由(1)得:2nn n a b n ⋅=⋅,()1231122232122n n n T n n -∴=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅, ()23412122232122n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅, 两式作差得:()()211231212222222212n n nn n T n n -++--=-⋅+++⋅⋅⋅+=-⋅+-112242n n n ++=-⋅-+()1122n n +=-⋅-,()1122n n T n +∴=-⋅+.(3)由(1)得:()()121122221112n n n n c n n n n n n ⎛⎫=+=+=+⨯- ⎪+++⎝⎭, 则2212321111122221223221nn c c c c n n ⎛⎫+++⋅⋅⋅+=++⋅⋅⋅++⨯-+-+⋅⋅⋅+- ⎪+⎝⎭()221212121422122212212121n n n n n n n ++-⎛⎫=+⨯-=-+=- ⎪-+++⎝⎭. 【点睛】方法点睛:当数列通项公式满足等差⨯等比的形式时,采用错位相减法求解数列的前n 项和,具体步骤如下:①列出1231n n n S a a a a a -=+++⋅⋅⋅++的形式;①左右两侧同乘通项中的等比部分的公比q ,得到n qS ;①上下两式作差得到()1n q S -,结合等比数列求和公式可整理等式右侧的部分; ①整理所得式子求得n S .9.已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4n n a =-⋅;(2)31λ-≤≤.【解析】 【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-①,①-①得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤. 【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.10.已知实数111,,a b c 成等差数列,求证:,,222b b b ac --成等比数列.【答案】见详解. 【解析】 【分析】根据条件,证明:2222b b b a c ⎛⎫⎛⎫⎛⎫-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即可,注意各项均不为零.【详解】因为111,,a b c 成等差数列,所以112a c b +=,即2b ac a c =+且0abc ≠,又()()2220222444b b b b ac b b a c ac a c ac a c a c ⎛⎫⎛⎫-⋅-=-++=-++=> ⎪ ⎪+⎝⎭⎝⎭, 所以2222b b b a c ⎛⎫⎛⎫⎛⎫-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立且各项均不为零,所以:,,222b b ba c --成等比数列.【点睛】本题考查等比数列的证明,难度一般.注意说明各项均不为零. 11.设数列{}n b 的前n 项和为n S ,且22n n b S =-. (1) 求123,,b b b ;(2) 求数列{}n b 的通项公式. 【答案】(1)123b =;229b =;3227b =.(2)23n n b =.【解析】 【分析】(1)对于已知式令1,2,3n =即可解得123,,b b b 的值.(2)由22n n b S =-,得1122n n b S --=-,两式相减可推得{}n b 是等比数列,进而可得通项公式.也可以由(1)的结论归纳出{}n b 的通项公式,再验证其符合已知条件. 【详解】(1)由22n n b S =-,令1n =,得1122b S =-,又11S b =,所以123b =; 令2n =,得21222()b b b =-+,所以229b =; 令2n =,得312322()b b b b =-++,所以3227b =. (2)方法一:当2n ≥时,由22n n b S =-,可得1122n n b S --=-, 两式相减得112()2n n n n n b b S S b ---=--=-,即11=3n n b b -. 所以{}n b 是以123b =为首项,13为公比的等比数列,于是1212333n n n b -⎛⎫=⋅=⎪⎝⎭. 方法二:由(1)归纳可得23n nb =, 此时21133111313nnnS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦==--,可使22n n b S =-成立,所以23n nb =. 【点睛】本题考查数列问题,考查由n a 和n S 的关系求通项公式.通过赋值列举若干项,寻找规律和解题思路,是解决数列问题的一种常见策略. 12.已知数列{}n a 满足112n n a a +=-+,其中10a =. (1)求证11n a ⎧⎫⎨⎬+⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设121n n n n T a a a +-=+++,若n T p n ≤-对任意的n *∈N 恒成立,求p 的最小值.【答案】(1)证明见解析,11n a n=-;(2)最小值为1.【解析】 【分析】 (1)根据112n n a a +=-+,可得1211111222n n n n n n a a a a a a ++-++=-+==+++,从而可得12111111n n n n a a a a ++==++++,即可得出结论,再根据等差数列的通项即可求得数列{}n a 的通项公式; (2)121n n n n T a a a p n +-=+++≤-,即()()()()12211111n n n n a a a a p ++-++++++++≤,设()()()()121111n n n H n a a a +-=++++++,利用作差法证明数列(){}H n 单调递减,从而可得出答案.【详解】(1)证明:①112n n a a +=-+, ①1211111222n n n n n n a a a a a a ++-++=-+==+++, ①10n a +≠,①12111111n n n n a a a a ++==++++, ①11n a ⎧⎫⎨⎬+⎩⎭是以1为首项,1为公差的等差数列. ()1111n n n a =+-=+,①11n a n=-. (2)解:①121n n n n T a a a p n +-=+++≤-,①121n n n n a a a p +-++++≤,即()()()()12211111n n n n a a a a p ++-++++++++≤对任意的n *∈N 恒成立,而11n a n+=, 设()()()()121111n n n H n a a a +-=++++++,①()111121H n n n n =++++-, ()1111111221221H n n n n n n +=+++++++-+, ①()()1111110221212H n H n n n n n n+-=+-=-<++, ①数列(){}H n 单调递减,①当n *∈N 时,()()11H n H ≤=,①1p ≥. ①p 的最小值为1.13.设数列{}n a 的前n 项和为n S ,且4120S =,13n n a a +=. (①)求数列{}n a 的通项公式;(①)设321log n n b a -=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)3nn a =(2)n T 21nn =+ 【解析】 【分析】(1)利用13n n a a +=,得到数列{}n a 是等比数列,且公比等于3,利用求和公式求得数列的首项1a ,再利用等比数列的通项公式求得结果;(2)根据题意,可得21n b n =-,之后应用裂项相消法对数列11n n b b +⎧⎫⎨⎬⎩⎭求和.【详解】(①)①13n na a +=,①{}n a 是公比为3q =的等比数列, 又()4141312013a S -==-,解得13a=.①{}n a 是以13a =为首项,以3q =为公比的等比数列,通项公式为113n nn a a q -==. (①)①213log 321n n b n -==- ①()()11113352121n T n n =+++⨯⨯-+ 111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭11(122121n n n =-=++) 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的定义,等比数列的求和公式,等比数列通项公式,裂项相消法求和,属于中档题目.14.某航运公司用300万元买回客船一艘,此船投入营运后,每月需开支燃油费、维修费、员工工资,已知每月燃油费7000元,第n 个月的维修费和工资支出为600(1)3000-+n 元. (1)设月平均消耗为y 元,求y 与n (月)的函数关系; (2)投入营运第几个月,成本最低?(月平均消耗最小)(3)若第一年纯收入50万元(已扣除消耗),以后每年纯收入以5%递减,则多少年后可收回成本? 【答案】(1)30000003009700,y n n N n+=++∈;(2)投入第100个月,成本最低; (3)7年后收回成本. 【解析】 【分析】(1)先求出购船费和所有支出的和,然后把购船费和所有支出费用平摊到每一个月,即可求得平均消耗y与n (月)的函数关系;(2)利用基本不等式可得最值,从而求出此时n 的值,即可求解;(3)假设x 年后可收回成本,则收入是首项为50,公比为0.95的等比数列,然后建立收入大于成本的不等式,即可求解. 【详解】(1)购船费和所有支出费为30000007000[300030006003000260030006000(1)]n n +++⨯+⨯⨯++⨯-230000009700300n n =++元,所以月平均消耗30000003009700=++y n n, 即月平均消耗为y 与n 的函数关系30000003009700,y n n N n+=++∈.(2)由(1)30000003009700970069700y n n =++≥=, 当且仅当3000000300n n=,即100n =时等号成立, 所以当投入营运100个月时,营运成本最低. (3)假设x 年后可收回成本,则收入为: 215050(15%)50(15%)50(15%)1000(10.95)300x x -+-+-++-=->,解得7x =时满足条件,6x =时不满足条件, 故7年后可收回成本. 【点睛】本题主要考查了等比数列的应用,以及基本不等式求最值的应用,着重分析问题和解答问题的能力,属于中档试题.15.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求n a ,n b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【答案】(1)1,2n n n a n b -==;(2)121nn S n =-+. 【解析】 【分析】(1)设数列{}n a 的公差为()0d d ≠,由题意列关于首项与公差的方程,联立求得首项与公差,则n a ,n b 可求;(2)把(1)中求得的通项公式代入n c ,分组后利用等比数列前n 项和与裂项相消法求解数列{}n c 的前n 项和. 【详解】解:(1)设数列{}n a 的公差为()0d d ≠, 由题意,4114(41)446102S a d a d ⨯-=+=+=,① 又①124,,a a a 成等比数列,①2214a a a =, 即2111()(3)a d a a d +=+,得1a d =,①联立①①可得,11a d == ①n a n = ,12n n b -=; (2)①1112(1)(1)n n n n n c b a a n n -=+=+++,①01111111(222)(1)2231n n S n n -=++++-+-++-+ =1211121211n n n n -+-=--++. ①数列{}n c 的前n 项和n S 为121n n S n =-+. 【点睛】本题考查等差等比数列基本量的计算,等比数列求和公式,裂项求和,分组求和法等,考查运算求解能力,是中档题.本题第二问解题的关键在于先根据分组求和,转化为等比数列的和与1(1)n n ⎧⎫⎨⎬+⎩⎭的和,进而利用裂项求和求解.16.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.17.已知数列{}n a 的前n 项和为n S ,且1a ,n a ,n S 为等差数列;数列{}n b 满足16b =,14n n nb S a =++. (1)求数列{}n b 的前n 项和n T ; (2)若对于*N n ∀∈,总有3207464n n m a --<成立,求实数m 的取值范围. 【答案】(1)+1112+32n n n n T -=-. (2)6>7m .【解析】 【分析】(1)由等差数列的性质得12+n n a a S =,继而有+11+12+n n a a S =,两式相减得+12n n a a =,由此得数列{}n a 是以2为公比的等比数列,求得n a ,n S ,再由此求得n b ,运用分组求和法和等比数列的求和公式可求得n T . (2)由(1)将不等式转化为132074>642n n m ---⨯,再令13202n n n c --=,作+12233n nnnc c --=,判断出当8n =时,n c 取得最大值132,由此得174>6432m -⨯,求解即可.(1)解:因为1a ,n a ,n S 为等差数列,所以12+n n a a S =,所以+11+12+n n a a S =,两式相减得+1+122n n n n a a S S -=-, 即+12n n a a =,所以数列{}n a 是以2为公比的等比数列,又16b =,14n n n b S a =++,所以11164a a =++,解得11a =,所以12n n a ,12112122n n n S -⨯-=--=,所以1111242+3212nnn n n b --=++=+-, 所以212112111112+32+32+++++3+22+2n n n n T b b b ---++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝+⎭⎝⎭()21112+221++2++++32n n n -⎛⎫=+ ⎪⎝⎭111112222+311212nn n --⨯-=+--⨯+1112+32n n n -=-, 所以+1112+32n n n n T -=-; (2)解:由(1)得不等式为132072464n n m ---<,整理得132074>642n n m ---⨯, 令13202n n n c --=,则()+113+122203202332n n n n nn n n c c -----=-=, 所以当07n <≤,*N n ∈时,+1>0n n c c -,即+1>n n c c ,当>7n ,*N n ∈时,+10n n c c -<,即+1n n c c <,所以当8n =时,n c 取得最大值88138201232c -⨯-==,所以174>6432m -⨯,即74>2m -,解得6>7m . 所以实数m 的取值范围为6>7m .18.已知等差数列{}n a 的前n 项和为n S ,且2610a a +=,520S =. (1)求n a 与n S ; (2)设数列{}n c 满足1n n c S n=-,求{}n c 的前n 项和n T . 【答案】(1)1n a n =+,n S ()32n n +=(2)n T 21nn =+ 【解析】 【分析】 (1)由()1553552a a S a +==和2642a a a +=,可求出3a 和4a ,然后利用等差数列的性质可求出n a 与n S ;(2)由(1)知()32n n n S +=,可得2121121n n c S n n n n n ⎛⎫===- ⎪-++⎝⎭,利用裂项相消的求和方法,可求出{}n c 的前n 项和n T . 【详解】解:(1)设等差数列公差为d ,()155355202a a S a+===,故34a =,264210a a a +==,故45a =,1d ∴=,()331n a a d n n =+-=+,易得12a =, ∴()12n n nS a a =+ ()()32122n n n n +=++=. (2)由(1)知()32n n n S +=,则2121121n n c S n n n n n ⎛⎫===- ⎪-++⎝⎭,则111111121223341n T n n ⎛⎫=-+-+-+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭21n n =+. 【点睛】本题考查了等差数列的通项公式及前n 项和公式,考查了裂项相消的求和方法,考查了学生的计算能力,属于基础题.19.数列{}n a 满足()1331,2n n n a a n n *-=+-∈≥N ,已知395a =.(1)求1a ,2a ; (2)若()()13n n nb a t n *=+∈N ,则是否存在实数t ,使{}n b 为等差数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)15a =;223a =;(2)存在;12t =-.【解析】 【分析】(1)代入2n =,3n =进入1331nn n a a -=+-,结合395a =,即得解;(2)利用等差数列定义,要使{}n b 为等差数列,则11213n n ntb b -+-=-为常数,分析即得解 【详解】(1)当2n =时,221331a a =+-. 当3n =时,33233195a a =+-=,①223a =.①12338a =+,解得15a =. (2)当2n ≥时,()()1111133n n n n n n b b a t a t ----=+-+ ()()1113331233nn n n n a t a t t -=+--=-- 1213nt+=-. 要使{}n b 为等差数列,则1213n t +-为常数,即12t =-, 即存在12t =-,使{}n b 为等差数列.20.在正项数列{}n a 中,11a =()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列(){}22n n n a b -的前n 项和nT .【答案】(1)22n n a =,2nn b =,(2)()()13144219n n n T n n +-+=++【解析】(1)在已知等式()()2211121n n n n a a a a ++-=-两边同时除以1n n a a +,即可证得{}n b 是等比数列(必须求出10b ≠),然后可求得n b ,解方程1n n nb a a =-可得n a ; (2)由(1)求出2(2)44nn n n a b n n -=⋅+,其前n 项和用分组求和法,一部分由等差数列前n 项和公式可得,另外一部分用错位相减法求和. 【详解】(1)①()()2211121n n n n a a a a ++-=-,①11112n n n n a a a a ++⎛⎫-=- ⎪⎝⎭, ①12n n b b +=. 又11112b a a =-=,①{}n b 是首项为2,公比为2的等比数列, 从而2nn b =.①1n n n b a a =-,①12n n n a a -=,又0n a >,解得22n n a =. (2)()()224444n nn n n a b n n n -=+=⋅+,设数列{}4nn ⋅的前n 项和为n S , 则214244nn S n =⨯+⨯+⋅⋅⋅+⋅,231414244n n S n +=⨯+⨯+⋅⋅⋅+⋅,则2144444n n n n S S n +-=+++-⋅,即()11134444434143n n n n n S n ++---⨯-=-⋅=-,即()131449n nn S +-+=, 故()()()11314442129n n n n n n T S n n ++-+=+⨯=++.【点睛】本题考查等比数列的证明,考查等比数列通项公式,考查分组求和、错位相减法求和.数列求和除等差数列和等比数列的求和公式外还有一些特殊数列的特殊方法:。
等差数列与等比数列的综合问题
![等差数列与等比数列的综合问题](https://img.taocdn.com/s3/m/7f06c494d05abe23482fb4daa58da0116c171f83.png)
求和公式
对于混合数列,求和需要分别对等差数列部分和等比数列部分进行求和,然后合并结果。 等差数列部分的求和公式为$frac{n(a_1+a_n)}{2}$,等比数列部分的求和公式为 $frac{lambda(1-r^n)}{1-r}$。
实际应用举例
金融领域
混合数列可以用于描述金融产品 的价格波动,如股票价格既有长 期增长的趋势,又有短期波动的
特点。
物理学领域
在物理学中,混合数列可以用于描 述具有周期性和指数增长或衰减的 物理量,如放射性衰变。
计算机科学领域
在计算机科学中,混合数列可以用 于实现高效的算法和数据结构,如 二分搜索树。
PART 05
解题技巧与策略
第n项=首项×公比^(n-1),代
入数值计算即可。
06
进阶练习题
题目:一个等差数列的首项是5,公 差是-8,求这个数列的前10项和。
答案:155
解析:根据等差数列的求和公式,前n项和=(首 项+末项)×n/2,代入数值计算即可。
题目:一个等比数列的首项是4,公 比是0.5,求这个数列的前5项和。
答案:10.5
等差数列与等比数列 的综合问
https://
REPORTING
• 引言 • 等差数列基础 • 等比数列基础 • 等差数列与等比数列的综合问题 • 解题技巧与策略 • 练习题与答案解析
目录
PART 01
引言
REPORTING
WENKU DESIGN
主题简介
等差数列与等比数列是数学中两种重要的数列类型,它们在日常生活和科学研究中 有着广泛的应用。
性质
等比数列中,任意项的平方等于它前后两项的乘积。
等差数列与等比数列的综合问题
![等差数列与等比数列的综合问题](https://img.taocdn.com/s3/m/92c6ea275e0e7cd184254b35eefdc8d377ee1456.png)
数列pan ,
1 an
,an
bn
,
an bn
,
an
也为等比数列,且
公差分别为pq, 1 , pq, p , q .
q
q
例1、(1)设等差数列的前n项之和为Sn,已知a3=12, S12>0,S13<0,求公差d的取值范围。 (2)指出S1,S2,S3,…Sn中哪一个值最大,并说明 理由。
例1、(1)设等差数列的前n项之和为Sn,已知a3=12, S12>0,S13<0,求公差d的取值范围。 (2)指出S1,S2,S3,…Sn中哪一个值最大,并说明 理由。
例2 已知{an}是等比数列,a1 =2,a3 =18; {bn}是等差数列,b1 =2,b1+ b2+ b3+ b4= a1+ a2+ a3>20.
等差与等比数列的综合问题 高三备课组
(一)等差数列的补充性质
1若an,bn均为等差数列,且公差分别为d1, d2 ,则数列pan, an q,an bn也为等差数列,且公差分别为pd1,d1 q,d1 d2.
(2)若a1>0,d<0,Sn有最大值,可由不等式组 aann100 来确定n。
若a1 < 0,d >0 ,Sn有最小值,可由不等式组
(1) 求证:数列{bn}是等差数列; (2)求{bn}的前n项和Sn及{an}的通项an; 试比较an与Sn的大小。
四、作业 优化设计
四、作业 优化设计
知识影响格局,格局决定命运!
知识影响格局,格局决定命运! 路漫漫其修远兮,吾将上下而求索!
(1) 求数列{bn}的通项公式; (2) 求数列{bn}的前n项和Sn的公式; 设Pn= b1+ b4+ b7+…+ b3n-2,Qn= b10+ b12+ b14+…+ b2n+8,其中n=1,2,…,试比较Pn 与Qn的大小,并证明你的结论。
高三第一轮复习理科数学--等差数列与等比数列的综合问题
![高三第一轮复习理科数学--等差数列与等比数列的综合问题](https://img.taocdn.com/s3/m/9c7cd16d5727a5e9856a6186.png)
等差数列与等比数列的综合问题考纲要求1.熟练运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题.2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力.命题规律1、等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式,前n项和公式以及等差中项、等比中项问题是历年命题的热点;2、利用等比数列前n项和公式时注意公比q的取值。
同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的难度,解题时有时还需利用条件联立方程求解。
考点解读等差数列等比数列文字定义一般地,如果一个数列从第二项起,每一项与它的前一项的差是同一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差。
一般地,如果一个数列从第二项起,每一项与它的前一项的比是同一个常数,那么这个数列就叫等比数列,这个常数叫等比数列的公比。
符号定义1n na a d+-=;112n nna aa+-+=1(0)nnaq qa+=≠;211(0)n n n na a a a+-=⋅≠分类递增数列:0d>递减数列:0d<常数数列:0d=递增数列:1101001a q a q>><<<,或,递减数列:1101001a q a q<>><<,或,摆动数列:0q<常数数列:1q=通项1(1)()n ma a n d pn q a n m d=+-=+=+-其中1,p d q a d==-11n n mn ma a q a q--==(0q≠)前n 项和211()(1)22nnn a a n n dS na pn qn+-==+=+其中1,22d dp q a==-11(1)(1)1(1)nna qqS qna q⎧-≠⎪=-⎨⎪=⎩中项,,a b c成等差数列的充要条件:2b a c=+,,a b c成等比数列的充要条件:2b ac=主要性质等和性:等差数列{}n a若m n p q+=+则m n p qa a a a+=+推论:若2m n p+=则2m n pa a a+=2n k n k na a a+-+=12132n n na a a a a a--+=+=+=⋅⋅⋅等积性:等比数列{}n a若m n p q+=+则m n p qa a a a⋅=⋅推论:若2m n p+=则2()m n pa a a⋅=2()n k n k na a a+-⋅=12132n n na a a a a a--⋅=⋅=⋅=⋅⋅⋅即:首尾颠倒相加,则和相等 即:首尾颠倒相乘,则积相等其主它 性 质1、等差数列中连续m 项的和,组成的新数列是等差数列。
等比数列和等差数列的综合运用
![等比数列和等差数列的综合运用](https://img.taocdn.com/s3/m/c3dd7945b42acfc789eb172ded630b1c59ee9b31.png)
04
等比数列和等差数列的 应用题
生活中的等差数列问题
银行贷款和存款:等差数列可以用来计算银行贷款和存款的利息和本金。 工资计算:很多公司采用等差数列的方式来计算员工的工资等级和晋升。 地铁和公交车站:等差数列可以用来规划地铁和公交车站的站点间隔和路线。 音乐和艺术:等差数列在音乐和艺术中也有广泛应用,例如音阶和节奏的排列。
的首项 a_1 / r^(n-1)。
添加标题
等差数列和等比数列的混合运算
定义:等差数列 和等比数列的混 合运算是指在一 个数学表达式中 同时出现等差数 列和等比数列的 项。
运算规则:等差 数列和等比数列 的混合运算需要 遵循数学的运算 顺序,先进行乘 除运算,再进行 加减运算。
实例:例如,对 于等差数列 {2, 4, 6, 8} 和等比 数列 {1, 2, 4, 8},混合运算的 结果可以是这些 数列的各项相加 或相乘。
等差数列和等比数列的应用:等差数列和等比数列的应用包括在数学、物理、工程等领域的应 用。
感谢您的观看
汇报人:XX
实例:可以通过举例来说明等差数列和等比数列的混合运用,例如斐波那契数列就是一个典 型的例子。
03
等比数列和等差数列的 求和
等差数列的求和公式
定义:等差数列是一种常见的数列,其相邻两项的差相等
求和公式:S_n=n/2*(a_1+a_n) 其中,S_n为前n项和,a_1为首项, a_n为第n项
推导过程:通过等差数列的性质,我们可以将每一项表示为首项和公差 的函数,再利用求和公式进行推导
生活中的等比数列问题
添加项标题
银行贷款和储蓄:等比数列可以用来计算复利和本金增长,例 如银行的定期存款和贷款的利息计算。
添加项标题
等差与等比综合
![等差与等比综合](https://img.taocdn.com/s3/m/f6de736ef46527d3240ce04b.png)
等差数列与等比数列综合应用知识点一. 等差、等比数列综合问题:只要把条件转化基本量d a ,1或q a ,1的关系,再通过解方程找出关系求解。
1..数列{}n a 的通项n a 与前n 项和n S 的关系:⑴n n a a a S +++= 21; ⑵ ()⎩⎨⎧≥-==-2)1(11n S S n S a n nn .2..两个重要变形:()2≥n⑴ ()()()123121--++-+-+=n n n a a a a a a a a ; ⑵123121-⨯⨯⨯⨯=n n n a a a a a a a a . 3数列求和问题:⑴ 分组求和:问题分为等差数列和等比数列两组,(或两组等差数列) ,(或两组等比数列) 利用公式求和。
⑵ 裂项相消求和:求和式是分式的一般先把通项裂项分开,再把求和式的每一项都裂项,于是中间的项都互相抵消,剩下头尾的“对称”的项,即前面剩几项,后面也剩几项。
如:()11111+-=+=n n n n a n ,()11321211+++⨯+⨯=n n S n 1111113121211+-=⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n ⑶ 错位相减求和:求和式是等差数列与等比数列的乘积的,求和方法是求和式两边乘公比后再两式相减,转化为等比数列求和化简可得。
如:12-⋅=n n n a ,12102232221-⋅++⋅+⋅+⋅=n n n S ,…① 两边同乘公比2=q 得: ()n n n n n S 22123222121321⋅+⋅-++⋅+⋅+⋅=- …② 于是①-②得:n nnn n n n S 221212222112⋅---=⋅-++++=-- ,∴()121122+-=+-⋅=n n n n n n S4.数列的应用问题:对于数列的应用题,一是要分清是等差数列还是等比数列,即它们的首项,公差或公比是什么;二是求某一项还是求和。
例1: (1)数列{}n a 的通项是()()12121+-=n n a n ,则其前n 项和为nS ___=析:∵()()12121+-=n n a n ⎪⎭⎫ ⎝⎛+--=12112121n n ,裂项求和:∴12121121121121513131121+=⎥⎦⎤⎢⎣⎡+-⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯=n n n n n S n(2)求和:nn n S 21813412211++++= . .析:(3)()()211211212121412121-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯++=⎪⎭⎫ ⎝⎛+++++++=n n nn n n S nn n ⎪⎭⎫ ⎝⎛-++=21122(4) nn n S 21813412211⨯++⨯+⨯+⨯=析:n n n S 2121321221132⨯++⨯+⨯+⨯= ,132212122112+⨯++⨯+⨯=n n n S 两式相减得:111322211221121121221212121+++-⎪⎭⎫⎝⎛-=--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯=-++++=-n nn nn n n n n nS∴12211+++-=n n n n S (5)错误!未找到引用源。
(完整版)等差等比数列综合练习题.doc
![(完整版)等差等比数列综合练习题.doc](https://img.taocdn.com/s3/m/5f7c44b2bed5b9f3f80f1c1d.png)
等差数列等比数列综合练习题一.选择题1. 已知 a n 1 a n 3 0 ,则数列 a n 是 ( ) A. 递增数列B.递减数列C.常数列D.摆动数列2. 等比数列 { a n } 中,首项 a 1 8 ,公比 q 1,那么它的前 5 项的和 S 5 的值是( )A . 31. 33 2 . 35 . 37 C22223. 设 S n 是等差数列 { a n } 的前 n 项和,若 S 7=35,则 a 4=( )A. 8B.7C.6D.54. 等差数列 { a n } 中, a 1 3a 8 a15120,则 2a 9a10()A .24B .22C .20D .-85. 数列 a n 的通项公式为 a n 3n 228n ,则数列 a n 各项中最小项是 ( )A. 第 4 项B.第 5 项C.第 6 项 D. 第 7 项6. 已知 a , b , c , d 是公比为 2 的等比数列,则 2a b等于( )2cdA .1B . 1. 1 . 12C 4D 87.在等比数列 a n 中, a 7 ? a 11 6, a 4 a 14 5, 则a 20()a 10A. 2B.3C. 2 或3 D.2 或3323 2328.已知等比数列 a n 中, a n >0, a 2a 4 2a 3a 5 a 4 a 6 25 ,那么 a 3 a 5 =( )A.5B .10C.15D .209.各项不为零的等差数列a n 中 ,有 2a 3 a 722a 110 ,数列 b n 是等比数列 ,且b7 a7 , 则 b6b8( )A.2B. 4C.8 D .1610.已知等差数列a n中,a n 0, 若 m 1且 a m 1 a m1 a m2 0, S2 m 1 38, 则m等于A. 38B. 20C.10D. 911.已知s n是等差数列a n(n N * ) 的前n项和,且 s6 s7 s5,下列结论中不正确的是 ( )A. d<0B. s11 0C. s12 0D. s13 012.等差数列{ a n}中,a1,a2 , a4恰好成等比数列,则a4 的值是()a1A .1 B.2 C.3 D.4二.填空题13.已知 { a n} 为等差数列, a15=8,a60=20,则 a75=________14. 在等比数列{ a n}中,a2?a816 ,则 a5=__________15.在等差数列 { a n} 中,若 a7=m,a14=n,则 a21=__________16. 若数列x n满足lg x n 1 1 lg x n n N,且x1x2L x100100 ,则lg x101x102L x200________17.等差数列 {a n} 的前 n 项和为 S n,若 a3+a17=10,则 S19的值_________18.已知等比数列 {a n} 中, a1+a2+a3=40,a4+a5+a6=20,则前 9 项之和等于_________三.解答题19.设三个数 a ,b, c 成等差数列,其和为6,又 a ,b,c 1成等比数列,求此三个数 .20. 已知数列a n中,a11,a n2a n 13,求此数列的通项公式.21. 设等差数列an的前n项和公式是sn5n23n ,求它的前3项,并求它的通项公式 .22. 已知等比数列a n的前n项和记为S n,,S10=10,S30=70,求S40。
等差数列与等比数列的综合运用 通项 求和
![等差数列与等比数列的综合运用 通项 求和](https://img.taocdn.com/s3/m/da3e173a580216fc700afdc5.png)
等差数列与等比数列的综合运用一、考试要求:1.理解等差数列与等比数列概念,掌握它们的通项公式与前n 项和公式。
2.能正确的判断和区分等差数列和等比数列,并能用其公式和性质解决简单的实际问题。
1.设{}n a 是递增等差数列,前三项和为12,前三项积为48,则它的首项为( ) A.4 B.2 C.1 D.62.若x ≠y ,数列x,a 1,a 2,y 和x,b 1,b 2,b 3,y 各自都成等差数列,则1212b b a a --=( ) A.32 B. 34 C. 23 D. 433.一个各项均为正数的等比数列,其任何项都等于后面两项的和,其公比是( ) A.25 B.251- C.52 D. 215-4.设{}n a 是由正数组成的等比数列,公比q=2,且30303212a =⋯⋅⋅a a a ,则=⋯⋅⋅92852a a a a ( ) A.210 B.220 C.215 D.2165.在等比数列{}n a 中,已知a 1+a 2+a 3=30,a 4+a 5+a 6=60,则a 10+a 11+a 12=6.在1,2之间插入n 个正数a 1,a 2,a 3……a n ,使这n+2个数成等比数列;又在1与2之间插入n 个正数b 1,b 2,b 3……b n ,使这n+2个数成等差数列,记An=n a a a a 321⋯⋅⋅,Bn=n b b b b 321⋯++求数列{}n A 和{}n B 的通项。
四、典型例题1.在等比数列{}n a 中, 1a 4321=⋅⋅⋅a a a ,8a 16151413=⋅⋅⋅a a a ,则=⋅⋅⋅44434241a a a a2.设{}n a 是各项均为正整数的无穷等比数列,满足(1)a 5+a 6=48 (2)36log log log log log log log log 6252623252223222=⋅+⋅+⋅+⋅a a a a a a a a求数列⎭⎬⎫⎩⎨⎧n a 1的通项公式3.若{}n a 为等差数列,a 1=-393,a 2+a 3=-768. {}n b 是公比为q(0<q<1)的无穷等比数列,b 1=2且{}n b 的各项和为20,求a n 与b n 的通项公式。
等差等比数列综合问题
![等差等比数列综合问题](https://img.taocdn.com/s3/m/c0bacf247c1cfad6185fa720.png)
等差等比数列综合问题、基础知识:1、等差数列性质与等比数列性质:2、等差数列与等比数列的互化:(1)若抵}为等差数列,C〉O,CH1,则{『}成等比数列厂a n卡证明:设}的公差为d,则牛=c an+f = C d为一个常数C n所以}成等比数列(2)若匕}为正项等比数列,CA O,CH1,则{log c 成等差数列证明:设g啲公比为q,则logC—g瓷=log C q为常数所以(log c aj成等差数列二、典型例题:例1:已知等比数列{a j 中,若431,33,232成等差数列,则公比q =(思路:由“ 4a 1,a 3,2a 2成等差数列”可得:2a^4a<H2a^ a s = 2^ + a ?,再 由等比数列定义可得:a 3 =a 1q 2,a 2 yq ,所以等式变为:q 2 = 2 + q 解得 q =2或q = 一1,经检验均符合条件 答案:B 例2:已知(a j 是等差数列,且公差d 不为零,其前n 项和是S n ,若a 3,a 4,a 8 成等比数列,贝则 a 1^-3a 12<0,且 dS 4=d(4a 1 +6心=-超<0,所以 B 符合要5 25答案:B 小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个 条件,则可以考虑将涉及的项均用a 1,d (或a 1,q )进行表示,从而得到a 1,d (或a 1,q )的关系例3:已知等比数列(a j 中的各项均为正数,且a 1o a 11+a 9a 12 =2e 5,贝卩In a^ln a^I 中 In a20=思路:由等比数列性质可得:a 1o a 11乜盹,从而a 1o a 11十孔=e 5 ,因为牯」A. 1B. -1 或 2C. 2D. -1A.a" >0,dS 4 A OB. a" < 0,dS 4< 0C. a j d >0,dS 4 c 0D. a 1d < 0,dS 4 > 0a 4 = as a g =a 3,a 4,a 8成等比数列”入手可得:2(a ^ig +2d W +7d ),整理后可得: 3a 1d = -5d 2,所以为等比数列,所以{In a j 为等差数列,求和可用等差数列求和公式:… In a 10+ In a 11In a j + ln a 2 + I +ln a 2^ ---------------- ・20 =10In a 10a 1^502答案:50 例4:三个数成等比数列,其乘积为512,如果第一个数与第三个数各 减2,则成等差数列,则这三个数为思路:可设这三个数为a,a,aq ,则有a‘a 'aq=512= a 3 =512,解得a = 8 , q q 而第一个数与第三个数各减2,新的等差数列为--2,8,8^2,所以有:q答案:4,8,16 小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。
等差数列与等比数列的综合问题完整资料
![等差数列与等比数列的综合问题完整资料](https://img.taocdn.com/s3/m/63fb249af424ccbff121dd36a32d7375a517c64e.png)
等差数列与等比数列的综合问题 【最新整理,下载后即可编辑】等差数列与等比数列的综合问题【知识要点】(一)等差、等比数列的性质1 .等差数列{a n }的性质 (1) a =a k + (m —k ) d , d =(2)若数列{a }是公差为d 的等差数列,则数列{入a +b }(h b 为常数) 是公差为入d 的等差数列;若{b }也是公差为d 的等差数列,则{々a +^b } (小勺为常数)也是等差数列且公差为己d +^d . 1n 2 n1(3)下标成等差数列且公差为m 的项a ; &—,&®2m ,…组成的数列 仍为等差数列,公差为md .(4)若 m 、n 、1、k G N *,且 m +n =k +l ,则 a +a =&卜+,反之不成立.(5 ) 设 A =a +a +a + …+a , B =a +a +a + …+a , C =a+a+a+…+;:则3 A 、B 、C 成等差数列."2n +32n2n +1 2n +2 2n +33n(6)若数列{a }的项数为2n(n G N *),则S —S =nd , 乂 =葭1 , n偶 奇 S 奇a ”S =n (a +a ) (a 、a 为中间两项); 奇 "2nn n +1 n n +1若数列{a }的项数为2n —1(n G N *),则S —S =a , S 偶=,S n奇 偶ns n2n —=(2n —1) a (a 为中间项). 奇1 n n2 .等比数列{a n }的性质(1) a =a - q m —k .(2)若数列{a }是等比数列,则数列{々a }('为常数)是公比为q 的 等比数列;若{b }d 是公比为%的等比数列:则{入1a •勺b }(仆仆为常数) 也是等比数列,公比为q -q 2. 2 1n 2 n 1 2(3)下标成等差数列且2公差为m 的项&『&卜+丁&®2m ,…组成的数列 仍为等比数列,公比为q m ." W2m(4)若 m 、n 、1、k G N *,且 m +n =k +1,则 a ・a =a ・a ,反之不成 立. (5)设 A =a +a +a + +a , B =a +a +a + +a , +a 3n ,则A 、B 、2C 成等比数列,设1 M =a)a 3 .….a ; P =3a 2n+1-a 2n+2 …… a 3n ,则M 、N 、口也成等比数列. 2(二)2n 对于等差:等比数列注意以下设法:高中数学C =a +a +a+—2n +1 2n +22n +3N =a- a ........... a ,【最新整理,下载后即可编辑】等差数列与等比数列的综合问题高中数学如三个数成等差数列,可设为a—d, a, a+d;若四个符号相同的数成等差数列,知其和,可设为a—3d,a—d,a+d,a+3d.三个数成等比数列,可设为a ,a,aq,若四个符号相同的数成等比数列,知其积,可设为2 , q q3a , aq, aq3. q(三)用函数的观点理解等差数列、等比数列1.对于等差数列,.「a ='+ (n—1) d=dn+ (a1一d),当d w0 时,a 是n的一次函数,对应的点[。
等差数列与等比数列的求和问题综合练习题
![等差数列与等比数列的求和问题综合练习题](https://img.taocdn.com/s3/m/d590d4a6afaad1f34693daef5ef7ba0d4a736dda.png)
等差数列与等比数列的求和问题综合练习题数列是数学中常见的一个概念,它包含了一系列按照某种规律排列的数字。
在数列中,等差数列和等比数列是两种常见的类型,它们之间存在着不同的求和方法。
本文将通过综合练习题的方式,详细探讨等差数列与等比数列的求和问题。
一、等差数列求和等差数列是指数列中相邻两项之间的差值保持恒定的数列。
首先,我们来看一个等差数列求和的例子。
例题1:已知等差数列的首项a1为3,公差d为4,求前10项的和S10。
解题思路:利用等差数列通项公式an = a1 + (n-1)d,其中an代表数列的第n 项。
首先计算出第10项的值a10 = a1 + (10-1)d = 3 + (10-1)4 = 3 + 9*4 = 3 + 36 = 39。
其次计算出前10项的和S10 = (a1 + a10) * n / 2 = (3 + 39) * 10 / 2= 42 * 10 / 2 = 210。
答案:前10项的和S10为210。
二、等比数列求和等比数列是指数列中相邻两项之间的比值保持恒定的数列。
下面我们来看一个等比数列求和的例子。
例题2:已知等比数列的首项a1为3,公比q为2,求前5项的和S5。
解题思路:利用等比数列通项公式an = a1 * q^(n-1),其中an代表数列的第n 项。
首先计算出第5项的值a5 = a1 * q^(5-1) = 3 * 2^(5-1) = 3 * 2^4 = 3 * 16 = 48。
其次计算出前5项的和S5 = a1 * (1 - q^n) / (1 - q) = 3 * (1 - 2^5) / (1 - 2) = 3 * (1 - 32) / (1 - 2) = 3 * (-31) / (-1) = 93。
答案:前5项的和S5为93。
三、综合练习题接下来,我将给出一些综合训练题,涵盖了等差数列与等比数列的求和问题。
请你根据题意,独立思考并计算出答案。
练习题1:已知等差数列的首项a1为2,公差d为3,求前20项的和S20。
等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版
![等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版](https://img.taocdn.com/s3/m/2526ca6bccbff121dd3683ca.png)
等差数列与等比数列知识点总结及经典题目100道练习题:答案解析:14d +5 6解析:nS有最小值,可知1a<,0d>761aa<-变形得676a aa+<,故6a<,67a a+>671121212()12()22a aa aS++==>当12n<时,nS很明显都是小于0的故nS取到最小正数时的n为12.答案:1257解析:由1020S S=知对称轴为15n=,故最大值为前15项之和.答案:A5 8解析:41434442S a d⨯=+=,81878562S a d⨯=+=两式联立解得114a=,2d=-故2(1)14(2)152nn nS n n n-=+⨯-=-+对称轴为7.5,故当7n=或8n=时取最大值27715756S=-+⨯=.答案:最大值为7856S S==59解析:根据对称性,由67S S=可知58S S=,49S S=由中间到两端以此减小,所以985S S S<=,C选项错误.答案:C6 0解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5数列的下标只能取正整数,离对称轴最近的正整数为9,故9S最大.答案:C数学浪子整理制作,侵权必究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】等差数列与等比数列的综合问题【知识要点】(一)等差、等比数列的性质 1.等差数列{a n }的性质(1)a m =a k +(m -k )d ,d =km a a k m --.(2)若数列{a n }是公差为d 的等差数列,则数列{λa n +b }(λ、b 为常数)是公差为λd 的等差数列;若{b n }也是公差为d 的等差数列,则{λ1a n +λ2b n }(λ1、λ2为常数)也是等差数列且公差为λ1d +λ2d .(3)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…组成的数列仍为等差数列,公差为md .(4)若m 、n 、l 、k ∈N *,且m +n =k +l ,则a m +a n =a k +a l ,反之不成立. (5)设A =a 1+a 2+a 3+…+a n ,B =a n +1+a n +2+a n +3+…+a 2n ,C =a 2n +1+a 2n +2+a 2n +3+…+a 3n ,则A 、B 、C 成等差数列.(6)若数列{a n }的项数为2n (n ∈N *),则S 偶-S 奇=nd ,奇偶S S =nn a a 1+,S 2n =n (a n +a n +1)(a n 、a n +1为中间两项);若数列{a n }的项数为2n -1(n ∈N *),则S 奇-S 偶=a n ,奇偶S S =nn 1-,S 2n -1=(2n -1)a n (a n 为中间项). 2.等比数列{a n }的性质 (1)a m =a k ·q m -k .(2)若数列{a n }是等比数列,则数列{λ1a n }(λ1为常数)是公比为q 的等比数列;若{b n }也是公比为q 2的等比数列,则{λ1a n ·λ2b n }(λ1、λ2为常数)也是等比数列,公比为q ·q 2.(3)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…组成的数列仍为等比数列,公比为q m .(4)若m 、n 、l 、k ∈N *,且m +n =k +l ,则a m ·a n =a k ·a l ,反之不成立. (5)设A =a 1+a 2+a 3+…+a n ,B =a n +1+a n +2+a n +3+…+a 2n ,C =a 2n +1+a 2n +2+a 2n +3+…+a 3n ,则A 、B 、C 成等比数列,设M =a 1·a 2·…·a n ,N =a n +1·a n +2·…·a 2n ,P =a 2n +1·a 2n +2·…·a 3n ,则M 、N 、P 也成等比数列.(二)对于等差、等比数列注意以下设法:如三个数成等差数列,可设为a -d ,a ,a +d ;若四个符号相同的数成等差数列,知其和,可设为a -3d ,a -d ,a +d ,a +3d .三个数成等比数列,可设为qa ,a ,aq ,若四个符号相同的数成等比数列,知其积,可设为3q a ,qa ,aq ,aq 3.(三)用函数的观点理解等差数列、等比数列1.对于等差数列,∵a n =a 1+(n -1)d =dn +(a 1-d ),当d ≠0时,a n 是n 的一次函数,对应的点(n ,a n )是位于直线上的若干个点.当d >0时,函数是增函数,对应的数列是递增数列;同理,d =0时,函数是常数函数,对应的数列是常数列;d <0时,函数是减函数,对应的数列是递减函数.若等差数列的前n 项和为S n ,则S n =pn 2+qn (p 、q ∈R ).当p =0时,{a n }为常数列;当p ≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:a n =a 1q n -1.可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列是递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是递减数列. 当q =1时,是一个常数列.当q <0时,无法判断数列的单调性,它是一个摆动数列. ●点击双基1.等比数列{a n }的公比为q ,则“q >1”是“对于任意自然数n ,都有a n +1>a n ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知数列{a n }满足a n +2=-a n (n ∈N *),且a 1=1,a 2=2,则该数列前2002项的和为A.0B.-3C.3D.13.若关于x 的方程x 2-x +a =0和x 2-x +b =0(a ≠b )的四个根可组成首项为41的等差数列,则a +b 的值是A.83B.2411C.2413D.72314.在等差数列{a n }中,当a r =a s (r ≠s )时,数列{a n }必定是常数列,然而在等比数列{a n }中,对某些正整数r 、s (r ≠s ),当a r =a s 时,非常数列{a n }的一个例子是___________________.5.等差数列{a n }中,a 1=2,公差不为零,且a 1,a 3,a 11恰好是某等比数列的前三项,那么该等比数列公比的值等于___________________. 【典型例题】例1 已知{a n }是等比数列,a 1=2,a 3=18;{b n }是等差数列,b 1=2,b 1+b 2+b 3+b 4=a 1+a 2+a 3>20.(1)求数列{b n }的通项公式;(2)求数列{b n }的前n 项和S n 的公式; (3)设P n =b 1+b 4+b 7+…+b 3n -2,Q n =b 10+b 12+b 14+…+b 2n +8, 其中n =1,2,…,试比较P n 与Q n 的大小,并证明你的结论.例2 已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对任意正整数n 均有11b c +22mb c +323b m c +…+nn n b m c 1 =(n +1)a n +1成立,其中m 为不等于零的常数,求数列{c n }的前n 项和S n .例3 在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.(1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项a n ;(3)试比较a n 与S n 的大小.【经典练习】1.在等比数列{a n }中,a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是A.abB.22abC.ab 2 D.2a b2.公差不为零的等差数列{a n }的第二、三及第六项构成等比数列,则642531a a a a a a ++++=_____.3.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21221)(b b a a ⋅+的取值范围是___________________.4.已知数列{a n }中,a 1=65且对任意非零自然数n 都有a n +1=31a n +(21)n +1.数列{b n }对任意非零自然数n 都有b n =a n +1-21a n .(1)求证:数列{b n }是等比数列;(2)求数列{a n }的通项公式.5.设{a n }为等差{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3,分别求出{a n }及{b n }的前10项的和S 10及T 10.6.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12. (1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }前n 项和的公式.7.数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N *). (1)求数列{a n }的通项公式.(2)设b n =)12(1n a n (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数m ,使得任意的n 均有S n >32m 总成立?若存在,求出m ;若不存在,请说明理由.8.已知数列{a n }的各项均为正整数,且满足a n +1=a n 2-2na n +2(n ∈N *),又a 5=11.(1)求a 1,a 2,a 3,a 4的值,并由此推测出{a n }的通项公式(不要求证明);(2)设b n =11-a n ,S n =b 1+b 2+…+b n ,S n ′=|b 1|+|b 2|+…+|b n |,求∞→n lim'nn S S 的值.9.设f (k )是满足不等式log 2x +log 2(3·2k -1-x )≥2k -1(k ∈N *)的自然数x 的个数.(1)求f (k )的表达式;(2)记S n =f (1)+f (2)+…+f (n ),P n =n 2+n -1,当n ≤5时试比较S n 与P n 的大小.10. 已知数列{a n },构造一个新数列a 1,(a 2-a 1),(a 3-a 2),…,(a n -a n -1),…,此数列是首项为1,公比为31的等比数列.(1)求数列{a n }的通项;(2)求数列{a n }的前n 项和S n .。