回流焊温度曲线测试操作指示

合集下载

SMT回流焊温度曲线测试操作指导书—范文

SMT回流焊温度曲线测试操作指导书—范文

SMT回流焊温度曲线测试操作指导书一范文一、目的:用于指导回流焊温度曲线测试操作指示。

二、适用范围:适用于本公司SMT回流焊温度测试三、职责:无四、作业内容:4.1设定温度参数制程界限:4.1.1工程师根据锡膏型号、特殊元件规格、特殊测量位置、FPC制程以及客户的要求制定一个合理的温度曲线测试范围,包括:升温区、浸泡(保温)区、回流区、冷却区的具体参数及定义回流焊标准温度曲线4.1.2预热区:通常是指由室温升温至150度左右的区域。

在此温区,升温速率不宜过快,一般不超过3度/秒。

以防止元器件应升温过快而造成基板变形或元件微裂等现象。

4.1.3浸泡(保温)区:通常是指由110度~190度左右的区域。

在此温区,助焊剂进一步挥发并帮助基板清楚氧化物,基板及元器件均达热平衡,为高温回流做准备。

此区一般持续时间问60~120秒。

4.1.4回流区:通常是指超过217度以上温度区域。

在此温区,焊膏很快熔化,迅速浸润焊接面,并与基板PAD形成新的合金焊接层,达到元件与PAD之间的良好焊接。

此区持续时间一般设定为:45~90秒。

最高温度一般不超过250度(除有特定要求外)。

4.1.5冷却区:该区为焊点迅速降温,将焊料凝固,使焊料晶格细化,提高焊接强度。

本区降温速率一般设置为-3~-1度/秒左右。

4.2测温板的制作4.2.1采用与生产料号一致的样品板作为测温板,制作测温板时,原则上应保留必要的具有代表性的测温元器件,以保证测试测量温度与实际生产温度保持一致。

4.2.2测温板与生产料号在无法保持一致情况下,经工程师验证认可,可使用与之同类型的测温板进行测量。

4.2.3测温点应该选择最具有代表性的区域及元件,比如最大及最小吸热量的元件,零件选取优先级(如Socket->Motor->大型BGA ->小型BGA->QFP或SOP->标准Chip)除此之外,还应选择介于两者之间的一个测温区。

如图:回流焊标准测温点4.2.4 一般测温点在每板上不得少于3个,有BGA或大型IC至少选取4个,基于特殊代表型元件为首选原则选取元件。

回流焊炉温曲线测试作业标准

回流焊炉温曲线测试作业标准

备注:执行日期为批准日期延后一个工作日开始。

1. 目的规范SMT炉温测试方法,为炉温设定、测试、分析提供标准,确保产品质量,为炉温曲线的制作、确认和跟踪过程一致性提供准确的作业指导。

2. 适用范围适用于SMT车间所有回流焊温度设定、测试、分析及监控。

3. 用语定义3.1升温阶段:也叫预热区,是为了是元器件在焊接时所受的热冲击最小。

一般升温变化速率不能超过3℃/S,升温太快会造成元器件损伤、出现锡球现象;升温太慢锡膏会感温过度,从而没有足够的时间达到活性,通常时间控制在60S左右。

3.2恒温阶段:也叫活性阶段。

用以将PCBA从活性温度提升到所要求的回流温度,一是允许不同质量的元件在温度上同质,而是允许助焊剂活化,锡膏中挥发性物质得到有利挥发。

3.3回流阶段:也叫峰值区或最后升温区,这个区将锡膏在活性温度提升到所要求的峰值温度,加热从熔化到液体状态的过程。

此段温度设定太高或超过客户所推荐的峰值高会使PCB脱层、卷曲、元件损坏等。

3.4冷却阶段:理想的冷却曲线一般和回流曲线成镜像,越是达到镜像关系,焊点达到的固态结构越紧密,焊点的质量越高,结合完整性就越好,一般降温速率控制在4℃/S。

4. 组织和职能4.1SMT工程师4.1.1有责任和权限制定炉温测试板制作及曲线判定标准。

4.1.2有责任和权限指导工艺员如何制作温度曲线图。

4.1.3有责任和权限定义热电偶在PCB上的测试点,特别是一些关键的元件定位。

4.1.4有责任和权限基于客户要求和公司内部标准来定义温度曲线的测试频率。

4.1.5有责任和权限对炉温曲线图进行审批。

4.2SMT IPQC4.2.1有责任和权限首件确认回流焊的参数设置并对曲线进行审核。

4.2.2有责任和权限定期监控炉温曲线设置状况以保证生产过程中质量的稳定。

4.3工艺员4.3.1有责任和权限在工程师的指导下制作温度曲线并交其审批。

4.3.2有责任和权限定期监控炉温曲线设置状况以保证生产过程中质量的稳定。

如何设定回流焊温度曲线

如何设定回流焊温度曲线

如何设定回流焊温度曲线如何设定回流焊温度曲线首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类.影响炉温的关键地方是:1:各温区的温度设定数值2:各加热马达的温差3:链条及网带的速度4:锡膏的成份5:PCB板的厚度及元件的大小和密度6:加热区的数量及回流焊的长度7:加热区的有效长度及泠却的特点等回流焊的分区情况:1:预热区(又名:升温区)2:恒温区(保温区/活性区)3:回流区4 :泠却区那么,如何正确的设定回流焊的温度曲线下面我们以有铅锡膏来做一个简单的分析(Sn/pb)一:预热区预热区通常指由室温升至150度左右的区域,在这个区域,SMA平稳升温,在预热区锡膏的部分溶剂能够及时的发挥。

元件特别是集成电路缓慢升温。

以适应以后的高温,但是由于SMA表面元件大小不一。

其温度有不均匀的现象。

在些温区升温的速度应控制在1-3度/S 如果升温太快的话,由于热应力的影响会导致陶瓷电容破裂/PCB变形/IC芯片损坏同时锡膏中的溶剂挥发太快,导致锡珠的产生,回流焊的预热区一般占加热信道长度的1/4—1/3 时间一般为60—120S二:恒温区所谓恒温意思就是要相对保持平衡。

在恒温区温度通常控制在150-170度的区域,此时锡膏处于融化前夕,锡膏中的挥发进一步被去除,活化剂开始激活,并有效的去除表面的氧化物,SMA表面温度受到热风对流的影响。

不同大小/不同元件的温度能够保持平衡。

板面的温差也接近最小数值,曲线状态接近水平,它也是评估回流焊工艺的一个窗口。

选择能够维持平坦活性温度曲线的炉子将提高SMA的焊接效果。

特别是防止立碑缺陷的产生。

通常恒温区的在炉子的加热信道占60—120/S的时间,若时间太长也会导致锡膏氧化问题。

导致锡珠增多,恒温渠温度过低时此时容易引起锡膏中溶剂得不到充分的挥发,当到回流区时锡膏中的溶剂受到高温容易引起激烈的挥发,其结果会导致飞珠的形成。

恒温区的梯度过大。

这意味着PCB的板面温度差过大,特别是靠近大元件四周的电阻/电容及电感两端受热不平衡,锡膏融化时有一个延迟故引起立碑缺陷。

回流温度曲线的测定方法

回流温度曲线的测定方法

���� �
回流区 , 有时叫 做峰值区或最后升温 区.这 个区的作用 是将 PCB 装 配的温 度从活 性温度 提高 到所推 荐的 峰值温 度. 活性温度总是比 合金的熔点温度低一 点, 而 峰值温度总 是在熔点上. 典型的峰值温度范围是 205 �230� , 这个区 的 温度设定太高会使其温升斜率超过每秒 2 �4�,或达到 回 流峰值温度比推荐的高. 这种情况可能引 起 PCB 的过分卷 曲, 脱层或烧损, 并损害元件的完整性. 冷却区, 在这个区域温度的下降斜率一般为 3�5 �, 温 度下降的越快, 焊点表面越平滑, 光亮, 温度下降的 较慢, 焊 点表面越粗造, 焊点的机械抗拉强度就比较差. 接下来必须决定各个区的温度设定 ,重要的是要了解 实际的区间温度不一定就是该区的显示温度.显示温度只是 代表区内热敏电偶的温度, 如果热电偶越靠近加热源 , 显示 的温度将相对比区间温度较高,热电偶越靠近 PCB 的直接 通道, 显示的温 度将越能反应区间温 度.明智的 是向炉子制 造商咨询了解清楚显示温度和实际区间温度的关系.本文中 将考虑的是区间温度而不是显示温度.表 1 列出的是用于典 型 PCB 装配回流的区间温度设定. 表 1 典型 PCB 回流区间温度设定 区间 预热 活性 回流 区间温度设定 21 0 ( 1 0 1 (3 0 ) ) ) 区间末实际板温 1 0 ( 2 1 0 ( 302 21 0 ( 2 ) ) )
锡固定测温线时,请使用其融点高于回流炉 设定温度以上的 焊锡. 2.测试零部件的温度 测试零部件的温度 � 时间, 温度冲击等是否在可容许 的 范围内. (1 ) 用热 硬化型粘合 剂或无机 质粘合 剂等固 定测温 线 的顶端. 注 :如用 粘合剂等将 测温线的 顶端 "埋" 在零部件 中, 可 得到 较精确的测定. 请注意,在 使用粘合剂等时, 不要使零 部 件的外形变化的过大. 关于回流炉温度测试仪的测定误差. ①热应答与测温线直径的关系 对于回 流炉温度测试仪, 通常使 用直径为 �0.2mm 的 标 准 测温 线, 如想 加 快热 应答 的 速度 , 建 议 使 用直 径 为 �0.1mm 的测温线. 用热硬化型粘合剂将测温线固定在样品基板上时, 直 径为 �0.2mm 的测温线的耐久 性较好, 但如测定扁平组 件 等的 细引线时, 不适合使用 �0.2mm 的 测温线. 请使用直 径 为 �0.1mm 的测温线, 用胶带等粘 合剂将测温线的顶端 固 定在所要测定的部位上. ②焊接测温线顶端时的注意事项 测温线是通过和异种金属相接合的顶端(将测温线的顶 端焊接在所要测定的部位上)与其底端产 生温度差而发生电 压 .在焊接 时,测 温线的顶端 和所要测 定部位的接 和部分 越 小 ,测温线 的热应答 就越好. 请注意一 定要将测温 线伸直 后 再焊接. ③固定测温线的方法 使用高温焊锡固定时,请使用其熔点高 于回流炉设定温 度以 上的焊锡.如 使用高温焊锡, 需先使用不锈钢用 助焊剂. 通常是先用焊锡焊接完之后, 再使用助焊剂. 表2 固定方法 热电偶不良固定方法比较 优 点 缺 点

回流焊温度曲线讲解

回流焊温度曲线讲解
典型PCB回流区间温度设定 区间
区间温度设定
区间末实际板温
预热
活性 回流
210° C(410° F)
177° C(350° F) 250° C(482° C)
140° C(284° F)
150° C(302° F) 210° C(482° F)
怎样设定锡膏回流温度曲线
图形曲线的形状必须和所希望的相比较,如果形状 不协调,则同下面的图形进行比较。选择与实际图 形形状最相协调的曲线。
得益于升温-到-回流的回流温度曲线
整个温度曲线应该从45° C到峰值温度 215(± 5)° C持续3.5~4分钟。冷却速 率应控制在每秒4° C。一般,较快的冷 却速率可得到较细的颗粒结构和较高强 度与较亮的焊接点。可是,超过每秒4° C会造成温度冲击。
得益于升温-到-回流的回流温度曲线
升温-到-回流
得益于升温-到-回流的回流温度曲线
焊锡不足
焊锡不足通常是不均匀加热或过快加 热的结果,使得元件引脚太热,焊 锡吸上引脚。回流后引脚看到去锡 变厚,焊盘上将出现少锡。减低加 热速率或保证装配的均匀受热将有 助于防止该缺陷。
得益于升温-到-回流的回流温度曲线
墓碑
墓碑通常是不相等的熔湿力的结果,使 得回流后元件在一端上站起来。一般, 加热越慢,板越平稳,越少发生。降低 装配通过183° C的温升速率将有助于校 正这个缺陷。
得益于升温-到-回流的回流温度曲线
排除RTS曲线的故障
排除RSS和RTS曲线的故障,原则是相 同的:按需要,调节温度和曲线温度 的时间,以达到优化的结果。时常, 这要求试验和出错,略增加或减少温 度,观察结果。以下是使用RTS曲线 遇见的普遍回流问题,以及解决办法 。
得益于升温-到-回流的回流温度曲线

SMT回流焊PCB温度曲线讲解

SMT回流焊PCB温度曲线讲解

区间
区间温度设定
区间末实际板温
预热 210℃(410°F)
140℃(284°F)
活性 177℃(350°F)
150℃(302°F)
回流 250℃(482℃)
210℃(482°F)
怎样设定锡膏回流温度曲线
图形曲线的形状必须和所希望的相比较,如果形状不协调, 则同下面的图形进行比较。选择与实际图形形状最相协调的曲 线。
得益于升温-到-回流的回流温度曲线
无光泽、颗粒状焊点 一个相对普遍的回流焊缺陷是无光泽、颗粒 状焊点。这个缺陷可能只是美观上的,但也 可能是不牢固焊点的征兆。在RTS曲线内改正 这个缺陷,应该将回流前两个区的温度减少 5° C;峰值温度提高5° C。如果这样还不行, 那么,应继续这样调节温度直到达到希望的 结果。这些调节将延长锡膏活性剂寿命,减 少锡膏的氧化暴露,改善熔湿能力。
得益于升温-到-回流的回流温度曲线
整个温度曲线应该从45℃到峰值温度215(± 5)℃持续3.5~4分钟。冷却速率应控制在每秒 4℃。一般,较快的冷却速率可得到较细的颗 粒结构和较高强度与较亮的焊接点。可是,超 过每秒4° C会造成温度冲击。
得益于升温-到-回流的回流温度曲线
升温-到-回流
RTS温度曲线可用于任何化学成分或合金,为水溶锡膏和难 于焊接的合金与零件所首选。 RTS温度曲线比RSS有几个优 点。RTS一般得到更光亮的焊点,可焊性问题很少,因为在 RTS温度曲线下回流的锡膏在预热阶段保持住其助焊剂载体。 这也将更好地提高湿润性,因此,RTS应该用于难于湿润的 合金和零件。
怎样设定锡膏回流温度曲线
活性区,有时叫做干燥或浸湿区,这个
区一般占加热通道的33~50%,有两个 功用,第一是,将PCB在相当稳定的温 度下感温,允许不同质量的元件在温度 上同质,减少它们的相当温差。第二个 功能是,允许助焊剂活性化,挥发性的 物质从锡膏中挥发。一般普遍的活性温 度范围是120~150℃。

SMT回流焊的温度曲线

SMT回流焊的温度曲线

電子產業之所以能夠蓬勃發展,表面貼焊技術(SMT, Surface MountTechnology)的發明及精進佔有極大程度的貢獻。

而回焊(Reflow)又是表面貼焊技術中最重要的技術之一。

這裡我們就試著來解釋一下回焊的一些技術與溫度設定的問題。

▲ Ramp-Soak-Spike(RSS)典型馬鞍式回流焊溫度曲線 ▲ Ramp-To-Spike(RTS) 斜升式回流焊溫度曲線電路板組裝的回流焊溫度曲線(reflow profile)共包括了預熱(pre-heat)、吸熱(Soak)、回焊(Reflow)和冷卻(Cooling)等四個大區塊,以下為個人的心得整理,如果有誤也請各位先進不吝指教。

預熱區(Pre-heat zone)預熱區通常是指由溫度由常溫升高至150°C 左右的區域﹐在這個區域﹐溫度緩升(又稱一次昇溫)以利錫膏中的部分溶劑及水氣能夠及時揮發﹐電子零件(特別是BGA 、IO 連接器零件)緩緩升溫﹐為適應後面的高溫預作準備。

但PCB 表面的零件大小不一﹐焊墊/焊盤連接銅箔面積也不同,其吸熱裎度也不一,為了避免零件內外或不同零件間有溫度不均勻的現象發生﹐以致零件變形,所以預熱區升溫的速度通常控制在1.5°C ~3°C/sec 之間。

預熱區均勻加熱的另一目的,是要使錫膏中的溶劑可以適度緩慢的揮發並活化助焊劑,因為大部分助焊劑的活化溫度大約落在150°C上下。

快速升溫有助快速達到助焊劑軟化的溫度,因此助焊劑可以快速地擴散並覆蓋到最大區域的焊點,它可以讓一些活化劑融入實際合金的液體中。

可是,升溫如果太快﹐由於熱應力的作用﹐可能會導致陶瓷電容的細微裂紋(micro crack)、PCB受熱不均而產生變形(Warpage)、空洞或IC晶片損壞﹐同時錫膏中的溶劑揮發太快﹐也會導致錫膏塌陷產生的危險。

較慢的溫度爬升則允許更多的溶劑揮發或氣體逃逸,它也使助焊劑可以更靠近焊點,減少擴散及崩塌的可能。

回流焊温度与温度曲线设置规范

回流焊温度与温度曲线设置规范

回流焊温度与温度曲线设置规范
1目的
1.1指导技术人员正确设置温度
2 范围
2.1本司SMT技术人员适用
2.2本司回流焊适用
3 内容
3.1设定原则:根据锡膏、胶水供应商所提供有关锡膏、胶水的温度曲线图与性
能数据等资料作为参考,以实际生产产品不同适当设定各温区温度;
3.2设定温度依据测试温度为准,若不合格需做相应修改后再测试,直到合格为
止;
3.3无特殊要求下,本司回流焊温度曲线应符合如下条件:
3.3.1 无铅锡膏(一般以Sn96 /Ag3.5/Cu0.5、Sn96.5/ Ag3/ Cu0.5、、Sn96.5/
Ag3.5为准);
150℃-190℃之时间段为: 60ses-120ses
高于220℃之时间段为: 30 ses-90 ses;
峰值温度为:235℃~255℃
3.32胶水:130℃~155℃之间保持时间为:120 ses-180 ses
3.4我公司回流焊显示器实际温度与设置温度相差5℃以上(不含5℃)时为异常,
此时不可使用回流焊.
4 温度测试
4.1 每个班次需对运行中的回流炉进行一次温度测量确认,如有转线之机型重新设置温度曲线后需要再次测量温度达到合格。

回流焊炉温曲线的设定及异常情况分析

回流焊炉温曲线的设定及异常情况分析

回流焊温度曲线的设定及异常情况分析正确设定回流焊温度曲线是获得优良焊接质关键前言红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。

做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。

本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。

理想的温度曲线图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。

故红外回流炉均设有4-5个温度,以适应焊接的需要。

图1 理想的温度曲线为了加深对理想的温度曲线的认识,现将各区的温度、停留时间以及焊锡膏在各区的变化情况,介绍如下:1、预热区预热区通常指由室温升至150℃左右的区域。

在这个区域,SMA平稳升温,在预热区,焊膏中的部分溶剂能够及时挥发,元器件特别是IC器件缓缓升温,以适应以后的高温。

回流焊PCB温度曲线讲解

回流焊PCB温度曲线讲解

回流焊PCB温度曲线讲解回流焊是一种常用的电子组装工艺,用于将电子元件焊接到印刷电路板(PCB)上。

在回流焊过程中,PCB需要经历一系列的温度变化,以确保焊点可靠连接。

下面将讲解回流焊温度曲线的各个阶段及其作用。

1. 预热阶段(Preheat Stage):回流焊过程开始时,PCB需要从室温逐渐升温至预定温度。

预热阶段的作用是除去PCB上的水分和挥发性有机物,以避免在焊接过程中产生气泡和蒸汽。

通常,预热温度为100°C至150°C,持续时间为1至2分钟。

2. 热液相预热阶段(Thermal Soak Stage):在预热阶段后,PCB会继续加热至更高的温度,通常为150°C至200°C。

这一阶段的目的是让整个PCB均匀达到焊接温度,以减少焊接过程中的热应力。

热液相预热阶段的持续时间通常为1至4分钟。

3. 焊接阶段(Reflow Stage):当PCB达到焊接温度时,焊膏开始熔化,将电子元件与PCB焊接在一起。

焊接温度通常为220°C至245°C,具体取决于焊膏的特性。

焊接阶段的持续时间通常为1至3分钟。

4. 冷却阶段(Cooling Stage):焊接完成后,PCB需要冷却到室温,以确保焊点的稳定性。

冷却阶段通常使用强制风冷却或自然冷却。

冷却时间因焊接设备和PCB的尺寸而异,一般为1至5分钟。

回流焊温度曲线中的每个阶段都有其特定的温度和时间要求,这是为了保证焊接质量和工艺稳定性。

通过控制这些参数,焊接过程中的温度变化可以最小化,从而减少因热应力引起的PCB变形和元件损坏的风险。

总结来说,回流焊温度曲线包括预热阶段、热液相预热阶段、焊接阶段和冷却阶段。

每个阶段都有其特定的温度和时间要求,以确保焊接质量和PCB的稳定性。

通过合理控制回流焊温度曲线,可以提高焊接过程的可靠性和稳定性,从而保证电子产品的性能和可靠性。

回流焊是一种广泛应用于电子制造业的关键工艺,它能够将电子元件精准地焊接到印刷电路板(PCB)上。

回流焊接温度曲线

回流焊接温度曲线

回流焊接温度曲线作温度曲线profiling是确定在回流整个周期内印刷电路板PCB装配必须经受的时间/温度关系的过程.它决定于锡膏的特性,如合金、锡球尺寸、金属含量和锡膏的化学成分.装配的量、表面几何形状的复杂性和基板导热性、以及炉给出足够热能的能力,所有都影响发热器的设定和炉传送带的速度.炉的热传播效率,和操作员的经验一起,也影响反复试验所得到的温度曲线.锡膏制造商提供基本的时间/温度关系资料.它应用于特定的配方,通常可在产品的数据表中找到.可是,元件和材料将决定装配所能忍受的最高温度.涉及的第一个温度是完全液化温度full liquidus temperature 或最低回流温度T1.这是一个理想的温度水平,在这点,熔化的焊锡可流过将要熔湿来形成焊接点的金属表面.它决定于锡膏内特定的合金成分,但也可能受锡球尺寸和其它配方因素的影响,可能在数据表中指出一个范围.对Sn63/Pb37,该范围平均为200 ~ 225°C.对特定锡膏给定的最小值成为每个连接点必须获得焊接的最低温度.这个温度通常比焊锡的熔点高出大约15 ~ 20°C.只要达到焊锡熔点是一个常见的错误假设.回流规格的第二个元素是最脆弱元件MVC, most vulnerable component的温度T2.正如其名所示,MVC就是装配上最低温度“痛苦”忍耐度的元件.从这点看,应该建立一个低过5°C的“缓冲器”,让其变成MVC.它可能是连接器、双排包装DIP, dual in-line package的开关、发光二极管LED, light emitting diode、或甚至是基板材料或锡膏.MVC是随应用不同而不同,可能要求元件工程人员在研究中的帮助.在建立回流周期峰值温度范围后,也要决定贯穿装配的最大允许温度变化率T2-T1.是否能够保持在范围内,取决于诸如表面几何形状的量与复杂性、装配基板的化学成分、和炉的热传导效率等因素.理想地,峰值温度尽可能靠近但不低于T1可望得到最小的温度变化率.这帮助减少液态居留时间以及整个对高温漂移的暴露量.传统地,作回流曲线就是使液态居留时间最小和把时间/温度范围与锡膏制造商所制订的相符合.持续时间太长可造成连接处过多的金属间的增长,影响其长期可靠性以及破坏基板和元件.就加热速率而言,多数实践者运行在每秒4°C或更低,测量如何20秒的时间间隔.一个良好的做法是,保持相同或比加热更低的冷却速率来避免元件温度冲击.图一是最熟悉的回流温度曲线.最初的100°C是预热区,跟着是保温区soak or preflow zone,在这里温度持续在150 ~ 170°C 之间对Sn63/Pb37.然后,装配被加热超过焊锡熔点,进入回流区,再到峰值温度,最后离开炉的加热部分.一旦通过峰值温度,装配冷却下来.温度热电偶的安装适当地将热电偶安装于装配上是关键的.热电偶或者是用高温焊锡合金或者是用导电性胶来安装,提供定期检测板的温度曲线精度和可重复性的工具.对很低数量的和高混合技术的板,也可使用非破坏性和可再使用的接触探头.应该使用装配了元件的装配板来通过炉膛.除非是回流光板bare board,否则应该避免使用没有安装元件的板来作温度曲线.热电偶应该安装在那些代表板上最热与最冷的连接点上引脚到焊盘的连接点上.最热的元件通常是位于板角或板边附近的低质量的元件,如电阻.最冷的点可能在板中心附近的高质量的元件,如QFPquad flat pack、PLCCplastic leaded chip carrier或BGAball grid array.其它的热电偶应该放在热敏感元件即MVC 和其它高质量元件上,以保证其被足够地加热.如果用前面已经焊接的装配板,则必须从那些热电偶将要安装的连接点上去掉焊锡.因为板可能是用Sn63/Pb37焊接的,而现在将要用Sn10/Pb90,用后者来简单焊接热电偶将会产生一种“神秘”合金,或者一种不能维持测试板所要求的多个温度变化的合金.在去掉老的焊锡后,用少量助焊剂,跟着用少量而足够的高温焊锡.如果用导电性胶来安装热电偶,同样的步骤去掉下面的Sn63/Pb37或其它合金.这是为了避免破坏热电偶的胶合附着,从而可能导致回流期间的托焊.推荐使用K型、30 AWG 的热电偶线,最好预先焊接.在安装之后,热电偶引线引到PCB装配的后面相对行进方向.有人宁愿用一个接头接在热电偶引线的尾沿.这样测量设备可很快连接和分开.开普敦Kapton胶带一种耐高温胶带用来在适当位置固定热电偶的引线.多数回流机器装备有机上作温度曲线的软件,允许热电偶引线插在炉子上,实时地从系统显示屏幕上跟踪.有人宁愿使用数据记录设备,和测试装配板一起从炉中通过,以可编程的时间间隔从多个热电偶记录温度.这些系统是作为“运行与读数run-and-read”或数据发送单元来使用的,允许实时地观察温度曲线.对后者,系统必须不受射频干扰RFI, radio frequency interference、电磁干扰EMI, electromagnetic interference 和串扰crosstalk的影响,因此当来自发射机的数据还没有来时,不会去“猜测”温度.不管用哪一种数据记录器,定期的校准是必要的.渐升式温度曲线Ramp profile保温区soak zone有热机械的thermomechanical重要性,它允许装配的较冷部分“赶上”较热部分,达到温度的平衡或在整个板上很低的温度差别.在红外IR, infrared回流焊接开始使用以来,这个曲线是常用的.在加热PCB装配中,SMT早期的红外与对流红外炉实际上缺乏热传导能力,特别是与今天的对流为主的convection-dominant炉相比较.这样,锡膏制造商们配制它们的几乎松香温和活性RMA, rosin mildly active材料,来满足回流前居留时间的要求,尝试减少温度差别图二.另一方面,以对流为主要热机制的对流为主的convection-dominant炉通常比其前期的炉具有高得多的热传导效率.因此,除非装配的元件实在太多,需要保温来获得所希望的温度差别,否则回流前的保温区是多余的,甚至可能是是有害的,如果温度高于基板玻璃态转化温度substrate glass-transitionTg的时间过长.在大多数应用中,渐升式温度曲线ramp profile是非常好的图三.尽管有人认为锡膏助焊剂配方要求回流前保温preflow soak,事实上,这只是为了能够接纳那些老的、现在几乎绝种的、对流/IR炉技术.一项最近的有关锡膏配方的调查显示,大多数RMA、免洗和水溶性材料都将在渐升式温度曲线上达到规定要求1.事实上,许多有机酸OA, organic acid水溶性配方地使用的保温时间也要尽可能小—由于有大量的异丙醇含量作为溶剂,它们容易很快挥发.在使用渐升式温度曲线ramp profile之前,应该咨询锡膏制造商,以确保兼容性.虽然一些非常量大或复杂的PCB装配还将要求回流前的保温,但大多数装配即,那些主要在线的将受益于渐升式温度曲线ramp profile.事实上,后者应该是如何锡膏评估程序中的部分,不管是免洗,还是水溶性.氮气环境一个焊接的现有问题是有关在回流焊接炉中使用氮气环境的好处.这不是一个新问题—至少一半十年前安装的回流炉被指定要有氮气容器.而且,最近与制造商的交谈也显示还有同样的比例存在,尽管使用氮气的关键理由可能现在还未被证实.首先,重要的是理解使回流环境惰性化是怎样影响焊接过程的.焊接中助焊剂的目的是从要焊接的表面,即元件引脚和PCB 焊盘,去掉氧化物.当然,热是氧化的催化剂.因为,根据定义,热是不可能从基本的温度回流焊接过程中去掉的,那么氧—氧化的另一元素—通过惰性的氮气的取代而减少.除了大大地减少,如果没有消除,可焊接表面的进一步氧化,这个工艺也改善熔锡的表面张力.在八十年代中期,免洗焊锡膏成为可行的替代品.理想的配方是外观可接受的光亮的、稀薄的和无粘性的、腐蚀与电迁移良性的、和足够薄以致于不影响ICTin-circuit test针床的测试探针.残留很低的锡膏助焊剂固体含量大约为 ~ %满足前两个标准,但通常影响ICT.只有固体含量低于%的超低残留材料才可看作与测试探针兼容.可是,低残留的好处伴随着低侵蚀性助焊剂处理的成本代价,需要它所能得到的全部帮助,包括回流期间防止进一步氧化的形成.这个要用氮气加入到回流过程来完成.如果使用超低残留焊锡膏,那么需要氮气环境.可是,近年来,也可买到超低残留的焊锡膏,在室内环境非氮气也表现得非常的好.原来的有机可焊性保护层OSP, organic solderability preservative在热环境中有效地消失,对双面装配,要求氮气回流环境来维持第二面的可焊性.现在的OSP也会在有助焊剂和热的时候消失,但第二面的保护剂保持完整,直到印有锡膏,因此回流时不要求惰性气体环境.氮气回流焊接的最古老动机就是前面所提到的改善表面张力的优点,通过减少缺陷而改善焊接合格率即是归功于它.其它的好处包括:较少的锡球形成、更好的熔湿、和更少的开路与锡桥.早期的SMT手册提倡密间距的连接使用氮气,这是基于科学试验得出的结论.可是,这测试是实验室的试验,即,“烧杯试验”与实际生产的关系,没有把使用氮气的成本计算在内.应该记住,在过去十五年,炉的制造商已经花了许多钱在开发R&D之中,来完善不漏气的气体容器.虽然当使用诸如对流为主的convection-dominant这类紊流空气时,不容易将气体消耗减到最小,但是有些制造商使用高炉内气体流动和低氮气总消耗,已经达到非常低的氧气水平.这样做,他们已经大大地减低了使用氮气的成本.随着连接的密度增加,过程窗口变小.在这个交接口,在有CSPchip scale package和倒装芯片flip chip的应用中使用氮气是很好的保证.双面回流焊接人们早就认识到的SMT的一个优点是,元件可以贴装在基板的两面.可是,问题马上出现了:怎样将前面回流焊接的元件保持在反过来的一面上完好无损,如果第二面也要回流焊接人们已经采取了无数的方法来解决这个困难:一个方法是有胶将元件粘在板上,这个方法只用于波峰焊接无源元件passive component、小型引脚的晶体管SOT和小型引脚集成电路SOIC.可是,这个方法涉及增加步骤和设备来滴胶和固化胶.另一个方法是为装配的顶面和底面使用两种不同的焊锡合金,第二面的锡膏的熔点较低.第三个方法是企图在炉内装配板的顶面和底面之间产生一个温度差.可是,由于温度差,基板Z轴方向产生的应力可能对PCB结构,包括通路孔和内层,有损耗作用.在有些应用中,虽然这种应力可能是有名无实的,但还是需要小心处理.事实上,有更实际的解决办法.人们不要低估熔化金属的粘性能力—它远比锡膏的粘性强. 记住这一点,元件绑解的表面积越大,保持它掉落的力就越大.为了决定哪些元件可用作底面贴附与随后的“回流”,导出了一个比率,评估元件质量与引脚/元件焊盘接触面积之间的关系2:元件重量克焊盘配合的总面积平方英寸这里,第二面的每平方英寸克必须小于或等于30.侵入式焊接Intrusive Soldering波峰焊接是一个昂贵的工艺,因为伴随着越来越多的对其废气排放的研究—这也是工业为什么要减少波峰焊接需求的一个理由.另一个理由是随着表面贴装元件SMD的使用,放用回流焊接传统通孔元件特别是连接器的兴趣越来越多.取消波峰焊接不仅经济上和制造上有好处,而且消除了一个处理中心,通过减少周期时间和占地面积使得装配线更流畅.从工艺观点来看,PCB 减少一次加热过程,这一点对潜在的温度损害和金属间增长是很重要的.侵入式焊接即通孔回流through-hole reflow、单中心回流焊接single-center reflow soldering、引脚插入锡膏pin-in-paste,等是一个表面贴装和通孔元件都在回流焊接系统中焊接的工艺.采用该工艺可减少波峰和手工焊接.这不是一个“插入式drop-in”的工艺 151; 因为沉积的焊锡用来连接SMD 和传统两种元件,控制锡量是必须的.有人用模板stencil来将锡膏印刷到孔内.这里,小心是很重要的,以保证插入的通孔元件引脚不会带走太多的锡膏.其它的使用者将焊锡预成型结合到工业中,来提供足够的锡量给插入的元件.可是,这是一个昂贵的选择,并且不太适合于自动过程.一个更先进的方法是调节围绕电镀通孔周围的焊盘直径与几何形状.最主要的问题是多少锡量才达到“足够的”通孔连接以及“最佳的”锡膏沉积方法,该工艺还处在试验阶段.侵入式焊接Intrusive soldering也要求回流系统比平常多的加热能力.工艺中增加的通孔元件数量对回流系统的热传送效率的要求更高.许多混合技术装配的复杂表面几何形状要求一个很高的热传送系数,以可接受的温度差来充分地回流装配.虽然大多数对流为主的炉可胜任这个任务,在某些装配上的某些元件的热敏感性可能阻碍其通过回流焊系统.这个情况可能在使用较高熔点的无铅焊锡时,变得更富挑战性.可是,对大多数应用,侵入式焊接具有很大的吸引力,理所当然应该得到考虑.结论虽然本文重点在量的回流焊接上面,但相同的原则与惯例对其它的选择性的回流工艺,包括激光,都是可应用的.虽然回流焊接是一个高要求的工艺,但它不是“火箭科技”—必须控制但非常可受的.适当的设备与材料选择,以及理解主要的热、化学和冶金的工艺,将向高合格率的焊接工艺迈出一大步.溅锡的影响减到最小罗丝.伯恩逊、大卫.斯比罗里和杰弗里.安卫勒美在回流之后,内存模块的连接器“金手指”可能出现溅锡的污染,这意味着产品的品质和可靠性问题和制造流程问题.溅锡只是表面污染的一种,其它类型包括水渍污染和助焊剂飞溅.这些影响较小,但由于焊锡飞溅,焊锡已实际上熔湿了“金手指”的表面.“小爆炸”溅锡有许多原因,不一定是回流焊接时热的或熔化的焊锡爆发性的排气结果.例如,通过观察过程,以保证锡膏丝印时的最佳清洁度,溅锡问题可以减少或消除.任何方法,如果使锡膏粉球可能沉积在金手指上,并在回流过程时仍存在,都可以产生溅锡.包括:在丝印期间没有擦拭模板底面模板脏误印后不适当的清洁方法丝印期间不小心的处理机板材料和污染物中过多的潮汽极快的温升斜率超过每秒4° C在后面的原因中,助焊剂的激烈排气可能引起熔化焊接点中的小爆炸,促使焊锡颗粒变成在回流腔内空中乱飞,飞溅在PCB 上,污染连接器的“金手指”.PCB材料内夹住潮气的情况是一样的,和助焊剂排气有相同的效果.类似地,板表面上的外来污染也引起溅锡.溅锡的影响虽然人们对溅锡可能对连接器接口有有害的影响的关注,还没有得到证实,但它仍然是个问题,因为轻微的飞溅“锡块”产生对连接器金手指平面的破坏.这些锡块是不柔顺的,锡本身比金导电性差,特别是遭受氧化之后.第一个最容易的消除溅锡的方法是在锡膏的模板丝印过程.如果这个过程是产生溅锡的原因的话,那么通过良好的设备的管理及保养来得到控制,包括适当的丝印机设定和操作员培训.如果原因不在这里,那么必须检查其它方面.水印污染:其根本原因还未完全理解,虽然可能涉及许多根源.因为已经显示清洁的、未加工的、无锡膏的和没有加元件的板,在回流后也会产生水印污染,所以其中包括了许多的原因:PCB制造残留、炉中的凝结物、干助焊剂的飞溅、清洗板的残留和导热金的变色等.水印污染经常难于发现,但其对连接器接口似乎并无影响.事实上内存模块的使用者并不关心这类表面污染,常常看作为金的变色.助焊剂飞溅:一般理解为,助焊剂水滴在回流炉中变成空中乱飞,分散和附着在整个板上,包括金手指.有两种理论试图说明助焊剂飞溅:溶剂排放理论和合并理论丝印期间的清洁再次认为有影响,但可控制.溶剂排放理论:认为锡膏助焊剂中使用的溶剂必须在回流时蒸发.如果使用过高温度,溶剂会“闪沸”成气体类似于在热锅上滴水,把固体带到空中,随机散落到板上,成为助焊剂飞溅.为了证实或反驳这个理论,使用热板对样板进行导热性试验,并作测试.使用的温度设定点分别为190° C,200° C和220°C.膏状的助焊剂不含焊锡粉末在任何情况下都不出现飞溅.可是,锡膏含有粉末的助焊剂在焊锡熔化和焊接期间始终都有飞溅.表一和表二是结果.表一、溶剂排气模拟试验表二、从金属焊接中的助焊剂飞溅模拟试验可以推断,如果助焊剂沸腾引起飞溅,那么当助焊剂单独加热时应该看到.可是,由于飞溅是在焊锡结合时观察到的,这里应该可找到其作用原理.测试说明溶剂排气理论不能解释助焊剂飞溅.结合理论:当焊锡熔化和结合时熔化材料的表面张力―一个很大的力量―在被夹住的助焊剂上施加压力,当足够大时,猛烈地排出.这一理论得到了对BGA 装配内焊锡空洞的研究的支持,其中描述了表面张力和助焊剂排气之间的联系助焊剂排气率模型.因此,有力的喷出是助焊剂飞溅最可能的原因.接下来的实验室助焊剂飞溅模拟说明了结合的影响,甚至当锡膏在回流前已烘干.尽管如此,完全的烘干大大地减少了飞溅表三.表三、来自金属结合的助焊剂飞溅模拟―烘干研究150oC 观察到飞溅1-2飞溅无飞溅无飞溅160oC 1-2飞溅无飞溅无飞溅无飞溅170oC 无飞溅无飞溅无飞溅无飞溅用锡膏B 90% Sn63/Pb37 合金作试验熔湿速度因为结合模型看来会成功,所以调查了各种材料的熔湿速度.熔湿速度受合金类型、温度、助焊剂载体和回流环境的影响.如图一所说明,温度对熔湿速度有戏剧性的影响,温度越高,速度越快.图一、一种焊锡配方在不同温度测试的熔湿速度,影响因素包括合金类型、温度、助焊剂载体和回流环境.李宁成博士在其论文,“通过缺陷机制分析优化回流曲线”中说,惰性气体氮也会增加熔湿速度.SMT专栏作家珍尼.黄博士和其它人的报告说,共晶合金的熔湿速度倾向于比非共晶材料快.因此,Sn63/Pb37一般比Sn62/Pb36/Ag2熔湿速度更快.影响熔湿、从而影响结合和潜在飞溅的因素如表四所示. 表四、可能引起溅锡的因素溅锡的解决方案预防:防止溅锡沉积的一个方法就是在金手指上涂敷一层可驳除的阻焊层,在丝印锡膏后涂敷,回流后拿掉.这个方法还没有印证,可能成本高,因为牵涉手工作业,涂敷板上选择性区域会造成困难,中断生产流水作业.另外可选择在金手指上贴临时胶带.这个方法也有同样的缺点.最小化:优化助焊剂载体的化学成份,和回流温度曲线,将溅锡减到最低.为了证明这一点,得到内存模块制造商的支持,通过评估对材料和回流温度曲线优化的影响,来评价表准锡膏系统.清楚地表明活性剂、溶剂、合金和回流温度曲线对溅锡程度有重要影响.因此,有信心着手解决问题,这些参数的适当调整可以将溅锡减到最小.非标准材料,如聚合助焊剂系统由于成本高、货架寿命丝印寿命短、工艺变化范围小、并返工困难,不包括在本研究范围.但是,聚合助焊剂有希望最终提供一个可能最小化的溅锡解决方案,因为潜在的飞溅材料在温度激化的聚合过程中被包围.因此,没有液体助焊剂留下来产生飞溅.测试样板是一块六个小板的内存模块,没有贴装元件.已发现元件回减小溅锡的影响,因为元件会阻隔助焊剂从金手指上排出.现有生产材料和温度曲线作基本的试验条件表五.生产电路板的飞溅水平大约每100块组合板有一个飞溅锡球.两个工程师通过20倍的显微镜观察所有的板,以评估溅锡程度.表五、测试材料残留慢高推荐惰性中助焊剂E 低残留,高溶剂含量,空气或氮气回流慢高惰性中助焊剂F 极低残留,惰性回流助焊剂A: Kester244, B: 92, C: 92J, D:51SC, E: 73D, F:75 在线研究中使用不同特性的表准锡膏.根据其不同的湿润速度和溶剂性能来选择这些材料.为减少研究中的变量参数,所有锡膏使用同一种合金:Sn63/Pb37,粒度-325/+500目.最小化试验结果回流温度曲线的选择:试验期间得到明确,回流曲线和材料类型两者都必须调整以使飞溅最小.测试使用的两条主要的回流曲线不同在于其保温区的特性.没有平坦保温区的线性上升温度曲线图二结果是所有材料都存在一些溅锡,在原来的生产材料上增加了溅锡.因此,这个曲线形状没有作继续研究.基于飞溅机制的假设,这个线性的曲线没有充分烘干助焊剂.一个更有前途的基本曲线形状包括一个160oC的高温保温烘干,以蒸发所有溶剂图三.这种溶剂失散增加助焊剂剩余的粘性,减少挥发成份,因此减少飞溅.可是,这样烘干的潜在问题包括熔湿变差和产生空洞.使用惰性气体氮气可以帮助改善熔湿和减少空洞,但对飞溅却无效果.这个曲线也是一个“长”曲线,消除了过快温升率的需要最高每秒175oC.图二、线性温升曲线,没有保温平台区,对任何焊锡和助焊剂材料都造成一些溅锡图三、有一个高温保温区的温度曲线,溶剂的消失提高余下的助焊剂粘性,因此减少溅锡所有温度曲线研究的结果在图四和表六中总结.光板上测得的飞溅程度,在已贴装元件的生产板上大大减少.估计表明,光板上少于10-20个飞溅锡球,将在贴装元件板上不产生飞溅.因此,助焊剂类型D,E和F表五都提供了可行的溅锡解决方案.D型助焊剂载体有其它有点,工艺范围大和可以空气回流.三种材料的特点都是熔湿速度慢,但溶剂种类不同,这显示所有溶剂都可以有效烘干,熔湿速度才是助焊剂飞溅的关键因素.。

回流焊曲线图

回流焊曲线图

使用范围设备名称版本/版次:A/01页码5.3.1测出炉温曲线后,确认各温区的关键参数是否符合按本文件6.0相关标准。

如有必要再进行调整。

排小批量(10PCS板左右)试过炉。

2.2 恒温区:使产品在进入较高温度区域前达到热平衡,同时对锡膏中没有用的化学成 5.5 炉温曲线的再调整份进行进一步地挥发处理。

该工序如设置不当可能造成 ‘热坍塌’、‘连锡’ 在产品试过炉过程中,如发现过炉结果存在质量问题,需马上对炉温曲线进行调整,直到 ‘高残留物’、‘焊球’、‘润湿不良’、‘气孔’、‘立碑’等等不良现象。

满意为止。

最后需对炉温曲线进行再一次测试.5.6 批量过炉技术员全程跟进以上各过程,全部OK后,即可通知生产车间安排批量过炉.5.7 炉温曲线管控一般情况下,以电子挡的形式按客户要求保存在机器电脑中。

5.8 炉温曲线测试频率5.8.1刚转线的所有产品均需对炉温进行实测。

5.8.2正在生产的产品,每天至少安排测试一次炉温,这种情况统一 由白班进行测试. 5.8.3每次调整炉温设置参数时,均需对炉温进行重新测试;每次批量生产使用的炉温曲线如和以前不同均需在电脑中对炉温曲线进行存档。

6.0炉温曲线格式为使炉温曲线更好地发挥作用,炉温曲线的制作需使用统一的格式(见附件一)。

7.0 标准设置温度5.1.1根据PCB厚度、大小及元器件热容量大小、数量等调取已经生产过的相似产品炉温设置参数,并结合生产产品的实际情况进行适当调整。

5.2.1 制作测温板:选择结构有代表性的几个产品制作测温板,一般性的产品均可用此测温板进行测试炉温。

测温板上主要的A级物料及屏蔽盖必须有。

的温度参数和实测温度之间相差应在在±2℃以内.否则,需进行调查处理。

制定: 日期: 审核: 日期: 批准: 日期:4.0 职责:SMT技术员负责确定和调整炉温曲线并作记录。

5.0 作业内容5.1 设置炉温曲线5.2 测量炉温5.2.2 测试炉温:待炉温达到预定的设置值后即可安排对炉温进行测试。

回流焊温度曲线设定详解

回流焊温度曲线设定详解

回流焊温度曲线设定详解回流焊温度曲线是由回流焊炉的多个参数共同作用的结果,其中起决定性作用的两个参数是传送带速度和温区的温度设定。

传送带速度决定了印刷线路板暴露在每个温区的持续时间,增加持续时间可以使印刷线路板上元器件的温度更加接近该温区的设定温度。

每个温区所用的持续时间的总和又决定了整个回流过程的处理时间。

每个温区的温度设定影响印刷线路板通该温区时温度的高低。

印刷线路板在整个回流焊接过程中的升温速度则是传送带速和各温区的温度设定两个参数共同作用的结果。

因此只有合理的设定炉温参数才能得到理想的炉温曲线。

广晟德为大家分享以最为常用的 RSS曲线为例介绍一下炉温曲线的设定方法。

一、回流焊链速的设定:设定回流焊温度曲线时第一个要考虑参数是传输带的速度设定,该设定将决定印刷线路板通过加热通道所花的时间。

传送带速度的设定可以通过计算的方法获得。

这里要引入一个指标,负载因子。

负载因子:F=L/(L+s) L=基板的长,S=基板与基板间的间隔。

负载因子的大小决定了生产过程中炉内的印刷线路板对炉内温度的影响程度。

负载因子的数值越大炉内的温度越不稳定,一般取值在0.5~0.9 之间。

在权衡了效率和炉温的稳定程度后建议取值为 0.7-0.8。

在知道生产的板长和生产节拍后就可以计算出传送带的传送速度(最慢值)。

传送速度(最慢值)=印刷线路板长/0.8/生产节拍。

传送速度(最快值)由锡膏的特性决定,绝大多数锡膏要求从升温开始到炉内峰值温度的时间应不少于 180 秒。

这样就可以得出传送速度(最大值)=炉内加热区的长度/180S。

在得出两个极限速度后就可以根据实际生产产品的难易程度选取适当的传送速度一般可取中间值。

二、回流焊温区温度的设定:一个完整的 RSS 炉温曲线包括四个温区分别为:回流焊预热区:其目的是将印刷线路板的温度从室温提升到锡膏内助焊剂发挥作用所需的活性温度135℃,温区的加热速率应控制在每秒 1~3℃,温度升得太快会引起某些缺陷,如陶瓷电容的细微裂纹。

真空回流焊温度曲线设定

真空回流焊温度曲线设定

真空回流焊温度曲线设定真空回流焊是一种广泛应用于电子制造业的焊接技术。

它利用真空环境下的高温加热,使焊料迅速熔化,完成电子元件的连接。

为了确保焊接质量和生产效率,正确设置真空回流焊的温度曲线至关重要。

首先,确定正确的预热温度是真空回流焊的关键。

预热温度过低会导致焊接时焊料未完全熔化,焊点连接质量变差;而预热温度过高则可能引发元件的热应力损坏。

因此,建议将预热温度设定在介于80°C至120°C之间,具体数值可根据焊料的熔点和元件的耐热温度确定。

接下来是焊接温度设定。

焊接温度的设置应根据焊料的特性和元件的要求进行调整。

一般情况下,焊料的熔点在220°C至260°C之间,建议将焊接温度设定在250°C左右。

同时,还要考虑焊接时间,以确保焊料充分熔化和流动,一般焊接时间设置在10秒至30秒之间。

在真空回流焊的过程中,冷却阶段同样重要。

合适的冷却温度能够有效提高焊点的可靠性和耐热性。

建议将冷却温度设定在介于50°C 至80°C之间,以避免因温度过高导致焊点脆化或因温度过低引发热应力。

为了避免温度设定带来的误差,使用高精度温度控制设备是必要的。

这样,我们可以精确控制每个阶段的温度,确保焊接质量和生产效率。

除了温度设定,还有一些其他因素需要考虑。

例如,焊接时的环境湿度应控制在适宜范围,以避免焊点氧化。

此外,焊接前的基板清洁也极为重要,通过去除污垢和氧化层,可以提高焊点的附着力和导电性能。

在实际应用中,不同的电子元件和焊料可能需要微调温度设定参数。

因此,建议在使用真空回流焊技术时,根据具体的情况进行试验和优化,以获得最佳的焊接效果。

总之,真空回流焊温度曲线的设定对焊接质量和生产效率至关重要。

通过合适的预热温度、焊接温度和冷却温度设定,配合高精度的温度控制设备,以及适宜的环境湿度和基板清洁,我们可以实现可靠的焊接连接,提高电子制造的质量和效率。

回焊炉温度曲线设定方法

回焊炉温度曲线设定方法

回焊炉温度曲线设定方法(一)“正确的温度曲线将保证高质量的焊接锡点。

”约翰 . 希罗与约翰 . 马尔波尤夫( 美)在使用表面贴装组件的印刷电路板(PCB) 装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。

温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB 上一个特定点上的温度形成一条曲线。

几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。

带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。

每个区所花的持续时间总和决定总共的处理时间。

每个区的温度设定影响PCB 的温度上升速度,高温在PCB 与区的温度之间产生一个较大的温差。

增加区的设定温度允许机板更快地达到给定温度。

因此,必须作出一个图形来决定PCB 的温度曲线。

接下来是这个步骤的轮廓,用以产生和优化图形。

在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB 的工具和锡膏参数表。

可从大多数主要的电子工具供货商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件( 除了曲线仪本身) 。

现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。

测温仪一般分为两类:实时测温仪,实时传送温度/ 时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。

热电偶必须长度足够,并可经受典型的炉膛温度。

一般较小直径的热电偶,热质量小响应快,得到的结果精确。

有几种方法将热电偶附着于PCB ,较好的方法是使用高温焊锡如银/ 锡合金,焊点尽量最小。

另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物( 也叫热导膏或热油脂) 斑点覆盖住热电偶,再用高温胶带( 如Kapton) 粘住。

还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠。

[指南]有铅无铅回流焊接温度曲线设定指引

[指南]有铅无铅回流焊接温度曲线设定指引

有铅无铅回流焊接温度曲线设定指引由于在原先的锡铅电路板上需要使用一些无铅组件,于是出现了向后兼容的问题。

就向后兼容的问题而言,一些组件只进行了无铅表面处理。

对组件供货商来说,同时提供锡铅和无铅两类同种组件是不划算的。

表面进行了无铅处理的含铅组件在使用时是没有问题的。

但是,在一块原来的锡铅电路板上使用无铅BGA,问题就来了。

由于所有其他组件是锡铅组件,如果使用最大峰值温度为220℃的锡铅焊接温度曲线,此时无铅BGA焊球是部分地熔化,或者完全不能实现再流焊接,会出现一系列焊点可靠性的问题。

那么,我们究竟应该使用哪一种回流焊温度曲线呢?这里有两种方案:第一个办法是,使用标准的锡铅回流焊温度曲线。

除了无铅BGA 以外,所有组件的峰值再熔温度在210℃至220℃之间。

因此无铅BGA 和其他锡铅组件不要放在一起焊。

在锡铅组件完成再流焊之后,使用选择性焊接,即采用选择性激光焊接系统来贴放和焊接所有的无铅BGA。

选择性激光焊接系统只是贴装和焊接无铅BGA,不会影响四周已经在对流回流焊炉中完成了焊接的锡铅组件。

第二个办法是,如果没有锡铅焊接温度曲线,又想在同一个焊炉中焊接所有的锡铅组件和一些无铅BGA,那么回流焊峰值温度必须不会损坏锡铅组件,但又足以对无铅BGA进行回流焊。

千万别忘了,由于电路板上大多数组件是锡铅组件,你要使用锡铅焊膏。

因此,峰值温度在210℃至220℃之间,是适合锡铅组件的,但是对于熔点在217℃至221℃之间的无铅BGA,则温度不足。

如果峰值温度为226℃至228℃,高于液相线(TAL)的时间为45到60秒,这就足以对无铅BGA进行回流焊,又不会损坏同一块电路板上的所有锡铅组件。

如果226℃至228℃的再流焊温度范围太狭窄,难以完成向后兼容锡铅组件和无铅BGA的焊接,可以考虑采用选择性激光焊接,或者去找提供锡铅焊球BGA的供货商。

开发任何一种温度曲线,使用正确的热电偶很重要。

我们需要K型热电偶,它连有一根36号AWG 导线。

回流焊PCB温度曲线讲解 ppt课件

回流焊PCB温度曲线讲解  ppt课件
ppt课件 11
怎样设定锡膏回流温度曲线
回流区,有时叫做峰值区或最后升温区。
这个区的作用是将PCB装配的温度从活性 温度提高到所推荐的峰值温度。活性温 度总是比合金的熔点温度低一点,而峰 值温度总是在熔点上。典型的峰值温度 范围是205~230°C,这个区的温度设定 太高会使其温升斜率超过每秒2~5°C, 或达到回流峰值温度比推荐的高。这种 情况可能引起PCB的过分卷曲、脱层或烧 损,并损害元件的完整性。
ppt课件 31
得益于升温-到-回流的回流温度曲线
排除RTS曲线的故障
排除RSS和RTS曲线的故障,原则是相 同的:按需要,调节温度和曲线温度 的时间,以达到优化的结果。时常, 这要求试验和出错,略增加或减少温 度,观察结果。以下是使用RTS曲线 遇见的普遍回流问题,以及解决办法 。
ppt课件 32
ppt课件 22
为什么和什么时候保温
应该注意到,保温区一般是不需要 用来激化锡膏中的助焊剂化学成分。 这是工业中的一个普遍的错误概念, 应予纠正。当使用线性的RTS温度曲 线时,大多数锡膏的化学成分都显示 充分的湿润活性。事实上,使用 RTS 温度曲线一般都会改善湿润。
ppt课件 23
得益于升温-到-回流的回流温度曲线
设定RTS温度曲线
RTS曲线回流区是装配达到焊锡回流温度的阶 段。在达到150° C之后,峰值温度应尽快地 达到,峰值温度应控制在215(± 5)° C,液 化居留时间为60(± 15)秒钟。液化之上的这 个时间将减少助焊剂受夹和空洞,增加拉伸 强度。和RSS一样,RTS曲线长度也应该是从 室温到峰值温度最大3.5~4分钟,冷却速率控 制在每秒4° C。
ppt课件 28
得益于升温-到-回流的回流温度曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.0目的
用于指导回流焊温度曲线测试操作指示。

2.0适用范围:
适用于苏州福莱盈电子有限公司
3.0职责:

4.0作业内容
4.1设定温度参数制程界限:
4.1.1工程师根据锡膏型号、特殊元件规格、特殊测量位置、FPC制程以及客户
的要求制定一个合理的温度曲线测试范围,包括:升温区、浸泡(保
温)区、回流区、冷却区的具体参数及定义
图一: KOKI S3X48-M500锡膏的参考回流曲线
4.1.2预热区:通常是指由室温升温至150度左右的区域。

在此温区,升温速
率不宜过快,一般不超过3度/秒。

以防止元器件应升温过快而造成基板
变形或元件微裂等现象。

4.1.3浸泡(保温)区:通常是指由110度~190度左右的区域。

在此温区,助
焊剂进一步挥发并帮助基板清楚氧化物,基板及元器件均达热平衡,为高
温回流做准备。

此区一般持续时间问60~120秒。

4.1.4回流区:通常是指超过217度以上温度区域。

在此温区,焊膏很快熔
化,迅速浸润焊接面,并与基板PAD形成新的合金焊接层,达到元件与
PAD之间的良好焊接。

此区持续时间一般设定为:45~90秒。

最高温度一
般不超过250度(除有特定要求外)。

4.1.5冷却区:该区为焊点迅速降温,将焊料凝固,使焊料晶格细化,提高焊
接强度。

本区降温速率一般设置为-3~-1度/秒左右。

4.2测温板的制作
4.2.1采用与生产料号一致的样品板作为测温板,制作测温板时,原则上应保留
必要的具有代表性的测温元器件,以保证测试测量温度与实际生产温度保
持一致。

4.2.2测温板与生产料号在无法保持一致情况下,经工程师验证认可,可使用与
之同类型的测温板进行测量。

4.2.3测温点应该选择最具有代表性的区域及元件,比如最大及最小吸热量的元
件,零件选取优先级(如Socket->Motor->大型BGA ->小型BGA->QFP或
SOP->标准Chip)除此之外,还应选择介于两者之间的一个测温区。


图:
4.2.4一般测温点在每板上不得少于3个,有BGA或大型IC至少选取4个,基
于特殊代表型元件为首选原则选取元件。

4.2.5位置分布:采用全板对角线型方式或4角1中心点方式,能涵盖整块板位
置分布.
4.2.6测温线应用耐高温黄胶带或红胶固定在测温板上。

4.3测试炉温曲线
4.3.1根据工程师制定的温度制程界限,炉温测试技术员基于不同的回流炉结构
先行预设定各区炉温
,以达到温度制程要求.
4.3.2将测温板上的热电偶依次插入测试仪的插孔内.戴上保护套,同时注意空
气线必须插入第一插孔内。

4.3.3
炉温设定后,待回流炉绿灯正常亮起后,方可以用测温板进行测试。

4.3.4将测温板及测试仪小心的放入回流焊的传送带或链条上,并打开测试仪的
电源及记录数据开关,进板方式应与所生产的板子相同。

4.3.5
测试完成后,
在出板端取出测试仪。

4.3.6
在电脑端读出温度曲线,检查曲线是否在合理的制程范围内,否则技术员需
要继续调试各区温度,直到测量出符合制程界限的温度曲线。

4.4数据收集
4.4.1 如图打开电脑KIC 测温程序。

并检查锡膏制程是否OK.
4.4.2 输入相关信息包括炉温、温区、链速、测试通道等。

4.4.3根据提示连接测温仪,开始读取数据。

选取测试通道
连接
4.4.4根据温度曲线要求分析数据,并将符合规定的温度曲线打印出来,以便存
档.
4.4.5填写《温度曲线确认表》,并有ME、IPQC共同确认OK后张贴在回流炉
上。

4.5炉后检查
检查在此温度设置下的基板过炉后焊接情况,根据此焊接良率来确认此设定范
围及炉温参数设定的合理性。

4.6测试频率
回流焊的温度曲线由技术员每天测试一次,若换线应重新做,并将正确的温度曲
线图打印,填写相应的《温度曲线确认表》。

4.7注意事项:
4.7.1如客户有要求需测量IC/QFP温度时,要将热电偶线引接在IC的引脚上。

4.7.2如客户有要求需测量BGA温度时,需在测试板正面的BGA焊盘处位置上的
钻一个孔,直至反面,把热电偶线从测试板反面插入焊接到BGA的焊点
上,同时将整个BGA焊接在测试板上。

4.7.3如需测量手焊元件温度时,要将热电偶线从正面穿过焊孔,伸出测试板的
长度为1.5-2mm以便接触到锡波。

4.8健康安全: 在测试的过程中注意安全,防止高温烫伤。

5.0相关附件:

6.0相关文件:

7.0使用表单:
7.1温度曲线确认表。

相关文档
最新文档