对勾函数求最值
对勾函数的图象及性质
对勾函数一、定义对勾函数是由两个幂函数相加得到的,对勾函数是一种类似于反比例函数的一般双曲函数,其标准形式为f(x)=ax+(其中ab>0)。
由于函数图像形似两个中心对称的对勾,因此得名“对勾函数”,又被称为“双勾函数”、“勾函数”、“对号函数”、“双飞燕函数”等。
在许多情况下,为了简化分析,常取a=b=1,即函数形式为f(x)=x+。
研究初等函数的一般路径,背景—概念—图象—性质—应用二、图象及性质图像特征:1、对勾函数的图像是分别以y 轴和直线y=ax 为渐近线的两支曲线。
2、图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。
3、函数图像整体呈两个“对勾”的形状,且关于原点呈中心对称。
定义域:,即除了x=0外,所有实数都是其定义域内的元素。
值域:。
单调性:函数在(−∞,−1)∪(1,+∞)上单调递增,在(1,0)∪(0,1)上单调递减。
奇偶性:对勾函数是奇函数,即满足f(−x)=−f(x)。
x 122严禁复制三、题型1、基础计算题给定对勾函数表达式,求函数在特定点的值或特定区间的最值。
2.、图像结合题根据对勾函数的图像,判断函数在哪些区间内满足特定条件(如大于某值、小于某值)。
利用图像分析函数与直线、其他曲线的交点情况。
3.、综合应用题求最值问题:利用对勾函数的性质,可以快速求解形如ax+(ab>0)的函数的最值问题。
不等式证明:在不等式证明中,对勾函数的性质也常被用来进行放缩或构造反例。
实际问题建模:在某些经济学问题中,如成本分析、收益最大化等,也可能涉及到对勾函数的应用。
4、参数变化分析:探讨参数a 和b 变化时,对勾函数图像和性质的变化规律。
5、复杂函数组合将对勾函数与其他函数(如二次函数、指数函数等)组合,分析新函数的性质和应用。
四、解题步骤1、对勾函数求最值问题的解题步骤(1)理解函数形式确认函数f(x)=ax+的形式,注意a 和b 都是正数且不相等。
最新对勾函数详细分析
最新对勾函数详细分析对勾函数是一种在机器学习中常用的优化算法,用于求解最小化目标函数的问题。
最新的对勾函数通过对原始的对勾函数进行改进和优化,提高了其收敛性和适用性。
本文将对最新的对勾函数进行详细的分析。
首先,对勾函数的目标是找到使目标函数最小化的参数值。
对勾函数使用梯度下降法来更新参数,在每一次迭代中根据参数的梯度来调整参数的值。
具体来说,对勾函数通过计算目标函数的梯度来确定参数的更新方向,并使用学习率来控制每一次更新的步长。
对勾函数的更新过程可以表示为参数θ的更新公式:θ=θ-α*∇J(θ)其中,θ表示参数的向量,α表示学习率,∇J(θ)表示目标函数J关于参数θ的梯度。
通过不断迭代更新参数,对勾函数可以逐渐逼近目标函数的最小值。
为了提高对勾函数的性能,最新的对勾函数引入了以下几个改进:1. 学习率自适应:传统的对勾函数中,学习率需要手动设置,并且对模型的性能具有很大的影响。
最新的对勾函数中使用了自适应学习率算法,例如AdaGrad、RMSprop和Adam。
这些算法会根据每个参数的梯度历史信息来自动调整学习率,使得参数的更新更加稳定和高效。
2.正则化技术:在对勾函数中,过拟合是一个常见的问题。
最新的对勾函数通过引入正则化技术来降低模型的复杂度,从而减少过拟合的风险。
常见的正则化技术包括L1正则化和L2正则化,它们在目标函数中引入了惩罚项,限制了参数的大小。
3.批量更新:传统的对勾函数中,每次更新参数时只使用单个样本的梯度。
最新的对勾函数引入了批量更新的策略,每次更新时使用一批样本的梯度来估计参数的方向。
这样可以减少参数更新的方差,提高参数估计的准确性。
4.预处理技术:对勾函数对输入数据的尺度和分布敏感。
最新的对勾函数中使用了预处理技术,例如特征缩放和数据标准化,来提高输入数据的稳定性和可解释性。
最新的对勾函数在实际应用中取得了很好的效果。
通过引入学习率自适应、正则化技术、批量更新和预处理技术,最新的对勾函数在大规模和高维度数据集上具有更好的收敛性和泛化能力。
高一数学扩展-对勾函数
对勾函数 解析式:xb ax x f +=)(,(a , b ∈R +)。
例子:xx x g 1)(+=,它是最标准的对勾函数。
图像: 事实上,对勾函数中a ,b 均大于0,一般情况下a =1,可以给出一般的例子:xb x x h +=)(,(b ∈R+)。
它的图像性质:在](b --∞,上单调递增,在)0,(b -上单调递减;在),0(b 上单调递减,在),[+∞b 上单调递增。
在(0,+∞)上的最小值在b 处取得,最小值是2b 。
由于是奇函数,在第三象限有最大值,同理。
(证明它的单调区间需要用到导数法,用一般的方法不是很严谨,也很难,所以我直接给出来了。
)那么我给出它在第一象限的图像。
Tip: ①对勾函数xb ax x f +=)(中的a ,b 都大于0,若a 小于0或b 小于0,就不是对勾函数。
(你可以自己在几何本上描点验证。
)②对勾函数经常出现在求最值类的题目中,例如: 求222++=x x x y 在(0,+∞)的最值。
你可以自己完成。
如果你这道题完成了的话,月考试卷最后一题你也应该会做了,那道题目还需要关于二次函数的一些知识。
另:关于函数bax d cx y ++=,你可以自己研究一下ad ,bc 的大小关系对函数单调性的影响。
bb 2你研究的结果可以作为一个定理直接在题目中使用。
有兴趣的话,可以尝试一下下面的题目: ①求222++=x x x y 在(0,+∞)的最值。
②证明函数xx x g 1)(+=是奇函数。
④求函数bax d cx y ++=中参数对函数单调性的影响,当ad >bc 时,求函数的单调减区间;当ad <bc 时,求函数的单调增区间。
对勾函数专题讲解
对勾函数专题讲解专题:对勾函数及其应用1.对勾函数定义对勾函数是指形如 y = ax + (a>0.b>0) 的一类函数,因其图像形态极像对勾,因此被称为“对勾函数”。
2.对勾函数 y = ax + (a>0,b>0) 的性质1) 定义域:(-∞。
0) ∪ (0.+∞)。
2) 值域:(-∞。
-2ab] ∪ [2ab。
+∞)。
3) 奇偶性:在定义域内为奇函数。
4) 单调性:(-∞。
-a/b),(a/b。
+∞) 上是增函数;(-a/b。
0),(0.a/b) 上是减函数。
3.对勾函数 y = ax + (a>0,b>0) 的单调区间的分界点:±a/b。
求分界点方法:令 ax = 0,即可得到 x = ±a/b。
特殊的,当 a>0 时,y = x + 的单调区间的分界点为 ±a。
4.对勾函数应用时主要是利用其单调性求其最值,解题时要先找出对应的单调区间,然后求解。
5.利用对勾函数求最值,常常用到如下的重要不等式:若 a>0,b>0,则 x>0 时,ax + b ≥ 2ab。
当且仅当 ax = b,x = a/b 时取等号。
例1:已知 f(x) = x + (x>0),求 f(x) 在下列区间的最小值:(1) [1,2]。
(2) [3,4]。
(3) [-3,-1]。
变式训练:已知函数 f(x) = x^2 - 2x - 1,求其值域。
例2:求函数 f(x) = (x+2)/((1+x^2)(x^2+5)) 的最小值,并求此时 x 的值。
变式训练:求函数 f(x) = (x-1)/(x-1) 的值域。
强化训练:1.下列函数中最小值是 4 的是 ()。
A。
y = x^4 + x^2B。
y = x^4 + xC。
y = x^4 - xD。
y = x^2 + 42.函数 y = x/(x^2+1)。
x∈(1,3] 的值域为 ()。
对勾函数讲解与例题解析(完整资料).doc
【最新整理,下载后即可编辑】对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一)对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。
当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到: 当x>0时,。
当x<0时,。
即对勾函数的定点坐标: (三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数,对勾函数的图像(ab 异号) yXOy=ax二、均值不等式(基本不等式)对勾函数性质的研究离不开均值不等式。
对勾函数讲解与例题解析
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。
当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。
对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式能够得到:当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数,二、关于求函数()01>+=x xx y 最小值的解法1. 均值不等式 0>x ,∴21≥+=xx y ,当且仅当x x 1=,即1=x 的时候不等式取到“=”。
∴当1=x 的时候,2min =y 2. ∆法 0112=+-⇒+=yx x xx y 若y 的最小值存有,则042≥-=∆y 必需存有,即2≥y 或2-≤y (舍)找到使2=y 时,存有相对应的x 即可。
对勾函数讲解与例题解析
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它与了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点与渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
a>0 b>0对勾函数的图像(ab(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到: 当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性 (五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数,二、均值不等式(基本不等式)对勾函数性质的研究离不开均值不等式。
说到均值不等式,其实也是根据二次函数得来的。
我们都知道,(a-b)^2≥0,展开就是a^2-2ab+b^2≥0,有a^2+b^2≥2ab,两边同时加上2ab ,整理得到(a+b)^2≥4ab,同时开根号,就得到了均值定理的公式:a+b≥2sqrt(ab)。
对勾函数绝对精确
对勾函数绝对精确
介绍
对勾函数是指在一个坐标系中,符号为“√”的函数曲线。
它是
一种常用的数学函数,被广泛应用于各个领域,如数学、物理、工
程等。
特点
对勾函数具有以下几个特点:
- 区域限制:该函数的定义域一般为非负实数集合,即x≥0。
- 增长特性:对勾函数曲线是单调递增的,也就是说,随着自
变量x的增加,函数值也随之增加。
- 无极限:对勾函数在x=0处取得最小值,随着自变量的增加,函数值逐渐增大但不会趋近于无穷大。
- 水平渐进线:当x趋近于无穷大时,对勾函数的图像逐渐靠
近y轴,但永远不会达到y轴。
应用领域
对勾函数在各个领域有广泛的应用,包括但不限于以下几个方面:
- 数学:对勾函数是指数函数的一种特例,被用于解决各种数
学问题,如求根、方程求解等。
- 物理:对勾函数在物理学中经常被用于描述物体运动的速度、加速度等相关问题。
- 工程:对勾函数在工程实践中常用于对数据进行处理与分析,如信号处理、图像识别等。
数学表示
对勾函数的数学表示为:
f(x) = √x
其中,f(x)表示对勾函数,√x表示x的平方根。
总结
对勾函数作为一种常见的数学函数,具有特定的特点和应用领域。
在数学、物理、工程等领域中,对勾函数被广泛使用,可以用
于解决各种问题和分析数据。
熟悉对勾函数的特性和数学表示对于
进一步探索和应用该函数非常重要。
对勾函数讲解与例题解析
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。
对勾函数最值的十种求法
对勾函数最值的十种求法 Prepared on 22 November 2020关于求函数()01>+=x x x y 最小值的十种解法 一、 均值不等式0>x ,∴21≥+=x x y ,当且仅当x x 1=,即1=x 的时候不等式取到“=”。
∴当1=x 的时候,2min =y二、∆法若y 的最小值存在,则042≥-=∆y 必需存在,即2≥y 或2-≤y (舍) 找到使2=y 时,存在相应的x 即可。
通过观察当1=x 的时候,2min =y三、单调性定义设210x x <<当对于任意的21,x x ,只有21,x x (]1,0∈时,()()21x f x f -0>,∴此时()x f 单调递增; 当对于任意的21,x x ,只有21,x x ()+∞∈,1时,()()21x f x f -0<,∴此时()x f 单调递减。
∴当1=x 取到最小值,()21min ==f y四、复合函数的单调性x x t 1-=在()+∞,0单调递增,22+=t y 在()0,∞-单调递减;在[)+∞,0单调递增又 ∈x ()1,0()0,∞-∈⇒t ∈x [)+∞,1[)+∞∈⇒,0t ∴原函数在()1,0上单调递减;在[)+∞,1上单调递增 即当1=x 取到最小值,()21min ==f y五、求一阶导当()1,0∈x 时,0'<y ,函数单调递减;当[)+∞∈,1x 时,0'>y ,函数单调递增。
∴当1=x 取到最小值,()21min ==f y六、三角代换 令αtan =x ,⎪⎭⎫ ⎝⎛∈2,0πα,则αcot 1=x∴当4πα=,即22πα=时,()12sin max =α,2min =y ,显然此时1=x七、向量()1,1,1,=⎪⎭⎫ ⎝⎛=b x x ab a x x x x y ⋅=⋅+⋅=+=1111,根据图象,a 为起点在原点,终点在x y 1=()0>x 图象上的一个向量,θcos a 的几何意义为a 在b 上的投影,显然当b a =时,θcos a 取得最小值。
对勾函数顶点公式
对勾函数顶点公式对勾函数是一种特殊的函数,其公式为f(x)=ax+b/x,其中a和b为常数。
这种函数的图像呈“对勾”形状,因此得名。
对勾函数的顶点可以通过以下公式求得:对勾函数的顶点公式为:x=-b/2a。
这个公式的推导过程如下:首先,我们对方程f(x)=ax+b/x进行整理,得到:f(x)=a(x+b/2a)^2-b^2/4a (当a>0时)或者f(x)=a(-x-b/2a)^2-b^2/4a (当a<0时)从上面的方程可以看出,当x=-b/2a时,函数取得极小值(当a>0时)或极大值(当a<0时)。
这个点就是对勾函数的顶点。
在实际应用中,我们可以根据需要选择合适的a和b值,并使用上述公式来计算对勾函数的顶点位置。
例如,在物理学、工程学、经济学等领域中,对勾函数被广泛应用于描述一些现象的规律,如弹簧振子的运动、电路中的电阻等。
通过使用对勾函数的顶点公式,我们可以更加准确地预测这些现象的变化趋势。
需要注意的是,对勾函数在某些情况下可能会出现多解的情况。
例如,当a和b的符号相反时,函数在实数范围内可能存在多个极值点。
此时,我们需要对方程进行更为详细的分析和求解,以确定所有可能的极值点。
此外,对于一些特殊情况(如a=0或b=0),对勾函数可能退化为直线或常数函数,也需要特别注意。
总之,对勾函数的顶点公式是一种重要的数学工具,可以用于求解一些实际问题的极值点。
在实际应用中,我们需要根据具体问题选择合适的a和b值,并对方程进行详细的分析和求解。
同时,我们也需要了解对勾函数的一些特殊情况,以确保求解结果的准确性和完整性。
对勾函数详细分析
一、对勾函数 y ax bx 1. 定义域: ( ,0)对勾函数的性质及应用( a 0, b 0) 的图像与性 质:(0,)2. 值域: (, 2 ab ] [ 2 ab ,)3. 奇偶性:奇函数, 函数图像整体呈两个“对勾” 的形状,且函数图像对于原点呈中心对称,即 f (x) f ( x) 04. 图像在一、 三象限 , 当 x0 时, y ax b 2 ab (当x且仅当 xb取等号),即 f (x) 在 x=b时,取最小值 2 abaa由奇函数性质知:当 x<0 时, f ( x) 在 x=b时,取最大值2 aba5. 单一性:增区间为(b ),(,b) ,减区间是( 0,b),(b,0), aaaa二、对勾函数的变形形式 种类一: 函数 y axb(a 0, b 0) 的图像与性质x1.定义域: ( ,0) (0, )2. 值域: (, 2 ab ] [ 2 ab ,)3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状 .4.图像在二、四象限 , 当 x<0 时, f (x) 在 x= b时,取 a最小值 2 ab ;当 x时, f (x) 在 x= b时,取最大值 2 aba5.单一性:增区间为( 0, b ),(b,0)减区间是(b , ),(,b) ,a aaa种类二: 斜勾函数 yax b(ab 0)x① a 0, b 0 作图以下 1.定义域: (,0) (0, ) 2. 值域: R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值 .5.单一性:增区间为( -, 0),(0, +) .② a 0, b 0 作图以下:1.定义域: ( ,0) (0, )2. 值域: R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单一性:减区间为( -, 0),(0, + ) .种类三: 函数 f ( x) ax2bx c(ac 0) 。
x此类函数可变形为f ( x)axc b ,可由对勾函数 y axc上下平移获得xx练习 1. 函数 f ( x)x2x 1的对称中心为x种类四: 函数f ( ) x a ( a 0, k 0)x x kaa 此类函数可变形为f (x) ( x k) k ,则 f ( x) 可由对勾函数 y xx左右平移,上下平移获得1kx练习 1. 作函数 f ( x)x 与 f ( x)x 3x 2 xx 的草图22.求函数f ( x)x 1在 ( 2,) 上的最低点坐标2x43.求函数f (x)xx 的单一区间及对称中心x 1种类五:函数f ( x)ax(a 0,b 0) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对勾函数年级:高二科目:数学时间:9/6/2009 16:25:27 新5961438
请问对勾函数的最值如何求。
答:同学,你好,现提供以下资料供你参考:
函数的单调性.
显然此函数的定义域为(-∞,0)∪(0,+∞),用描点法可作出此函数的图象为:
从图象上可看出,函数在(0,)上单调递减,在[,+∞)上单调递增,在(-∞,-]上单调递增,在[-,0)上单调递减.
我们可用单调性的定义验证它的单调性(证明略).
很容易看出f(x)是一个奇函数,所以它的图象是关于原点对称的,我们只需记住它在(0,]、[,+
∞)上的单调性就可以了,而且我们用这个函数解题时,通常只用这两个区间上函数的单调性.
特殊地,当k=1时,,它在(0,1]上单调递减,在[1,+∞)上单调递增.
一般地,对于函数,我们也可把它转化为的形式,即为,
此时,f(x)在上单调递减,在上单调递增.
说明:因课本并没有介绍此函数的单调性,所以在利用它时应在答题中将它的单调性证一遍
例:甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.
(1)把全部运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
解:(1)
(2)依题意知s,a,b,v都为正数,故,
当且仅当,即v=时上述等号成立.
若≤c,则当时v=时,全程运输成本y最小.
若>c,,此函数在(0,]上单调递减,
则在(0,c]上也单调递减,所以y≥,当v=c时取等号.
综上知,为使全程运输成本y最小,当≤c时行驶速度应为v=,当>c时,行驶速度应为v=c.
同学,你好,你要记住做每件事情要有决心。
决心决定一切,要努力地去做,让你每一天都充满光彩。
学习更上一层楼!。