高中数学解题思想之等价变换思想.

合集下载

高中数学常见思想方法总结

高中数学常见思想方法总结

高中常见数学思想方法我们通常认为数学思想就是人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想.而且数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,在我们解决问题、进行数学思维时,也总是自觉或不自觉地运用数学思想方法.所以我们总结了以下几种常见的数学方法并附带例题加以说明,让学生对数学思想方法有更深刻的认识.方法一函数与方程的思想方法函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.高考数学命题近年来经历了以“知识立意”到以“问题立意”再发展为以“能力立意”的过程,试图体现突出能力与学习潜能的考查,使知识考查服务于能力考查;试图突出数学的思想方法的层次,即数学思想方法、逻辑学中的方法和具体的数学方法.函数与方程的思想方法作为基本的数学思想方法之一,在知识的互相联系、互相沟通中起到了纽带作用.因此,函数与方程的思想方法一直为近几年的高考重点,大小试题中均有体现.用函数与方程的思想方法解题时,要领悟其实质,充分考虑其可行性,不可生搬硬套.【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><.(1)求公差d 的取值范围;(2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由.【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题.【解】(1) 由3a =12a d +=12,得到1a =12-2d ,所以12S =121a +66d =12(12-2d )+66d =144+42d >0,13S =131a +78d =13(12-2d )+78d =156+52d <0.解得:2437d -<<-. (2)解法一:(函数的思想)n S =21115(1)(12)222na n n d dn d n ++=+- =22124124552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦ 因为0d <,故212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小时,n S 最大. 由2437d -<<-得12465 6.52n d ⎛⎫<--< ⎪⎝⎭,故正整数n =6时212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小,所以6S 最大.解法二:(方程的思想)由0d <可知12313a a a a >>>> .因此,若在112n ≤≤中存在自然数n ,使得0n a >,10n a +<,则n S 就是1S ,2S , ,n S 中的最大值. 121300S S >⎧⎨<⎩⇒1150260d a d a d ⎧+>->⎪⎨⎪+<⎩⇒6700a a >⎧⎨<⎩,故在1S 、2S 、…、12S 中6S 的值最大.【点评】 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析,即用函数方法来解决数列问题;也可以利用方程的思想,利用不等式关系,将问题进行算式化,从而简洁明快.由此可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性.【例1】 在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解】 (1)由题意知)0,2(F ,)0,3(A ,设),(y x P ,则4)3()2(2222=---+-y x y x化简整理得29=x . (2)把21=x ,312=x 代人椭圆方程分别求出)35,2(M ,)920,31(N 直线)3(31:+=x y AM ① 直线)3(65:--=x y BN ② ①、②联立得107,3T ⎛⎫ ⎪⎝⎭. (3)),9(m T , 直线)3(12:+=x m y TA ,与椭圆联立得)8040,80)80(3(222++--m m m M 直线)3(6:-=x m y TB ,与椭圆联立得)2020,20)20(3(222+-+-m m m N A BO F直线2222222224020203(20)8020:3(80)3(20)20208020m m m MN y x m m m m m m +⎛⎫-+++=- ⎪--++⎝⎭--++, 化简得222220103(20)204020m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭令0y =,解得1x =,即直线MN 过x 轴上定点(1,0).【点评】 本题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.而且,本题在解决问题时,无论求点的坐标,还是求点P 的轨迹方程,都灵活运用了方程的思想,特别是在证明过程中更是很好地利用方程的有关知识,使问题画繁为简,华难为易.方法二 数形结合的思想方法数形结合,是中学数学最重要的思想方法之一.著名数学家华罗庚先生说:“数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数流一体,永远联系切莫分离.”这精辟地阐述了数形结合的重要性,它不仅是一个重要的数学思想,而且是一种重要的解题方法,因而数形结合的能力必然是历年高考的一个重点.所谓数形结合的思想方法,就是由数学问题所呈现的条件和结论,通过研究数式问题的几何意义,或者研究几何问题的代数意义,设法沟通数学问题在数量关系和空间形式的内在联系,使隐含条件明朗化,复杂问题简单化,抽像问题具体化,开拓题的新思路,以便最终找到解决问题的带有数形信息转换特征的数学方法.正确利用数形结合,应注意三个原则:(1)等价性原则数形信息的转换应该是等价的、充要的.要注意由于图形的直观性,往往可以成为严格推证的启导,但有时不能完整表现数的一般性,考虑问题可能不完备.(2)双向性原则数形结合的含意是双向的,即考虑问题既注意代数问题几何化,也注意几何问题代数化,而不仅仅指前者.(3)简单性原则有了解题思路,思考用几何方法,还是代数方法,还是两者兼而用之,要取决于解题的简单性原则,而不能形而上学地让几何问题代数化,代数问题几何化成为一种机械模式.运用数形结合的思想方法解题的途径主要有三条:第一,以形助数:把一些数式的几何意义明朗化,构造出解题的几何模型,突显问题的直观性,使解题思路变得形像而通畅;第二,以数助形:利用几何图形或图像图表中隐含的数式特征,构造出解题的代数模型(必要时建立坐标系),突显问题的本质,另辟解题的捷径;第三,数形互助:根据问题的需要,将以形助数和以数助形二方面结合运用.数形结合的应用是广泛的,数与形的结合点主要集中在以下几个方面:1.研究函数的性质(单调性、奇偶性、周期性、对称性、值域与最值等),可从函数图像的直观性得到鲜明的启示.2.利用数轴与坐标系(包括直角坐标系、极坐标系),使数与点对应,使函数与图像、方程与曲线结合,使代数与几何联结.这样,可利用坐标或向量的运算,探索几何图形的相关性质;利用函数图像与方程曲线的直观性,探索函数或方程的性质.3.从统计图表、图像中,收集分析出“数”的信息,由破译的数量关系建立代数模型,探索相关的结论.这类数形信息的转换能力是近年高考的新亮点.4.三角函数与单位圆、三角函数曲线的联系.5.复平面与复数、向量的沟通.6.利用类比法、换元法(如三角换元)、构造法、坐标法等构造代数问题的几何模型、几何问题的代数模型,开辟解题的新思路.【例1】 (12年上海模拟)若函数()()y f x x R =∈满足(2)()f x f x -=,且[1,1]x ∈-时,2()1f x x =-,函数lg(1),11(),00,01x x g x x xx ->⎧⎪⎪=-<⎨⎪≤≤⎪⎩,则函数()()()h x f x g x =-在区间[5,6]-内的零点个数为_________. 【答案】 9【解】 由题意,直接求解会很麻烦,且不易得到正确的答案,所以该题中求()()()h x f x g x =-的零点,可以转化为求()f x 与()g x 两函数图像的交点.则画出()f x 与()g x 的图像,由于()f x 在[1,1]x ∈-上为2()1f x x =-,且为周期函数,周期为2,而()g x 是分段函数,注意其图像共分为三部分,如图,可等共有9个交点,其中有一个易错点,即其中1个交点为(1,0)很容易被遗漏.【点评】 要求()()()h x f x h x =-在区间[5,6]-内的零点的个数,可转化为求()f x 与()h x 交点的个数,可以作出图形,观察图形易得交点的个数.本题体现了数形结合的思想,正是运用数形结合的思想方法解题的途径中的以形助数.【例2】 函数y =f (x )的图像为圆心在原点的两段圆弧,试解不等式f (x )>f (-x )十x .【解】 解法一:(以数助形) 由题意及图像,有⎪⎩⎪⎨⎧<≤---≤<-=011101)(22x x x x x f ,(1)当0<x ≤1时, f (x )>f (-x )+x 得21x ->-2)(1x --+x , 解得0<x <552; (2)当-1≤x <0时, 得-21x ->2)(1x --+x , 解得-1≤x <-552, ∴ 原不等式的解集为[-1, -552)∪(0, 552). 解法二:(数形互助) 由图象知f (x )为奇函数,∴ 原不等式为f (x )>2x ,而方程f (x )= 2x 的解为x =±552,据图像可知原不等式解集为[-1, -552)∪(0, 552). 【点评】 本题以形看数(解式,奇偶性),以数解形(曲线交点A 、B ),最后以形解数(不等式),这才是真正意义上的数形结合,扬长避短.方法三 分类讨论的思想方法分类讨论的思想方法是中学数学的基本思想方法,同时也是一种化整为零、各个击破、整合结论的解题策略.在分析和解决数学问题中,运用分类讨论思想可以将问题的条件与结论的因果关系、局部与整体的逻辑关系揭示得一清二楚、十分准确.在解决对像为可变的数量关系和空间图形形式的数学问题中有着广泛和重要的作用.有关分类讨论思想的数学问题贯穿于高中数学的各个部分,形式多样、综合性强,对于培养学生思维的缜密性、条理性、深刻性有着十分重要的作用.因此,分类讨论一直是高考命题的热点之一,也是每年必考的重要数学思想方法之一.1.通常引起分类讨论的原因,大致可归纳为如下几点:(1)涉及的数学概念是分类定义的;(2)涉及运算的数学定义、公式或运算性质、法则是分类给出的;(3)涉及题中所给的限制条件或研究对像的性质而引起的;(4)涉及数学问题中参变量的不同取值导致不同结果而引起的;(5)涉及的几何图形的形状、位置的变化而引起的;(6)一些较复杂或非常规的数学问题,需要采用分类讨论的解题策略解决的.2.分类讨论的步骤一般可分为以下几步:(1)确定讨论的对像及其范围;(2)确定分类讨论的标准,正确进行分类;(3)逐类讨论,分级进行;(4)归纳整合,作出结论.其中最重要的一条是“不漏不重”.学生必须对相关知识点或涉及的概念、定义、定理相当清楚,对于一些结论成立的条件掌握牢固,这样才能在解题时思路清晰,才能知道何时必须进行分类讨论,而何时无须讨论,从而可以知道怎样进行分类讨论.在分类过程中要注意按照一个统一的标准,这样才能做到不重复不遗漏,考虑问题要周到缜密,特别是对于一些特殊情况要考虑慎重,养成严谨的学习态度和思想作风.【例1】(12年上海二模)点),(y x Q 是函数122-=x y 图像上的任意一点,点(0,5)P ,则P 、Q 两点之间距离的最小值是______________.【答案】 11【解】 ①当2102x -<时,222221,(5)(6)92x y PQ x y y =-=+-=--. 63y -=±时,即y =9或y =3,PQ 取最小值0,但222x y =-都为负数,∴不成立; ②当2102x -≥时,212x y =-,2222(5)(4)11PQ x y y =+-=-+.当y =4时,PQ 取最小值为11.综上所述,P 、Q 两点之间距离的最小值为11.【点评】 由于题中给出的是绝对值函数,需要利用分类讨论的思想去掉绝对值,然后再求解.体现了数学概念是分类定义的而引起的分类讨论.【例2】设等比数列{}n a 的公比为q ,前n 项和0(1,2,3,)n S n >= ,求q 的取值范围.【分析】在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况.【解】 {}n a 是等比数列,且前n 项和0(1,2,3,)n S n >= ,110a S ∴=>,且0q ≠当1q =时,10n S na =>;当1q ≠时,1(1)01n n a q S q -=>-,即10(1,2,3,)1nq n q->=- . 上式等价于1010n q q ⎧->⎨->⎩ ①或1010n q q ⎧-<⎨-<⎩ ②,由①得1q >,由②得11q -<<,∴q 的取值范围为()()1,00,-+∞ .【点评】本题正是分类讨论中运算的数学定义、公式或运算性质、法则是分类给出的体现.【例3】 设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S A ⊆且S B ≠∅ 的集合S 的个数是 ( )A.57B.56C.49D.8【答案】 B【解】由题意得S 中必含有4,5,6中至少一个元素,而元素1,2,3可以任意含有,则可按S 中所含元素个数分类:(1) 当S 中只含有4,5,6中的一个元素时,有13C 种,而1,2,3可构成集合32个,故S 有13323824C ⋅=⨯=(个);(2) 当S 中只含有4,5,6中的两个元素时,有23C 种,而1,2,3可构成集合32个,故S 有23323824C ⋅=⨯=(个);(3) 当S 中只含有4,5,6中的三个元素时,有33C 种,而1,2,3可构成集合32个,故S 有33328C ⋅=(个). 故集合S 的可能个数为24+24+8=56.【点评】本题正是由于题中所给的限制条件或研究对像的性质而引起的分类讨论.【例4】已知实数0a ≠,函数()2,1,2, 1.x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为________.【答案】 34-【解】首先讨论1a -,1a +与1的关系.当0a >时,11a -<,11a +<,所以()()1121f a a a a -=---=--;()12(1)32f a a a a +=++=+.因为()()11f a f a -=+,所以132a a --=+,所以34a =-; 当0a <时,11a ->,11a +>,所以()()1212f a a a a -=-+=-;()1(1)231f a a a a +=-+-=--.因为()()11f a f a -=+,所以231a a -=--,所以32a =-(舍去). 综上,满足条件的34a =-. 【点评】本题的解题关键在于讨论1a -,1a +与1的关系,正是体现了数学问题中参变量的不同取值导致不同结果而引起的分类讨论.【例5】如图所示,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE x =,过E 作OB 的垂线l l ,记△AOB 在直线l 左边部分的面积为S ,则函数()S f x =的图象是 ( )【答案】 D【解】当02x <≤时, ()2111224f x x x x =⋅⋅=,是开口向上的抛物线,且()21f =; 当23x <≤时, ()()()21112123133222f x x x x x =⨯⨯+--+=-+-,是开口向下,以33,2⎛⎫ ⎪⎝⎭为顶点的抛物线; 当3x >,()f x 是确定的常数,图象为直线.【点评】本题正是图形运动造成,不同时段,面积有所不同,正是体现了几何图形的形状、位置的变化而引起的分类讨论问题.方法四 概括归纳的思想方法概括是在思维中将同一种类型的对像共同的本质属性集中起来,结合为一般类型的属性.归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性.一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等.在上海主要体现在“归纳——猜想——证明”中,是发现数学规律,并用数学归纳法证明的完整过程.在近几年的高考中,都有这种找规律的题,考生不易得分,需要考生加强这方面的训练.【例1】 (12年上海模拟)在证明恒等式2222*1123(1)(21)()6n n n n n N ++++=++∈ 时,可利用组合数表示2n ,即22112(*)n n n C C n N +=-∈推得.类似的,在推导恒等式23333*(1)123()2n n n n N +⎡⎤++++=∈⎢⎥⎣⎦时,也可以利用组合数表示3n 推得.则3n =____________.【答案】 6C 3n +1+C 1n【解】 由题意得:n 2=2C 2n +1-C 1n =n (n +1)-n =n 2+n -n ,则由类比推理可得,∴n3=n 3-n +n =n (n +1)(n -1)+n =6C 3n +1+C 1n .【点评】 此题利用了类比推理以及归纳、猜想思想,从已知条件中得到规律,用到问题中去,从而得到结论.【例2】在数列{n a }中,1a =13 ,且前n 项的算术平均数等于第n 项的2n -1倍(n ∈N*).(1)写出此数列的前5项;(2)归纳猜想{n a }的通项公式,并用数学归纳法证明.【分析】(1)利用数列{n a }前n 项的算术平均数等于第n 项的2n -1倍,推出关系式,通过n =2,3,4,5求出此数列的前5项;(2)通过(1)归纳出数列{n a }的通项公式,然后用数学归纳法证明.第一步验证n =1成立;第二步,假设n =k 猜想成立,然后证明n =1k +时猜想也成立.【解】 (1)由已知1a =13,123n a a a a n++++ =(2n -1)n a ,分别取n =2,3,4,5,得2111153515a a ===⨯,()312111145735a a a =+==⨯, ()4123111277963a a a a =++==⨯,()512341114491199a a a a a =+++==⨯, 所以数列的前5项是:113a =,2115a =,3135a =,4163a = ,5199a = . (2)由(1)中的分析可以猜想1(21)(21)n a n n =-+(n ∈N*).下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设当n =k (k ≥1且k ∈N*)时猜想成立,即1(21)(21)k a k k =-+ . 那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++ , 即21231(23)k k a a a a k k a +++++=+ .所以221(2)(23)k k k k a k k a +-=+, 即1(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+, 所以11(21)(23)k a k k +=++,即当1n k =+时,猜想也成立. 综上①和②知,对一切n ∈N*,都有1(21)(21)n a n n =-+成立. 【点评】 本题考查数列的项的求法,通项公式的猜想与数学归纳法证明方法的应用,注意证明中必须用上假设,考查计算能力,分析问题解决问题的能力.正是体现了概括归纳的思想方法.方法五 化归与等价变换的思想方法在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化成一个新问题(相对来说,对自己较熟悉的),通过对新问题的求解,达到解决原问题的目的.这一思想方法我们称之为“转换化归思想”.而转换化归思想的基本原则就是:化难为易,化生为熟,化繁为简,化未知为已知.1.利用转换化归思想解决数学问题时必须明确三个问题:(1)把什么东西进行转换化归,即化归对像;(2)化归转换到何处,即化归转换的目的;(3)如何进行转换化归,即转换化归的方法.2. 化归与转化常遵循以下几个原则.(1)目标简单化原则:将复杂的问题向简单的问题转化;(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当;(3)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.3.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.化归与等价变换的思想方法所涉及到的具体问题很多很多,如果不断努力地用这种方法去解决一些数学问题或数学范畴以外的问题时,往往会出现事半功倍的奇特效果.【例1】 设x 、y ∈R 且22326x y x +=,求22x y +的范围.【解】 方法一:等价转化法(转化为函数问题)由22623x y x -=≥0得0≤x ≤2.设22k x y =+,则22y k x =-,代入已知等式得:2620x x k -+=, 即2132k x x =-+,其对称轴为x =3. 由0≤x ≤2得k ∈[0,4].所以22x y +的范围是:0≤22x y +≤4.方法二:数形结合法(转化为解几何问题):由22326x y x +=得()221132y x -+=,即表示如图所示椭圆,其一个顶点在坐标原点.22x y +的范围就是椭圆上的点到坐标原点的距离的平方.由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点.设圆方程为22x y k +=,代入椭圆中消y 得2620x x k -+=.由判别式3680k ∆=-=得4k =,所以22x y +的范围是:2204x y ≤+≤.方法三: 三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由22326x y x +=得()221132y x -+=,设1cos 6sin 2x y αα-=⎧⎪⎨=⎪⎩,则 2222233112cos cos sin 12cos cos 222x y ααααα+=+++=++- []215cos 2cos 0,422αα=-++∈ 所以22x y +的范围是:2204x y ≤+≤.【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.而且各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型,正是体现了熟悉化原则,将不熟悉的知识转化为自己熟悉的知识.【例2】设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.【答案】-2【解】q a a S 112+=,11S a =,23111S a a q a q =++∵1322S S S =+ ∴12111222a q a q a a =++(a 1≠0)∴2q =-或0q =(舍去).【点评】 由于该题为填空题,我们不防用特殊情况来求q 的值.如:213,,S S S 成等差,求q 的值.这样就避免了一般性的复杂运算.既体现简单化原则,也是特殊化方法的使用,正是转化与化归的思想方法的典型体现。

高中数学集合中的数学思想 学法指导

高中数学集合中的数学思想 学法指导

高中数学集合中的数学思想集合是近代数学中最基础、最重要的概念之一。

高考所考查的有关集合问题的主要类型有两种:一是直接考查集合本身的问题;二是以集合为载体,综合其他数学知识构成的综合问题。

下面举例说明蕴含在集合中的数学思想。

一、数形结合思想例1 集合},1)()(|),{(22R a a y a x y x A ∈≤-+-=,}2|||||),{(≤+=y x y x B ,a 为何实数时,B A ⋂表示的平面区域的面积最大?解析:集合A 表示的平面区域是圆心为(a ,a )、半径为1的圆及其内部,其位置由实数a 唯一确定。

集合B 表示的平面区域是以四个点(2,0)、(0,2)、(2-,0)和(0,2-)为顶点的正方形及其内部。

显然,当且仅当圆1)()(22=-+-a y a x 内切于正方形时,B A ⋂表示的平面区域面积最大。

此时,B A ≠⊂,如图所示。

由图可知此时圆心坐标为(0,0),即0=a 时,B A ⋂表示的平面区域的面积最大。

22 2- 2- yx点评:看似无从下手的一道综合题,通过采用数形结合的思想,便迎刃而解了。

运用数形结合思想时,要特别注意端点值,做到准确无误。

二、分类讨论思想例2 集合{}0103|2≤--=x x x A 与集合{}121|-≤≤+=m x m x B ,满足A B ⊆,求实数m 的取值范围。

解析:由A B ⊆可知B 有两种情况:其一,B 为非空集合,且B 中所有元素均为A 中的元素;其二,B 为空集。

易知{}52|≤≤-=x x A 。

①当Φ≠B 时,51212≤-≤+≤-m m ,解得32≤≤m 。

②当Φ=B 时,112+<-m m ,解得2<m 。

综合①②知,满足A B ⊆的实数m 的取值范围是3≤m 。

点评:解含有参数的集合问题时,最直接的办法就是运用分类讨论的思想,但在分类讨论时要注意不重不漏。

三、等价转化思想例3 设集合},1|{R x x y y M ∈+==,集合},1|{2R x x y y N ∈+==,求N M ⋂。

高中数学x等价转化方法

高中数学x等价转化方法

等价转化方法例题分析遵循以下五项基本原则: (1)化繁为简的原则. (2)化生为熟的的原则. (3)等价性原则. (4)正难反则易即逆向思维原则.当问题从正面解决困难时,可以转化为问题的逆否命题或考虑反证法.(5)形象具体化原则. 1.用构造法实现化归与转化例 已知,3232,x y y x R y x --+>+∈且那么( )0y x .<+A 0y x .>+B 0 x y .<C 0 xy .>D分析:移项联想构造 解:把原不等式化为y y xx3232->---,即)(3232y y x x ----->-.设.32)(x x x f --=因为函数x x --3,2均为R 上的增函数,所以xx x f --=32)(是R 上的增函数. 不等式)(3232y y xx----->-即)()(y f x f ->,0>+->∴y x y x 即,故选B .2.用特殊化法实现化归与转化例 已知|,0,3||,1|=⋅==点C 在ABC ∠内,且30=∠AOC .设),(R n m n m ∈+=,则=nm( ) 31 .A 3 .B 33.C 3 .D解析:本题若按通常解法,需要根据向量所给出的平面几何关系,把n m +=两边平方后,得到n m ,关系式,从中求出nm,比较繁琐.现在如果把n m ,特殊化,如取1=m 则OB AC //.由AC OA AOC ⊥=∠=,30,1|| 得33||=,所以31=n ,则3=n m ,由此判断选择D C A ,,错误。

3.转换变量实现化归与转化(变换主元)例设1log )2()(log 222+--+=t x t x y ,若t 在]2,2[-上变化时,y 恒取正值,求x 的取值范围.分析:转换思维角度,把y 看作t 的函数,则y 就是关于t 的一次函数或常数函数.原命题的陈述方式变为:关于t 的函数y ,当自变量t 在]2,2[-上变化时,y 恒大于零,求字母x 的取值范围. 解:设.1log 2)(log )1(log )(2222+-+-==x x t x t f y 则)(x f 为一次函数或常数函数.当]2,2[-∈t 时,0)(>x f 恒成立,则⎩⎨⎧>>-,0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-01log 03log 4log 22222x x x ,解得1log 2-<x 或210,3log 2<<∴>x x 或8>x ,所以x 的取值范围是).,8()21,0(+∞4.用换元法实现化归与转化例已知,R a ∈求函数)cos )(sin (x a x a y --=最小值. 解:设x x t cos sin +=,则].2,2[),4sin(2-∈+=t x t π而),1(21]1)cos [(sin 21cos sin 22-=-+=⋅t x x x x 所以x x x x a a t f y cos sin )cos (sin )(2⋅++-==2121)1(212222-+-=-+-=a at t t at a ].2,2[,2121)(2122-∈-+-=t a a t (1)若22≤≤-a 时,当;2121)(,2min -==a t f a t(2)若2>a 时,)(t f 在]2,2[-上单调递减,;212)2()(2min +-==a a f t f(3)若2-<a ,)(t f 在]2,2[-上单调递增,212)2()(2min ++=-=a a f t f .5.用数形结合实现化归与转化例 已知不等式22)12(x a x ⋅<-的解集中只有三个整数解,求实数a 的取值范围. 解:要使不等式22)12(x a x ⋅<-的解集中只有三个整数解,那么这三个解只能是3,2,1.所以⎩⎨⎧≥<)4()4()3()3(g f g f 即⎪⎩⎪⎨⎧⋅≥⋅<22224735a a 解得.1649925≤<a 这就是实数a 的取值范围. 6.用分离变量法实现化归与转化例5 若不等式012≥++ax x 对一切]21,0(∈x 成立,则a 的最小值为 .解: )1(x x a +-≥对一切]21,0(∈x 成立,则25-≥a ,所以a 的最小值为25-.7.用导数实现化归与转化 例7 已知函数22()ln (0)f x x a x x x=++>, (I )令1a =,求函数()f x 在2x =处的切线方程; (Ⅱ)若()f x 在[1,)+∞上单调递增,求a 的取值范围. 解:(I )02ln 34=+--y x (Ⅱ)0a ≥.备注函数在一个区间上为增函数的充要条件是导数只在该区间上大于等于0(但仅在有限个点处的导数值为零)8.利用命题的否定或反证法实现化归与转化例 已知下列三个方程: 03442=+-+a ax x , 0)1(22=+-+a x a x ,0222=-+a ax x 至少有一个方程有实数根,求实数a 的取值范围.分析:若从题设入手,三个方程至少有一个有实数根,则需要分为三类,即有一个方程有实根,有两个方程有实根, 有三个方程有实根.而且前两类中又各有三种情况,比较复杂.因此考虑该问题的相反情况即:三个方程都没有实根.求得a 的范围后,再在R 上求补集.该转化较好的体现了正难反则易的思想.解:假设三个方程均无实根,则有⎪⎩⎪⎨⎧<--<-<+--)()()(3 0)2(4)2(2 041)-(a 1 0)34(4)4(2222a a a a a ,解(1)得:,2123<<-a 解(2)得:,311>-<a a 或解(3)得:.02<<-a 所以三个方程均无实数解时.123-<<-a 因此三个方程至少有一个实数解时a 的取值范围是123-≥-≤a a 或. 9.利用归纳类比实现化归与转化例 在球面上有四个点C B A P 、、、,如果PC PB PA 、、两两互相垂直,如图2所示,且,a PC PB PA ===那么这个球面的面积是( )223 .a A π 223 .a B π 23.a C π 2433 .a D π解析:球的半径a r 23=,球的表面积2234a r S ππ==.故选C . 【扩展】1.某小组共10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )解析:选B .利用正难则反转化:2.已知a >0,f(x)=ax 2-2x+1+ln(x+1),l 是曲线y=f(x)在点P(0,f(0))处的切线. (1)求l 的方程;(2)若切线l 与曲线y=f(x)有且只有一个公共点,求a 的值;PABC图2(3)证明:对于任意的a=n(n∈N*),函数y=f(x)总有单调递减区间,并求出f(x)的单调递减区间的长度的取值范围.(区间[x1,x2]的长度=x2-x1)【解析】(1)∵f(x)=ax2-2x+1+ln(x+1),f(0)=1.∴f′(0)=-1,即切点P(0,1),l斜率为-1,∴切线l的方程:y=-x+1.(2)切线l与曲线y=f(x)有且只有一个公共点等价于方程ax2-2x+1+ln(x+1)=-x+1,即ax2-x+ln(x+1)=0有且只有一个实数解.令h(x)=ax2-x+ln(x+1),则方程h(x)=0有且只有一个实数解.∵h(0)=0,∴方程h(x)=0有一解x=0.3.设函数f(x)=x2-mlnx,h(x)=x2-x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.。

核心素养下高中数学解题中转化思想方法的应用

核心素养下高中数学解题中转化思想方法的应用

核心素养下高中数学解题中转化思想方法的应用发布时间:2021-07-12T13:17:30.513Z 来源:《现代中小学教育》2021年6月上作者:李宗平[导读] 数学一向被称为是思维的体操,其中高中数学作为数学学习的重要阶段,更是促使学生思维能力和品质迅速发展的重要时期。

高中数学对学生的思维能力的养成有着更高度要求,特别是高中数学自身有着明显的抽象性,而抽象素养作为思维活动所必备的一种素养,也是思维的一种重要形式,是高中数学学习的重要能力。

甘肃省嘉峪关市酒钢三中李宗平摘要:数学一向被称为是思维的体操,其中高中数学作为数学学习的重要阶段,更是促使学生思维能力和品质迅速发展的重要时期。

高中数学对学生的思维能力的养成有着更高度要求,特别是高中数学自身有着明显的抽象性,而抽象素养作为思维活动所必备的一种素养,也是思维的一种重要形式,是高中数学学习的重要能力。

抽象素养是指学生在学习过程中,人脑与数学思维对数量关系、空间形式等相互作用并按照一般思维规律认识数学内容的内在理想活动能力。

因此在教学中要重视解题中转化思想的应用。

本文以教学中的转化思想为切入点用探讨高中数学学习的方法性。

关键词:核心素养;高中数学;解题;转化思想1.引言高中数学课堂上对学生进行学科核心素养培养是一贯有之的,只是在传统教学模式下数学学科学生的核心素养仅是要求学生具备优秀而完备的数学运算能力与数学逻辑能力,这显然是无法满足现今社会发展需要的。

对于现今社会发展需求下的数学学科而言,需要学生具备思考数学定理、实验数学并表述、总结等能力,这就对学生数学学习思维提出了较高的要求。

为了能够平顺的提升学生的核心素养,高中数学教师要对传统教学形式与理念进行变通或改革,以适应新的教学要求,形成新的教学策略。

本文充分立足于教学实际,在调研的基础上,充分利用现有的在高中数学中的转化思想主要体现在数形转化、主次转化和等价转化这几个重要方面,在教学中要结合具体的教学内容进行探索。

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。

更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。

一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。

A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。

A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。

A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。

A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。

二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。

高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。

第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

化归与转化思想在高考数学解题中的运用

化归与转化思想在高考数学解题中的运用

GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。

数学思想在高中数学教学中的运用

数学思想在高中数学教学中的运用

数学思想在高中数学教学中的运用数学思想是数学的灵魂,是数学思维的有力支撑,是把知识转化为能力的重要桥梁,《普通高中数学课程标准(实验)》指出:高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。

数学教学要运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及它们所体现的数学思想方法。

高中数学学习的常见形态是解题,其目的不仅在于巩固与掌握知识,更重要的是通过锻炼思维,提高学生的数学能力,在解题中渗透数学思想,把数学思想有机地运用到解题中,是数学教师立足学科特点、践行新课程理念的有效途径。

一、高中数学教学中常见的几种数学思想(一)等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

(二)数形结合“数形结合”就是根据数量与图形之间的对应关系,把抽象的数学语言与直观的图形相结合,使抽象思维与形象思维相结合,通过数与形的相互转化来解决数学问题的一种重要的数学思想,数形结合包括“以形助数”和“以数辅形”两个方面。

其应用大致可以分为两种情形:可以借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质:或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质,巧妙地应用数形结合思想解题,往往会使抽象问题直观化,复杂问题简单化,达到优化解题途径的目的,从“数”的严谨性和“形”的直观性两方面思考问题,拓展了解题思路,可起到事半功倍的效果。

(三)分类讨论,在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

高中三角函数三角函数的等价变换与化简

高中三角函数三角函数的等价变换与化简

高中三角函数三角函数的等价变换与化简在高中数学学习中,三角函数是一个非常重要的概念。

我们通过学习三角函数,可以解决很多与角度和长度相关的问题。

而掌握三角函数的等价变换与化简方法,将有助于我们更加灵活、快速地处理相关题目。

本文将介绍一些常见的三角函数的等价变换与化简方法。

1. 正弦函数与余弦函数的等价变换正弦函数和余弦函数是三角函数中最基础的两个函数。

它们之间存在着一些等价的关系,我们可以利用这些关系来简化问题的处理。

首先是正弦函数与余弦函数的倒数关系:sin(x) = 1/cos(x)cos(x) = 1/sin(x)利用这个倒数关系,我们可以将一个三角函数转化为另一个三角函数的倒数形式,从而更方便地进行计算。

其次是正弦函数和余弦函数的平方和关系:sin^2(x) + cos^2(x) = 1根据这个关系,我们可以将一个三角函数的平方与另一个三角函数的平方结合起来,从而消去其中的一个三角函数,从而简化问题的处理。

2. 正切函数与余切函数的等价变换正切函数和余切函数同样是三角函数中的重要函数。

它们之间也存在一些等价的关系,可以利用这些关系来进行问题的简化。

首先是正切函数和余切函数的倒数关系:tan(x) = 1/cot(x)cot(x) = 1/tan(x)利用这个倒数关系,我们可以将一个三角函数转化为另一个三角函数的倒数形式,从而方便进行计算。

其次是正切函数和余切函数的平方差关系:tan^2(x) - cot^2(x) = 1根据这个关系,我们可以将一个三角函数的平方与另一个三角函数的平方结合起来,从而消去其中一个三角函数,进而简化问题的处理。

3. 正弦函数与正切函数的等价变换正弦函数和正切函数之间也存在一些等价的关系,可以利用这些关系来进行问题的简化。

首先是正弦函数和正切函数之间的关系:sin(x) = tan(x)/√(1+tan^2(x))根据这个关系,我们可以利用正切函数来表示正弦函数,从而方便计算。

高中数学的“四大思想”和“六大法则”

高中数学的“四大思想”和“六大法则”

高中数学的“四大思想”和“六大法则”想要学好高中数学,需要树立正确的解题思想与提高解题能力,下面将向大伙介绍高中数学的四大思想和六大法则,让大家来学会运用这部分容易见到的思想和法则,进而形成正确的数学解题思维,帮提高高中数学成绩。

高中数学容易见到的六大法则1、配办法所谓的公式是用变换分析方程的同构办法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。

通过配方解决数学问题的公式。

其中,用的最多的是配成完全平方法。

匹配办法是数学中不断变形的要紧办法,其应用很广泛,在分解,简化根,它一般用于求解方程,证明方程和不等式,找到函数的极值和分析表达式。

2、因式分解法因式分解是将多项式转换为几个积分商品的乘积。

分解是恒定变形的基础。

除去引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有大量办法可以进行因式分解。

还有一些项目,如拆除物品的用,根分解,替换,未确定的系数等等。

3、换元法替代办法是数学中一个尤为重要和广泛用的解决问题的办法。

大家一般称未知或变元。

用新的参数替换原始公式的一部分或重新构建原始公式可以更容易,更容易解决。

4、判别式法与韦达定理一元二次方程 ax2+ bx+ c=0根的判别, = b2-4 ac,不只用来确定根的性质,还作为一个问题解决办法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何与三角函数都有很广泛的应用。

吠陀定理除去知晓二次方程的根外,还找到另一根;分析到两个数的和和乘积的容易应用并探寻这两个数,也可以找到根的对称函数并量化二次方程根的符号。

求解对称方程并解决一些与二次曲线有关的问题等,具备很广泛的应用。

5、待定系数法在解决数学问题时,假如大家第一判断大家所探寻的结果具备肯定的形式,其中包含某些未决的系数,然后依据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这部分待定系数之间的关系。

为知道决数学问题,这种问题解决办法被叫做待定系数法。

高中数学等价思想总结归纳

高中数学等价思想总结归纳

高中数学等价思想总结归纳高中数学等价思想主要包括等价变形、等价代换、等价关系和等价性质四个方面。

这些等价思想在数学的各个分支领域中普遍存在,并具有重要的理论和应用价值。

下面将对这四个方面进行归纳总结。

等价变形是数学中常用的一种推理方法。

它通过对数学表达式、方程式或不等式进行一系列的代数运算,使其形式上发生变化,而保证其数学意义不变。

等价变形的核心思想是利用数学运算的性质来调整表达式的形式,以达到简化、解决问题的目的。

常见的等价变形方法有因式分解、通分、配方法、换元等。

例如,对于一元二次方程ax^2+bx+c=0,可以通过配方法将其变形为(a'x+p)^2+q=0的形式,从而更便于解方程。

等价变形在解决各种类型的数学问题中起到了重要的作用,使复杂的问题变得简单。

等价代换是利用代数等式的等价性质进行推理的方法。

它将一个数学表达式或方程中的某个量用其它的等价形式进行替代,以便于化简或求解问题。

等价代换一般包括两个步骤:找到等价量并进行替代。

等价量指的是在数学运算过程中,可以与原有量进行等价替换的数学表达式或方程。

常见的等价代换方法有因式分解、代入法、递推法等。

例如,求解二次函数f(x)=ax^2+bx+c的最值问题,可以利用等价代换将其转换为求解一元二次方程的问题,进而应用二次函数的性质完成最值问题的求解。

等价关系是指在数学领域中具有某种关联的两个数学事物之间存在着一种特定的关系。

等价关系由三个性质构成:自反性、对称性和传递性。

自反性指的是任何元素与自身之间满足这种关系;对称性指的是如果x与y之间存在这种关系,那么y与x之间也存在这种关系;传递性指的是如果x与y之间存在这种关系,y与z之间也存在这种关系,那么x与z之间也存在这种关系。

等价关系在数学中具有广泛的应用,例如,等价关系可以用于划分集合,进行分类和归纳,也可以用于构建等价类以进行证明和推理。

等价性质是在数学中常用的一种判断两个事物是否具有相同性质或结构的方法。

问题表述多元性等价转化变直观——解答函数问题中的转化思想

问题表述多元性等价转化变直观——解答函数问题中的转化思想

姨 姨 则( f x)=-2t2+at+1.因为x∈ π , π ,所以t∈ 1 ,1 ,所
62
2
姨 以( f x)=-2t2+at+1,t∈ 1 ,1 .因为( f x)=cos2x+asinx在区 2
姨 间 π , π 上是减函数,所 以 f(x)=-2t2+at +1 在 区 间 62
( f x)在R上的大致图像,如图4.
解法探究
教学 参谋
y a2
-4a2 -3a2 -2a2 -a2 O a2 2a2 3a2 x
-a2
图4
观察图像可知,要使坌x∈R,( f x-1)≤( f x),则需满
例3 (2014年高考天津)已知函数( f x)=|x2+3x|,x∈ R.若方程( f x)-a|x-1|=0恰有4个互异的实数根,则实数a 的取值范围为_________.
88
高中版
2015 年 3 月
解 析 :显然a≠1,所以a =
y
x2+3x , 令 t =x -1, 则 a =
x-1
t+ 4 +5 . 因 为 t + 4 ∈(-∞,
x
y=e-x- 1 2
图1
当lna<
1
时,两图像有交点,解得a<


e
,故a∈(-∞,
2


e
).答案为B.
评注:本题解答中,将两函数存在关于y轴对称的点,
对称转化为两个函数的交点问题, 进而将问题求解.在
利用函数的对称性求解相关问题时,要注意变量的变与
不变.
二、等价换元— ——化陌生为熟悉
化陌生为熟悉,是等价转化思想的精髓所在,高中

浅谈高中数学的等价转换

浅谈高中数学的等价转换

浅谈高中数学的等价转换作者:徐君红来源:《新课程·中学》2016年第03期摘要:等价转换是高中数学的重要解题思想,其通常是根据数学知识间的相互联系,把未知解的问题转换到学生的已有知识范围内,变为可解的问题,通过不断转换,把那些学生不熟悉、不规范、复杂的问题转化为熟悉、规范、简单的问题,从而简化解题思路与过程,提高解题效率。

在历年的高考题中,利用等价转换的思想进行解题也是重要的考点,因此要不断培养和训练学生自觉转换意识,强化学生解决数学问题的应变能力,提高学生的思维能力与技能、技巧。

主要说明等价转换在高中数学中的灵活运用。

关键词:高中数学;等价转换;思维高中数学的知识点繁多,数学问题复杂多变,如果学生只是注重数学知识的学习,注重解题的结果,而忽视了对数学问题的解题技巧与方法的分析探索,他们很难学好高中数学。

在高中数学的学习过程中,最常见的学习方式就是采用“题海战术”,学生通过多做题来巩固知识点,这种方法对于数学学习基础薄弱的学生比较适用,能够在一段时间内提高他们的数学成绩,但是对于那些学习成绩中等或是优秀的学生却没什么太大的帮助,大量的数学题反而会促使他们尽量采用最短的时间来完成每一道题,这就减少了学生在做题时思考的时间,有些学生在做题时几乎没有思考分析,只是按照惯性思维来解题,而使得解题过程烦琐复杂,造成学习效果不理想,同时也限制了学生思维能力的发展。

这就要求学生在数学学习中不能一味地注重知识的学习,还要能够掌握数学问题的解题技巧与方法,并逐渐形成数学思维,从而提高学生的数学学习能力。

而等价转换作为数学问题的一种重要解题思路,不仅能让学生将所学的知识进行灵活运用,巩固数学知识,还能够锻炼学生的思维敏捷性,有效地提高学生的思维能力。

下面我就通过一些例子来分析等价转换在高中数学解题中的灵活应用。

一、掌握转换思想,提高转换的自觉性高中数学问题中的转化思想都是师生在长期的数学教与学的实践过程中,在知识与方法的不断运用中总结出来的。

高中数学解题思想之等价变换思想

高中数学解题思想之等价变换思想

等价转化思想方法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。

我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。

数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。

在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。

它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。

消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。

可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。

由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。

高中数学解题八个思维模式和十个思维策略【精选文档】

高中数学解题八个思维模式和十个思维策略【精选文档】

高中数学解题八种思维模式和十种思维策略引言“数学是思维的体操”“数学教学是数学(思维)活动的教学。

”学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。

作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。

高中数学思维中的重要向题它可以包括:高中数学思维的基本形式高中数学思维的一般方法高中数学中的重要思维模式高中数学解题常用的数学思维策略高中数学非逻辑思维(包括形象思维、直觉思维)问题研究;高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究;高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性高中数学思维的基本形式从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a 同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式. 3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。

二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。

3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。

4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。

5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感.6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。

数学思想有哪些

数学思想有哪些

数学思想有哪些1变换思想:把要解决的问题或难解决的问题减少到现有知识范围内可以解决的问题,是一个重要的基本数学思想。

这种规范化是等价变换,即要求变换过程中的因果关系应充分必要,以保证变换后得到的结果仍然是原问题的结果。

高中数学新知识的学习过程是在已有知识和新概念的基础上进行规范化的过程。

因此,规范化思想在数学中无处不在。

它在问题解决教学中的应用可以概括为:化未知为已知,化难为易,化繁为简。

因此,知识转移可以解决这个问题。

但转换不当也可能使问题的解决变得困难2逻辑划分思想(即分类整合思想):根据数学对象的本质属性的差异,选择适当的分类标准,将不易被归类为单一本质属性的问题,进而得到一个全面的答案,这是一种基本的数学思想。

但需要注意的是,按照分类标准划分的类别应满足互斥、不重复、不遗漏、最简洁的要求。

问题解决教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按算法适用条件划分;按函数性质划分;根据图形的位置和形状变化;根据可能出现的结论不同的情况要划分等等。

需要注意的是,有些问题不仅可以用分类思维来解决,而且可以通过数形结合的思想,转化为一个新的知识环境。

运用分类思想的关键是找到分类的原因,找到划分的标准三。

函数与方程思想(即运动联系或变化的思想):从运动和变化的角度分析和研究具体问题中的数量关系,抽象其数量特征,建立函数关系,是一个重要的基本数学思想,运用函数或方程的相关知识解决问题。

4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如:集合的思想;补集思想;归纳与递推思想;对称思想;逆反思想;类比思想;参变数思想有限与无限的思想;特殊与一般的思想。

高中数学等价变换思想总结

高中数学等价变换思想总结

高中数学等价变换思想总结高中数学中的等价变换思想是一种解题思路,通过等价变换可以简化问题,得到更简洁、更易解的表达式或结论。

等价变换的思想在数学中应用广泛,不仅能够解决各种数学题目,还能够培养学生的逻辑思维和分析问题的能力。

等价变换的基本思想是根据等式的性质和运算的法则,通过变换等式的形式,改变等式中的一些因素,使得等式更符合问题的要求,从而更容易解决问题。

等价变换的核心思想有以下几个方面。

首先是加减法的等价变换。

通过加减法的等价变换可以改变等式中的数值或运算符号,使得等式中的一些因素得到简化或消除。

例如,对于一元一次方程3x+5=8,我们可以通过减去5,得到3x=3,使得方程中的常数项被消除,达到简化方程的目的。

其次是乘除法的等价变换。

通过乘除法的等价变换可以改变等式中的系数或运算符号,使得等式中的一些因素得到简化或消除。

例如,对于一元一次方程2x=10,我们可以通过除以2,得到x=5,使得方程中的系数得到简化,达到简化方程的目的。

另外,通过代换的等价变换可以将复杂的表达式替换为简单的表达式,使得问题的解题过程更加简洁。

例如,在解一元一次方程2(3x+5)=8时,我们可以令y=3x+5,得到2y=8,进一步得到y=4,最后代入y=4得到x=-1,从而解得方程的根。

等价变换的思想还能够应用于解决不等式、恒等式、证明题等数学问题。

例如,通过对不等式的两边同时加减、乘除同一个数,可以改变不等式的形式,从而用于解决大小关系、区间判断等问题。

通过等价变换可以将一个复杂的恒等式转化为若干个等价的简单等式,从而用于证明等式成立的过程。

总之,高中数学中的等价变换思想是数学问题解决的一种重要思路,通过改变等式的形式,简化问题,使得解题过程更加简洁、明确。

等价变换的思想不仅能够帮助解决各种数学题目,还能够培养学生的逻辑思维和分析问题的能力,对于提高数学能力和解题能力都具有重要的意义。

等价转化思想在高中数学中的应用

等价转化思想在高中数学中的应用

分析 : 联想椭 圆的第二定义 , 作椭 圆的右准线 z , 由

去知 , 2 f MFI 即点 M 到 z 的垂 线段 的长 , 点 M 则
d ) 一1 +l o g z只有一解 , 求 实数 a的范 围” , 又 因为 该方

是过 A 点作 z 的垂线段 与椭 圆的交点 , 从而得 M ( 2 √ 3 ,
问题 的解. 下面我谈谈等价转化思想在教学 中的应用.

在解一 个问题 觉得十分 困难 的时候 , 不妨考 虑相关 定义的运用. 有时运用定义进行命 题 的转 化 会使 问题 更

不违逻辑 。 力求简 明
明晰 、 更容易解决. 【 例3 1 已知定点 A( 一2 , √ 3 ) , F是椭 圆x 1 6 -r 1 2 —1
{( 尽管 题 设 > 1 , 但 此处 作 为 思 维 起 点 是 可 行 的 ) ,
/ < 2 ) 一 , L 厂 ( 3 ) 一 , 可猜 测 厂 ( n ) 是 的增 函数 , 事 实
( H ㈩ 一 + 一 一 一
A B — c , 求 出 使 + 詈 + 寺 取 最 小 值 时 P 点 的 位 置 .
二、 化生为熟 , 推 陈 出新
【 例4 1已 知不等式 号+ 0 o g ( a —1 ) < +
+ +… + 对一切大于 1的 自然数 ”都成 立 , 求实数 a的取 值范围. 分析 : 设不等式的右边 为 . 厂 ( ) , 则其项 数 随 1 1 " 的增 大而增加. 值也发生变化 , 似乎 难于把 握 , 但如 果能求 出 _ 厂 ( n ) 的最小值 , 这个问题便容 易解决. 经计算 得 厂 ( 1 ) 一
分析: 对 于式 子 a+ b+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等价转化思想方法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。

我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。

数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。

在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。

它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。

消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。

可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。

由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。

按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

Ⅰ、再现性题组:1. f(x是R上的奇函数,f(x+2=f(x,当0≤x≤1时,f(x=x,则f(7.5等于_____。

A. 0.5B. -0.5C. 1.5D. -1.52.设f(x=3x-2,则f[f(x]等于______。

A. B. 9x-8 C. x D.3. 若m、n、p、q∈R且m+n=a,p+q=b,ab≠0,则mp+nq的最大值是______。

A. B. C. D.4. 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值为______。

A. 1B.C. 2D.5. 设椭圆+=1 (a>b>0)的半焦距为c,直线l过(0,a和(b,0,已知原点到l的距离等于c,则椭圆的离心率为_____。

A. B. C. D.6. 已知三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB的中点,E为AC的中点,则四棱锥S-BCED的体积为_____。

A. B. 10 C. D.【简解】1小题:由已知转化为周期为2,所以f(7.5=f(-0.5=-f(0.5,选B;2小题:设f(x=y,由互为反函数的值域与定义域的关系,选C;3小题:由mp+nq≤+容易求解,选A;4小题:由复数模几何意义利用数形结合法求解,选A;5小题:ab=×,变形为12e-31e+7=0,再解出e,选B;6小题:由S=S和三棱椎的等体积转化容易求,选A。

Ⅱ、示范性题组:例1. 若x、y、z∈R且x+y+z=1,求(-1( -1( -1的最小值。

【分析】由已知x+y+z=1而联想到,只有将所求式变形为含代数式x+y+z,或者运用均值不等式后含xyz的形式。

所以,关键是将所求式进行合理的变形,即等价转化。

【解】(-1( -1( -1=(1-x)(1-y(1-z=(1-x-y-z+xy+yz+zx-xyz=(xy+yz+zx-xyz=++-1≥3-1=-1≥-1=9【注】对所求式进行等价变换:先通分,再整理分子,最后拆分。

将问题转化为求++的最小值,则不难由平均值不等式而进行解决。

此题属于代数恒等变形题型,即代数式在形变中保持值不变。

例2. 设x、y∈R且3x+2y=6x,求x+y的范围。

【分析】设k=x+y,再代入消去y,转化为关于x的方程有实数解时求参数k范围的问题。

其中要注意隐含条件,即x的范围。

【解】由6x-3x=2y≥0得0≤x≤2。

设k=x+y,则y=k-x,代入已知等式得:x-6x+2k=0 ,即k=-x+3x,其对称轴为x=3。

由0≤x≤2得k∈[0,4]。

所以x+y的范围是:0≤x+y≤4。

【另解】数形结合法(转化为解析几何问题):由3x+2y=6x得(x-1+=1,即表示如图所示椭圆,其一个顶点在坐标原点。

x+y的范围就是椭圆上的点到坐标原点的距离的平方。

由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点。

设圆方程为x+y =k,代入椭圆中消y得x-6x+2k=0。

由判别式△=36-8k=0得k=4,所以x+y的范围是:0≤x+y≤4。

【再解】三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由3x+2y=6x得(x-1+=1,设,则x+y=1+2cosα+cosα+sinα=1++2cosα-cosα=-cosα+2cosα+∈[0,4]所以x+y的范围是:0≤x+y≤4。

【注】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力。

此题还可以利用均值换元法进行解答。

各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型。

例3. 求值:ctg10°-4cos10°【分析】分析所求值的式子,估计两条途径:一是将函数名化为相同,二是将非特殊角化为特殊角。

【解一】ctg10°-4cos10°=-4cos10°=======(基本过程:切化弦→通分→化同名→拆项→差化积→化同名→差化积)【解二】ctg10°-4cos10°=-4cos10°========(基本过程:切化弦→通分→化同名→特值代入→积化和→差化积)【解三】ctg10°-4cos10°=-4cos10°=======(基本过程:切化弦→通分→化同名→拆角80°→和差角公式)【注】无条件三角求值问题,是高考中常见题型,其变换过程是等价转化思想的体现。

此种题型属于三角变换型。

一般对,对于三角恒等变换,需要灵活运用的是同角三角函数的关系式、诱导公式、和差角公式、倍半角公式、和积互化公式以及万能公式,常用的手段是:切割化弦、拆角、将次与升次、和积互化、异名化同名、异角化同角、化特殊角等等。

对此,我们要掌握变换的通法,活用2公式,攻克三角恒等变形的每一道难关。

例4. 已知f(x=tgx,x∈(0, ,若x、x∈(0, 且x≠x,求证:[f(x+f(x]>f((94年全国高考)【分析】从问题着手进行思考,运用分析法,一步步探求问题成立的充分条件。

【证明】[f(x+f(x]>f([tgx+tgx]>tg(+>>1+cos(x+x>2cosx cosx1+cosx cosx+sinx sinx>2cosx cosxcosx cosx+sinx sinx<1 cos(x-x<1由已知显然cos(x-x<1成立,所以[f(x+f(x]>f(SA MD N C B【注】本题在用分析法证明数学问题的过程中,每一步实施的都是等价转化。

此种题型属于分析证明型。

例5. 如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上,M是侧棱SC上的一点,使截面MAB与底面所成角等于∠NSC。

求证:SC垂直于截面MAB。

(83年全国高考)【分析】由三垂线定理容易证明SC⊥AB,再在平面SDNC中利用平面几何知识证明SC⊥DM。

【证明】由已知可得:SN⊥底面ABC,AB⊥CD,CD是斜线SC在底面AB的射影,∴ AB⊥SC。

∵ AB⊥SC、AB⊥CD∴ AB⊥平面SDNC∴ ∠MDC就是截面MAB与底面所成的二面角由已知得∠MDC=∠NSC又∵ ∠DCM=∠SCN∴ △DCM≌△SCM∴ ∠DMC=∠SNC=Rt∠即SC⊥DM所以SC⊥截面MAB。

【注】立体几何中有些问题的证明,可以转化为平面几何证明来解决,即考虑在一个平面上的证明时运用平面几何知识。

Ⅲ、巩固性题组:1. 正方形ABCD与正方形ABEF成90°的二面角,则AC与BF所成的角为_____。

A. 45°B. 60°C. 30°D. 90°2. 函数f(x=|lgx|,若0 时有 f(a>f(b ,则下列各式中成立的是 _____ 。

A. ab≤1B. ab<1C. ab>1D. a>1且b>13. [-] (n∈N的值为______。

A. B. C. 0 D. 14. (a+b+c展开式的项数是_____。

A. 11B. 66C. 132D. 35. 已知长方体ABCD-A’B’C’D’中,AA’=AD=1,AB=,则顶点A到截面A’BD的距离是_______。

6. 已知点M(3cosx,3sinx、N(4cosy,4siny,则|MN|的最大值为_________。

7. 函数y=+的值域是____________。

8. 不等式log(x+x+3)>log(x+2的解是____________。

9.设x>0,y>0,求证:(x+y>(x+y (86年上海高考10. 当x∈[0, ]时,求使cos x-mcosx+2m-2>0恒成立的实数m的取值范围。

11. 设△ABC的三内角A、B、C的对边分别是a、b、c,若三边a、b、c顺次成等差数列,求复数z=[cos(π++isin(π+]·[sin(-+icos(-]的辐角主值argz的最大值。

12. 已知抛物线C:y=(t+t-1x-2(a+t x+(t+3at+b对任何实数t 都与x轴交于P(1,0点,又设抛物线C与x轴的另一交点为Q(m,0,求m的取值范围。

相关文档
最新文档