2019市杭州市中考数学试卷(word版本)

合集下载

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.计算下列各式,值最小的是()A. B. C. D.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. ,B. ,C. ,D. ,3.如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A. B.C. D.5.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.B.C.D.7.在△ABC中,若一个内角等于另外两个内角的差,则()A. 必有一个内角等于B. 必有一个内角等于C. 必有一个内角等于D. 必有一个内角等于8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.B.C.D.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. 或B. 或C. 或D. 或二、填空题(本大题共6小题,共24.0分)11.因式分解:1-x2=______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于______cm2(结果精确到个位).14.在直角三角形ABC中,若2AB=AC,则cos C=______.15.某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式______.16.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.三、解答题(本大题共7小题,共66.0分)17.化简:--1圆圆的解答如下:--1=4x-2(x+2)-(x2-4)=-x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为甲,乙,写出甲与乙之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.设二次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m-n+2=0.答案和解析1.【答案】A【解析】解:A.2×0+1-9=-8,B.2+0×1-9=-7C.2+0-1×9=-7D.2+0+1-9=-6,故选:A.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.4.【答案】D【解析】解:设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵树是解题关键.5.【答案】B【解析】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.利用平均数、中位数、方差和标准差的定义对各选项进行判断.本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.6.【答案】C【解析】解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似三角形的性质表示线段之间的关系.7.【答案】D【解析】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.8.【答案】A【解析】解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.根据直线①判断出a、b的符号,然后根据a、b的符号判断出直线②经过的象限即可,做出判断.本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cosx+b•sinx,故选:D.根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC 的距离,本题得以解决.本题考查解直角三角形的应用-坡度坡角问题、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2-4ab=(a-b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2-4ab=(a-b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.11.【答案】(1-x)(1+x)【解析】解:∵1-x2=(1-x)(1+x),故答案为:(1-x)(1+x).根据平方差公式可以将题目中的式子进行因式分解.本题考查因式分解-运用公式法,解题的关键是明确平方差公式,会运用平方差公式进行因式分解.12.【答案】【解析】解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.直接利用已知表示出两组数据的总和,进而求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】或【解析】解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;综上所述,cosC的值为或.故答案为或.讨论:若∠B=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值;若∠A=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值.本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义,灵活运用它们进行几何计算.15.【答案】y=-x+1【解析】解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=-x+1,故答案为:y=-x+1.根据题意写出一个一次函数即可.本题考查了各种函数的性质,题目中x、y均可以取0,故不能是反比例函数.16.【答案】2(5+3)【解析】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:--1=--===-.【解析】直接将分式进行通分,进而化简得出答案.此题主要考查了分式的加减运算,正确进行通分运算是解题关键.18.【答案】解:(1)乙组数据的折线统计图如图所示:(2)①甲=50+乙.②S甲2=S乙2.理由:∵S甲2=[(48-50)2+(52-50)2+(47-50)2+(49-50)2+(54-50)2]=6.8.S乙2=[(-2-0)2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8,∴S甲2=S乙2.【解析】(1)利用描点法画出折线图即可.(2)利用方差公式计算即可判断.本题考查折线统计图,算术平均数,方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【解析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.20.【答案】解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1-a,∵S1=S2,∴a2=1×(1-a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH=.=,∵CH=0.5,CG=,∴HG=,∴HD=HG.【解析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x-1)=x2-x,当x=时,y=-,∴乙说点的不对;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=[-][-]∵0<x1<x2<1,∴0≤-≤,0≤-≤,∴0<mn<.【解析】(1)将(0,0),(1,0)代入y=(x-x1)(x-x2)求出函数解析式即可求解;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)将已知两点代入求出m=x1x2,n=1-x1-x2+x1x2,再表示出mn=[-][-],由已知0<x1<x2<1,可求出0≤-≤,0≤-≤,即可求解.本题考查二次函数的性质;函数最值的求法;熟练掌握二次函数的性质,能够将mn准确的用x1和x2表示出来是解题的关键.23.【答案】解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,∵OE=OD,∴∠AOD=180°-2x,即:180°+mx-nx=180°-2x,化简得:m-n+2=0.【解析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC面积的最大值,要求BC边上的高最大,即可求解;(2)∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,而∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,即可求解.本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.。

浙江省杭州市中考数学真题试题(含解析)

浙江省杭州市中考数学真题试题(含解析)

浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。

1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·tanx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。

2019年浙江省杭州市滨江区、拱墅区中考数学一模试卷(解析版)

2019年浙江省杭州市滨江区、拱墅区中考数学一模试卷(解析版)

2019年浙江省杭州市滨江区、拱墅区中考数学一模试卷一.选择题:本大题有10小题,每小题3分,共计30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,比﹣3小的数是()A.﹣1B.﹣4C.0D.22.截至到2019年2月19日,浙江省的注册志愿者人数达到14480000人,数据14480000用科学记数法表示为()A.1.4487B.1.448×104C.1.448×106D.1.448×1073.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab24.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是()A.6℃B.6.5℃C.7℃D.7.5℃5.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是()A.B.C.D.6.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25B.x+(x+5)+12=25C.x+(x+5)﹣12=25D.x+(x+5)﹣24=257.今年寒假期间,小芮参观了中国扇博物馆,如图是她看到的折扇和团扇.已知折扇的骨柄长为30cm,扇面的宽度为18cm,某扇张开的角度为120°,若这两把扇子的扇面面积相等,则团扇的半径为()cm.A.6B.8C.6D.88.已知二次函数y=ax2+(a+2)x﹣1(a为常数,且a≠0),()A.若a>0,则x<﹣1,y随x的增大而增大B.若a>0,则x<﹣1,y随x的增大而减小C.若a<0,则x<﹣1,y随x的增大而增大D.若a<0,则x<﹣1,y随x的增大而减小9.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙,无重叠的四边形EFGH,设AB=a,BC=b,若AH=1,则()A.a2=4b﹣4B.a2=4b+4C.a=2b﹣1D.a=2b+1二、填空题:本大题有6个小题,每小题4分,共24分)10.(4分)计算:|﹣|=.11.(4分)因式分解:a3﹣4a=.12.(4分)如图,AB是⊙O的直径,CP切⊙O于点C,交AB的延长线于点P,若∠P=20°,则∠A=.13.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面2米,若保持梯子底端位置不动,将梯子斜靠在右端时,与地面成45°,则小巷的宽度为米(结果保留根号).14.(4分)已知一次函数y=ax+b,反比例函数y=,(a,b,k是常数,且ak≠0),若其中一部分x,y的对应值如下表所示;则不等式ax+b<的解集是.x﹣4﹣3﹣2﹣11234 y=ax+b﹣3﹣2﹣102345y=﹣﹣2﹣3﹣663215.(4分)在△ABC中,AB=AC,CD是AB边上的中线,点E在边AC上(不与A,C重合),且BE=CD.设=k,若符合条件的点E有两个,则k的取值范围是.三.解答题:本大题有7个小题,共计66分.解答应写出文字说明、证明过程或演算步骤.16.(6分)先化简,再求值:(2﹣a)(3+a)+(a﹣5)2,其中a=4.17.(8分)为了解八年级学生的户外活动情况,某校随机调查了该年级部分学生双休日户外活动的时间(单位:小时),调查结果按0~1,1~2,2~3,3~4(每组含前一个边界值,不含后一个边界值)分为四个等级,并依次用A,B,C,D表示,调查人员整理数据并绘制了如图所示的不完整的统计图,请根据所给信息解答下列问题.(1)求本次调查的学生人数;(2)求等级D的学生人数,并补全条形统计图;(3)该年级共有600名学生,估计该年级学生双休日户外活动时间不少于2小时的人数.18.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠ACD=∠B,DE∥BC.(1)求证:△ADE∽△ACD;(2)若DE=6,BC=10,求线段CD的长.19.(10分)为了清洗水箱,需先放掉水箱内原有的存水,如图是水箱剩余水量y(升)随放水时间x(分)变化的图象.(1)求y关于x的函数表达式,并确定自变量x的取值范围;(2)若8:00打开放水龙头,估计8:55﹣9:10(包括8:55和9:10)水箱内的剩水量(即y 的取值范围);(3)当水箱中存水少于10升时,放水时间至少超过多少分钟?20.(10分)如图1,点C、D是线段AB同侧两点,且AC=BD,∠CAB=∠DBA,连接BC,AD 交于点E.(1)求证:AE=BE;(2)如图2,△ABF与△ABD关于直线AB对称,连接EF.①判断四边形ACBF的形状,并说明理由;②若∠DAB=30°,AE=5,DE=3,求线段EF的长.21.(12分)设二次函数y1=ax2+bx+a﹣5(a,b为常数,a≠0),且2a+b=3.(1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y1的图象始终经过一个定点,若一次函数y2=kx+b(k为常数,k≠0)的图象也经过这个定点,探究实数k,a满足的关系式;(3)已知点P(x0,m)和Q(1,n)都在函数y1的图象上,若x0<1,且m>n,求x0的取值范围(用含a的代数式表示).22.(12分)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上一点,AG,DC的延长线交于点F,连接AD,GD,GC.(1)求证:∠ADG=∠F;(2)已知AE=CD,BE=2.①求⊙O的半径长;②若点G是AF的中点,求△CDG与△ADG的面积之比.2019年浙江省杭州市滨江区、拱墅区中考数学一模试卷参考答案与试题解析一.选择题:本大题有10小题,每小题3分,共计30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【解答】解:∵﹣4<﹣3<﹣1<0<2,∴比﹣3小的数是﹣4,故选:B.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据14480000用科学记数法表示为1.448×107.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则、幂的乘方运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、a3•a2=a5,故此选项错误;C、(a2)3=a6,正确;D、(ab)2=a2b2,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及同底数幂的乘法运算、幂的乘方运算等知识,正确掌握相关运算法则是解题关键.4.【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【解答】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8,中位数为:=6.5,故选:B.【点评】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【解答】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是=,故选:B.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.【分析】设参加书法社的同学有x人,则参加摄影社的同学有(x+5)人,由参加社团活动的总人数=参加书法社的人数+参加摄影社的人数﹣重合部分的人数,即可得出关于x的一元一次方程,此题得解.【解答】解:设参加书法社的同学有x人,则参加摄影社的同学有(x+5)人,依题意,得:x+(x+5)﹣12=25.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.【分析】设团扇的半径为xcm.构建方程即可解决问题.【解答】解:设团扇的半径为xcm.由题意(302﹣122)=π•x2,解得x=6或﹣6(舍弃),∴团扇的半径为6cm.故选:A.【点评】本题考查扇形的面积,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.【分析】根据题意利用抛物线的对称轴公式列出表达式,根据a的取值范围分析判断抛物线的增减性即可.【解答】解:∵y=ax2+(a+2)x﹣1对称轴直线为,x=﹣=﹣﹣.由a<0得,﹣>0.∴﹣﹣>﹣1.又∵a<0∴抛物线开口向下.故当x<﹣﹣时,y随x增大而增大.又∵x<﹣1时,则一定有x<﹣﹣.∴若a<0,则x<﹣1,y随x的增大而增大.故选:C.【点评】本题考查了二次函数的图象及性质与不等式组解集的确定.9.【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,根据矩形的性质得到EH =FG,∠A=∠B=∠D=∠C=90°,根据余角的性质得到∠AEH=∠CGF,根据全等三角形的性质得到CF=AH=1,根据相似三角形的性质即可得到结论.【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∴EH=FG,∵四边形ABCD是矩形,∴∠A=∠B=∠D=∠C=90°,∴∠AEH+∠AHE=∠AHE+∠DHG=∠DHG+∠DGH=∠DGH+∠CGF=90°,∴∠AEH=∠CGF,∴△AEH≌△CGF(AAS),∴CF=AH=1,∴△AEH∽△BFE,∴,由折叠的性质的,AE=EJ=BE=AB=a,∴=,∴a2=4b﹣4,故选:A.【点评】标题叫出来翻折变换(折叠问题),矩形的性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握折叠的性质是解题的关键.二、填空题:本大题有6个小题,每小题4分,共24分)10.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.11.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12.【分析】连接OC,利用切线的性质和三角形内角和得出∠COP的度数,进而利用等腰三角形的性质得出∠A的度数即可.【解答】解:连接OC,∵CP切⊙O于点C,∠P=20°,∴∠OCP=90°,∴∠COP=70°,∵OA=OC,∴∠OCA=∠A=,故答案为:35°【点评】本题考查了切线的性质,关键是利用切线的性质和三角形内角和得出∠COP的度数.13.【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC中,用正切和正弦,分别求出BC和AC(即梯子的长度),然后再在直角三角形DCE中,用∠DCE的余弦求出DC,然后把BC和DC加起来即为巷子的宽度.【解答】解:如图所示:AB=米,∠ACB=60°,∠DCE=45°,AC=CE则在直角三角形ABC,∴,,∴直角三角形DCE中,CE=AC=4,∴,∴,∴故答案为:【点评】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题.14.【分析】根据图表,求出反比例函数和一次函数的交点,然后交点以及表格中的对应函数值,即可求出ax+b<的解.【解答】解:根据表格可得:当x=﹣3和x=2时,两个函数值相等,因此y=ax+b和y=的交点为:(﹣3,﹣2),(2,3),根据点的图表即可得出:要使ax+b<的解为:x<﹣2或0<x<2.故答案为:x<﹣2或0<x<2【点评】本题主要考查了一次函数和反比例函数交点的问题,熟悉一次函数和反比例函数的性质是解答此题的关键.15.【分析】符合条件的点E有两个E、E1,则AC边上的高垂直平分EE1,由等腰三角形的性质得出BE是中线,AE=CE,求出当CD⊥AB时,BE⊥AC,满足条件的点E有一个,此时△ABC是等边三角形,AB=BC,=1;当满足条件的一个点E1与点C重合时,BE=BC,证明△BCE ∽△ABC,得出=,求出AB=BC,得出=;即可得出结果.【解答】解:如图所示:设=k,若符合条件的点E有两个E、E1,则AC边上的高垂直平分EE1,∵AB=AC,CD是AB边上的中线,BE=CD,∴BE是中线,AE=CE,当CD⊥AB时,BE⊥AC,满足条件的点E有一个,此时△ABC是等边三角形,AB=BC,=1;当满足条件的一个点E1与点C重合时,BE=BC,∴∠BCE=∠BEC,∵AB=AC,∴∠ABC=∠ACB,∴∠BCE=∠BEC=∠ABC=∠ACB,∴△BCE∽△ABC,∴=,∴BC2=AB×CE=AB2,∴AB=BC,∴=;综上所述,设=k,若符合条件的点E有两个,则k的取值范围是1<k<;故答案为:1<k<.【点评】本题考查了等腰三角形的性质、相似三角形的判定与性质、等边三角形的性质、三角形的中线;熟练掌握等腰三角形的性质,证明三角形相似是解题的关键.三.解答题:本大题有7个小题,共计66分.解答应写出文字说明、证明过程或演算步骤.16.【分析】根据多项式乘多项式和完全平方公式可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(2﹣a)(3+a)+(a﹣5)2=6+2a﹣3a﹣a2+a2﹣10a+25=﹣11a+31,当a=4时,原式=﹣11×4+31=﹣44+31=﹣13.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.17.【分析】(1)依据C等级的人数以及百分比,即可得到本次调查的学生人数;(2)依据B等级的百分比即可得到B等级的人数,进而得出D等级的人数;(3)依据C,D等级人数所占的百分比之和,即可估计该年级学生双休日户外活动时间不少于2小时的人数.【解答】解:(1)本次调查的学生人数为20÷40%=50(人);(2)B:50×30%=15(人),D:50﹣9﹣15﹣20=6(人);如图所示:(3)该年级学生双休日户外活动时间不少于2小时的人数为:×600=312(人).【点评】本题主要考查了条形统计图以及扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.18.【分析】(1)由DE∥BC可得∠ADE=∠B,∠ACD=∠B,则∠ADE=∠ACD,结论得证;(2)可证△CDE∽△BCD,由比例线段可求出线段CD的长.【解答】(1)证明:∵DE∥BC∴∠ADE=∠B,∵∠ACD=∠B,∴∠ADE=∠ACD,∵∠DAE=∠CAD,∴△ADE∽△ACD;(2)解:∵DE∥BC,∴∠BCD=∠EDC,∵∠B=∠DCE,∴△CDE∽△BCD,∴,∴,∴CD=2.【点评】本题主要考查了相似三角形的判定和性质,找准对应边是解题的关键.19.【分析】(1)根据函数图象中的数据可以求得y关于x的函数表达式,并写出自变量x的取值范围;(2)根据题意和(1)中的函数关系式可以求得y的取值范围;(3)根据题意可以的关于x的不等式,从而可以解答本题.【解答】解:(1)设y关于x的函数表达式为y=kx+b,,得,即y关于x的函数表达式为y=﹣1.25x+225,当y=0时,x=180,即y关于x的函数表达式为y=﹣1.25x+225(0≤x≤180);(2)当x=55时,y=﹣1.25×55+225=156.25,当x=70时,y=﹣1.25×70+225=137.5,即8:00打开放水龙头,8:55﹣9:10(包括8:55和9:10)水箱内的剩水量为:137.5≤y≤156.25;(3)令﹣1.25x+225<10,解得,x>172,即当水箱中存水少于10升时,放水时间至少超过172分钟.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.【分析】(1)利用SAS证△ABC≌△BAD可得.(2)①根据题意知:AC=BD=BF,并由内错角相等可得AC∥BF,所以由一组对边平行且相等的四边形是平行四边形,可得结论;②如图2,作辅助线,证明△ADF是等边三角形,得AD=AB=3+5=8,根据等腰三角形三线合一得AM=DM=4,最后利用勾股定理可得FM和EF的长.【解答】(1)证明:在△ABC和△BAD中,∵,∴△ABC≌△BAD(SAS),∴∠CBA=∠DAB,∴AE=BE;(2)解:①四边形ACBF为平行四边形;理由是:由对称得:△DAB≌△FAB,∴∠ABD=∠ABF=∠CAB,BD=BF,∴AC∥BF,∵AC=BD=BF,∴四边形ACBF为平行四边形;②如图2,过F作FM⊥AD于,连接DF,∵△DAB≌△FAB,∴∠FAB=∠DAB=30°,AD=AF,∴△ADF是等边三角形,∴AD=AB=3+5=8,∵FM⊥AD,∴AM=DM=4,∵DE=3,∴ME=1,Rt△AFM中,由勾股定理得:FM===4,∴EF==7.【点评】本题是三角形的综合题,考查了全等三角形的判定的性质、等边三角形的性质和判定,勾股定理,本题中最后一问,有难度,恰当地作辅助线是解题的关键.21.【分析】(1)将点(﹣1,4),即可求该二次函数的表达式(2)将2a+b=3代入二次函数y=ax2+bx+a﹣5(a,b为常数,a≠0)中,整理得y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2,可知恒过点(1,2),代入一次函数y2=kx+b(k 为常数,k≠0)即可求实数k,a满足的关系式(3)通过y1=ax2+(3﹣2a)x+a﹣5,可求得对称轴为x=﹣,因为x0<1,且m>n,所以只需判断对称轴的位置即可求x0的取值范围【解答】解:(1)∵函数y1=ax2+bx+a﹣5的图象经过点(﹣1,4),且2a+b=3∴,∴,∴函数y1的表达式为y=3x2﹣3x﹣2;(2)∵2a+b=3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣>﹣1,解得,当a<0时,对称轴x=﹣<﹣1,解得(不符合题意,故x0不存在)故x0的取值范围为:【点评】此题主要考查利用待定系数法求二次函数解析式,利用二次函数的对称轴的位置来判断函数值的大小.22.【分析】(1)连接BG,根据圆周角定理得到结论;(2)①连接OD,设⊙O的半径为r,则AB=2r,根据勾股定理得到⊙O的半径长为5;②根据相似三角形的性质得到,得到AD2=AG•AF,由相似三角形的性质得到FG•FA=FC•FD,等量代换得到AD2=FC•FD,于是得到结论.【解答】(1)证明:连接BG,∵AB是直径,∴∠AGB=90°,∴∠B+∠BAG=90°,∵AB⊥CD,∴∴∠AEF=90°,∴∠F+∠BAF=90°,∴∠B=∠F,∵∠ADG=∠B,∴∠ADG=∠F;(2)解:①连接OD,设⊙O的半径为r,则AB=2r,∵AE=CD,BE=2,∴CD=AE=2r﹣2,∵CD⊥AB,∴DE=CD=r﹣1,∵OD2=OE2+DE2,∴r2=(r﹣2)2+(r﹣1)2,∴r=5,r=1(不合题意,舍去),∴⊙O的半径长为5;②∵∠ADG=∠F,∠DAG=∠FAD,∴△ADG∽△AFD,∴,∴AD 2=AG •AF ,∵DE =4,AE =8,∴AD ==4,∵∠GDF =∠DAF ,∠F =∠F ,∴△FCG ∽△FAD ,∴=,∴FG •FA =FC •FD ,∵点G 是AF 的中点,∴AG =FG ,S △ADG =S △DGF ,∴AD 2=FC •FD ,∴80=DF (DF ﹣8),∴DF =4+4(负值舍去),∴△CDG 与△ADG 的面积之比=△CDG 与△DGF 的面积之比=CD :DF =8:(4+4)=.【点评】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.。

2019年中考数学试题汇编 整式(word版有答案解析)

2019年中考数学试题汇编  整式(word版有答案解析)

整式一.选择题(共16小题)1.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.3 2.(2019•重庆)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y 4.(2019•邢台二模)若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.11 5.(2019•宿迁三模)若(2x+1)4=a0x4+a1x3+a2x2+a3x+a4,则a0+a2+a4的值为()A.82B.81C.42D.41 6.(2019•南安市一模)已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0 7.(2019•霍邱县二模)2018年电影《我不是药神》反映了用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据调查,某种原价为345元的药品进行了两次降价,第一次降价15%,第二次降价的百分率为x,则该药品两次降价后的价格变为多少元?()A.345(1﹣15%)(1﹣x)B.345(1﹣15%)(1﹣x%)C.D.8.(2019•重庆模拟)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为()A.﹣7B.﹣3C.﹣5D.5 9.(2019•平房区二模)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定10.(2019春•南岸区校级月考)根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个11.(2019春•沙坪坝区校级月考)如图是一个计算程序,按这个计算程序的计算规律,若输入的数是9,则输出的数是()A12345B36111827A.50B.63C.83D.100 12.(2019春•兴化市期中)如图,两个正方形的面积分别为25,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.4B.9C.16D.25 13.(2019•柳州模拟)已知a2+2a=1,则代数式3a2+6a﹣1的值为()A.0B.1C.﹣1D.214.(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm 15.(2019•慈溪市模拟)把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l1,图③中两个阴影部分图形的周长和为l2,若,则m,n满足()A.m=n B.m=n C.m=n D.m=n 16.(2019•鄞州区模拟)如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=B.a=2b C.a=b D.a=3b二.填空题(共4小题)17.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.18.(2019•海安县一模)已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为.19.(2019•临海市一模)如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x的代数式表示y,y=.20.(2019春•江油市校级月考)当x=1时,代数式ax5+bx3+cx+1=2019,当x=﹣1时,ax5+bx3+cx+1=.三.解答题(共10小题)21.(2019•贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.22.(2019•长安区三模)下列算式是一类两个两位数相乘的特殊计算方法:67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.(1)仿照上面方法计算,求44×46和51×59的值44×46=;51×59=;(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a,b分别表示两个两位数的个位数字,c表示十位上的数字.请用含a,b,c的式子表示上面的规律,并说明其正确性;(3)仿照(1)的计算方法,补充完成3342×3358的计算过程:3342×3358==.23.(2019春•沙坪坝区校级月考)已知A、B、C是数轴上3点,O为原点,A在O右侧,C在B右侧,线段OA=2BC=m,点D在线段BC上,关于x的多项式P的一次项系数为n,BD=nCD,且l6x4+mx=P•(2x﹣1)+7.(1)求m,n的值:(2)若OA、BC中点连线的长度也为m,求线段OB的长;(3)若A、C重合,E是直线OA上一动点,F是线段OA延长线上任意一点,求OE++AE的最小值.24.(2019春•鼓楼区校级期中)某菜农用780元购进某种蔬菜200千克,如果直接批发给菜商,每千克售价a元,如果拉到市场销售,每千克售价b元(b>a).已知该蔬菜在市场上平均每天可售出20千克,且该菜农每天还需支付15元其他费用.假设该蔬菜能全部售完.(1)当a=4.5,b=6时,该菜农批发给菜商和在市场销售获得的销售额分别是多少元?(2)设W1和W分别表示该菜农批发给菜商和在市场销售的利润,用含a,b的式子分别表示出W1和W;(3)若b=a+k(0<k<2),试根据k的取值范围,讨论选择哪种出售方式较好.25.(2019春•瑞安市期中)如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1)L=(试用m,n的代数式表示)(2)若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L 的值.26.(2019•河东区一模)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表一次印制数量51020 (x)甲印刷厂收费(元)155…乙印刷厂收费(元)12.5…(Ⅱ)在印刷品数量大于800份的情况下选哪家印刷厂印制省钱?27.(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm、宽为18.5cm、厚为1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?28.(2019春•南关区校级月考)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(QUOTE 含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?29.(2018秋•蒸湘区校级期末)甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b 的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?30.(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?参考答案与试题解析一.选择题(共16小题)1.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.2.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.4.【解答】解:∵m+n=7,2n﹣p=4,∴m+3n﹣p=(m+n)+(2n﹣p)=7+4=11,故选:D.5.【解答】解:令x=1,得34=a0+a1+a2+a3+a4,①令x=﹣1,得1=a0﹣a1+a2﹣a3+a4,②①+②得:2(a0+a2+a4)=82,则a0+a2+a4=41,故选:D.6.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.7.【解答】解:由题意可得,该药品两次降价后的价格变为:345(1﹣15%)(1﹣x),故选:A.8.【解答】解:当x=﹣2,x2+1=4+1=5.故选:D.9.【解答】解:甲:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;乙:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.10.【解答】解:根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,故选:D.11.【解答】解:若输入的数是9,则输出的数为92+2=81+2=83,故选:C.12.【解答】解:设空白出长方形的面积为x,根据题意得:a+x=25,b+x=9,两式相减得:a﹣b=16,故选:C.13.【解答】解:当a2+2a=1时,3a2+6a﹣1=3(a2+2a)﹣1=3×1﹣1=3﹣1=2故选:D.14.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.15.【解答】解:图②中通过平移,可将阴影部分的周长转换为长为m,宽为n的长方形的周长,即图②中阴影部分的图形的周长l1为2m+2n图③中,设小长形卡片的宽为x,长为y,则y+2x=m所求的两个长方形的周长之各为:2m+2(n﹣y)+2(n﹣2x),整理得,2m+4n﹣2m=4n即l2为4n∵,∴2m+2n=×4n整理得,故选:C.16.【解答】解:由图形可知,,,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选:B.二.填空题(共4小题)17.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.18.【解答】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.19.【解答】解:根据题意得:第一行第三列,第二行第二列,第三行第一列的三个数之和为:x+y+7,第一行第一列的数为:x+y+7﹣x﹣4=y+3,第一行第二列的数为:x+y+7﹣(y+3)﹣7=x﹣3,第三行第二列的数为:x+y+7﹣(x﹣3)﹣x=10﹣x+y,第三行的三个数之和为:y+(10﹣x+y)+4=x+y+7,整理得:y=2x﹣7,故答案为:2x﹣7.20.【解答】解:把x=1代入ax5+bx3+cx+1得a+b+c+1=2019,∴a+b+c=2018,再把x=﹣1代入ax5+bx3+cx+1得﹣a﹣b﹣c+1=﹣(a+b+c)+1=﹣2018+1=﹣2017.故答案为:﹣2017三.解答题(共10小题)21.【解答】解:(1)S=ab﹣a﹣b+1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;22.【解答】解:(1)由题意可得,44×46=100×(42+4)+4×6=2024,51×59=100×(52+5)+1×9=3009,故答案为:100×(42+4)+4×6=2024;100×(52+5)+1×9=3009;(2)(10c+a)×(10c+b)=100(c2+c)+ab,证明如下:(10c+a)×(10c+b)=100c2+10bc+10ac+ab=100c2+10c(b+a)+ab=100c2+100c+ab=100(c2+c)+ab;(3)3342×3358=3342×(3348+10)=3342×3348+33420=100×(3342+334)+2×8+33420=11222436故答案为:100×(3342+334)+2×8+33420;11222436.23.【解答】解:(1)∵l6x4+mx=P•(2x﹣1)+7,设P=8x3+ax2+nx+b,∴16x4+2ax3+2nx2+2bx﹣8x3﹣ax2﹣nx﹣b+7=l6x4+mx,∴a=4,n=2,2b﹣n=m,b=7,∴m=12,n=2;(2)∵m=12,∴OA=12,BC=6,∵O为原点,A在O右侧,∴A表示的数是12,∴OA的中点表示的是6,∵OA、BC中点连线的长度也为m,∴BC中点在数轴上表示的数是18或﹣6,∴B点表示的数是15或﹣9,∴BO=15或BO=9;(3)∵BC=6,n=2,BD=nCD,A、C重合,∴B点表示的数是6,D点表示的数是10,设E点表示的数是a,F点表示的数是b,OE++AE=|a|++|12﹣a|=|a|+|12﹣a|+,当a<0时,OE++AE=17﹣>17;当0≤a≤10时,OE++AE=17﹣,∴12≤OE++AE≤17;当10<a<12时,OE++AE=7+,∴12<OE++AE<13;当a≥12时,OE++AE=﹣17≥13;∴12≤OE++AE,∴OE++AE的最小值是12;24.【解答】解:由题意,可得直接批发商的销售额为200a元,拉到市场的销售额为200b元(1)当a=4.5时,直接批发商的销售额为:200×4.5=900元,当b=6时,拉到市场的销售额为:200×6=1200元(2)由题意,进菜的成本为=3.9元直接批发商的利润为:W1=200(a﹣3.9)=200a﹣780拉到市场的利润为:W=200(b﹣3.9)﹣×15=200b﹣930(3)由题意,当b=a+k(0<k<2)时,W=200(a+k)﹣930=200a+200k﹣930则W﹣W1=200a+200k﹣930﹣(200a﹣780)=200k﹣150∴①当0.75<k<2时,W>W1,选择拉到市场出售比直接给批发商好;②当k=0.75时,W=W1,两种出售方式都可以;③当0<k<0.75时,W<W1,选择直接给批发商比拉到市场出售好;25.【解答】解:(1)L=6m+6n,故答案为:6m+6n;(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42cm.26.【解答】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;27.【解答】解:(1)小海宝所用包书纸的面积是:(18.5×2+1+2x)(26+2x)=(38+2x)(26+2x)=4x2+128x+988(cm2);(2)当x=2cm时,S=4×22+128×2+988=1260(cm2).答:需要的包装纸至少是1260平方厘米.28.【解答】解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.29.【解答】解:(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b﹣a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.30.【解答】解:依题意(1)A店购买可列式:40×150+(x﹣40)×30=4800+30x在网店B购买可列式:(40×150+30x)×0.9=5400+27x故答案为:4800+30x;5400+27x(2)当x=100时在A网店购买需付款:4800+30x=4800+30×100=7800元在B网店购买需付款:5400+27x=5400+27×100=8100元∵7800<8100∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款7800元,在B网店付款8100元,在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳合计需付款:150×40+30×60×90%=7620∵7620<7800<8100∴省钱的购买方案是:在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.。

2019年浙江省杭州市中考数学试卷(word版,含答案解析)

2019年浙江省杭州市中考数学试卷(word版,含答案解析)

2019年浙江省杭州市中考数学试卷(word版,含答案解析)2019年浙江省杭州市中考数学试卷副标题题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.计算下列各式,值最⼩的是()A. 2×0+1?9B. 2+0×1?9C. 2+0?1×9D. 2+0+1?92.在平⾯直⾓坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=?3,n=2C. m=2,n=3D. m=?2,n=?33.如图,P为圆O外⼀点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学⽣种树72棵,男⽣每⼈种3棵树,⼥⽣每⼈种2棵树,设男⽣有x⼈,则()A. 2x+3(72?x)=30B. 3x+2(72?x)=30C. 2x+3(30?x)=72D. 3x+2(30?x)=725.点点同学对数据26,36,46,5□,52进⾏统计分析,发现其中⼀个两位数的个位数字被⿊⽔涂污看不到了,则计算结果与被涂污数字⽆关的是()A. 平均数B. 中位数D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE//BC,M为BC边上⼀点(不与点B,C重合),连接AM交DE于点N,则()A. ADAN =ANAEB. BDMN =MNCEC. DNBM =NEMCD. DNMC =NEBM7.在△ABC中,若⼀个内⾓等于另外两个内⾓的差,则()A. 必有⼀个内⾓等于30°B. 必有⼀个内⾓等于45°C. 必有⼀个内⾓等于60°D. 必有⼀个内⾓等于90°8.已知⼀次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,⼀块矩形⽊板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同⼀平⾯内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosxD. acosx+bsinx10.在平⾯直⾓坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N?1或M=N+1C. M=N或M=N+1D. M=N或M=N?1⼆、填空题(本⼤题共6⼩题,共24.0分)11.因式分解:1?x2=______.12.某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是⼀个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底⾯圆半径为3cm,则这个冰淇淋外壳的侧⾯积等于______cm2(结果精确到个位).14.在直⾓三⾓形ABC中,若2AB=AC,则cosC=______.15.某函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,写出⼀个满⾜条件的函数表达式______.16.如图,把某矩形纸⽚ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同⼀点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的⾯积为4,△D′PH的⾯积为1,则矩形ABCD 的⾯积等于______.三、解答题(本⼤题共7⼩题,共66.0分)17.化简:4xx2?4?2x?21圆圆的解答如下:4x x2?4?2x?21=4x2(x+2)(x24)=x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐⽔果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不⾜基准部分的千克数记为负数,甲组为实际称量读数,⼄组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954⼄组?22?3?14(1)补充完成⼄组数据的折线统计图.(2)①甲,⼄两组数据的平均数分别为x甲?,x⼄?,写出x甲?与x⼄?之间的等量关系.②甲,⼄两组数据的⽅差分别为S甲2,S⼄2,⽐较S甲2与S⼄2的⼤⼩,并说明理由.19.如图,在△ABC中,AC(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆⼼,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.⽅⽅驾驶⼩汽车匀速地从A地⾏驶到B地,⾏驶⾥程为480千⽶,设⼩汽车的⾏驶时间为t(单位:⼩时),⾏驶速度为v(单位:千⽶/⼩时),且全程速度限定为不超过120千⽶/⼩时.(1)求v关于t的函数表达式;(2)⽅⽅上午8点驾驶⼩汽车从A地出发.①⽅⽅需在当天12点48分⾄14点(含12点48分和14点)间到达B地,求⼩汽车⾏驶速度v的范围.②⽅⽅能否在当天11点30分前到达B地?说明理由.21.如图,已知正⽅形ABCD的边长为1,正⽅形CEFG的⾯积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的⾯积为S2,且S1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .22. 设⼆次函数y =(x ?x 1)(x ?x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;⼄求得当x =12时,y =?12.若甲求得的结果都正确,你认为⼄求得的结果正确吗?说明理由.(2)写出⼆次函数图象的对称轴,并求该函数的最⼩值(⽤含x 1,x 2的代数式表⽰). (3)已知⼆次函数的图象经过(0,m)和(1,n)两点(m,n 是实数),当016.23. 如图,已知锐⾓三⾓形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°,①求证:OD =12OA .②当OA=1时,求△ABC⾯积的最⼤值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB= n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m? n+2=0.1.【答案】A【解析】解:A.2×0+1?9=?8,B.2+0×1?9=?7C.2+0?1×9=?7D.2+0+1?9=?6,故选:A.有理数混合运算顺序:先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=?3,n=2.故选:B.直接利⽤关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三⾓形全等的判定和性质,作出辅助线根据全等三⾓形是解题的关键.4.【答案】D【解析】【分析】此题主要考查了由实际问题抽象出⼀元⼀次⽅程,正确表⽰出男⼥⽣的植树棵数是解题关键.直接根据题意表⽰出⼥⽣⼈数,进⽽利⽤30位学⽣种树72棵,得出等式求出答案.【解答】解:设男⽣有x⼈,则⼥⽣(30?x)⼈,根据题意可得:3x+2(30?x)=72.故选D.5.【答案】B利⽤平均数、中位数、⽅差和标准差的定义对各选项进⾏判断.本题考查了标准差:样本⽅差的算术平⽅根表⽰样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.【解答】解:这组数据的平均数、⽅差和标准差都与第4个数有关,⽽这组数据的中位数为46,与第4个数⽆关.故选:B.6.【答案】C【解析】解:∵DN//BM,∴△ADN∽△ABM,∴DNBM =ANAM,∵NE//MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NEMC.故选:C.先证明△ADN∽△ABM得到DNBM =ANAM,再证明△ANE∽△AMC得到NEMC=ANAM,则DNBM=NEMC,本题考查了相似三⾓形的判定与性质:在判定两个三⾓形相似时,应注意利⽤图形中已有的公共⾓、公共边等隐含条件,以充分发挥基本图形的作⽤,寻找相似三⾓形的⼀般⽅法是通过作平⾏线构造相似三⾓形;灵活运⽤相似三⾓形的性质表⽰线段之间的关系.7.【答案】D【解析】【分析】根据三⾓形内⾓和定理得出∠A+∠B+∠C=180°,把∠A=∠C?∠B代⼊求出∠C即可.本题考查了三⾓形内⾓和定理的应⽤,能求出三⾓形最⼤⾓的度数是解此题的关键,注意:三⾓形的内⾓和等于180°.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C?∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直⾓三⾓形,故选:D.8.【答案】A【解析】A、由图可知:直线y1,a>0,b>0.∴直线y2经过⼀、⼆、三象限,故A正确;B、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、四、三象限,故B错误;C、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、⼆、四象限,交点不对,故C错误;D、由图可知:直线y1,a<0,b<0,∴直线y2经过⼆、三、四象限,故D错误.故选:A.根据直线判断出a、b的符号,然后根据a、b的符号判断出直线经过的象限即可,做出判断.本题主要考查的是⼀次函数的图象和性质,掌握⼀次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a?cosx+b?sinx,根据题意,作出合适的辅助线,然后利⽤锐⾓三⾓函数即可表⽰出点A到OC的距离,本题得以解决.本题考查解直⾓三⾓形的应⽤?坡度⾓问题、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+ab,∴△=(a+b)2?4ab=(a?b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2?4ab=(a?b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为⼀次函数,与x轴有⼀个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成⼀般形式,若为⼆次函数,再计算根的判别式,从⽽确定图象与x轴的交点个数,若⼀次函数,则与x轴只有⼀个交点,据此解答.本题主要考查⼀次函数与⼆次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,⼆次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进⽽确定与x轴的交点个数.11.【答案】(1?x)(1+x)【解析】解:∵1?x2=(1?x)(1+x),故答案为:(1?x)(1+x).根据平⽅差公式可以将题⽬中的式⼦进⾏因式分解.本题考查因式分解?运⽤公式法,解题的关键是明确平⽅差公式,会运⽤平⽅差公式进⾏因式分解.12.【答案】mx+nym+n【解析】解:∵某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的总和为:mx+ny,.所以平均数为:mx+nym+n故答案为:mx+ny.m+n直接利⽤已知表⽰出两组数据的总和,进⽽求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧⾯积=1利⽤圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长和扇形的⾯积公式计算.本题考查了圆锥的计算:圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长.14.【答案】√32或2√55【解析】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2?x 2=√3x ,所以cosC =BC AC=√3x2x=√32;若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cosC =ACBC =5x=2√55;综上所述,cos C 的值为√32或2√55.故答案为√32或2√55.讨论:若∠B =90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√3x ,然后根据余弦的定义求cos C 的值;若∠A=90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√5x ,然后根据余弦的定义求cos C 的值.本题考查了锐⾓三⾓函数的定义:熟练掌握锐⾓三⾓函数的定义,灵活运⽤它们进⾏⼏何计算.15.【答案】y =?x +1(答案不唯⼀)【解析】解:设该函数的解析式为y =kx +b ,∵函数满⾜当⾃变量x =1时,函数值y =0,当⾃变量x =0时,函数值y =1,∴{k +b =0b =1解得:{k =?1,所以函数的解析式为y =?x +1,故答案为:y =?x +1(答案不唯⼀).根据题意写出⼀个⼀次函数即可.本题考查了各种函数的性质,因为x =0时,y =1,所以不可能是正⽐例函数. 16.【答案】2(5+3√5)【解析】解:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:PA′=AB =x ,PD′=CD =x ,∵△A′EP 的⾯积为4,△D′PH 的⾯积为1,∴A′E =4D′H ,设D′H =a ,则A′E =4a ,∵△A′EP∽△D′PH ,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或?2a(舍弃),∴PA′=PD′=2a,∵12a2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的⾯积=2(5+3√5).故答案为2(5+3√5)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的⾯积为4,△D′PH的⾯积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出D′HPA′=PD′EA′,推出ax=x4a,可得x=2a,再利⽤三⾓形的⾯积公式求出a即可解决问本题考查翻折变换,矩形的性质,勾股定理,相似三⾓形的判定和性质等知识,解题的关键是学会利⽤参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:4xx2?4?2x?21=4x(x?2)(x+2)2(x+2)(x?2)(x+2)(x?2)(x+2)(x?2)(x+2) =4x?2x?4?x2+4(x?2)(x+2)=2x?x2(x?2)(x+2)=?xx+2.【解析】直接将分式进⾏通分,进⽽化简得出答案.此题主要考查了分式的加减运算,正确进⾏通分运算是解题关键.18.【答案】解:(1)⼄组数据的折线统计图如图所⽰:(2)①x 甲?=50+x ⼄?.②S 甲2=S ⼄2.理由:∵S 甲2=15[(48?50)2+(52?50)2+(47?50)2+(49?50)2+(54?50)2]=6.8.S ⼄2=15[(?2?0)2+(2?0)2+(?3?0)2+(?1?0)2+(4?0)2]=6.8,∴S 甲2=S ⼄2.【解析】(1)利⽤描点法画出折线图即可. (2)利⽤平均数和⽅差公式计算即可判断.本题考查折线统计图,算术平均数,⽅差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB ,∴∠B =∠BAP ,∵∠APC =∠B +∠BAP ,∴∠APC =2∠B ;(2)根据题意可知BA =BQ ,∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ ,∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°,∴5∠B =180°,∴∠B =36°.【解析】(1)根据线段垂直平分线的性质可知PA =PB ,根据等腰三⾓形的性质可得∠B =∠BAP ,根据三⾓形的外⾓性质即可证得∠APC =2∠B ;(2)根据题意可知BA =BQ ,根据等腰三⾓形的性质可得∠BAQ =∠BQA ,再根据三⾓形的内⾓和公式即可解答.本题主要考查了等腰三⾓形的性质、垂直平分线的性质以及三⾓形的外⾓性质,难度适中.20.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千⽶/⼩时,∴v 关于t 的函数表达式为:v =480t ,(t ≥4).(2)①8点⾄12点48分时间长为245⼩时,8点⾄14点时间长为6⼩时,将t =6代⼊v =480t得v =80;将t =245代⼊v =480t得v =100.∴⼩汽车⾏驶速度v 的范围为:80≤v ≤100.②⽅⽅不能在当天11点30分前到达B 地.理由如下: 8点⾄11点30分时间长为72⼩时,将t =72代⼊v =480t得v =9607>120千⽶/⼩时,超速了.故⽅⽅不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程⽐时间,从⽽得解; (2)①8点⾄12点48分时间长为24 5⼩时,8点⾄14点时间长为6⼩时,将它们分别代⼊v 关于t 的函数表达式,即可得⼩汽车⾏驶的速度范围;②8点⾄11点30分时间长为72⼩时,将其代⼊v 关于t 的函数表达式,可得速度⼤于120千⽶/时,从⽽得答案.本题是反⽐例函数在⾏程问题中的应⽤,根据时间、速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正⽅形CEFG 的边长为a ,∵正⽅形ABCD 的边长为1,∴DE =1?a ,∵S 1=S 2,∴a 2=1×(1?a),解得,a 1=?√5212(舍去),a 2=√5212,即线段CE 的长是√52?12;(2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52,∵CH =0.5,CG =√52?12,∴HG =√52,∴HD =HG .【解析】(1)设出正⽅形CEFG 的边长,然后根据S 1=S 2,即可求得线段CE 的长; (2)根据(1)中的结果和题⽬中的条件,可以分别计算出HD 和HG 的长,即可证明结论成⽴.本题考查正⽅形的性质、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.22.【答案】解:(1)当x =0时,y =0;当x =1时,y =0;∴⼆次函数经过点(0,0),(1,0),∴x 1=0,x 2=1,∴y =x(x ?1)=x 2?x ,当x =12时,y =?14,∴⼄求得的结果不对; (2)对称轴为x =x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)⼆次函数的图象经过(0,m)和(1,n)两点,∴m =x 1x 2,n =1?x 1?x 2+x 1x 2,∴mn =[?(x 1?12)2+14][?(x 2?12)2+14]∵0∴02)2+14≤14,02)2+14≤14,且x 1和x 2不可以同时等于12,∴0【解析】(1)将(0,0),(1,0)代⼊y =(x ?x 1)(x ?x 2)求出函数解析式即可求解; (2)对称轴为x = x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)将已知两点代⼊求出m =x 1x 2,n =1?x 1?x 2+x 1x 2,再表⽰出mn =[?(x 1?12)2+14][?(x 2?12)2+14],由已知04,0<(x 212)2+14≤14,即可求解.本题考查⼆次函数的性质;函数最值的求法;熟练掌握⼆次函数的性质,能够将mn 准确的⽤x 1和x 2表⽰出来是解题的关键. 23.【答案】解:(1)①连接OB 、OC ,则∠BOD =12∠BOC =∠BAC =60°,∴∠OBC =30°,∴OD=12OB=12OA;②∵BC长度为定值,∴求△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,当AD过点O时,AD最⼤,即:AD=AO+OD=32,△ABC⾯积的最⼤值=12×BC×AD=12×2OBsin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,∵OE=OD,∴∠AOD=180°?2x,即:180°+mx?nx=180°?2x,化简得:m?n+2=0.【解析】(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,即可求解;(2)∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,⽽∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,即可求解.本题为圆的综合运⽤题,涉及到解直⾓三⾓形、三⾓形内⾓和公式,其中(2)∠AOD=∠COD+∠AOC是本题容易忽视的地⽅,本题难度适中.。

2019年浙江杭州中考数学试卷(含解析)

2019年浙江杭州中考数学试卷(含解析)

2019年浙江省杭州市初中毕业、升学考试数学一、选择题:本大题有10个小题,每小题3分,共30分.在每小题綸出的四个迭项中,只有一项是符合题目要求的.1.(2019浙江省杭州市,1,3分)计算下列各式,值最小的是【】A.2×0+1-9 B.2+0×1-9 C.2+0-1×9 D.2+0+1-9【答案】A【解析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.A.2×0+1-9=-8,B.2+0×1-9=-7,C.2+0-1×9=-7,D.2+0+1-9=-6,故选:A.【知识点】有理数的混合运算2.(2019浙江省杭州市,2,3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则【】A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=3【答案】B【解析】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选:B.【知识点】直角坐标系内点的坐标特征3.(2019浙江省杭州市,3,3分)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,若PA=3,则PB=【】A.2 B.3 C.4 D.5【答案】B【解析】因为P A和PB与⊙O相切,根据切线长定理,可知:P A=PB=3,故选:B.【知识点】切线长定理4.(2019浙江省杭州市,4,3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树.设男生有x人,则【】A.2x+3(72-x)=30 B.3x+2(72-x)=30 C.2x+3(30-x)=72 D.3x+2(30-x)=72【答案】D【解析】设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.【知识点】一次方程(组)及应用模型思想应用意识5.(2019浙江省杭州市,5,3分)点点同学对数据26,36,36,46,5█,52进行统计分析.发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是【】A.平均数 B.中位数 C.方差 D.标准差【答案】B【解析】这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.【知识点】统计的应用6.(2019浙江省杭州市,6,3分)如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B,C重合)连接AM交DE干点N,则【】A.AD ANAN AE= B.BD MNMN CE= C.DN NEBM MC= D.DN NEMC BM=N E A B C D M【答案】C【解析】根据DE ∥BC ,可得△ADN ∽△ABM 与△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN AN BM AM =,∵NE ∥MC ,∴△ANE ∽△AMC ,∴NE AN MC AM =,∴DN NE BM MC=.故选:C . 【知识点】相似三角形的判定与性质7.(2019浙江省杭州市,7,3分)在△ABC 中,若一个内角等于另两个内角的差,则 【 】A.必有一个内角等干30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【答案】D【解析】∵∠A+∠B+∠C=180°,∠A=∠C-∠B ,∴2∠C=180°,∴∠C=90°,∴△ABC 是直角三角形,故选:D .【知识点】三角形内角和定理8.(2019浙江省杭州市,8,3分)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是【 】xy 1O x y 1O x y 1O xy1OA B C D【答案】A【解析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.A 、由①可知:a >0,b >0,∴直线②经过一、二、三象限,故A 正确;B 、由①可知:a <0,b >0,∴直线②经过一、二、三象限,故B 错误;C 、由①可知:a <0,b >0,∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:a <0,b <0,∴直线②经过二、三、四象限,故D 错误.故选:A .【知识点】一次函数的图象和性质9. (2019浙江省杭州市,9,3分)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于【 】A .asinx+bsinxB .acosx+bcosxC .asinx+bcosxD .acosx+bsinx【答案】D【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx ,故选:D .【知识点】三角函数 矩形的性质10.(2019浙江省杭州市,10,3分)在平面直角坐标系中,已知a ≠b ,设函数y=(x+a )(x+b )的图象与x 轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x 轴有N 个交点,则 【 】 A .M=N-1或M=N+1 B .M=n-1或M=N+2 C .M=N 或M=N+1 D .M=N 或M=N-1【答案】A 【解析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答.∵y=(x+a )(x+b )=x 2+(a+b )x+1,∴(a+b )2-4ab=(a-b )2>0,∴函数y=(x+a )(x+b )的图象与x 轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx 2+(a+b )x+1,∴当ab ≠0时,(a+b )2-4ab=(a-b )2>0,函数y=(ax+1)(bx+1)的图象与x 轴有2个交点,即N=2,此时M=N ;当ab=0时,不妨令a=0,∵a ≠b ,∴b ≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x 轴有一个交点,即N=1,此时M=N+1;综上可知,M=N 或M=N+1.故选:C .【知识点】二次函数图象及其性质 抛物线与x 轴的交点二、填空题:本大题有6个小题,每小题4分,共24分。

杭州市朝晖中学2019届中考三模数学试题

杭州市朝晖中学2019届中考三模数学试题

朝晖中学2019年中考数学模拟试卷温馨提示:本卷共三大题,24小题,满分120分,考试时间100分钟. 请细心答题 参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是24()24b ac b a a--,.2.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数用科学记数法表示正确的是( ) A .6.8×109元 B .6.8×108元 C .6.8×107元 D .6.8×106元 3.已知a 为实数,则代数式的最小值为( )C4.3.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙 20.45S =丁则射击成绩最稳定的是( )A .甲B .乙C .丙D .丁5.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( ) A .50° B .30° C .20° D .15°7.如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( ▲ ) A .25° B .30° C .35° D .50° 8.设函数y= kx2+(3k+2)x+1,对于任意负实数k,当x<m 时,y 随x 的增大而增大,则m 的最大整数值为( )A .2B . -2C . -1D . 09.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数第6题 第7题 第9题OB(第10题图)y =kx(x >0)的图象经过顶点B ,则k 的值为( ) A .12B .20C .24D .3210. 如图,AB 为等腰直角⊿ABC 的斜边(AB 为定长线段),O 为AB 的中点,P 为AC 延长线上的一个动点,线段PB 的垂直平分线交线段OC 于点E ,D 为垂足,当P 点运动时,给出下列四个结论,其中正确的个数是( ) ①E 为⊿ABP 的外心; ②∠PEB =90°; ③PC ·BE = OE ·PB ; ④2CE + PC =AB 22. A .①②③ B .②③④ C .①③④ D .①②③④ 二、填空题(本大题共有6小题,每小题4分,共24分.) 11.分解因式:2x 2-8= .12.已知正整数a 满足不等式组232-≤+≥a x a x (x 为未知数)无解,则a 的值为13、如图,直三棱柱111ABC A B C -的侧棱长和底面各边长均为2,其主视图是边长为2的正方形,则此直三棱柱左视图的面积为 。

2019年浙江省杭州市建兰中学中考数学模拟试卷(1)及答案

2019年浙江省杭州市建兰中学中考数学模拟试卷(1)及答案

ADEP BC2019建兰中学中考数学模拟试卷01考生须知:本卷共三大题,24小题. 全卷满分为120分,考试时间为100分钟. 一、选择题(本题有10个小题,每小题3分,共30分)1. (根据初中教与学中考全程复习训练题改编)16的平方根是 ( ▲ )A. 4B. 2C. ±4D.±22. (根据初中教与学中考全程复习训练题改编)估算331-的值 ( ▲ )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间3. (根据2010年中考数学考前知识点回归+巩固 专题12 反比例函数改编)若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在( ▲ )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 4. (引中考复习学案视图与投影练习题)由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲)5. (原创)把二次根式1(x-1)1x-中根号外的因式移到根号内,结果是( ▲ ) A . 1x -B . 1x --C . 1x --D .1x -6.(根据九下数学作业题改编)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ▲ )A .20 B .30 C .40 D .50 7. (原创)函数134y x x =-+-中自变量x 的取值范围是( ▲ )A .x ≤3B .x =4C . x <3且x ≠4D .x ≤3且x ≠48. (引九年级模拟试题卷)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ▲ )9. (原创)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 10. (引黄冈市 2010年秋期末考试九年级数学模拟试题)正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为( ▲ )A、10 B、12 C、14 D、16二、填空题(共6小题,每题4分.共24分)11. (根据黄冈市2010年秋期末考试九年级数学模拟试题改编)一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为____▲______. 12. (根据2011年中考调研试卷改编)一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第2011个图案: 。

杭州市中考数学试卷及答案(Word解析版)

杭州市中考数学试卷及答案(Word解析版)

浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(杭州)根据~杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.~杭州市每年GDP增长率相同B.杭州市的GDP比翻一番C.杭州市的GDP未达到5500亿元D.~杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算~GDP增长率,~GDP增长率,进行比较可得A的正误;根据统计图可以大约得到和GDP,可判断出B的正误;根据条形统计图可得杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到~杭州市的GDP逐年增长.解答:解:A.~GDP增长率约为:=,~GDP增长率约为=,增长率不同,故此选项错误;B.杭州市的GDP约为7900,GDP约为4900,故此选项错误;C.杭州市的GDP超过到5500亿元,故此选项错误;D.~杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中和的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表学校2011年2012年杭州A中438 442杭州B中435 442杭州C中435 439杭州D中435 439考点:算术平均数.分析:先算出的平均最低录取分数线和的平均最低录取分数线,再进行相减即可.解答:解:的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。

03填空题知识点分类-浙江省杭州市四年(2019-2022)中考数学真题分层分类汇编

03填空题知识点分类-浙江省杭州市四年(2019-2022)中考数学真题分层分类汇编

03填空题知识点分类-浙江省杭州市四年(2019-2022)中考数学真题分层分类汇编一.完全平方公式(共1小题)1.(2020•杭州)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P= .二.因式分解-运用公式法(共1小题)2.(2019•杭州)因式分解:1﹣x2= .三.最简二次根式(共1小题)3.(2022•杭州)计算:= ;(﹣2)2= .四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= (用百分数表示).五.解分式方程(共1小题)5.(2020•杭州)若分式的值等于1,则x= .六.坐标与图形性质(共1小题)6.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC ∠DAE(填“>”、“=”、“<”中的一个).七.一次函数的性质(共1小题)7.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 .八.一次函数与二元一次方程(组)(共1小题)8.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .九.平行线的性质(共1小题)9.(2020•杭州)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC =130°,则∠A= .一十.切线的性质(共2小题)10.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .11.(2020•杭州)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC= .一十一.圆锥的计算(共1小题)12.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2(结果精确到个位).一十二.圆的综合题(共1小题)13.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 度;的值等于 .一十三.翻折变换(折叠问题)(共3小题)14.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 度.15.(2020•杭州)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF = ,BE= .16.(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D 点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 .一十四.相似三角形的应用(共1小题)17.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.一十五.锐角三角函数的定义(共1小题)18.(2019•杭州)在直角三角形ABC中,若2AB=AC,则cos C= .一十六.特殊角的三角函数值(共1小题)19.(2021•杭州)计算:sin30°= .一十七.加权平均数(共2小题)20.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 元/千克.21.(2019•杭州)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这(m+n)个数据的平均数等于 .一十八.概率公式(共1小题)22.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .一十九.列表法与树状图法(共1小题)23.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 .参考答案与试题解析一.完全平方公式(共1小题)1.(2020•杭州)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P= ﹣ .【解答】解:法一:(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减得4xy=﹣3,解得xy=﹣,则P=﹣.法二:由题可得,解之得:,∴P=xy=﹣,故答案为:﹣.二.因式分解-运用公式法(共1小题)2.(2019•杭州)因式分解:1﹣x2= (1﹣x)(1+x) .【解答】解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).三.最简二次根式(共1小题)3.(2022•杭州)计算:= 2 ;(﹣2)2= 4 .【解答】解:=2,(﹣2)2=4,故答案为:2,4.四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= 30% (用百分数表示).【解答】解:新注册用户数的年平均增长率为x(x>0),依题意得:100(1+x)2=169,解得:x1=0.3,x2=﹣2.3(不合题意,舍去).0.3=30%,∴新注册用户数的年平均增长率为30%.故答案为:30%.五.解分式方程(共1小题)5.(2020•杭州)若分式的值等于1,则x= 0 .【解答】解:由分式的值等于1,得=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.六.坐标与图形性质(共1小题)6.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC = ∠DAE (填“>”、“=”、“<”中的一个).【解答】解:连接DE,由上图可知AB=2,BC=2,∴△ABC是等腰直角三角形,∴∠BAC=45°,又∵AE===,同理可得DE==,AD==,则在△ADE中,有AE2+DE2=AD2,∴△ADE是等腰直角三角形,∴∠DAE=45°,∴∠BAC=∠DAE,故答案为:=.七.一次函数的性质(共1小题)7.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 y=﹣x+1(答案不唯一) .【解答】解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=﹣x+1,故答案为:y=﹣x+1(答案不唯一).八.一次函数与二元一次方程(组)(共1小题)8.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .【解答】解:∵一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x﹣1与y=kx的方程组的解为:,故答案为:.九.平行线的性质(共1小题)9.(2020•杭州)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC =130°,则∠A= 20° .【解答】解:∵AB∥CD,∴∠ABF+∠EFC=180°,∵∠EFC=130°,∴∠ABF=50°,∵∠A+∠E=∠ABF=50°,∠E=30°,∴∠A=20°.故答案为:20°.一十.切线的性质(共2小题)10.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .【解答】解:∵PT是⊙O的切线,T为切点,∴OT⊥PT,在Rt△OPT中,OT=1,OP=2,∴PT===,故:PT=.11.(2020•杭州)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC= .【解答】解:∵AB是⊙O的直径,BC与⊙O相切于点B,∴AB⊥BC,∴∠ABC=90°,∵sin∠BAC==,∴设BC=x,AC=3x,∴AB===2x,∴OB=AB=x,∴tan∠BOC==,故答案为:.一十一.圆锥的计算(共1小题)12.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 113 cm2(结果精确到个位).【解答】解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.一十二.圆的综合题(共1小题)13.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 36 度;的值等于 .【解答】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∴∠CEB=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x=a(负值舍去),∴OE=a,∴AE=OA﹣OE=a﹣a=a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴,∴=.故答案为:36,.一十三.翻折变换(折叠问题)(共3小题)14.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 18 度.【解答】解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠FAD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠FAD+∠ADM,∴∠DMC=2∠FAD.设∠FAD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.15.(2020•杭州)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF = 2 ,BE= ﹣1 .【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,方法二:∵AB∥CD,∴S△ACD=S△DCE,∴S△ACD﹣S△DCF=S△DCE﹣S△DCF,∴S△ADF=S△ECF,由题意知,BC=CF,S△ACD=S△ABC,S△ECF=S△BCE,∴S△ACD﹣S△ADF=S△ABC﹣S△CEF=S△ABC﹣S△BCE,∴S△DCF=S△ACE,∴×DF•CF=AE•BC,∵CF=BC,∴DF=AE=2,设BE=x,∵AE∥CD,∴△AEF∽△CDF,∴=,∴=,解得:x=﹣1(负值舍去),∴BE=﹣1.故答案为:2,﹣1.16.(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D 点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 10+6 .【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,又∵△A′EP∽△D′PH,∴A′P:D′H=2,∵PA′=x,∴D x,∵•x•x=1,∴x=2(负根已经舍弃),∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3)=10+6.故答案为10+6一十四.相似三角形的应用(共1小题)17.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= 9.88 m.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽△Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.一十五.锐角三角函数的定义(共1小题)18.(2019•杭州)在直角三角形ABC中,若2AB=AC,则cos C= 或 .【解答】解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;综上所述,cos C的值为或.故答案为或.一十六.特殊角的三角函数值(共1小题)19.(2021•杭州)计算:sin30°= .【解答】解:sin30°=.一十七.加权平均数(共2小题)20.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 24 元/千克.【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.21.(2019•杭州)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这(m+n)个数据的平均数等于 .【解答】解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.一十八.概率公式(共1小题)22.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .【解答】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于,故答案为:.一十九.列表法与树状图法(共1小题)23.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 .【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故答案为:.。

2019年浙江杭州中考数学试题(解析版)

2019年浙江杭州中考数学试题(解析版)

{来源}2019年德州中考数学{适用范围:3.九年级}{标题}2019年杭州市中考数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求){题目}1.(2019年杭州)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9{答案}A{解析}本题考查了有理数的混合运算,有理数混合运算顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算.计算得:2×0+1﹣9=﹣8,2+0×1﹣9=﹣7,2+0﹣1×9=﹣7,2+0+1﹣9=﹣6,比较可知-8最小,因此本题选A.{分值}3{章节:[1-1-4-1]有理数的乘法}{考点:有理数的乘法法则}{类别:常考题}{难度:1-最简单}{题目}2.(2019年杭州)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3{答案}B{解析}本题考查了关于坐标轴对称的点的坐标的关系,A,B关于y轴对称,则横坐标互为相反数,纵坐标相同.∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.因此本题选B.{分值}3{章节:[1-13-1-1]轴对称}{考点:坐标与图形的性质}{类别:常考题}{难度:1-最简单}{题目}3.(2019年杭州)如图,P为⊙O外一点,P A,PB分别切⊙O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.5{答案}B{解析}本题考查了切线长定理.因为P A和PB与⊙O相切,所以根据切线长定理可知P A=PB=3,因此本题选B.{分值}3{章节:[1-24-2-2]直线和圆的位置关系} {考点:切线长定理} {类别:常考题} {难度:1-最简单}{题目}4.(2019年杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( ) A .2x +3(72﹣x )=30 B .3x +2(72﹣x )=30 C .2x +3(30﹣x )=72 D .3x +2(30﹣x )=72 {答案}D{解析}本题考查了列一元一次方程解应用题,设男生x 人,则女生有(30-x )人,由题意得:3x +2(30﹣x )=72,因此本题选D . {分值}3{章节:[1-3-3]实际问题与一元一次方程} {考点:一元一次方程的应用(工程问题)} {类别:常考题} {难度:1-最简单}{题目}5.(2019年杭州)点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A .平均数B .中位数C .方差D .标准差 {答案}B{解析}本题考查了平均数、中位数、方差、标准差的概念,因为将6个数从小到大排列后,被涂的数总是排在第5或第6的位置,最中间两个数始终是36、46,故其中位数不变,始终是41,因此本题选B . {分值}3{章节:[1-20-2-1]方差} {考点:标准差}{考点:统计量的选择} {类别:常考题} {难度:2-简单}{题目}6.(2019年杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( ) A .ADAN ANAE B .BDMN MNCE C .DNNE BMMC D .DNNEMCBM{答案}C{解析}本题考查了相似三角形的判定与性质,∵DE ∥BC ,∴△ADN ∽△ABM ,△ANE ∽△AMCE N MD CBA∴DN AN BM AM ,ANNE AM MC ,∴DNNEBM MC,因此本题选C . {分值}3{章节:[1-27-1-1]相似三角形的判定} {考点:由平行判定相似} {类别:常考题} {难度:3-中等难度}{题目}7.(2019年杭州)在△ABC 中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60° D .必有一个内角等于90° {答案}D{解析}本题考查了三角形的内角和,不妨设在△ABC 中,有∠A =∠C ﹣∠B ,所以∠C =∠A +∠B ,根据三角形内角和定理得∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C =90°,∴△ABC 是直角三角形,因此本题选D . {分值}3{章节:[1-11-2]与三角形有关的角} {考点:三角形内角和定理} {类别:常考题} {难度:2-简单}{题目}8.(2019年杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D . {答案}A{解析}本题考查了一次函数图象象限分布与系数的关系,从增减性以及直线与y 轴的交点位置来进行判断比较快捷,可列表分析如下:{分值}3{章节:[1-19-2-2]一次函数} {考点:一次函数的图象} {类别:常考题} {难度:3-中等难度}{题目}9.(2019年杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O 在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.asinx+bsinx B.acosx+bcosx C.asinx+bcosx D.acosx+bsinx{答案}D{解析}本题考查了锐角三角函数的简单实际应用,过点A作AE⊥OB于点E,在矩形ABCD中,且AB=a,AD=BC=b,∵∠COB=∠ABC=90°,∴∠ABE+∠OBC=∠BCO+∠OBC=90°,∴∠ABE=∠BCO=x,∴sinOBxBC=,cosBExAB=,∴sinOB b x=,cosBE a x=,所以点A到OC的距离OE=BE+OB=acosx+bsinx,因此本题选D.{分值}3{章节:[1-28-3]锐角三角函数}{考点:余弦}{类别:常考题}{难度:3-中等难度}{题目}10.(2019年杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x 轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1{答案}C{解析}本题考查了二次函数、一次函数图象与x轴交点的求解,当y=(x+a)(x+b)=0时,x=-a 或x=-b,∵a≠b,∴函数y=(x+a)(x+b)的图象与x轴有两个交点(-a,0)、(-b,0),∴M=2.当ab≠0时,同法可得函数y=(ax+1)(bx+1)的图象与x轴有两个交点(-1a,0)、(-1b,0),此时N=2,故M=N=2;当ab=0时,∵a≠b,∴a与b只能有一个为0,不能同时为0,此时函数为一次函数,其图象与x轴有唯一的交点(-1a,0)或(-1b,0),此时N=1,故M=N+1.综上可知,M=N或M=N+1.因此本题选C.{分值}3{章节:[1-22-2]二次函数与一元二次方程}{考点:抛物线与一元二次方程的关系} }{类别:常考题} {类别:易错题} {难度:3-中等难度}{题型:2-填空题}二、填空题(本大题有6小题,每小题4分,共24分) {题目}11.(2019年杭州)因式分解:1﹣x 2= . {答案}(1﹣x )(1+x ){解析}本题考查了利用平方差公式进行因式分解,1﹣x 2=12﹣x 2=(1﹣x )(1+x ),因此本题答案为:(1﹣x )(1+x ). {分值}4{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}12.(2019年杭州)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于 . {答案}mx nym n++{解析}本题考查了加权平均数,平均数等于总和除以个数,所以平均数mx nym n+=+,因此本题答案为:mx nym n++.{分值}4{章节:[1-20-1-1]平均数}{考点:加权平均数(频数为权重)} {类别:常考题} {难度:2-简单}{题目}13.(2019年杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位).{答案}113{解析}本题考查了圆锥的侧面积的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,半径等于圆锥的母线长.设圆锥的底面半径为r ,母线长为l ,则其侧面积3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈侧,因此本题答案为113.{分值}4{章节:[1-24-4]弧长和扇形面积}{考点:圆锥侧面展开图}{类别:常考题}{难度:2-简单}{题目}14.(2019年杭州)在直角三角形ABC中,若2AB=AC,则cosC=.{答案{解析}本题考查了锐角的余弦值的计算,如图所示,分两种情况讨论,AC可以是直角边,也可以是斜边. ①当AC是斜边,设AB=x,则AC=2x,则BC,则cosBCCAC===②当AC是直角边,设AB=x,则AC=2x,则BCx,则cosACCBC====综上,cos C={分值}4{章节:[1-28-3]锐角三角函数}{考点:余弦}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题目}15.(2019年杭州)某函数满足当自变量x=1时,函数值y=0;当自变量x=0时,函数值y =1.写出一个满足条件的函数表达式.{答案}y=﹣x+1,或y=x2-2x+1,或y=-x2+1,或y=-x3+1,y=-x4+1,1y x=-等等(答案不限,合理即可).{解析}本题考查了根据条件列函数关系式,由于x、y可以取0,所以三种常见函数中不能取反比例3x2x函数,只能取一次函数或二次函数.①若取一次函数,可设其解析式为设该函数的解析式为y =kx +b , 由题知01k b b +=⎧⎨=⎩,解得11k b =-⎧⎨=⎩,所以函数的解析式为y =﹣x +1;②若取二次函数,可设其解析式为y =ax 2+bx +c ,由题知01a b c c ++=⎧⎨=⎩,可得11b ac =--⎧⎨=⎩,比如取a =1,则b =-2,函数为y =x 2-2x +1;取a =-1,则b =0,函数为y =-x 2+1等等;③若取其它函数,还可以是y =-x 3+1,y =-x 4+1,1y x =-等等.因此本题答案为:y =﹣x +1,或y =x 2-2x +1,或y =-x 2+1,或y =-x 3+1,y =-x 4+1,1y x =-等等(答案不限,合理即可).{分值}4{章节:[1-22-1-4]二次函数y =ax 2+bx +c 的图象和性质} {考点:其他二次函数综合题} {类别:发现探究} {难度:3-中等难度}{题目}16.(2019年杭州)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A ′点,D 点的对称点为D ′点.若∠FPG =90°,△A ′EP 的面积为4,△D ′PH 的面积为1,则矩形ABCD 的面积等于 .{答案}{解析}本题考查了矩形的折叠问题,涉及相似三角形的判定与性质,在矩形ABCD 中,设AB =x ,由折叠知P A ′=AB =x ,PD ′=CD =x ,A ′E =AE ,D ′H =DH ,∠A ′=∠A =90°,∠D ′=∠D =90°,∠A ′PF =∠B =90°,∠D ′PG =∠C =90°,∵∠FPG =90°,∴∠FPG+∠D ′PG =180°,∴D ′、P 、F 三点共线.∵△A ′EP 的面积为4,△D ′PH 的面积为1,∴12A ′E ·x =4,12D ′H ·x =1,∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a .由折叠知A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A '=∠D '=90°,∴△A 'EP ∽△D 'PH ,∴''''A E A P D P D H =,∴4a xx a=,∴x =2a ,∴P A ′=PD ′=2a , ∵12•a •2a =1,∴a =1(负值舍去),∴x =2,∴AB =CD =2,,A ′E =AE =4,D ′H =DH =1,∴=AD ==∴矩形ABCD 的面积=2×(因此本题答案为:{分值}4{章节:[1-27-1-1]相似三角形的判定} {考点:相似三角形的判定(两角相等)} {考点:矩形的性质} {考点:折叠问题} {类别:发现探究} {类别:常考题} {难度:4-较高难度}{题型:4-解答题}三、解答题(本大题有7个小题,共66分) {题目}17.(2019年杭州)(本题满分6分)化简:242142x x x .圆圆的解答如下: 2224214224422x x x x x x x x圆圆的解答正确吗?如果不正确,写出正确的解答.{解析}本题考查了异分母分式的加减运算,异分母分式相加减,先通分,再加减.而圆圆的做法丢失了分母,改变了原来式子的值,所以圆圆的做法是错误的. {答案}解:圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2xx =-+. {分值}6{章节:[1-15-2-2]分式的加减} {难度:2-简单}{类别:常考题}{类别:易错题}{类别:新定义} {考点:两个分式的加减}{题目}18.(2019年杭州)(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数.甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).(1)补充完整乙组数据的折线统计图;(2)①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.{解析}本题考查了统计表、折线统计图、平均数和方差,第(1)问先描点再连线即可,画出来的图形应该与前图一致;第(2)问根据平均数的简化计算公式'x x a =+容易得到结果;第(3)问根据方差的公式计算即可. {答案}解:(1)补全折线统计图,如图所示.(2)①50x x =+甲乙. ②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙 实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙 222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲,所以22S S =甲乙. {分值}{章节:[1-20-2-1]方差} {难度:3-中等难度} {类别:常考题} {考点:方差的性质}{题目}19.(2019年杭州)(本题满分8分)如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B .(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求∠B 的度数.(第19题(1)) (第19题(2)){解析}本题考查了线段的垂直平分线的性质和等腰三角形的性质.第(1)问现根据垂直平分线条件证出P A =PB ,在利用等边对等角及三角形外角的性质可证;第(2)问根据作图得出AB =BQ ,从而得到相等的角,列方程即可求解. {答案}解:(1)证明:∵点P 在AB 的垂直平分线上,∴P A =PB ,∴∠P AB =∠B ,∵∠APC =∠P AB +∠B ,∴∠APC =2∠B ;(2)根据题意,得BQ =BA ,∠BAQ =∠BQA ,设∠B =x ,则∠AQC =∠B +∠BAQ =3x ,∴∠BAQ =∠BQA =2x ,在△ABQ 中,x +2x +2x =180°, 解得x =36°,∴∠B =36°. {分值}8{章节:[1-13-2-1]等腰三角形} {难度:3-中等难度} {类别:常考题} {考点:等边对等角}{题目}20.(2019年杭州)(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时. (1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.{解析}本题考查了反比例函数的实际应用问题.第(1)问根据题意直接列式即可;第(2)问第一小问利用极端值可以确定速度的范围;第二小问可以用两种方法:一是时间相同比速度,二是速度相同比时间.{答案}解: (1)根据题意,得480vt =,所以480v t=,因为4800>,所以当120v ≤时,4t ≥, 综上,v 关于t 的函数表达式为480(4)v t t=≥; (2)①根据题意,得4.86t ≤≤,当t =4.8时,v =10;当t =6时,v =8. ∴小汽车行驶速度v 的范围是80100v ≤≤; ②方方不能在11点30分前到达B 地.理由如下: 法一:若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地; 法二:方方按最快的速度行驶,那么v =120,当v =120时,可得t =480120=4,8+4=12,∴方方最早也要12点才能到达,不能在当天11点30分前到达B 地. {分值}10{章节:[1-26-2]实际问题与反比例函数} {难度:3-中等难度} {类别:常考题}{考点:生活中的反比例函数的应用}{题目}21.(2019年杭州)(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .{解析}本题考查了在正方形条件下列一元二次方程解决问题.第(1)问设小正方形边长为未知数,根据S 1=S 2即可列方程求解;第(2)问在第一问的基础上利用勾股定理计算即可. {答案}解:(1)在正方形ABCD 和正方形CEFG 中,AD =BC =CD =1,∠BCD =90°.设CE =x (0<x <1),则DE =1-x ,因为S 1=S 2,所以x 2=1-x ,解得x 1x 2,∴CEGFE H DCBA(2)因为点H 为BC 边的中点,所以CH =12,所以HD ,因为CG =CE H ,C ,G在同一直线上,所以HG =HC +CG =12,所以HD =HG .{分值}10{章节:[1-21-4]实际问题与一元二次方程} {难度:3-中等难度} {类别:常考题}{考点:一元二次方程的应用—面积问题} {考点:正方形的性质}{题目}22.(2019年杭州)(本题满分12分)设二次函数y =(x ﹣x 1)(x ﹣x 2)(x 1,x 2是实数). (1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x=12时,y=12-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图象经过(0,m )和(1,n )两点(m ,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116. {解析}本题考查了二次函数的有关性质,重点考查了二次函数与一元二次方程的关系.第(1)问根据甲的结果求出函数解析式,再通过代入比较判断乙的结果是否正确;第(2)问注意不能再利用(1)的结论,而是要用含x 1,x 2的代数式来进行计算,算的时候抓住抛物线的轴对称性就比较方便了;第(3)问需要先用含x 1,x 2的代数式来表示出m 、n 以及mn ,然后再通过配方法变形来证出结论,难度 较大. {答案}解:(1)乙求得的结果不正确,理由如下:根据题意,知图象经过点(0,0),(1,0),所以(1)y x x =-,当12x =时,1111(1)2242y =⨯-=-≠-,所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=,当122x x x +=时,设函数有最小值M ,则212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭;(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=-- 22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象,所以211110()244x <--+≤,221110()244x <--+≤所以1016mn <≤,因为12x x ≠,所以1016mn <<.{分值}12{章节:[1-22-2]二次函数与一元二次方程} {难度:5-高难度} {类别:高度原创}{考点:抛物线与一元二次方程的关系}{题目}23.(2019年杭州)(本题满分12分)如图,已知锐角三角形ABC 内接于⊙O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°, ①求证:OD =12OA . ②当OA =1时,求△ABC 面积的最大值. (2)点E 在线段OA 上,OE =OD .连接DE ,设∠ABC =m ∠OED ,∠ACB =n ∠OED (m ,n 是正数),若∠ABC <∠ACB ,求证:m ﹣n +2=0.{解析}本题考查了垂径定理,圆周角、圆心角、弧的关系等相关圆的知识.(1)①连接OB 、OC ,将OD 与OA 的关系探究转化为OD 与OB (或OC )的关系来进行探究即可;②BC 长度为定值,要使△ABC 面积取得最大值,就要要求BC 边上的高最大,即可求解;(2)设∠OED =x ,则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx=12∠BOC =∠DOC ,而∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx ,即可求解. {答案}解:(1)①证明:如图1,连接OB ,OC ,因为OB =OC ,OD ⊥BC , 所以∠BOD =12∠BOC =12×2∠BAC =60°,∵cos ∠BOD =OD OB =12,所以OD =12OB =12OA ;②作AF ⊥BC ,垂足为点F ,所以AF ≤AD ≤AO +OD =32,等号当点A ,O ,D 在同一直线上时取到由①知,BC =2BD ,所以△ABC 的面积113222BC AF =⋅≤=,即△ABC(2)如图2,连接OC ,设∠OED =x ,则∠ABC =mx ,∠ACB =nx , 则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx=12∠BOC =∠DOC , ∵∠AOC =2∠ABC =2mx ,∴∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx , ∵OE =OD ,∴∠AOD =180°﹣2x ,即:180°+mx ﹣nx =180°﹣2x , 化简即可得:m ﹣n +2=0. {分值}12{章节:[1-24-1-4]圆周角} {难度:5-高难度} {类别:高度原创} {考点:垂径定理}{考点:圆心角、弧、弦的关系} {考点:圆周角定理}。

(精品中考卷)浙江省杭州市中考数学真题及答案

(精品中考卷)浙江省杭州市中考数学真题及答案

数 学 试题卷一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A .-8℃B .-4℃C .4℃D .8℃2.国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )A .814.12610⨯B .91.412610⨯C .81.412610⨯D .100.1412610⨯3.如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =()A .10°B .20°C .30°D .40° 4.已知a ,b ,c ,d 是实数,若a b >,c d =,则( )A .a c b d +>+B .a b c d +>+C .a c b d +>-D .a b c d +>-5.如图,CD ⊥AB 于点D ,已知∠ABC 是钝角,则()A .线段CD 是△ABC 的AC 边上的高线B .线段CD 是△ABC 的AB 边上的高线 C .线段AD 是△ABC 的BC 边上的高线D .线段AD 是△ABC 的AC 边上的高线6.照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,u ,则u =( )A .fvf v -B .f vfv- C .fvv f- D .v ffv-7.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .1032019xy= B .1032019yx =C .1019320x y -=D .1910320x y -=8.如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M9.已知二次函数2y x ax b =++(a ,b 为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x 轴的交点位于y 轴的两侧;命题④:该函数的图象的对称轴为直线1x =.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A .命题①B .命题②C .命题③D .命题④10.如图,已知△ABC 内接于半径为1的O ,BAC θ∠=(θ是锐角),则ABC △的面积的最大值为()A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+二.填空题:本大题有6个小题,每小题4分,共24分,11=_________;()22-=_________.12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_________.13.已知一次函数31y x =-与y kx =(k 是常数,0k ≠)的图象的交点坐标是(1,2),则方程组31x y kx y -=⎧⎨-=⎩的解是_________.14.某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m .EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m .则AB =_________m .15.某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示). 16.如图是以点O 为圆心,AB 为直径的圆形纸片.点C 在O 上,将该圆形纸片沿直线CO 对折,点B 落在O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则∠B =_________度;BCAD的值等于_________.三.解答题:本大题有7个小题,共66分。

1998—2019杭州市中考数学试卷含详细解答(历年真题)

1998—2019杭州市中考数学试卷含详细解答(历年真题)

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是( ) A .2019⨯+-B .2019+⨯-C .2019+-⨯D .2019++-2.(3分)在平面直角坐标系中,点(,2)A m 与点(3,)B n 关于y 轴对称,则( ) A .3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =-3.(3分)如图,P 为圆O 外一点,PA ,PB 分别切圆O 于A ,B 两点,若3PA =, 则(PB =)A .2B .3C .4D .54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( ) A .23(72)30x x +-= B .32(72)30x x +-=C .23(30)72x x +-=D .32(30)72x x +-=5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数B .中位数C .方差D .标准差6.(3分)如图,在ABC ∆中,点D ,E 分别在AB 和AC 上,//DE BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )A .AD ANAN AE=B .BD MNMN CE=C .DN NEBM MC=D .DN NEMC BM=7.(3分)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒8.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .9.(3分)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +10.(3分)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+C .M N=或1M N =+D .M N =或1M N =-二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:21x -= .12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 .13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 2cm (结果精确到个位). 14.(4分)在直角三角形ABC 中,若2AB AC =,则cos C = .15.(4分)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 .16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.19.(8分)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠. (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.20.(10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.22.(12分)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示). (3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 23.(12分)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA . (1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是( ) A .2019⨯+-B .2019+⨯-C .2019+-⨯D .2019++-【解答】解:.20198A ⨯+-=-,B .20197+⨯-=-C .20197+-⨯=-D .20196++-=-,故选:A .2.(3分)在平面直角坐标系中,点(,2)A m 与点(3,)B n 关于y 轴对称,则( ) A .3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =-【解答】解:点(,2)A m 与点(3,)B n 关于y 轴对称,3m ∴=-,2n =.故选:B .3.(3分)如图,P 为圆O 外一点,PA ,PB 分别切圆O 于A ,B 两点,若3PA =,则(PB =)A .2B .3C .4D .5【解答】解:连接OA 、OB 、OP ,PA ,PB 分别切圆O 于A ,B 两点, OA PA ∴⊥,OB PB ⊥,在Rt AOP ∆和Rt BOP ∆中,OA OBOP OP =⎧⎨=⎩, Rt AOP Rt BOP(HL)∴∆≅∆, 3PB PA ∴==,故选:B .4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( ) A .23(72)30x x +-= B .32(72)30x x +-=C .23(30)72x x +-=D .32(30)72x x +-=【解答】解:设男生有x 人,则女生(30)x -人,根据题意可得:32(30)72x x +-=.故选:D .5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数B .中位数C .方差D .标准差【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .6.(3分)如图,在ABC ∆中,点D ,E 分别在AB 和AC 上,//DE BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )A .AD ANAN AE=B .BD MNMN CE=C .DN NEBM MC=D .DN NEMC BM=【解答】解://DN BM ,ADN ABM ∴∆∆∽,∴DN ANBM AM=, //NE MC , ANE AMC ∴∆∆∽,∴NE ANMC AM=,∴DN NEBM MC=. 故选:C .7.(3分)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒【解答】解:180A B C ∠+∠+∠=︒,C A B ∠=∠+∠,2180C ∴∠=︒, 90C ∴∠=︒,ABC ∴∆是直角三角形,故选:D .8.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .【解答】解:A 、由①可知:0a >,0b >.∴直线②经过一、二、三象限,故A 正确;B 、由①可知:0a <,0b >.∴直线②经过一、二、三象限,故B 错误;C 、由①可知:0a <,0b >.∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:0a <,0b <,∴直线②经过二、三、四象限,故D 错误.故选:A .9.(3分)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +【解答】解:作AE OC ⊥于点E ,作AF OB ⊥于点F , 四边形ABCD 是矩形,90ABC ∴∠=︒,ABC AEC ∠=∠,BCO x ∠=, EAB x ∴∠=, FBA x ∴∠=, AB a =,AD b =,cos sin FO FB BO a x b x ∴=+=+,故选:D .10.(3分)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+C .M N=或1M N =+ D .M N =或1M N =-【解答】解:2()()()1y x a x b x a b x =++=+++,∴△22()4()0a b ab a b =+-=->,∴函数()()y x a x b =++的图象与x 轴有2个交点,2M ∴=,函数2(1)(1)()1y ax bx abx a b x =++=+++,∴当0ab ≠时,△22()4()0a b ab a b =+-=->,函数(1)(1)y ax bx =++的图象与x 轴有2个交点,即2N =,此时M N =;当0ab =时,不妨令0a =,a b ≠,0b ∴≠,函数(1)(1)1y ax bx bx =++=+为一次函数,与x 轴有一个交点,即1N =,此时1M N =+; 综上可知,M N =或1M N =+. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:21x -= (1)(1)x x -+ . 【解答】解:21(1)(1)x x x -=-+, 故答案为:(1)(1)x x -+.12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于mx nym n++ . 【解答】解:某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于:mx nym n++. 故答案为:mx nym n++. 13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 2cm (结果精确到个位). 【解答】解:这个冰淇淋外壳的侧面积21231236113()2cm ππ=⨯⨯⨯=≈.故答案为113.14.(4分)在直角三角形ABC 中,若2AB AC =,则cos C =或 .【解答】解:若90B ∠=︒,设AB x =,则2AC x =,所以BC =,所以cos BC C AC ==;若90A ∠=︒,设AB x =,则2AC x =,所以BC ,所以cosAC C BC ===;综上所述,cos C .. 15.(4分)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 1y x =-+ . 【解答】解:设该函数的解析式为y kx b =+,函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,∴01k b b +=⎧⎨=⎩解得:11k b =-⎧⎨=⎩,所以函数的解析式为1y x =-+, 故答案为:1y x =-+.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 2(5+ .【解答】解:四边形ABC 是矩形,AB CD ∴=,AD BC =,设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==,△A EP '的面积为4,△D PH '的面积为1,4A E D H ∴'=',设D H a '=,则4A E a '=,△A EP '∽△D PH ',∴D H PD PA EA ''='', ∴4a xx a=, 224x a ∴=,2x a ∴=或2a -(舍弃), 2PA PD a ∴'='=,1212a a =, 1a ∴=, 2x ∴=,2AB CD ∴==,PE =PH =415AD ∴=+=+,∴矩形ABCD 的面积2(5=+.故答案为2(5+三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案. 【解答】解:圆圆的解答错误, 正确解法:242142x x x ---- 42(2)(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x +-+=---+-+-+ 24244(2)(2)x x x x x ---+=-+22(2)(2)x x x x -=-+2xx =-+. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①50x x =+乙甲.②22S S =乙甲.理由:(2222221[(4850)(5250)(4750)(4950)5450) 6.85S ⎤=-+-+-+-+-=⎦甲. (2222221[(20)(20)(30)(10)40) 6.85S ⎤=--+-+--+--+-=⎦乙, 22S S ∴=乙甲.19.(8分)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠. (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.【解答】解:(1)证明:线段AB 的垂直平分线与BC 边交于点P ,PA PB ∴=, B BAP ∴∠=∠, APC B BAP ∠=∠+∠,2APC B ∴∠=∠;(2)根据题意可知BA BQ =,BAQ BQA ∴∠=∠,3AQC B ∠=∠,AQC B BAQ ∠=∠+∠, 2BQA B ∴∠=∠,180BAQ BQA B ∠+∠+∠=︒, 5180B ∴∠=︒,36B ∴∠=︒.20.(10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解答】解:(1)480vt =,且全程速度限定为不超过120千米/小时, v ∴关于t 的函数表达式为:480v t=,(04)t . (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将6t =代入480v t =得80v =;将245t =代入480v t=得100v =. ∴小汽车行驶速度v 的范围为:80100v .②方方不能在当天11点30分前到达B 地.理由如下: 8点至11点30分时间长为72小时,将72t =代入480v t =得9601207v =>千米/小时,超速了.故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.【解答】解:(1)设正方形CEFG 的边长为a , 正方形ABCD 的边长为1,1DE a ∴=-,12S S =,21(1)a a ∴=⨯-,解得,112a =(舍去),212a ,即线段CE 12-; (2)证明:点H 为BC 边的中点,1BC =,0.5CH ∴=,25052DH ∴=,0.5CH =,12CG =-,HG ∴=HD HG ∴=.22.(12分)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示). (3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 【解答】解:(1)当0x =时,0y =;当1x =时,0y =;∴二次函数经过点(0,0),(1,0),10x ∴=,21x =,2(1)y x x x x ∴==-=-,当12x =时,14y =-, ∴乙说点的不对;(2)对称轴为122x x x +=, 当122x x x +=时,212()4x x y -=-是函数的最小值;(3)二次函数的图象经过(0,)m 和(1,)n 两点, 12m x x ∴=,12121n x x x x =--+,22121111[()][()]2424mn x x ∴=--+--+1201x x <<<,211110()244x ∴--+,221110()244x --+, 1016mn ∴<<. 23.(12分)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA . (1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.【解答】解:(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒, 30OBC ∴∠=︒,1122OD OB OA ∴==;②BC 长度为定值,ABC ∴∆面积的最大值,要求BC 边上的高最大,当AD 过点O 时,AD 最大,即:32AD AO OD =+=,ABC ∆面积的最大值1132sin 60222BC AD OB =⨯⨯=⨯︒⨯=; (2)如图2,连接OC ,设:OED x ∠=,则ABC mx ∠=,ACB nx ∠=,则11801802BAC ABC ACB mx nx BOC DOC ∠=︒-∠-∠=︒--=∠=∠,22AOC ABC mx ∠=∠=,1802180AOD COD AOC mx nx mx mx nx ∴∠=∠+∠=︒--+=︒+-, OE OD =,1802AOD x ∴∠=︒-,即:1801802mx nx x ︒+-=︒-, 化简得:20m n -+=.2018年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。

数学中考仿真模拟试题word版含答案

数学中考仿真模拟试题word版含答案

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分120分,考试时间100分钟.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣52.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=34.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣85.下列图形中,不是正方体表面展开图的是()A .B .C .D .6.如图,在Rt △A B C 中,∠C =90°,A B =4,A C =3,则sin B =( )A .35B .45C .34D .√747.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =238.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0B .k <0,B >0C .k >0,B <0D .k >0,B >09.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是( )A .100°B .105°C .110°D .120°10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103二、填空题(每小题3分,共18分)在实数范围内有意义,则x的取值范围是.11.若式子√x−112.因式分解:y3﹣4y2+4y=.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.15.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.18.(4分)已知:如图,Rt△A B C 中,∠C =90°,M是A B 的中点,A N=1A B ,A N∥C M.2求证:MN=A C .19.(6分)先化简(1﹣xx−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥30),一周的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E (要求:尺规作图,保留作图痕迹,不写作法,要下结论); (2)在A D 边上截取A F =A B ,连接EF ,若A B =3,∠B =60°,求四边形A B EF 的面积.23.(10分)如图,直线y=x+B 与双曲线y=k(x>0)的交点为A (1,A ),与x轴的交点为B (﹣1,0),点C 为双曲x(x>0)上的一点.线y=kx(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.24.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 为AB上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 恰好是CD中点,求证:C E2=B E•B A ;是否为定值,如(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A BMN 果是,请求出这个值,如果不是,请说明理由.25.(12分)在平面直角坐标系中,点A 是抛物线y=﹣1x2+mx+2m+2与y轴的交点,点B 在该抛物线上,该抛2物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G.设点B 的横坐标为2m﹣1.(1)当m=1时,①当函数y的值随x的增大而增大时,自变量x的取值范围为.②求图象G最高点的坐标.(2)当m<0时,若图象G与x轴只有一个交点,求m的取值范围.(3)设图象G最高点与最低点的纵坐标之差为h,求h与m之间对应的函数关系式.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣5【答案】C【解答】解:与15为倒数的数为:5.故选:C .2.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .【答案】A【解答】解:A 、既是中心对称图形,又是轴对称图形,故本选项符合题意;B 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;D 、是中心对称图形,不是轴对称图形,故本选项不合题意.故选:A .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=3【答案】B【解答】解:A 、√2+√3,无法计算,故此选项错误;B 、√4×2=2√2,故此选项正确;C 、√6+2,无法计算,故此选项错误;D 、3√2﹣√2=2√2,故此选项错误;故选:B .4.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣8【答案】B【解答】解:0.000000125=1.25×10﹣7,故选:B .5.下列图形中,不是正方体表面展开图的是()A .B .C .D .【答案】C【解答】解:根据正方体的展开图的11种情况可得,C 选项中的图形不是它的展开图.故选:C .6.如图,在Rt△A B C 中,∠C =90°,A B =4,A C =3,则sin B =()A .35B .45C .34D .√74【答案】C【解答】解:∵在Rt △A B C 中,∠C =90°,A B =4,A C =3, ∴sin B =,故选:C .7.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =23【答案】C【解答】解:图2所示的算筹图我们可以表述为:{3x +2y =19x +4y =23.故选:C .8.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0 B .k <0,B >0C .k >0,B <0D .k >0,B >0【答案】D【解答】解:此题可通过观察图象求解,如图所示,(1)y =﹣x 只有向上平移时,图象才会经过第一象限,即B >0;(2)y =kx ﹣4(k ≠0),①k <0时,图象不经过第一象限,不合题意,②k >0时,图象经过第一象限,和y =﹣x +B 的交点在第一象限,符合题意.故选:D .9.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是()A .100°B .105°C .110°D .120°【答案】B【解答】解:过O 分别作OE ⊥A B 于E ,OF ⊥B C 于F ,连接OB ,则A E =B E =12A B =√22,B F =C F =12B C =√32,OB =1∴C os ∠OB E =OE OB =√32,C os ∠OB F =√32,∴∠OB E =45°,∠OB F =30°,∴∠A B C =∠OB E +∠OB F =75°,∵四边形A B C D 内接于⊙O ,∴∠A D C +∠A B C =180°,∴∠A D C =180°﹣75°=105°,故选:B .10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103【答案】B【解答】解:∵A +B =2,C ﹣3A =4,∴B =2﹣A ,C =3A +4,∵B ,C 都是非负数,∴{2−A ≥0①3A +4≥0②,解不等式①得,A ≤2,解不等式②得,A ≥﹣43,∴﹣43≤A ≤2,又∵A 是非负数,∴0≤A ≤2,S=A 2+B +C =A 2+(2﹣A )+3A +4, =A 2+2A +6,∴对称轴为直线A =﹣22×1=﹣1, ∴A =0时,最小值n=6,A =2时,最大值m=22+2×2+6=14, ∴m﹣n=14﹣6=8.故选:B .二、填空题(每小题3分,共18分)11.若式子在实数范围内有意义,则x的取值范围是.√x−1【答案】x>1【解答】解:根据题意得:x﹣1>0,解得:x>1,故答案为:x>1.12.因式分解:y3﹣4y2+4y=.【答案】y(y﹣2)2【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2.故答案为:y(y﹣2)2.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.【答案】56【解答】解:∵A B ∥C D ,∴∠A B E+∠B EC =180°,∵∠A B E=146°,∴∠B EC =180°﹣146°=34°,∵FE⊥C D ,∴∠C EF=90°,∴∠FEB =∠C EF﹣∠B EC =90°﹣34°=56°.故答案为:56.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.【答案】A ≥﹣43【解答】解:∵关于x的一元二次方程x2+4x﹣3A =0有实数根,∴△≥0,即42﹣4×(﹣3A )≥0,.解得A ≥﹣43故答案为:A ≥﹣4.315.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.【答案】20【解答】解:根据题意得6=0.3,m解得:m=20,经检验:m=20是分式方程的解,故答案为:20.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.【答案】①②③④【解答】解:在正方形A B C D 中,C D =B C ,∠B C D =90°,∴∠B C N +∠D C N =90°,又∵C N ⊥D M ,∴∠C D M +∠D C N =90°,∴∠B C N =∠C D M ,又∵∠C B N =∠D C M =90°,∴△C NB ≌△D MC (A SA ),故①正确;∵△C NB ≌△D MC ,∴C M =B N ,又∵∠OC M =∠OB N =45°,OC =OB ,∴△OC M ≌△OB N (SA S ),∴OM =ON ,∠C OM =∠B ON ,∴∠D OC +∠C OM =∠C OB +∠B PN ,即∠D OM =∠C ON ,又∵D O =C O ,∴△C ON ≌△D OM (SA S ),故②正确;∵∠B ON +∠B OM =∠C OM +∠B OM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△A OD 是等腰直角三角形,∴△OMN ∽△OA D ,故③正确;∵A B =B C ,C M =B N ,∴B M =A N ,又∵Rt △B MN 中,B M 2+B N 2=MN 2,∴A N 2+C M 2=MN 2,故④正确;∵△OC M ≌△OB N ,∴四边形B MON 的面积=△B OC 的面积=1,即四边形B MON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设B N =x =C M ,则B M =2﹣x ,∴△MNB 的面积=12x (2﹣x )=﹣12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1﹣12=12,故⑤错误,故答案为①②③④.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.【解答】解:原式=1+4﹣2×14=1+4﹣12 =92.18.(4分)已知:如图,Rt △A B C 中,∠C =90°,M 是A B 的中点,A N =12A B ,A N ∥C M . 求证:MN =A C .【解答】证明:在Rt △A B C 中,∠C =90°,∵M 是A B 的中点,∴C M =12A B , ∵A N =12A B ,∴C M =A N ,∵A N ∥C M ,∴四边形A C MN 是平行四边形.∴MN =A C .19.(6分)先化简(1﹣x x−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.【解答】解:原式=x−1−x x−1·(x+1)(x−1)(x−2)2 =−1x−1·(x+1)(x−1)(x−2)2 =﹣x+1(x−2)2,∵x ﹣1≤2,且x≠1,2,∴x ≤3,把x =3代入上式得,原式=﹣x+1(x−2)2=3+112=-4.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?【解答】解:(1)在这次评价中,共抽查的学生有:224÷40%=560(名).故答案为:560;(2)选择“讲解题目”的人数为:560-84-168-224=84(人),讲解题目组所在扇形的圆心角的大小是:360°×84560=54°.故答案为:54°;(3)168560×12000=3600(人),答:在试卷讲评课中,“独立思考”的学生约有3600人.21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y 件.(1)直接写出y与x的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?【解答】(1)依题意得:y=500-10(x-30)=-10x+800(x≥30).(2)依题意得:(x-20)(-10x+800)=8000,整理得:x2-100x+2400=0,解得:x1=40,x2=60.当x=40时,20(-10x+800)=8000(元),8000>5000,不合题意,舍去;当x=60时,20(-10x+800)=4000(元),4000<5000,符合题意.答:销售单价应定为60元.22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E(要求:尺规作图,保留作图痕迹,不写作法,要下结论);(2)在A D 边上截取A F=A B ,连接EF,若A B =3,∠B =60°,求四边形A B EF的面积.【解答】解:(1)如图,A E即为所求;(2)在平行四边形A B C D 中,A D ∥B C ,∴∠D A E=∠A EB ,由(1)知:A E平分∠B A D ,∴∠D A E=∠B A E,∴∠A EB =∠B A E,∴A B =EB ,∵A B =A F,∴A F =B E ,∴A F ∥B E ,∴四边形A B EF 是平行四边形,∵A B =A F ,∴▱A B EF 是菱形,作A H ⊥B E 于点H ,∵A B =B E =3,∠B =60°,∴A H =3√32, ∴四边形A B EF 的面积为:B E ×A H =3×3√32=9√32.23.(10分)如图,直线y =x +B 与双曲线y =k x (x >0)的交点为A (1,A ),与x 轴的交点为B (﹣1,0),点C 为双曲线y =k x (x >0)上的一点.(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.【解答】解:(1)∵直线A B 过点B (﹣1,0),∴﹣1+B =0,解得:B =1,∴直线A B 的表达式为y =x +1.∵点A (1,A )在直线A B 上,∴A =1+1=2,∴点A 的坐标为(1,2).又∵双曲线y =k x (x >0)过点A (1,2),∴k =1×2=2,∴反比例函数的表达式为y =2x (x >0). (2)在图1中,过点C 作C D ⊥x 轴于点D ,过点O 作OE ⊥A B 于点E ,设直线A B 与y 轴交于点M . ∵直线A B 的表达式为y =x +1,OC ∥A B ,∴直线OC 的表达式为y =x .联立两函数表达式成方程组,{y =x y =2x,解得:{x =√2y =√2或{x =−√2y =−√2(不合题意,舍去), ∴点C 的坐标为(√2,√2),∴OD =C D =√2,∴OC =√OD 2+C D 2=2.当x =0时,y =0+1=1,∴点M 的坐标为(0,1),∴OM =OB =1,∴△B OM 为等腰直角三角形,∴OE =12B M =12√OB 2+OM 2=√22, ∴S △A OC =12OC •OE =12×2×√22=√22.(3)在图1中,过点A 作A F ⊥x 轴于点F ,则B F =1﹣(﹣1)=2,A F =2,∴A B =√B F 2+A F 2=2√2,∴A E =A B ﹣B E =2√2﹣√22=3√22, ∴tA n ∠OA E =OE A E =13.∵OB =OM ,∠B OM =90°,∴∠A B O =45°.在图2中,过点C 作C N ⊥x 轴于点N .∵∠A ON =∠A B O +∠B A O ,∠A OC =∠A B O =45°,∠A ON =∠A OC +∠C ON ,∴∠C ON =∠B A O ,∴tA n ∠C ON =13.设点C 的坐标为(m,1m),3∵点C 在反比例函数y=2(x>0)的图象上,x∴m×1m=2,3∴m=√6或m=﹣√6(舍去),).∴点C 的坐标为(√6,√6324.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 中点,求证:C E2=B E•B A ;(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A B是否为定值,如MN 果是,请求出这个值,如果不是,请说明理由.【解答】解:(1)∵=,∴∠C A B =∠C D B =40°,∵∠A B C +∠A C B +∠C A B =180°,∠A B C =∠A C B =α,∴α=12×(180°−40°)=70°;(2)证明:∵点B 的中点,∴=,∴∠D C B =∠A ,∵∠A B C =∠C B E,∴△B C E∽△B A C ,∴B CB A =B EB C,∴B C 2=B E•B A ,∵∠A C B =∠A C D +∠B C D ,∠B EC =∠A C D +∠A ,∠B C D =∠A ,∴∠A B C =∠A C B =∠B EC ,∴C B =C E,∴C E2=B E•B A ;(3)是定值.∵将C D 分别沿B C 、A C 翻折得到C M、C N,∴∠D C N=2∠D C A ,∠D C M=2∠D C B ,C N=C D =C M=2r,∴∠MC N=2∠A C B =2α,过点C 作C Q⊥MN于点Q,则MN=2NQ,∠NC Q=12∠MC N=α,∠C QN=90°,连接A O并延长交⊙O于点P,连接B P,则∠A B P=90°,,∴∠P=∠A C B =∠NC Q=α,∵A P=C N,∠A B P=90°=∠NQC ,∴△A B P ≌△NQC (A A S ),∴A B =NQ =12MN ,∴A B MN =12,A B MN 为定值.25.(12分)在平面直角坐标系中,点A 是抛物线y =﹣12x 2+mx +2m +2与y 轴的交点,点B 在该抛物线上,该抛物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G .设点B 的横坐标为2m ﹣1.(1)当m =1时,①当函数y 的值随x 的增大而增大时,自变量x 的取值范围为 .②求图象G 最高点的坐标.(2)当m <0时,若图象G 与x 轴只有一个交点,求m 的取值范围.(3)设图象G 最高点与最低点的纵坐标之差为h ,求h 与m 之间对应的函数关系式.【解答】解:(1)①当m =1时,抛物线的表达式为y =﹣12x 2+x +2, ∵-12<0,故抛物线开口向下,当函数y 的值随x 的增大而增大时,则图象在对称轴的左侧,即x ≤1,故答案为x ≤1;②函数的对称轴为x =1,当x =1时,y =﹣12x 2+x +2=92, 即点G 的坐标为(1,92);(2)当x =2m ﹣1时,y =﹣12x 2+mx +2m +2=3m +32,则点B 的坐标为(2m ﹣1,3m +32), 同理,点A 的坐标为(0,2m +2),∵m <0,则y B ﹣y A =3m +32﹣2m ﹣2=m ﹣12<0,即点A 在点B 的上方,故当y A >0且y B ≤0时,符合题意,即2m +2>0且3m +32≤0, 解得﹣1<m ≤﹣12;(3)设抛物线的顶点为H ,则点H (m ,12m 2+2m +2),由抛物线的表达式知,点A 、B 的坐标分别为(0,2m +2)、(2m ﹣1,3m +32), ①当m ≤0时,由(2)知,y B <y A ,而y H ﹣y A =12m 2+2m +2﹣2m ﹣2≥0,故图象G 的H 点和B 点分别是最高和最低点,则h =y H ﹣y B =12m 2+2m +2﹣3m ﹣32=12m 2﹣m +12;②当0<m ≤12时,此时点A 、B 分别是G 的最高和最低点,则h =y A ﹣y B =(2m +2)﹣(3m +32)=﹣m +12;③当12<m ≤1时,此时点B 、A 分别是G 的最高和最低点,则h =y B ﹣y A =m ﹣12;④当m >1时,此时点H 、A 分别是G 的最高和最低点,则h =y H ﹣y A =12m 2;∴h ={12m 2−m +12(m ≤0)−m +12(0<m ≤12)m −12(12<m ≤1)12m 2(m >1)。

2019年中考数学试卷(word版,含答案) (18)

2019年中考数学试卷(word版,含答案) (18)

2019年初中毕业升学考试数 学 试 题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是A .﹣5B .5C .15-D .152.函数y 中的自变量x 的取值范围是 A .x ≠12 B .x ≥1 C .x >12 D .x ≥123.分解因式224x y -的结果是A .(4)(4)x y x y +-B .4()()x y x y +-C .(2)(2)x y x y +-D .2()()x y x y +- 4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A .66,62 B .66,66 C .67,62 D .67,66 5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 A .长方体 B .四棱锥 C .三棱锥 D .圆锥 6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 8.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50° 9.如图,已知A 为反比例函数ky x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为A .2B .﹣2C .4D .﹣4 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 A .10 B .9 C .8 D .7第8题 第9题 第16题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.49的平方根为 .12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次. 13.计算:2(3)a += .14.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).15.已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm . 16.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式30kx b ->的解集为 .第17题 第18题17.如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙Oxy O-6OOB CABE Fxy-6OABBCHGB的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 .18.如图,在△ABC 中,AB =AC =5,BC=D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅. 20.(本题满分8分)解方程:(1)0522=--x x ; (2)1421+=-x x . 21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ; (2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程) 23.(本题满分6分)B《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级. 24.(本题满分8分)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.25.(本题满分8分)不及格“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y (km)与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x (km)与出发时间t (h)之间的函数关系式如图2中折线段CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.26.(本题满分10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A 为圆O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F ;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH .27.(本题满分10分)CBBAA D已知二次函数42-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.28.(本题满分10分)如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB′,设点P 的运动时间为t (s).(1)若AB=2,当点B′落在AC 上时,显然△PAB′是直角三角形,求此时t 的值;②是否存在异于图2的时刻,使得△PC B′是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB′与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM =45°成立,试探究:对于t >3的任意时刻,结论∠PAM =45°是否总是成立?请说明理由.参考答案1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.B 9.D 10.B 11.23±12.7210´ 13.269a a ++ 14.2y x =(答案不唯一) 15.3 16.x <2 17.25 18.8 19.(1)【解答】解:原式=4 (2)【解答】解:原式=6a 20.(1)【解答】解:61,6121-=+=x x ; (2)【解答】解:3=x ,经检验3=x 是方程的解 21.(1) 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC 22. (1)12(2)开始2112121211221221ììïïïïíïïïïîïïìïïïïíïïïïîïíìïïïïïíïïïïîïïìïïïïíïïïïîî红红黑黑红红黑黑红黑红黑红黑红黑 共有等可能事件12种 其中符合题目要求获得2份奖品的事件有2种所以概率P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数 所以n=50即优秀的学生有52%×50÷10%=260 人 24.(1) 作MN BO ,由垂径定理得N 为OB 中点 MN=12OA ∵MN=3∴OA=6,即A (-6,0) ∵sin ∠ABO=2,OA=6 ∴OB= 即B (0,设y kx b =+,将A 、B带入得到3y x =+(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为221=434S =--π((π25.(1)()()=36 2.25=16/=361-16=20/V km h V km h ÷÷小丽小明(2)93620=5914416=)559144,55km E ÷⨯⎛⎫⇒ ⎪⎝⎭(h )(实际意义为小明到达甲地26.(1)连结AE 并延长交圆E 于点C ,作AC 的中垂线交圆于点B ,D ,四边形ABCD 即为所求(2)①法一:连结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F , F 即为所求法二:连结AC,BD 交于点OEACB连结EO 并延长交AB 于点G 连结GC,BE 交于点M连结OM 并延长交CB 于点F ,F 即为所求②27.(1) 令x=0,则4-=y ,∴C (0,-4) ∵ OA <OB ,∴对称轴在y 轴右侧,即02 ab- ∵a >0,∴b <0 (2)①过点D 作DM ⊥oy ,则21===CO MC OA DM CA DC , ∴AO DM 21=设A (-2m ,0)m >0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D (m ,-6),B (4m ,0) A 型相似可得OBBNOE DN = EDACBCAB∴OE=884421BEF △=⨯⨯=m S∴1=m∴A (-2,0),B (4,0) 设)4)(2(-+=x x a y 即a ax ax y 822--= 令x=0,则y=-8a ∴C (0,-8a ) ∴-8a=-4,a=21 ∴4212--=x x y ②易知:B (4m ,0)C (0,-4)D (m ,-6),通过分析可得∠CBD 一定为锐角 计算可得2222221616,4,936CB m CD m DB m =+=+=+ 1°当∠CDB 为锐角时,222CD DB CB +>22249361616m m m ++++>,解得2m 2-<<2°当∠BCD 为锐角时,222CD CB DB +>22241616936m m m ++++>,解得m m <m 2<,m 42<∴4OA < 28.(1)①勾股求的 易证'CBA CB P △∽△,''4B P =解得②1°如图,当∠PCB ’=90 °时,在△PCB ’中采用勾股得:222(3)t t +-=,解得t=22°如图,当∠PCB ’=90 °时,在△PCB’中采用勾股得:222(3)t t +-=,解得t=63ABP ’为正方形,解得(2)如图3-t tB'B'CBAADPD3B'CA BD∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB ’M (AAS ) ∴AD=AB ’=AB即四边形ABCD 是正方形 如图,设∠APB=x∴∠PAB=90°-x ∴∠DAP=x易证△MDA ≌△B ’AM (HL ) ∴∠BAM=∠DAM ∵翻折∴∠PAB=∠PAB ’=90°-x∴∠DAB ’=∠PAB ’-∠DAP=90°-2x ∴∠DAM=21∠DAB ’=45°-x ∴∠MAP=∠DAM+∠PAD=45°MA DP4321MB'BCB'A D PP。

初中数学中考复习 2019年浙江省杭州市江干区实验中学中考数学三模试卷(含解析)

初中数学中考复习 2019年浙江省杭州市江干区实验中学中考数学三模试卷(含解析)

2019年浙江省杭州市江干区实验中学中考数学三模试卷一.选择题(满分30分,每小题3分)1.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④2.已知实数a,b在数轴上的位置如图所示,下列结论正确的是()A.|a|<1<|b| B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣1 3.如图,已知扇形AOB的半径为10公分,圆心角为54°,则此扇形面积为多少平方公分?()A.100πB.20πC.15πD.5π4.新阜宁大桥某一周的日均车流量分别为13,14,11,10,12,12,15(单位:千辆),则这组数据的中位数与众数分别为()A.10,12 B.12,10 C.12,12 D.13,125.将(x+2y)2﹣(x﹣2y)2分解因式的结果是()A.﹣8x2B.﹣8x(x﹣2y)C.16(x+y)D.8xy6.如图,△ABC的内切圆与三边分别切于点D,E,F,下列结论正确的是()A.∠EDF=∠B B.2∠EDF=∠A+∠CC.2∠A=∠FED+∠EDF D.∠AED+∠BFE+∠CDF>180°7.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm28.一件夹克衫标价500元,以8折出售,仍获利10%,求这件夹克的成本是多少元?设这件夹克的成本是x元,根据题意列方程,下列方程正确的是()A.(500﹣x)×80%=10%x B.500×80%﹣x=10%xC.500×80%﹣x=500×10% D.(500﹣x)×80%=500×10%9.下列命题中是假命题的是()A.两点的所有连线中,线段最短B.两条直线被第三条直线所截,同位角相等C.等式两边加同一个数,结果仍相等D.不等式两边加同一个数,不等号的方向不变10.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C.4 D.6二.填空题(满分24分,每小题4分)11.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.12.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.13.张明随机抽查了学校七年级63名学生的身高(单位:cm),他准备绘制频数分布直方图,这些数据中最大值是185,最小值是147,若以4为组距(每组两个端点之间的距离叫做组距),则这些数据可分成组.14.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到4张扑克牌如图②所示,他很快确定了哪一张牌被旋转后,被旋转过的一张牌是.15.已知一次函数y=kx﹣4(k≠0),y随x的增大而减小,则k0.16.△ABC在平面直角坐标系中的位置如图.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标.三.解答题17.(6分)计算:.18.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.19.(8分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC 的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.20.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD 上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.22.(12分)已知二次函数y=x2+2bx+c(1)若b=c,是否存在实数x,使得相应的y的值为1?请说明理由;(2)若b=c﹣2,y在﹣2≤x≤2上的最小值是﹣3,求b的值.23.(12分)问题发现.(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD 的最小值为.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC 边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.参考答案一.选择题1.解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C.2.解:∵﹣1<a<0,1<b<2,∴|a|<1<|b|,∴选项A正确;∵﹣a<1,∴选项B不正确;∵|a|<1,∴选项C不正确;∵a>﹣1,∴选项D不正确.故选:A.3.解:∵扇形AOB的半径为10公分,圆心角为54°,==15π(平方公分),∴S扇形AOB故选:C.4.解:将数据重新排列为10、11、12、12、13、14、15,所以这组数据的中位数为12、众数为12,故选:C.5.解:原式=[(x+2y)+(x﹣2y)][(x+2y)﹣(x﹣2y)],=2x•4y,=8xy,故选:D.6.解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD=70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故A、C不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故B正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故D不正确.故选:B.7.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(A SA),∴AP=PE,∴S△ABP =S△EBP,S△ACP=S△ECP,∴S△PBC =S△ABC=×9cm2=4.5cm2,故选:C.8.解:由题意得:500×80%﹣x=10%x;故选:B.9.解:A、两点的所有连线中,线段最短,是真命题;B、两条平行线被第三条直线所截,同位角相等,是假命题;C、等式两边加同一个数,结果仍相等,是真命题;D、不等式两边加同一个数,不等号的方向不变,是真命题;故选:B.10.解:如图,过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE﹣OD=,∴AE=DE=,∴OA=OE+AE=,=OA•BD=××2x=3.∴S△OAB故选:B.二.填空题11.解:4的算术平方根为:=2,则2的算术平方根为:.故答案为:.12.解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.13.解:∵这组数据的极差为185﹣147=38,∴这些数据可分的组数为38÷4=9.5≈10(组),故答案为:10.14.解:因为牌中只有方块4是中心对称图形,所以旋转180度后,还是原来的样子.故答案是:方块4.15.解:∵一次函数y=kx﹣4(k≠0),y随x的增大而减小,∴k<0,故答案为:<.16.解:(1)如图所示,△A1B1C1即为所求,由图知点C1的坐标(3,﹣2),故答案为:(3,﹣2);(2)如图所示,点D即为所求,点D的坐标为(0,2).故答案为:(0,2).三.解答题17.解:原式======18.解:(1)70到80分的人数为50﹣(4+8+15+12)=11人,补全频数分布直方图如下:(2)本次测试的优秀率是×100%=54%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BC、BD、CD,所以小明与小强同时被选中的概率为.19.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A,∠ADC=90°.∵E是AC的中点,∴DE=AE=CE,∴∠ADE=∠A,∴∠BCD=∠ADE.又∠ADE=∠FDB,∴∠FCD=∠FDB.∵∠CFD=∠DFB,∴△CFD∽△DFB,∴DF2=BF•CF.(2)∵AE•AC=AG•AD,∴=.∵∠A=∠A,∴△AEG∽△ADC,∴EG∥BC,∴△EGD∽△FBD,∴=.由(1)知:△CFD∽△DFB,∴=,∴=,∴EG•CF=ED•DF.20.解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.21.解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.22.解:(1)由y=1得x2+2bx+c=1,∴x2+2bx+c﹣1=0∵△=4b2﹣4b+4=(2b﹣1)2+3>0,则存在两个实数,使得相应的y=1;(2)由b=c﹣2,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=﹣b,①当x=﹣b≤﹣2时,则有抛物线在x=﹣2时取最小值为﹣3,此时﹣3=(﹣2)2+2×(﹣2)b+b+2,解得b=3;②当x=﹣b≥2时,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2,解得b=﹣,不合题意,舍去,=③当﹣2<﹣b<2时,则=﹣3,化简得:b2﹣b﹣5=0,解得:b1=.(不合题意,舍去),b2综上:b=3或.23.解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵AC×BC=AB×CD,∴CD ==,故答案为; (2)如图②,作出点C 关于BD 的对称点E , 过点E 作E N ⊥BC 于N ,交BD 于M ,连接CM ,此时CM +MN =EN 最小; ∵四边形ABCD 是矩形,∴∠BCD =90°,CD =AB =3,根据勾股定理得,BD =5,∵CE ⊥BC ,∴BD ×CF =BC ×CD ,∴CF ==,由对称得,CE =2CF =,在Rt △BCF 中,cos ∠BCF ==,∴sin ∠BCF =,在Rt △CEN 中,EN =CE sin ∠BCE ==; 即:CM +MN 的最小值为;(3)如图3,∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5, ∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为h ,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×h =×4×3+×5×h =h +6, ∴要四边形AGCD 的面积最小,即:h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点, ∴EG ⊥AC 时,h 最小,由折叠知∠EGF =∠ABC =90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=2,sin∠BAC==,∴EH=AE=,∴h=EH﹣EG=﹣1=,=h+6=×+6=,∴S四边形AGCD最小过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴,∴,∴CF=1∴BF=BC﹣CF=4﹣1=3.。

2019浙江杭州中考数学解析

2019浙江杭州中考数学解析

2019年浙江省杭州市初中毕业、升学考试数学一、选择题:本大题有10个小题,每小题3分,共30分.在每小题綸出的四个迭项中,只有一项是符合题目要求的.1.(2019浙江省杭州市,1,3分)计算下列各式,值最小的是【】A.2×0+1-9 B.2+0×1-9 C.2+0-1×9 D.2+0+1-92.(2019浙江省杭州市,2,3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y 轴对称,则【】A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=33.(2019浙江省杭州市,3,3分)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,若PA=3,则PB= 【】A.2 B.3 C.4 D.54.(2019浙江省杭州市,4,3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树.设男生有x人,则【】A.2x+3(72-x)=30B.3x+2(72-x)=30C.2x+3(30-x)=72D.3x+2(30-x)=725.(2019浙江省杭州市,5,3分)点点同学对数据26,36,36,46,5█,52进行统计分析.发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是【】A.平均数B.中位数C.方差D.标准差6.(2019浙江省杭州市,6,3分)如图,在△ABC中,点D,E分别在AB和AC边上,DE ∥BC,M为BC边上一点(不与点B,C重合)连接AM交DE干点N,则【】A.AD ANAN AE= B.BD MNMN CE= C.DN NEBM MC= D.DN NEMC BM=B7.(2019浙江省杭州市,7,3分)在△ABC中,若一个内角等于另两个内角的差,则【】A.必有一个内角等干30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(2019浙江省杭州市,8,3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y 2的图象可能是【 】xy1Oxy1Oxy1Oxy1OA B C D9. (2019浙江省杭州市,9,3分)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于【 】 A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx10.(2019浙江省杭州市,10,3分)在平面直角坐标系中,已知a ≠b ,设函数y=(x+a )(x+b )的图象与x 轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x 轴有N 个交点,则【 】A .M=N-1或M=N+1B .M=n-1或M=N+2C .M=N 或M=N+1D .M=N 或M=N-1二、填空题:本大题有6个小题,每小题4分,共24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年杭州市中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求) 1.计算下列各式,值最小的是 ( ) A .20+19 B .2019 C .2019 D .2019 2.在平面直角坐标系中,点,2A m 与点3,b n 关于y 轴对称,则 ( ) A . 3m ,2n B .3m ,2n C .2m ,3n D .2m ,3n 3.如图,P 为O 外一点,P A 、PB 分别切O 于A 、B 两点,若3PA ,则PB ( ) A .2 B .3 C .4 D .5 4.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xC .233072x xD .323072x x5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是 ( ) A .平均数 B .中位数 C .方差 D .标准差6.如图ABC △中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则 ( ) A .AD AN ANAE B .BDMN MNCE C .DNNE BMMC D .DNNEMC BM第3题图 第6题图 第9题图7.在ABC △中,若一个内角等于另外两个角的差,则 ( ) A .必有一个角等于30 B . 必有一个角等于45 C . 必有一个角等于60 D . 必有一个角等于90 8.已知一次函数2y ax b 和2y bx a ,函数1y 和2y 的图像可能是 ( )A .B .C .D .9.如图,一块矩形木板ABCD 斜靠在墙边,(OC OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠x BCO .则点A 到OC 的距离等于 ( ) A . sin sin a x b x B .cos cos a x b x C .sin cos a x b x D .cos sin a x b x OBAPE N MD CBA10.在平面直角坐标系中,已知a b ,设函数y x a x b 的图像与x 轴有M 个交点,函数11y ax bx 的图像与x 轴有N 个交点,则 ( )A . 1M N 或1M NB . 1M N 或2M NC . M N 或1M ND . M N 或1M N二、填空题(本大题有6小题,每小题4分,共24分)11.因式分解:21x .12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于 .13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于 2cm (计算结果精确到个位).14.在直角三角形ABC 中,若2AB AC ,则cos C .15.某函数满足当自变量1x 时,函数值0y ;当自变量0x 时,函数值1y ,写出一个满足条件的函数表达式 .16.如图,把矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,点A 的对称点为A ,点D 的对称点为D ,若90FPG ,A EP △的面积为4,D PH △的面积为1,则矩形的面积等于 .三、解答题(本大题有7个小题,共66分) 17.(本题满分6分)化简:242142xx x圆圆的解答如下: 2224214224422x x x x x x x x圆圆的解答正确吗?如果不正确,写出正确答案. D 1A 1G PFECDB A第16题H18.(本题满分8分)称重五筐水果的重量,若每筐以50千克为基准,超过部分的千克记为正数,不足基准部分的千克记为负数,甲组为实际称重读数,乙组为记录数据,并把实际所得的数据整理形成以下统计表和未完成的统计图(单位:千克)⑴补充完整乙组数据的折线统计图;⑵①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的方差分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.19.(本题满分8分)如图,在ABC △中,AC AB BC .⑴已知线段AB 的垂直平分线与BC 边交于点P 连结AP ,求证:2APC B ;⑵以点B 为圆心,线段AB 为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ,求B 的度数.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行使到B 地,行驶里程为480千米,设小汽车的行使时间为t (单位:小时),行使速度为v (单位:千米/小时),且全程速度不超过120千米/小时. ⑴求v 关于t 的函数表达式; ⑵方方上午8点驾驶小汽车从A 出发.①方方需要当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行使速度v 的范围. ②方方能否在当天11点30分前到达B 地?说明理由. 实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号PCBAQABC21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在CD边上,点G 在BC 延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S .⑴求线段CE 的长;⑵若点H 为BC 的中点,连结HD ,求证:HD HG .22.(本题满分12分)设二次函数12yx x x x (1x 、2x 是实数).⑴甲求得当0x 时,0y ;当1x 时,0y ,乙求得当12x 时,12y .若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;⑵写出二次函数的对称轴,并求出该函数的最小值,(用含1x 、2x 的代数式表示); ⑶已知二次函数的图像经过0,m ,1,n 两点(m 、n 是实数),当1201x x 时,求证:1016mn.23.(本题满分12分)如图,锐角ABC △内接于⊙O (AB AC ), OD BC 于点D ,连结AO .⑴若60BAC .①求证:12OD OA ;②当1OA 时,求ABC △面积的最大值;⑵点E 是OA 上一点,且OE OD ,记ABC m OED ,ACB n OED (m 、n 是正数),若ABC ACB ,求证:20m nGFE H DCBA数学参考答案一.选择题:本大题有10个小题,每小题3分,共30分. 题号 1 2 3 4 5 6 7 8 9 10 答案ABBDBCDADC二.填空题:本大题有6个小题,每小题4分,共24分. 11.(1)(1)x x +- 12.mx nym n++ 13.113 14.32,25515.1y x =-+或21y x =-+或1y x =-等 16.1065+三.解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分6分)圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2x x =-+. 18.(本题满分8分)(1)补全折线统计图,如图所示. (2)①50x x =+甲乙.②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙 222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲, 所以22S S =.19.(本题满分8分)(1)证明:因为点P 在AB 的垂直平分线上, 所以PA=PB , 所以∠PAB=∠B ,所以∠APC=∠PAB+∠B=2∠B . (2)根据题意,得BQ=BA , 所以∠BAQ=∠BQA , 设∠B=x ,所以∠AQC=∠B+∠BAQ=3x , 所以∠BAQ=∠BQA=2x , 在△ABQ 中,x +2x +2x =180°, 解得x =36°,即∠B=36°. 20.(本题满分10分) (1)根据题意,得480vt =, 所以480v t=, 因为4800>,所以当120v ≤时,4t ≥, 所以480(4)v t t=≥ (2)①根据题意,得4.86t ≤≤, 因为4800>, 所以4804806 4.8v ≤≤, 所以80100v ≤≤②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地. 21.(本题满分10分)根据题意,得AD=BC=CD=1,∠BCD=90°. (1)设CE=x (0<x <1),则DE=1-x , 因为S 1=S 2,所以x 2=1-x ,解得x (负根舍去),即CE=12(2)因为点H 为BC 边的中点,所以CH=12,所以HD=2,因为,点H ,C ,G 在同一直线上,所以HG=HC+CG=12HD=HG22.(本题满分12分)(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以(1)y x x =-, 当12x =时,1111(1)2242y =⨯-=-≠-, 所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=, 当122x x x +=时,函数有最小值M , 212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=--22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象,所以211110()244x <--+≤,221110()244x <--+≤1因为12x x ≠,所以1016mn << 23.(本题满分12分)(1)①证明:连接OB ,OC , 因为OB=OC ,OD ⊥BC ,所以∠BOD=12∠BOC=12×2∠BAC=60°, 所以OD=12OB=12OA②作AF ⊥BC ,垂足为点F , 所以AF ≤AD ≤AO+OD=32,等号当点A ,O ,D 在同一直线上时取到由①知,BC=2BD=3,所以△ABC 的面积1133332224BC AF =⋅≤⨯⨯= 即△ABC 面积的最大值是334(2)设∠OED=∠ODE=α,∠COD=∠BOD=β, 因为△ABC 是锐角三角形,所以∠AOC+∠AOB+2∠BOD=360°, 即()180m n αβ++= (*) 又因为∠ABC<∠ACB , 所以∠EOD=∠AOC+∠DOC 2m αβ=+因为∠OED+∠ODE+∠EOD=180°, 所以2(1)180m αβ++=(**) 由(*),(**),得2(1)m n m +=+, 即20m n -+=。

相关文档
最新文档