锂电池内部保护电路图
S和DWA主流锂电池保护板原理图说明
S8261和DW01-8205A主流锂电池保护板原理图说明锂电池保护板的主要参数锂电池保护板主要由保护IC和MOS管构成(1)保护IC主要参数1)封装2)过充电压3)过充释放电压4)过放电压5)过放释放电压6)耐压(2) MOSFET主要参数1) N沟、P沟2)内阻3)封装(TSSOP8 <简称薄片>、SOP8<简称厚片>、SOT23-6等)4)耐电流5)耐电压6)内部是否连通锂电池保护板的工作原理锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。
下面以DW01配MOS管8205A进行讲解:激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。
1.锂电池保护板其正常工作过程为:当电芯电压在至之间时,DW01的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A 内的两个电子开关因其G极接到来自DW01的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
锂离子电池保护电路基本知识
锂离子电池保护电路1.什么是锂离子电池保护ic答:在锂离子电池使用过程中,过充电、过放电对锂电池的电性能都会造成一定的影响,为避免使用中出现这种现象,专门设计了一套电路,并用微电子技术把它小型化,成为一个芯片,该芯片俗称锂电池保护ic;2.保护ic外形是什么样的答:保护ic外形常用的有两种:一种称为SOT-23-5封装;另一种较薄,称TSSOP-8封装;3.Ic内部有些什么电路,能大概介绍一下吗答:ic内部的简化的逻辑图如下:其各个端口的功能简述如下:V DD:1;IC芯片电源输入端;2.锂电池电压采样点;V SS:1;IC芯片测量电路基准参考点;2.锂电池负极和IC连接点;D O:IC对放电MOS管的输出控制端C O:IC对充电MOS管的输出控制端V M:IC芯片对锂电池工作电流的采样输入端从简化的逻辑图可见:电池过充电、过放电,放电时电流过大过电流,外围电路短路,该ic都会检测出来,并驱动相应的电子器件动作;4.Ic有哪些主要技术指标答:1过充电检测电压:V CU±25mv2过充电恢复电压:V CL±30mv3 过放电检测电压:V DL±80mv4 过放电恢复电压:V DU±5 过电流检测电压:VIOV1±30mvVIOV2±6 短路检测电压:VSHORT7 过充电检测延时:tcu 1s 1 28 过放电检测延时:tdl 125ms 125 2509 过流延时:TioV1 8ms 4 8 16TioV2 2ms 1 2 410短路延时:Tshort 10us 10 50us11正常功耗:10PE 3uA 1 3 6uA12静电功耗:1PDN uA5.锂电池保护电路的PCB板上,除了保护ic外,还需要哪些元件,才能组成一个完整的保护PCB答:还需要作为开关功能用的两只场效应管、若干电阻、电容;6.场效应管是什么样子答:场效应管也称MOS FET,在锂电池保护PCB上,都是成对使用,因此制造商把两只独立的其内部接法如下图:答:MOS FET通常有三只脚,分别称为漏极D、源极S、栅极G;它在电子线路中的功能可用下图简单说明;电平,右图的开关就闭合;电流在之间通过;当栅极G得到的不是高电平,而是低电平,则之间开关看作开路,电流不能通过;8.常听人说MOS FET的内阻是多少、多少,到底什么是MOS FET的内阻答:如上图所示,之间的开关闭合时总存在一定的电阻,这个电阻相当于MOS FET的内阻,一般这个电阻很小,都在10~30mΩ之间;可见,电流通过MOS FET,由于存在内阻,根据欧姆定律,必然存在电压降,从而损耗掉一部份电能,可见MOS FET 的内阻应越小越好;9.除内阻外,MOS管还有哪些主要技术指标答:MOS管有以下主要技术指标:1漏源极耐压值:V DSS 20V2漏栅极耐压值:V DGR20V3栅源极耐压值:V GSS 12V4漏极最大电流I D DC 6APolse 24A5漏源极内阻R DS VGS 2V I D 3A 22mΩ——45mΩVGS I D 3A 19mΩ——30mΩVGS 4V I D 3A 16mΩ——20mΩ10上图中B 是电池,P+、P-是电池块接充电器电源或与手机相接的正负极; 充电状态:充电时,充电电流由P+进入→B+→ MOS 1→MOS 2→P-;在充电的同时,ic 通过V cc 和R 1对电池连续进行测量;当检测到电池电压充电到时这个电压随不同ic 而异,ic 内的过充电检测电路将检测到的这个信号并将它转换成一系列的电平信号,其中的一个低电平信号传送到ic 的输出端CO,促使MOS 2关断,从而终止充电; 放电状态:放电时,放电电流从电池正极B+→P+→负载手机→P-→MOS 2→MOS 1→B-在放电的同时,ic 内的过放检测电路连续测量电池两端的电压,当电池电压随着用电时间的加长而下降到时这个电压值随不同的ic 而异,该检测电路输出信号,使输出端DO 为低电平,从而使MOS 1关断,终止电池放电;在某种特殊情况下,如果电池放电时,电流大于某一额定值,ic 内的过电流检测器会输出一个低电平信号到DO 端,使MOS 1在5~15ms 的时间内关断这个值随不同的电流和不同的MOS 管内阻而异;在极端情况下,P+、P-端发生短路,则ic 内部的短路检测电路,将会检测到这个信号,并将这个信号转换成低电平,输出到DO 端,从而使MOS 1在10~50us 的时间内关闭,从而切断电路;11.ic 的功耗是怎么回事怎样测量答:ic 是一个完整的电子线路,它在工作时要消耗掉一部份电能,当电池块在手机中工作时,ic 将从锂电池中以吸取电能,可见,要求ic 的功耗越小越好;电池电压V CU V CLV DUV DL保护IC 工作时序图ic的功耗是用消耗的电流来度量的,一般这个电流值在3~6uA之间;由电原理图可见,ic通过电阻R1,从电池中吸取电流,因此只要测量出R1两端的电压降V1,根据欧姆定律可算得ic的功耗,电流值为I=V1/R1;12.一般的电池块有四个输出端四个弹簧片接点,能介绍一下各自的功能吗答:一般的电池块外露有四个簧片接点,其中两点是P+、P-,另外两点各有不同;见下图:13.锂电池的保护PCB板有互换性吗答:答案是否定的,主要原因是:1不同的锂电生产厂生产的锂电的性能不一,从而所选用的ic也不一样,主要指过充电检测电压;2采用不同的MOS管由于其内阻不一,所以根据工作电流应选用不同的ic;3识别电阻不一样;14.保护电路的发展方向怎样答:一;向更小型化发展;1.MOS和ic封装在一起称MCPMuIti chip package2.MOS、ic、电阻、电容全部封装在一起称COBChip On Board二.二次保护电路在实际使用锂电池保护电路中,人们发现,由于某些电子元器件的失效,导致整个保护电以上是一节锂电池保护电路的基本概念, 2 、3、4节的锂电池保护电路与此类似;见下图;欢迎各位垂询谢谢。
S 和DW A主流锂电池保护板原理图说明
S8261和DW01-8205A主流锂电池保护板原理图说明锂电池保护板的主要参数锂电池保护板主要由保护IC和MOS管构成(1)保护IC主要参数1)?封装2)?过充电压3)?过充释放电压4)?过放电压5)?过放释放电压6)?耐压(2) MOSFET主要参数1) N沟、P沟2)?内阻3)?封装(TSSOP8 <简称薄片>?、SOP8<简称厚片>、SOT23-6等)4)?耐电流5)?耐电压6)?内部是否连通锂电池保护板的工作原理锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。
下面以DW01?配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。
1.锂电池保护板其正常工作过程为:当电芯电压在至之间时,DW01?的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01?的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01?的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01?内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01?将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
3.7v锂电池保护板原理图
3.7v锂电池保护板原理图锂电池保护板主要由维护IC(过压维护)和MOS管(过流维护)构成,是用来保护锂电池电芯安全的器材。
锂电池具有放电电流大、内阻低、寿数长、无回忆效应等被人们广泛运用,锂离子电池在运用中禁止过充电、过放电、短路,不然将会使电池起火、爆破等丧命缺陷,所以,在运用可充锂电池都会带有一块维护板来维护电芯的安全。
1、电压保护能力过充电保护板:保护板有必要具有防止电芯电压超越预设值的才干过放电维护:保护板有必要具有防止电芯电压底于预设值的才干。
2、电流能力(过流保护电流,短路保护)保护板作为锂电芯的安全保护器材,既要在设备的正常作业电流规模内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护。
3、导通电阻定义:当充电电流为500mA时,MOS管的导通阻抗。
由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因而保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在《70m,如太大会导致通讯设备作业不正常,如手机在通话时突然断线、电话接不通、噪声等现象。
4、自耗电流定义:IC作业电压为3。
6V,空载状况下,流经保护IC的作业电流,一般极小。
保护板的自耗电流直接影响电池的待机时刻,通常规则保护板的自耗电流小于10微安。
5、机械功能、温度适应能力、抗静电能力保护板有必要能通过国标规则的轰动,冲击实验;保护板在40到85度能安全工作,能经受15KV的非触摸ESD静电测验。
锂电池充放电保护电路的特点及工作原理锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。
六串锂电池保护电路
六串锂电池保护电路型号:ZFAFEJSA 名称:六串锂电池保护电路 应用范围:阻性负载,放电电流<6A,充电电流<2A 发布时间:2013-08-29特 点■ ■ ■ ■ 高精度电压检测电路 低静态功耗 低温度系数 强抗干扰能力应 用■ 六串锂离子可充电电池组 ■ 六串锂聚合物可充电电池组一、主要技术参数二、工作原理框图三、连接示意图四、保护板功能说明1、 将锂电池与保护板按接线图连接 保护电路分别检测串联电池组中每只电池的电压和电流,控制电池组的充放电过程。
电池组中每只电池的电压均在过充 检测电压和过放检测电压之间,并且输出无短路现象时,MOS 管导通,通过 B+、P-可对电池组进行放电操作; 2、电池组过放保护功能 串联电池组中的任意一只电池的电压下降到过放检测电压并且达到过放延时时间时,过放保护功能启动,切断放电 MOS 管,禁止电池组对外输出电流,保护电池组安全,电路板进入休眠状态,电路板消耗电流为休眠电流以下,进入休眠状态的 电路只有在连接充电器后,并且电池电压超过过放恢复电压后才能恢复; 3、电池组过充保护功能 通过 P+和 C-对电池组充电过程中,当任何一节电池电压上升到电池过充检测电压,并且超过过充延时时间时,过充保护 功能启动,切断充电 MOS 管,禁止对电池组充电,保护电池组安全,当电池组连接负载放电或者电池电压下降到过充恢复电 压以下时,过充状态被恢复; 4、电池组短路保护功能当电池组放电端口 B+和 P-发生短路时,保护电路会在短路保护延时时间后,切断放电 MOS 管,禁止电池组对外放电,当外 部短路被移除后,电路自动恢复; 5、电池组过流保护功能 当电池组放电端口 B+和 P-发生过电流现象时,保护电路会在过流保护延时时间后,切断放电 MOS 管,禁止电池组对外放电, 当外部短路被移除后,电路自动恢复。
五、产品特性曲线六、装配测试方法 保护板与电池组连接后,正确的保护电压的测试非常关键。
锂电池保护原理及电路详解
锂电池保护原理及电路详解 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。
锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。
与镍镉和镍氢电池相比,锂离子电池具备以下几个优点:1、 电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V电压。
2、 容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5倍。
3、 荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。
4、 寿命长,正常使用其循环寿命可达到500次以上。
5、 没有记忆效应,在充电前不必将剩余电量放空,使用方便。
由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全 问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在 某些条件下关断充、放电回路以防止对电池发生损害。
下图为一个典型的锂离子电池保护电路原理图。
如上图所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。
控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控 制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下:1、正常状态在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。
锂离子电池原理图
所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。
人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。
锂离子电池的内部结构如下图所示:此主题相关图片如下:电池由正极锂化合物、中间的电解质膜及负极碳组成。
◎当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。
一般采用嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4。
◎做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz等。
◎电解质采用LiPF6的乙烯碳酸脂(EC)、丙烯碳酸脂(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的高分子材料。
◎隔膜采用聚烯微多孔膜如PE、PP或它们复合膜,采用PP/PE/PP三层隔膜优点是熔点较低,具有较高的抗穿刺强度,起到了过热保险作用。
◎外壳采用钢或铝材料,具有防爆的功能。
锂离子电池的额定电压为3.6V。
电池充满时的电压(称为终止充电电压)一般为4.2V;锂离子电池终止放电电压为2.75V。
如果锂离子电池在使用过程中电压已降到2.75V后还继续使用,则称为过放电,对电池有损害。
锂电池充电原理:锂离子电池充电原理图:此主题相关图片如下:其中:Iconst:恒流充电电流;Ipre:预充电电流;Ifull:充满判断电流;Vconst:恒压充电电压;=Vmin:预充结束电压及短路判断电压锂离子电池比较骄贵。
如果不满足其充电及使用要求,很容易出现爆炸,寿命下降等现象。
因为锂离子电池对温度、过压、过流及过放电很敏感,所以所有的电池内部均集成了热敏电阻(监控充电温度)及防过压、过流、过放电保护电路。
图一为标准锂离子电池充电原理曲线,锂离子电池的充电过程分三个阶段:预充电阶段;恒流充电阶段;恒压充电阶段。
锂电3.7v保护板改装电路图
现在国内锂电池,3.7v良莠不齐,在放电电压在2.8v左右基本是极限了,如果到2.5v,好的电池还能充几次。
一般的电池,基本报废。
我买的保护板,有两种芯片(DW01、8205A),DW01取样芯片,8205A功率驱动芯片。
DW01取样:过放电压在2.35v~2.5v,过冲4.0v~4.19v。
要是买了这两个芯片的保护板,国内的锂电池3.7v基本报废,无报废的也充不了几次电。
解决办法:
①头尾并联1N5822( 肖特基二极管),1N5822正向电压0.52v,加上2.35v等于2.87v。
②1N5822串联到B+或B-极上。
③然后将3.7v电池串联在B或+B-上,这时保护板就算在2.35v但实际电池电压在2.87v。
有效保护过放。
说明:电池不能焊在保护板上,如果焊接,电池在充电会有0.52v损失,最好方法就是不焊接,用标准3.7V充电器充电,这样既能电池充满,在使用时又不会过放。
发一张保护板改装电路图。
六串锂电池保护电路
六串锂电池保护电路型号:ZFAFEJSA名称:六串锂电池保护电路应用范围:阻性负载,放电电流<6A,充电电流<2A发布时间:2013-08-29特点应用■高精度电压检测电路■六串锂离子可充电电池组■低静态功耗■六串锂聚合物可充电电池组■低温度系数■强抗干扰能力一、主要技术参数二、工作原理框图三、连接示意图四、保护板功能说明1、将锂电池与保护板按接线图连接保护电路分别检测串联电池组中每只电池的电压和电流,控制电池组的充放电过程。
电池组中每只电池的电压均在过充检测电压和过放检测电压之间,并且输出无短路现象时,MOS管导通,通过B+、P-可对电池组进行放电操作;2、电池组过放保护功能串联电池组中的任意一只电池的电压下降到过放检测电压并且达到过放延时时间时,过放保护功能启动,切断放电MOS 管,禁止电池组对外输出电流,保护电池组安全,电路板进入休眠状态,电路板消耗电流为休眠电流以下,进入休眠状态的电路只有在连接充电器后,并且电池电压超过过放恢复电压后才能恢复;3、电池组过充保护功能通过P+和C-对电池组充电过程中,当任何一节电池电压上升到电池过充检测电压,并且超过过充延时时间时,过充保护功能启动,切断充电MOS管,禁止对电池组充电,保护电池组安全,当电池组连接负载放电或者电池电压下降到过充恢复电压以下时,过充状态被恢复;4、电池组短路保护功能当电池组放电端口B+和P-发生短路时,保护电路会在短路保护延时时间后,切断放电MOS管,禁止电池组对外放电,当外部短路被移除后,电路自动恢复;5、电池组过流保护功能当电池组放电端口B+和P-发生过电流现象时,保护电路会在过流保护延时时间后,切断放电MOS管,禁止电池组对外放电,当外部短路被移除后,电路自动恢复。
五、产品特性曲线六、装配测试方法保护板与电池组连接后,正确的保护电压的测试非常关键。
保护板的保护电压信号来源于电压采样线,即保护板B-、B1、B2、B3、B4、B+各个端口,无均衡功能的保护板产品的B1、B2、B3等线是专用的电压信号采样线,基本没有电流通过,可采用仅满足强度要求的电源线即可,B-和B+即是电源线,又是采样线,应采用具有足够电流容量的连接线,当有大电流流过时,在B-与电池组负极和B+与电池组正极之间会因为连接线的内阻产生压降,这个压降直接导致采样电压的误差,因此降低B-与电池组负极和B+与电池组正极之间连接线的内阻对保证保护电压的精度非常有利,常用的方法是尽量减小B-与B+和电池组之间连线的距离,尽量增加B-与B+和电池组之间连线的直径,不要在B-与B+和电池组之间放置任何开关、PPTC、温度保险丝等元件。
锂点保护IC
二、特征:
缩小封装的 SOT-23-6 减小面板规格。 过低 的静态电流为 3uA 即 Vcc=3.9V。 过低的断电电 流为 0.3uA 即 Vcc=2.0V。 精确的过充电保护电压: AMI7101A 为 4.325 V±25mV AMI7101B 为 4.275 V±25mV AMI7101C 为 4.225 V±25mV AMI7101D 为 4.175 V±25mV 过充电模式下载入检测功能。 过高电流下两 级检测水平。
四、锂电池保护IC的新功能
除了上述的锂电池保护IC功能之外,下面这些新的功能同 样值得关注: 1.充电时的过电流保护 当连接充电器进行充电时突然产生过电流(如充电器损 坏),电路立即进行过电流检测,此时Cout将由高转为低,功 率MOSFET由开转为切断,实现保护功能。
3.过电流/短路保护 过电流/ 过电流 需有低检测电压及高精密度的要求
因不明原因导致短路时必须立即停止放电。过电流的检测 是以功率MOSFET的Rds(on)为感应阻抗,以监视其电压的下 降,此时的电压若比过电流检测电压还高时即停止放电。为了 使功率MOSFET的Rds(on)在充电电流与放电电流时有效应用, 需使该阻抗值尽量低,目前该阻抗约为20mΩ~30mΩ,这样 过电流检测电压就可较低。 4.耐高电压 耐高电压 电池包与充电器连接时瞬间会有高压产生,因此保护IC应 满足耐高压的要求。 5.低电池功耗 低电池功耗 在保护状态时,其静态耗电流必须要小0.1µA。 6.零伏可充电 零伏可充电 有些电池在存放的过程中可能因为放太久或不正常的原因 导致电压低到0V,故保护IC需要在0V时也可以实现充电。
二、过度放电保护
在过度放电的情况下,电解液因分解而导致电池特性劣化,并造 成充电次数的降低。采用锂电池保护IC可以避免过度放电现象产生, 实现电池保护功能。 过度放电保护IC原理:为了防止锂电池的过度放电状态,假设锂 电池接上负载,当锂电池电压低于其过度放电电压检测点(假定为 2.3V)时将激活过度放电保护,使功率MOSFET由开转变为切断而 截止放电,以避免电池过度放电现象产生,并将电池保持在低静态电 流的待机模式,此时的电流仅0.1µA。 当锂电池接上充电器,且此时锂电池电压高于过度放电电压时, 过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电 检测电路设有延迟时间以避免产生误动作。
基于UCC3957锂电池保护电路
基于UCC3957锂电池保护电路UCC3957可对3或4节锂电池组提供防止电池过充电,过放电及过流等的全面保护,它对电池组内的每一节电池电压采样并与内部的精密基准电压进行比较。
当任一节电池处于过压或欠压状态时,它就会采取适当的措施防止进一步充电或放电。
其外部有2个独立的P沟道MOSFET,分别控制充电和放电电流。
图3为3节锂电池的保护电路。
下面以图3为例,讲述UCC3957的应用特点。
图3 3节锂电池保护电路1)电池组的连接电池组与IC连接要注意它的顺序。
电池组的底端连接到AN4,顶端连接到VDD,每两节电池的连接点按相应顺序连接到AN1、AN2、AN3。
2)选择3或4节电池当电池组为3节电池时,CLCNT应连到DVDD,同时将AN3与AN4连到一起,当电池组为4节电池时,CLCNT接地(即连到AN4)3)欠压保护当检测到任一节电池处于过放电时(低于欠压阈值),状态检测器同时关断2只P沟道MOSFET,UCC3957进入休眠状态,此时芯片的耗电仅为3.5μA,只有当WU电压升到VDD时,芯片检测到后重充电从而退出休眠状态。
4)充电当接入充电器时,CHGEN电压被拉到DVDD,充电FET导通,电池组充电。
而如果CHGEN 开路或连到N4,则充电FET仍然关断。
充电期间,如果芯片处于休眠状态,则放电FET仍然关断,充电电流流过放电FET的体二极管;直到每节电池的电压高于欠压阈值,则放电FET导通。
休眠期间,充电FET处于周期性的导通和关断方式,导通时间为7ms,关断时间为10ms。
5)断线保护UCC3957具有内部电池保护。
如果内部AN1,AN2或AN3断线,芯片可检测到并可预防电池组过压。
6)过压保护与智能放电特性如果某一电池充电电压超过正常过充电阈值,则充电FET关断,以防止过充。
关断一直保持到该电池电压降低到过充电阈值。
在大多数保护设计中,在该过压保护带(正常值—过充电阈值,或反之,过充电阈值—正常值)之间,充电FET一直保持完全的关断,此时放电电流必须通过充电FET的体二极管,该二极管的压降高达1V,从而在充电FET内产生极大的功耗,消耗宝贵的电池功率。
锂电池(组)元件解读表
保护板作用:
可充电锂电芯之所以需要保护,是由它本身特性所决
定的。由于锂电芯的材料决定了它不能被过充、过放、过 流、短路和高温充放电,因此锂电池总是由一个或多个锂 电芯和一块保护板所组成。锂电池的保护功能通常由保护 板和PTC等电流器件协同完成。保护板由电子电路组成, 在-20℃到+60℃的环境下时刻准确地监控着锂电芯的充 放电压和回路电流,即时控制电流回路的通断;PTC在高 温环境下防止电池发生恶劣损坏。保护电路还会采用 FUSE来做二次保护,在保护IC、MOS失效的情况下,起 短路、过流作用。
1、概述:场效应管是场效应晶体管的简称,是电压控 制元件,缩写为FET。
2、类型:有N沟道和P沟道两种 N沟道:高电平导通; P沟道:低电平导通。
3、基本参数: 耐压:VDSS、VGSS 耐流: ID(DC)、ID(PULSE) 内阻: RDS(on) 封装:SO-8、TSSOP-8、 6IP、ECH8
7、保护电路中,单双节保护电路通常使用N沟道场效应 管,多节保护电路通常使用P沟道场效应管。
8、目前常用的道场效应管有: A、日系:三洋ECH8601、ECH8655、FTD2017系列;松下
MTMC8E2A; B、美系:AOS的AO系列,目前用量较大; C、台系:富晶FS8205、FS8601系列;
精工S8261、理光R5402N、美之美MM3511和富晶DW01+对比
目前市场上正常使用的的保护IC有以下几类: 1、日系:
精工 S8261系列(单节);S8232、 S8242、S8252等 (双节);S8254(3/4节)
理光R5402N系列(单节);R5460N(双节); 2、韩系:
压
电压
电压
过电流检 测电压
锂电池充电电路详解
For personal use only in study and research; not for commercial use锂电池充电电路图锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。
一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。
充电时锂离子由正极向负极运动而嵌入石墨层中。
放电时,锂离子从石墨晶体内负极表面脱离移向正极。
所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
因而这种电池叫做锂离子电池,简称锂电池。
锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。
镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。
镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。
二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。
锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。
正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。
锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。
与其它可充电池相比,锂电池价格较贵。
三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
锂电池充电保护电路原理及应用
锂离子电池以其优良的特性,被广泛应用于:手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。
一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。
充电时锂离子由正极向负极运动而嵌入石墨层中。
放电时,锂离子从石墨晶体内负极表面脱离移向正极。
所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
因而这种电池叫做锂离子电池,简称锂电池。
锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。
镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。
镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。
二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。
锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。
正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。
锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。
与其它可充电池相比,锂电池价格较贵。
三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。
电池内充有有机电解质溶液。
另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。
LTH7资料,多套充放电组合电路
内容目录:A ,LTH7贴片5脚充电芯片 PW40541, 单节的锂电池保护电路 单节为3.7V 锂电池(也叫4.2V )和3.8V 锂电池(也叫4.35V ) 2, 单节的锂电池充电电路 4.2V 的LTH7芯片,PW4054,4.35V 的LTH7芯片,PW4065 3, 单节的锂电池输出电路 锂电池转换稳压输出为:1.2V ,3.3V,5V ,12V 等等 4, 1-3节锂电池的充放电芯片表 (几十个芯片分类图)5, 锂电池充放电整套电路组合 保护电路+充电电路+升压电路+LDO 电路+降压电路在锂电池上,需要三个电路系统: 1,锂电池保护电路, 2,锂电池充电电路, 3,锂电池输出电路。
边充电边放电,从这里可以看出是锂电池充电电路与锂电池两者一起给锂电池输出电路供电。
A ,LTH7贴片5脚充电芯片LTH7是单节锂电池充电电路芯片,PW4054,负责将USB 口的5V 电源,转换降压适合3.7V 的锂电池充电,并提供一个LED 指示灯,指示充电长亮和充满灭灯的控制系统,并具有电池电压监测电路,实时监测电池电压,充满即停止充电。
搭配锂电池如:3.7V 的18650,3.7V 的聚合物锂电池等等如果是3.8V 的锂电池,请使用PW4065了。
锂电池有3大电路系统,出了锂电池充电电路PW4054芯片(LTH7)外,还要其他2大基础电路。
1,单节的锂电池保护电路:即锂电池保护板,控制锂电池的过放电和过充电功能(过充电充电IC也会有)有的锂电池厂家出厂就自带了保护板了(大部分是默认没带保护板),有的锂电池没,就需要锂电池保护IC了。
常用锂电池保护IC如:DW01B,特点:外置MOS(PW8205A6S或者PW8205A8TS),由于是外置MOS,过充电电流和过放电电流可通过很多个MOS并联来提高,这是很常见的,采用SOT23-6封装。
PW3130,特点:内置MOS,电路简单,过充电电流和过放电电流是3A,适合功率不大电子产品,采用SOT23-5封装。
锂电池短路保护电路
锂电池短路保护电路
锂电池短路保护电路是一种保护锂电池免受损坏的关键技术。
当锂电池短路时,电流会迅速增大,导致电池过热、气体产生等不良影响。
为了避免这种情况发生,我们需要在电路中添加短路保护电路。
短路保护电路通常包括一个保险丝和一个短路保护 IC。
保险丝是一种可以断开电路的保险装置,当电流超过它的额定电流时,保险丝会自动断开电路,从而保护电池。
短路保护 IC 则是一种集成电路,它可以监测电流、电压等参数,并在出现短路时及时断开电路,以保护电池。
除了上述常见的短路保护电路,还有一些其他的短路保护技术,比如 MOSFET 短路保护、电流限制器短路保护等。
这些技术各有优缺点,根据具体的应用场景选择合适的短路保护方案是非常重要的。
总之,锂电池短路保护电路是锂电池应用领域中不可或缺的技术之一。
通过合适的短路保护电路,可以在一定程度上保障电池的安全性和可靠性。
- 1 -。