解圆锥曲线问题常用方法

合集下载

圆锥曲线常用方法与结论(收藏)

圆锥曲线常用方法与结论(收藏)

FAP HBQ 圆锥曲线常用方法与结论(收藏)1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。

如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。

〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

圆锥曲线解题十招全归纳

圆锥曲线解题十招全归纳

《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。

AB =21k =+2d k=21k +=k =053x =。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2020届高考专题之圆锥曲线常见的五种解题方法

2020届高考专题之圆锥曲线常见的五种解题方法

圆锥曲线常见的五种解题方法一.弦的垂直平分线问题【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定.......理.产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。

AB =221k k =+2d k=21k +=k =满足②式此时053x =。

例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b=,∴220x x +-=,由弦长公式可求出AB ==.二.共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH λ=,求λ的取值范围.解:(1).0,2=⋅= ∴NP 为AM 的垂直平分线,∴|NA|=|NM| 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点 C (-1,0),A (1,0)为焦点的椭圆.且椭圆长轴长为,222=a焦距2c=2. .1,1,22===∴b c a ∴曲线E 的方程为.1222=+y x (2)当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程 得.230.034)21(222>>∆=+++k kx x k 得由设),,(),,(2211y x H y x G)2(216213),1(21821422212221k k x x k k k k x x +=+=+-=+-=+则)2,()2,(,2211-=-∴=y x y x λλ 又,,2121x x x x =∴=∴λλ,)21(332)21(33221)2()1(2222+=+=++⇒kk k λλ.331.316214.316)21(3324,2322<<<++<∴<+<∴>λλλ解得kk .131,10<<∴<<λλ 又 又当直线GH 斜率不存在,方程为.31,31,0===λFH FG x )1,31[,131的取值范围是即所求λλ<≤∴ 2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.解:设椭圆C 的方程为22221x y a b+= (a >b >0)抛物线方程化为24x y =,其焦点为(0,1),则椭圆C 的一个顶点为(0,1),即 1b =由5c e a ===,∴25a =,椭圆C 的方程为2215x y +=(2)证明:右焦点(2,0)F ,设11220(,),(,),(0,)A x y B x y M y ,显然直线l 的斜率存在,设直线l 的方程为 (2)y k x =-,代入方程2215x y += 并整理,得2222(15)202050k x k x k +-+-=∴21222015k x x k +=+,212220515k x x k -=+ 又110(,)MA x y y =-,220(,)MB x y y =-,11(2,)AF x y =--,22(2,)BF x y =--,而 1MA AF λ=, 2MB BF λ=,即110111(0,)(2,)x y y x y λ--=--,220222(0,)(2,)x y y x y λ--=--∴1112x x λ=-,2222x x λ=-,所以 121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++3、已知△OFQ 的面积S=26, 且m =∙。

圆锥曲线速算技巧

圆锥曲线速算技巧

圆锥曲线速算技巧圆锥曲线是数学中的重要内容,涉及定义法、焦点法、参数法、勾股定理法、相似法、极坐标法、代数法、几何法等多种速算技巧。

本文将详细介绍这些技巧的应用原理和推导过程,并给出具体实例,帮助读者更好地理解和掌握。

1. 定义法定义法是圆锥曲线速算的基本方法之一,根据圆锥曲线的定义,可以直接计算出曲线的方程和性质。

例如,对于椭圆,其定义为到两个焦点F1和F2的距离之和等于常数2a(a>0)的点的轨迹。

根据这个定义,我们可以直接计算出椭圆的标准方程和性质。

具体实例:已知椭圆的两焦点分别为F1(-2,0)和F2(2,0),求该椭圆的标准方程。

解:根据椭圆的定义,设该椭圆上任意一点P(x,y),则|PF1| + |PF2| = 2a。

又因为两焦点距离为4,所以2a = 4,即a = 2。

从而得到椭圆的方程为:x^2/4 + y^2/2 = 1。

2. 焦点法焦点法是利用圆锥曲线的焦点性质进行计算的速算方法。

对于椭圆和双曲线,它们的焦点到曲线上任意一点的距离之差等于定值。

利用这个性质,我们可以快速求解曲线的方程和性质。

具体实例:已知双曲线的焦点坐标为F1(-5,0)和F2(5,0),且双曲线上任意一点到两焦点的距离之差等于4,求该双曲线的标准方程。

解:设该双曲线上任意一点P(x,y),根据双曲线的焦点性质,有||PF1| - |PF2|| = 4。

又因为两焦点距离为10,所以得到方程:|x + 5| - |x - 5| = 4。

解得x=3或x=7,从而得到双曲线的标准方程为:x^2/9 - y^2/4 = 1或x^2/49 - y^2/16 = 1。

3. 参数法参数法是通过引入参数来描述圆锥曲线的坐标关系,从而简化计算过程的速算方法。

常用的参数包括角度、斜率、截距等。

圆锥曲线解题技巧和方法综合(全)

圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。

(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。

【2020届】高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质

【2020届】高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质

圆锥曲线八种解题方法、七种常规题型和性质(有相应例题详解) 总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

解答圆锥曲线最值问题的几个“妙招”

解答圆锥曲线最值问题的几个“妙招”

圆锥曲线最值问题侧重于考查圆锥曲线的定义、几何性质、方程,以及直线与圆锥曲线的位置关系.圆锥曲线问题的命题形式较多,常见的有求某条线段的最值、图形面积的最值、参数的最值、离心率的最值、点到曲线的最小距离等.下面结合几道例题,来谈一谈解答此类问题的“妙招”.一、利用几何图形的性质圆锥曲线中的圆、直线、椭圆、双曲线、抛物线均为平面几何图形.在解答圆锥曲线最值问题时,可根据题意画出几何图形,并添加合适的辅助线,将问题看作平面几何问题,利用平面几何图形的性质,如圆锥曲线的几何性质、等腰三角形的性质、平行四边形的性质,以及正余弦定理、勾股定理等来解题.例1.设F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆上存在一点Q ,使∠F 1QF 2=120°,求椭圆离心率e 的最小值.解:设P (x 1,y 1),F 1(-c ,0),F 2(c ,0),由椭圆的焦点弦公式得,|PF 1|=a +ex 1,|PF 2|=a -ex 1,在ΔPF 1F 2中,由余弦定理可得:cos 120°=|PF 1|2+|PF 2|2-|F 1F 2|2|PF 1|∙|PF 2|=(a +ex 1)2+(a -ex 1)2-4c 22(a +ex 1)∙(a -ex 1)=-12,可得:x 1=4c 2-3a 2e 2,由椭圆的范围可知-a ≤x 1≤a ,可得0≤4c 2-3a 2e2≤a 2,解得e =c a≥,即椭圆离心率的最小值为.解答本题,关键要抓住椭圆的几何性质:椭圆的范围为-a ≤x ≤a ,-b ≤y ≤b .在根据余弦定理和焦点弦公式求得x 1后,根据椭圆的范围建立关系式0≤4c 2-3a 2e2≤a 2,即可求得椭圆离心率的取值范围.例2.椭圆x 24+y 23=1的左焦点为F ,直线x =m与椭圆相交于A ,B 两点,当ΔFAB 的周长最大时,求ΔFAB 的面积.解:设椭圆的右焦点为E ,连接BE ,AE,如图所示.由椭圆的定义得:AF +AE =BF +BE =2a ,则C ΔFAB =AB +AF +BF =AB +(2a -AE )+(2a -BE )=4a +AB -AE -BE .在ΔAEB 中,AE +BE ≥AB ,所以AB -AE -BE ≤0,当AB 过点E 时取等号.所以AB +BF +AF =4a +AB -BE ≤4a ,即直线x =m 过椭圆的右焦点E 时,ΔFAB 的周长最大.将x =1代入椭圆x 24+y 23=1得y =±32,即AB =3.因此,当ΔFAB 的周长最大时,S ΔFAB =3.我们首先根据题意作图,并添加合适的辅助线,即可根据椭圆的定义建立线段AF 、AE 、BF 、BE 之间的几何关系;然后根据三角形的性质:两边之和大45。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。

该方法适用于直线与圆锥曲线有交点的情况。

2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。

一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。

3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。

一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。

4.切线法:利用切线与圆锥曲线的交点性质来解题。

一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。

5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。

6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。

7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。

8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。

二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。

2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。

3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。

4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。

5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。

6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。

7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。

圆锥曲线解题的七种题型和八种方法

圆锥曲线解题的七种题型和八种方法

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

浅谈解决圆锥曲线问题的几种方法

浅谈解决圆锥曲线问题的几种方法

浅谈解决圆锥曲线问题的几种方法【摘要】圆锥曲线问题是数学中重要的课题之一,本文将深入探讨解决这一问题的几种方法。

首先介绍了圆锥曲线的概念和问题的重要性。

接着分别从几何法、代数法、参数法、向量法和微积分法五个方面展开讨论各种解决问题的方法。

在对各种方法进行了综合比较,并指出它们在不同场景下的适用性。

最后展望未来,提出了关于圆锥曲线问题研究的一些新的思路和方向。

通过本文的阐述,读者将对解决圆锥曲线问题有更深入的认识,同时也对未来的研究方向有了一定的启发。

【关键词】圆锥曲线, 解决问题, 方法, 几何法, 代数法, 参数法, 向量法, 微积分法, 综合比较, 适用场景, 未来展望, 引言, 正文, 结论.1. 引言1.1 圆锥曲线概述圆锥曲线是平面上具有特定几何性质的曲线。

根据圆锥曲线的定义,可以将它们分为椭圆、双曲线、抛物线和圆。

它们在几何学和代数学中具有广泛的应用,例如在物理学、工程学和计算机图形学中都有着重要的作用。

椭圆是一个闭合的曲线,其定义是所有到两个固定点的距离之和等于常数的点的集合。

双曲线是一个开放的曲线,其定义是到两个固定点的距离之差的绝对值等于常数的点的集合。

抛物线是一个开放的曲线,其定义是到一个固定点的距离等于到一个固定直线的距离的点的集合。

圆是一个闭合的曲线,其定义是到一个固定点的距离等于常数的点的集合。

圆锥曲线的研究对于理解几何及代数概念具有重要意义。

掌握不同方法解决圆锥曲线问题将有助于我们更深入地理解这些曲线的性质和特点,从而在实际问题中应用这些知识。

在接下来的内容中,我们将介绍几种不同的方法来解决圆锥曲线问题,希望读者能从中受益。

1.2 问题的重要性圆锥曲线在几何学和数学中具有重要的地位,它们是平面上特殊的曲线,包括圆、椭圆、双曲线和抛物线。

解决圆锥曲线问题的方法不仅仅是为了解题,更重要的是培养数学思维和逻辑推理能力。

圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用,掌握解决圆锥曲线问题的方法可以帮助我们更好地理解这些领域的知识和解决实际问题。

解圆锥曲线问题常用的八种方法及七种常规题型

解圆锥曲线问题常用的八种方法及七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法〔点参数、K 参数、角参数〕7、代入法8、充分利用曲线系方程法七种常规题型〔1〕中点弦问题 〔2〕焦点三角形问题〔3〕直线与圆锥曲线位置关系问题 〔4〕圆锥曲线的有关最值〔围〕问题 〔5〕求曲线的方程问题1.曲线的形状--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程〔6〕存在两点关于直线对称问题 〔7〕两线段垂直问题常用的八种方法1、定义法〔1〕椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

〔2〕双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。

〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(*1,y 1),B(*2,y 2),弦AB 中点为M(*0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有02020=+k by a x 。

高中数学圆锥曲线问题常用方法经典例题(含问题详解)

高中数学圆锥曲线问题常用方法经典例题(含问题详解)

专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 标为 。

解圆锥曲线问题常用的八种方法及七种常规题型

解圆锥曲线问题常用的八种方法及七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

几点极限巧解圆锥曲线

几点极限巧解圆锥曲线

4. 解析几何:解析几何是一种使用代数方法来研究几何问题的方法。通过使用解析几何的 技巧,可以巧解圆锥曲线的问题。例如,可以使用解析几何的方法来推导出圆锥曲线的焦点 、离心率等性质。这些性质可以帮助我们更好地理解和解决圆锥曲线的问题。
这些方法只是解决圆锥曲线问题的一些常见方法,具体的问题和方法选择还需要根据具体 情况来确定。无论使用哪种方法,理解圆锥曲线的性质和特点是解决问题的关键。
几点极限巧解圆锥曲线
圆锥曲线是数学中的一个重要概念,包括椭圆、双曲线和抛物线。下面是几点极限巧解圆 锥曲线的一些方法:
1. 极限定义:可以使用极限的定义来巧解圆锥曲线。例如,对于椭圆,可以通过定义椭圆 的离心率和焦点位置,然后利用极限定义推导出椭圆的方程式。类似地,对于双曲线和抛物 线,也可以使用极限定义来推导出它们的方程式。
2. 几何推导:几何推导是一种直观的方法,可以帮助我们理解圆锥曲线的性质。例如,对 于椭圆,可以通过将一个圆锥剖开,然后观察剖面的形状来推导出椭圆的方程式。类似地, 对于双曲线和抛物线,也可以通过几何推导来得到它们的方程式。
几点极限巧解圆Βιβλιοθήκη 曲线3. 参数方程:参数方程是一种常用的方法,可以用来表示圆锥曲线。通过引入参数,可以 将圆锥曲线的方程式转化为参数方程。例如,对于椭圆,可以使用参数方程来表示椭圆上的 点的坐标。类似地,对于双曲线和抛物线,也可以使用参数方程来表示它们。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解圆锥曲线问题常用方法(二)【学习要点】解圆锥曲线问题常用以下方法:4、数形结合法解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。

如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2”,令d y x =+22,则d 表示点P(x ,y )到原点的距离;又如“23+-x y ”,令23+-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 5、参数法(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。

如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。

除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。

(3)角参数当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。

6、代入法这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。

不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。

【典型例题】例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。

分析:由此根式结构联想到距离公式, 解:S=22)3()2(-++b a 设Q(-2,3), 则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min5535|1322|=-⨯+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)例2:已知点P(x,y)是圆x 2+y 2-6x-4y+12=0上一动点,求xy的最值。

解:设O (0,0),则x y 表示直线OP 的斜率,由图可知,当直线OP 与圆相切时,xy取得最值,设最值为k ,则切线:y=kx,即kx-y=0圆(x-3)2+(y-2)2=1,由圆心(3,2)到直线kx-y=0的距离为1得11|23|2=+-k k ,∴433±=k ∴433,433maxmin +=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛x y x y 例3:直线l :ax+y+2=0平分双曲线191622=-y x 的斜率为1的弦,求a 的取值范围. 分析:由题意,直线l 恒过定点P(0,-2),平分弦即过弦中点,可先求出弦中点的轨迹,再求轨迹上的点M 与点P的连线的斜率即-a 的范围。

解:设A(x 1,y 1),B(x 2,y 2)是双曲线上的点,且AB 的斜率为1,AB 的中点为M(x 0,y 0)则: ⎪⎪⎩⎪⎪⎨⎧=-=-1916191622222121y x y x①-②得01916,09160022122212=⋅-=---y x y y x x 即 即M(X 0,y 0)在直线9x-16y=0上。

由 9x-16y=0 得C ⎪⎪⎭⎫ ⎝⎛--79,716,D ⎪⎪⎭⎫⎝⎛79,716 191622=-y x ∴点M 的轨迹方程为9x-16y=0(x<-7716或x>7716) k PD =167297160792,167297160792+=---=-=++-PD k ① ②由图知,当动直线l 的斜率k ∈⎪⎪⎭⎫⎝⎛+⋃⎪⎪⎭⎫ ⎝⎛-16729,169169,16729时,l 过斜率为1的弦AB 的中点M ,而k=-a∴a 的取值范围为:⎪⎪⎭⎫⎝⎛--⋃⎪⎪⎭⎫ ⎝⎛-+-16972,169169,16729 点评:此题是利用代数运算与几何特征相结合的方法而解得的,由图得知,弦AB 中点轨迹并不是一条直线(9x-16y=0),而是这条直线上的两条射线(无端点)。

再利用图形中的特殊点(射线的端点C 、D )的属性(斜率)说明所求变量a 的取值范围。

例4:过y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB 、AC 交抛物线于B 、C 两点。

求证:直线BC 的斜率是定值。

分析:(1)点A 为定点,点B 、C 为动点,因直线AB 、AC 的倾斜角互补,所以k AB 与k AC 相反,故可用“k 参数”法,设AB 的斜率为k ,写出直线AB 的方程,将AB 的方程与抛物线方程联立,因A 为已知交点,则方程有一根已知故用韦达定理容易解出点B 坐标,同理可得点C 坐标,再求BC 斜率。

(2)因点B 、C 在抛物线上移动,也可用“点参数”法,设B (x 1,y 1),C(x 2,y 2),因x 1=y 12,x 2=y 22,即可设B (y 12,y 1),C(y 22,y 2)。

再考虑k AB =-k AC 得参数y 1,y 2的关系。

解法1:设AB 的斜率为k ,则AC 的斜率为-k AB :y-2=k(x-4),与y 2=x 联立得: y-2=k(y 2-4),即ky 2-y-4k+2=0 ∵y=2是此方程的一解, ∴2y B=kky k k B 21,24-=+- x B =y B2=,44122kk k +- ∴B ⎪⎪⎭⎫⎝⎛-+-k k k k k 21,44122 ∵k AC =-k,以-k 代替k 代入B 点坐标得C ⎪⎪⎭⎫⎝⎛-+++k k k k k 21,44122 ∴k BC =414414412121222-=+--++--+-k kk k k k k kk k 为定值 解法2:设B (y 12,y 1),C(y 22,y 2),则 k BC =122122121y y y y y y +=--∵k AB =2142,214222221121+=--=+=--y y y k y y y AB 由题意,k AB =-k AC , ∴4,21212121-=++-=+y y y y 则 则:k BC =41-为定值。

点评:解法1运算量较大,但其方法是一种基本方法,因k 的变化而造成了一系列的变化,最终求出BC 的斜率为定值;解法2利用点B ,C 在抛物线上设点,形成含两个参数y 1,y 2的问题,用整体思想解题,运算量较小。

例5:在圆x 2+y 2=4上,有一定点A (2,0)和两动点B ,C (A ,π求△ABC 的重心的轨迹。

分析:圆周角∠BAC=3π可转化为圆心角∠BOC=32π令B (2cos θ,2sin θ)则C(2cos(θ+32π),2sin(θ+32π))则重心可用θ表示出来。

解:连OB ,OC ,∵∠BAC=3π,∴∠BOC=32π设B (2cos θ,2sin θ)(0<θ<34π),则C(2cos(θ+32π),2sin(θ+32π))设重心G (x ,y ),则:x=)]32cos(2cos 22[31πθθ+++y=)]32sin(2sin 20[31πθθ+++即: x=)]3cos(1[32πθ++ )3cos(123πθ+=-xy=)3sin(32πθ+ )3sin(23πθ+=yθ+)35,3(3πππ∈ ∴1)23()123(22=+-y x 。

(x<21)即)21(94)32(22<=+-x y x点评:要注意参数θ的范围,θ+3π∈(3π,35π)它是一个旋转角,因此最终的轨迹是一 段圆弧,而不是一个圆。

例6、求直线3x-4y+10=0与椭圆1222=+y ax (a>0)有公共点时a 的取值范围分析:将直线方程代入椭圆方程消元得一元二次方程应有解,用判别式△≥0可求得a 的取值范围。

也可考虑另一代入顺序,从椭圆方程出发设公共点P (用参数形式),代入直线方程,转化为三角问题:asinx+bcosx=c 何时有解。

解法一:由直线方程3x-4y+10=0得2543+=x y 代入椭圆方程得1)2543(1222=++x x a∴0421415)1691(22=+++x x a△≥0,得0)1691(4214)415(22≥+⋅⋅-a 解得3282≥a ,又a>0,∴372≥a 解法二:设有公共点为P ,因公共点P 在椭圆上,利用椭圆方程设P (acos ϕ,sin ϕ)再代入直线方程得3acos ϕ-4sin ϕ+10=04sin ϕ-3acos ϕ=10。

16910cos 1693sin 1694222+=+-+a a a a ϕϕ令sin α=16932+a a ,cos α=16942+a ,则sin(ϕ-α)=169102+a ,由1)sin(≤-αϕ 即sin 2(ϕ-α)≤1得11691002≤+a ∴9a 2≥84,a 2≥328(a>0) ∴a ≥3212点评:解法1,2给出了两种不同的条件代入顺序,其解法1的思路清晰,是常用方法,但运算量较大,对运算能力提出较高的要求,解法2先考虑椭圆,设公共点再代入直线,技巧性强,但运算较易,考虑一般关系:“设直线l :Ax+By+C=0与椭圆12222=+b y a x 有公共点,求应满足的条件”此时,若用解法一则难于运算,而用解法二,设有公共点P ,利用椭圆,设P (acos ϕ,bsin ϕ)代入直线方程得Aacos ϕ+Bbsin ϕ=-C 。

∴12222≤+-bB a AC 时上式有解。

∴C 2≤A 2a 2+B 2b 2因此,从此题我们可以体会到条件的代入顺序的重要性。

【同步练习】1、若实数x 、y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是( )A 、5B 、10C 、9D 、5+252、若关于x 的方程)2(12-=-x k x 有两个不等实根,则实数k 的取值范围是 ( ) A 、)33,33(-B 、)3,3(-C 、⎥⎦⎤ ⎝⎛-0,33D 、⎪⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤ ⎝⎛--33,2121,33 3、方程03)1()3(22=+---++y x y x 表示的图形是( ) A 、椭圆 B 、双曲线 C 、抛物线 D 、以上都不对4、已知P 、Q 分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ 的面积为1,(0为原点),则线段PQ 中点M 的轨迹为( ) A 、双曲线x 2-y 2=1 B 、双曲线x 2-y 2=1的右支 C 、半圆x 2+y 2=1(x<0) D 、一段圆弧x 2+y 2=1(x>22) 5、一个等边三角形有两个顶点在抛物线y 2=20x 上,第三个顶点在原点,则这个三角形的面积为 6、设P(a,b)是圆x 2+y 2=1上的动点,则动点Q(a 2-b 2,ab)的轨迹方程是 7、实数x 、y 满足3x 2+2y 2=6x ,则x+y 的最大值为8、已知直线l :2x+4y+3=0,P 是l 上的动点,O 为坐标原点,点Q 分为1:2,则点Q 的轨迹方程为9、椭圆191622=+y x 在第一象限上一动点P ,若A(4,0),B(0,3),O(0,0),则APBO S 四边形的最大值为 10、已知实数x 、y 满足x+y=4,求证:225)1()2(22≥-++y x11、△ABC 中,A(3,0)2=BC ,BC 在y 轴上,且在[-3,3]间滑动,求△ABC 外心的轨迹方程。

相关文档
最新文档