焊接变形及措施

合集下载

焊接应力与变形及其预防和校正措施

焊接应力与变形及其预防和校正措施

焊接应力与变形及其预防和校正措施焊件不均匀局部加热和冷却是导致焊接应力和变形产生的根本原因。

1.焊接变形的基本形式a)收缩(纵向、横向)变形 b)角变形 c)弯曲变形 d)波浪变形 e)扭曲变形 f)错边(长度方向、厚度方向)变形σ>σs时,产生变形σ>σb时,产生裂纹,甚至断裂2.预防和减小焊接应力及变形的措施1)合理设计焊接结构(减少焊缝长度和截面积、尽量采用对称焊缝、避免交叉焊缝);2)焊前预热(焊后冷却时,加热区与焊缝同时收缩。

此法称为加热减应区法:如图a)焊前b)焊后);3)反变形法4)刚性固定法5)选择合理焊接顺序a)焊接顺序应能使焊件自由收缩 b)对称焊接法 c)长焊缝的分段焊法 d)工字梁的焊接方法6)锤击焊缝法3.焊接变形的校正1)机械矫正法a)压力矫正 b)锤击矫正变形的步骤2)火焰矫正法a)T形梁的火焰矫正 b)薄板波浪变形的火焰矫正4.焊接接头设计1)焊接结构应尽量选用型材成冲压件a)用四块钢板焊成 b)用两根槽钢焊成 c)用两根钢板弯曲后焊成 d)容器上的铸钢件法兰2)合理布置焊缝①焊缝布置应尽量分散a)、b)、c)不合理 d)、e)、f)合理②焊缝和位置应尽量对称布置a)、b)不合理 c)、d)、e)合理③尽量减少构件成焊件接头部位的应力集中a)不合理 b)合理④焊缝应避开最大应力和应力集中部位a)、b)、c)、d)不合理 e)、f)、g)、h)合理⑤对不同厚度钢板的受力对接接头,要采用工艺措施⑥在满足使用要求的前提下,应尽量减少焊缝对结构附加应力的影响a)次要焊缝影响主要受力构件 b)附加元件(卡箍)代替次要焊缝。

控制焊接变形的设计措施

控制焊接变形的设计措施

控制焊接变形的设计措施在焊接行业中,焊接变形一直是一个非常头痛的问题。

焊接过程中由于高温和热应力的作用,焊件会发生变形,这会影响焊接质量和工件的性能。

为了控制焊接变形,需要采取一些设计措施,下面介绍几种常见的方法。

1.合理选择焊接方法不同的焊接方法对焊接变形的影响不同,因此在选择焊接方法时需要考虑变形因素。

例如,TIG焊接和激光焊接都是低热输入的焊接方法,可以减少焊接变形。

而电弧焊接和气焊则会产生较大的热影响区,容易引起焊接变形。

因此,在选择焊接方法时应根据具体情况进行合理选择。

2.控制焊接热输入焊接热输入是焊接变形的主要原因之一,因此需要控制焊接热输入。

可以通过降低焊接电流和增加焊接速度来减少焊接热输入。

此外,选择合适的焊接电极和焊接材料也可以降低焊接热输入。

3.使用预热和后热处理预热可以降低焊接材料的冷却速度,减少焊接变形。

后热处理可以消除焊接残余应力,进一步减少变形。

因此,在一些对焊接变形要求较高的工件上,可以采用预热和后热处理的方法。

4.采用多道焊接多道焊接可以减少每次焊接的热输入量,从而减少焊接变形。

在多道焊接中,可以采用交叉焊接的方式,即先焊接一侧,然后焊接另一侧,以此类推,从而减少残余应力的积累。

5.使用夹具和支撑物在焊接过程中,夹具和支撑物可以起到固定工件的作用,减少焊接变形。

夹具和支撑物的设计应考虑到焊接变形的方向和程度,以便实现更好的固定效果。

控制焊接变形需要综合考虑多种因素。

以上几种设计措施可以帮助我们减少焊接变形,提高焊接质量和工件的性能。

在实际应用中,需要根据具体情况进行合理选择和调整,以达到最佳的效果。

焊接应力和变形及措施

焊接应力和变形及措施

焊接变形 1. 影响工件形状、尺寸精度 2. 影响组装质量3. 增大制造成本———矫正变形费工、费时4. 减少承载能力———变形产生了附加应力焊接应力 1. 减少承载能力 2. 引发焊接裂纹,甚至脆断3. 在腐蚀介质中,产生应力腐蚀裂纹4. 引发变形焊接应力{ 焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表达)远离焊缝区手拉应力(用符号“+”表达)焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力焊接变形:当焊接应力超出金属 σs 时,焊件将产生变形焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,构造刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。

4.2.3 焊接变形的控制和矫正:4.2.3.1 焊接变形的基本形式,如图 6-2-9 4.2.2 焊接变形和应力的产生因素:根本因素:对焊件进行的不均匀加热和冷却,如图 6-2-8 焊接应力与变形:4.2.1 焊接变形和残存应力的不利影响:{ {如图 6-2-9 常见的焊接残存变形的类型1、2---纵向收缩量 3---横向收缩量 4、5---角变形量 f---挠度(1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引发的。

如图 5-2-9 a(2)角变形:即相连接的构件间的角度发生变化,普通是由于焊缝区的横向收缩在焊件厚度上分布不均匀引发的。

如图 5-2-9b(3)弯曲变形:即焊件产生弯曲。

普通是由焊缝区的纵向或横向收缩引发的。

如图 5-2-9c(4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引发的角度形沿焊接方向逐步增大有关。

如图 5-2-9d(5)失稳变形(波浪变形):普通是由沿板面方向的压应力作用引发的。

如图 5-2-9e4.2.3.2控制焊接变形的方法(1)设计方法(详见焊接构造设计)尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或靠近于构件截面的中性轴(以减少弯曲变形)。

消除焊接变形的方法

消除焊接变形的方法

焊接变形是焊接过程中常见的问题,它可能对焊接结构的形状、尺寸、精度和稳定性产生不利影响。

为了消除焊接变形,可以采取以下几种方法:
反变形法:在焊接前或焊接过程中,人为地使焊件产生与焊接变形相反的变形,以抵消焊接变形。

这种方法需要在焊接前或焊接过程中精确计算和控制反变形量,才能达到预期的效果。

刚性固定法:将焊件固定在具有足够刚性的夹具或支撑物上,以防止焊接变形。

这种方法适用于小型、简单的焊件,但对于大型、复杂的焊件,由于刚性固定可能会产生较大的应力,因此需要采取其他措施来消除应力。

锤击法:在焊接过程中,使用锤击或振动焊件的方法来消除焊接变形。

这种方法需要在焊接过程中精确控制锤击或振动的力度和频率,以避免对焊件造成过大的损伤。

加热法:在焊接前或焊接过程中,对焊件进行局部或整体加热,以消除焊接变形。

这种方法需要在加热过程中精确控制加热的温度和范围,以避免对焊件造成过大的损伤。

机械校正法:在焊接后,使用机械工具对焊件进行校正,以消除焊接变形。

这种方法需要在机械校正过程中精确控制校正的力度和方向,以避免对焊件造成过大的损伤。

化学校正法:在焊接后,使用化学剂对焊件进行校正,以消除焊接变形。

这种方法需要在化学校正过程中精确控制化学剂的种类、浓度和作用时间,以避免对焊件造成过大的损伤。

以上是消除焊接变形的几种常见方法,可以根据不同的焊接情况选择合适的方法。

无论采用哪种方法,都需要在焊接过程中严格控制工艺参数,以避免产生过大的焊接变形。

焊接变形原因及控制措施

焊接变形原因及控制措施

焊接变形原因及控制措施摘要介绍出口敞车侧柱组成在焊接过程中,盖板和腹板出现的角变形和长度方向的弯曲变形,仔细分析了变形产生的原因,制定了合理的解决方法;对侧盖板和腹板预先设置了反变形及反挠度,重点设计制作了反变形工装和自动焊工装,解决了焊接变形导致的直线度、垂直度超差难题。

关键词直线度超差反挠度反变形一、概述侧柱组成是侧墙组成中重要的零部件组成之一,它与侧墙组成(1)(2)和枕柱组成结构不同,其焊缝质量等级为CPC2,认证级别为EN15085规定的CL1级,无论是质量要求或外观要求均要求极高。

1. 质量要求分析侧柱组成其直线度、平面度以及垂直度必须保证与侧墙接触的侧柱腹板,二者之间不能产生缝隙,盖板的宽度方向平面度小于1mm,盖板在通长方向直线度小于1mm,盖板和腹板的垂直度小于0.5mm。

2. 焊接方式盖板和腹板直线焊缝,如果采用手工焊接难度大,焊修打磨的工作量较大,焊接质量难以保证,从而其产品生产效率及产品成品合格率得不到有效保证。

同时整个侧墙组成是属于车体外观件,其焊缝的成型质量及外观尤其重要,因此采用了自动焊小车焊接方式,实现“部件焊接半自动化、机械化”,对焊缝实行自动焊,利用机械焊接方式代替手工焊接方式来有效的提高焊缝的焊接质量及外观质量,减少飞溅、气孔、夹渣、焊偏等缺陷。

同时采用自动小车焊接有效的提高焊接质量和效率,减小劳动强度,通用性等优点。

二、问题及原因1. 问题采用T型结构件,如果采用正常工艺技术方法进行展开下料,并折压成型后再组对再自动焊,与侧墙接触的侧柱腹板在2317mm范围内会产生5mm的通长圆弧型缝隙,而盖板也会产生于腹板方向一致的通长的弯曲变形和宽度方向的角变形;此外,由于采用的是T型结构周边只有腹板断面与侧墙接触,其余非接触面全部悬空,焊接后腹板产生通长圆弧型缝隙在下工序车间的侧墙组对焊时有极大难度,且外观质量严重影响产品整体外观质量(图1)。

图12.变形原因分析正常的焊接生产中焊接应力与变形是不可避免的。

减少焊接接应力和焊接变形的措施

减少焊接接应力和焊接变形的措施

减少焊接接应力和焊接变形的措施1.选择适当的焊接参数:根据材料的种类和厚度选择合适的焊接电流、电压和焊接速度等参数,以降低焊接接应力和变形的风险。

同时,选择低温软化点的金属填充材料,如铜等,可以降低焊接接应力。

2.采用适当的焊接序列:通过改变焊接顺序,可以降低焊接过程中的接应力和变形。

在多次焊接时,从最中心的部位开始焊接,逐渐向两边延伸。

这样可以避免焊接热量集中在一个地方,减少局部热变形。

3.采用预热和后热处理:预热可以提高焊接材料的可塑性,改善焊接接头的焊接性能。

一般情况下,预热温度为焊接材料的临界温度的50%-70%。

预热后的焊接接头,在焊接完成后应进行后热处理,即将焊接接头加热至临界温度以下保温一段时间,然后缓慢冷却,以进一步消除焊接接头内应力。

4.使用焊接夹具:焊接夹具可以固定工件,减少焊接过程中的变形。

夹具应设计合理,以便保证焊接接头位置准确,但对于自由热变形而言,应当尽量减少夹具的使用。

5.控制焊接热输入量:合理控制焊接过程中的热输入量,以确保焊接接头不过热。

可以采用间歇焊接的方法,在焊接过程中适时停止加热,让工件冷却一段时间以减少热输入。

6.采用适当的接头形状:通过改变焊缝的形状,可以减少焊接过程中的接应力。

一般情况下,V型焊缝和锂阳角焊缝对于减少焊接变形效果较好。

7.选择适当的焊接方式:对于大型工件,可以采用多层焊接或间断焊接的方式进行,以减少焊接材料的热量。

对于特殊形状的工件,可以选择其他焊接方法,如电阻焊、激光焊等。

8.控制冷却速度:焊接完成后,要注意控制冷却速度,避免过快的冷却。

可以采用包裹式焊接,焊接完毕后用保温材料将焊接接头包裹起来,使其缓慢冷却,以减少残余应力。

焊接变形及预防措施

焊接变形及预防措施

什么是焊接变形?(一)基本类型1. 纵向收缩变形:构件焊后在平行焊缝的方向上尺寸缩短。

2. 横向收缩变形:构件焊后在垂直焊缝的方向上尺寸缩短。

3. 弯曲变形:由于焊缝的布置偏离焊件的形心轴。

4. 角变形:焊后构件的平面围绕焊缝产生的角位移。

5.波浪变形:焊后构件呈波浪形,在焊薄板中出现。

6.错边变形:两焊接热膨胀不一致,所引起的长度或厚度方向上的错边。

(二) 设计措施1. 合理选择焊件尺寸。

焊件的长度、宽度和厚度等尺寸对焊接变形有明显的影响。

例如,板的厚度对于角焊缝的角变形影响较大,当厚度达到某一数值(钢约9mm)时角变形最大。

在制造T形或工形焊接梁时,由于焊件细长,以致于焊接区收缩变形引起焊件弯曲变形是一个突出问题。

解决这一问题的最好办法就是要精心设计结构尺寸参数(如板厚、板宽、板长和肋板间距等)和焊接参数(如单位线能量等)。

2. 合理选择焊缝尺寸和坡口形式。

焊缝尺寸的大小,不仅关系到焊接工作量,而且还对焊接变形产生较大的影响。

焊缝尺寸大,焊接量也大,填充金属消耗量多,造成焊接变形大。

因此在设计焊缝尺寸时,在保证结构承载能力的条件下,应采用较小的焊缝尺寸。

片面加大焊缝尺寸对减小焊接变形极其不利。

所以对并不承受很大工作应力的焊缝,不必采用大尺寸焊角,只要能满足其强度要求就好。

另外,还要合理设计坡口型式。

例如对接接头要采用角变形为零的最佳X 形坡口尺寸。

对于受力较大的T形接头和十字接头,在保证相同强度的条件下,采用开坡口的焊缝比不开坡口焊缝动载强度高,焊缝金属量少,而且对减小焊接变形也是有利的,尤其对厚板而言,更有意义。

3. 尽量减少不必要的焊缝。

在焊接结构设计中,应该力求使焊缝数量减至最少。

一般在设计中常采用加肋板来提高结构的稳定性和刚度,特别是有时为减轻主体结构重量而采用较薄板,势必增加肋板数量,从而大大增加装配和焊接的工作量,其结果是不但不经济,而且焊缝致使焊接变形过大。

所以实践证明合理选择板厚,适当减少肋板,使焊缝减少,即使结构可能稍重,还是比较经济的。

焊接变形的影响因素与控制措施

焊接变形的影响因素与控制措施

(作者单位:一重集团天津重工有限公司)焊接变形的影响因素与控制措施◎刘春月焊接变形具体指在未受到外力作用的情况下,构件因焊接过程出现的收缩、角度改变以及弯曲等情况,焊接变形会对构件的安装精度产生严重影响,进而阻碍之后的正常使用,为了保证构件的质量,需要对焊接变形做好有效控制。

一、几种常见的焊接变形介绍1.角变形的具体分析。

焊接变形中的角变形通常会出现在搭接、对接、对焊焊接以及丁字接头中,引发以上问题的原因是横向收缩变形不均匀分布在厚度方向。

角变形程度受构件压缩塑性变形的直接影响,板背面的温度会随线能量的提高而升高,在此过程中,板两面的塑性变形量可能存在差异,致使角变形量出现减少的情况,在板厚相同的情况下,单层焊会比多层焊的焊接变形小,角变形程度与焊接层数呈现正相关。

2.横向收缩变形的具体分析。

横向收缩量会随着焊接线能量的升高而变大,但是如果板的厚度值越大,产生的横向收缩量越小,对横向变形来说,板厚以及焊接线能量是重要的影响要素。

在焊接过程中,不同部位存在先后之分,先焊接焊缝会对后焊接焊缝起到横向的挤压作用,进而使得横向的压缩变形变得更大,并且焊缝的横向收缩量变化规律是沿着焊缝方向从收缩量小逐渐变大,在接近一定程度后,逐渐变得平稳,导致焊缝长度方向的横向收缩量存在分布不均匀的情况。

3.纵向收缩变形的具体分析。

对纵向收缩量的大小而言,压缩塑性变形是主要的影响因素。

对压缩塑性变形产生影响的因素有很多,如焊接顺序、焊接参数、焊接材料的物力参量以及焊接方式等,通常情况下,纵向收缩量与焊接线能量呈正相关,如果构建中的焊缝存在不对称现象,会导致相应的应力不均匀,不仅会让构件缩短,还会导致构件发生弯曲,并且出现不同程度的挠曲变形。

二、引发焊接变形的主要原因分析1.焊接应力带来的影响。

焊接时产生变形的根本原因是焊接应力的作用,针对一些外形较大,且结构相对复杂的构件,在焊接时需要复杂的焊缝,不同焊缝产生的应力大小及方向存在差异,整体的情况比较复杂,工作人员无法保证焊缝预测的准确性。

焊接变形改善措施方案

焊接变形改善措施方案

焊接变形改善措施方案
焊接变形是在焊接过程中由于热量的影响而引起的金属结构形状发生偏离的现象。

焊接变形不仅会降低焊接件的精度和质量,还可能对焊接结构的强度和稳定性产生不利影响。

为了改善焊接变形,以下是一些常用的措施方案:
1. 选用合适的焊接参数:在进行焊接前,应根据焊接材料的性质和焊接结构的要求,合理选择焊接电流、电压、焊接速度等焊接参数。

通过调整焊接参数,可以控制焊接过程中的热输入,从而减小变形的发生。

2. 使用预留间隙:在焊接结构设计过程中,可以合理设计预留间隙。

预留间隙可以提供材料热膨胀的余地,从而降低焊接过程中的应力集中,减小变形的程度。

3. 采用预热和后热处理:通过对焊接件进行预热,可以使焊接材料的内部应力得到释放,从而减小变形的发生。

在焊接完成后,进行适当的后热处理,可以进一步改善焊接结构的性能和形状稳定性。

4. 使用临时支撑和夹具:在焊接过程中,可以利用临时支撑和夹具来固定和支撑焊接件,从而减小焊接过程中的变形。

5. 采用分段焊接:在焊接大型结构时,可以采用分段焊接的方式。

分段焊接可以减小焊接过程中的热输入和热冲击,从而降低变形的程度。

6. 优化焊接顺序:根据焊接结构的特点和要求,优化焊接顺序可以有效减小焊接变形。

在焊接过程中,应先焊接承载结构的重要部位,然后再进行其他部分的焊接。

综上所述,通过合适的焊接参数选择、预留间隙设计、预热和后热处理、临时支撑和夹具、分段焊接以及优化焊接顺序等措施方案,可以有效改善焊接变形问题,提高焊接质量和结构的稳定性。

焊接变形的控制措施

焊接变形的控制措施

焊接变形的控制措施
(1)在焊接过程中,厚板对接焊后的变形主要是角变形。

实践中为控制变形,往往先焊正面的一部分焊道,翻转工件,碳刨清根后焊反面的焊道,再翻转工件,这样如此往复,一般来说,每次翻身焊接三至五道后即可翻身,直至焊满正面的各道焊缝。

同时在施焊时要随时进行观察其角变形情况,注意随时准备翻身焊接,以尽可能的减少焊接变形及焊缝内应力。

另外,设置胎夹具,对构件进行约束来控制变形,此类方法一般适用于异形厚板结构,由于厚板异形结构造型奇特、断面、截面尺寸各异,在自由状态下,尺寸精度难以保证,这就需要根据构件的形状,制作胎模夹具,将构件处于固定的状态下进行装配、定位,焊接,进而来控制焊接变形。

(2)采取合理的焊接顺序。

选择与控制合理的焊接顺序,即是防止焊接应力的有效措施,亦是防止焊接变形的最有效的方法之一。

根据不同的焊接方法,制定不同的焊接顺序,埋弧焊一般采用逆向法、退步法;CO2气体保护焊及手工焊采用对称法、分散均匀法;编制合理的焊接顺序的方针是“分散、对称、均匀、减小拘束度”。

焊接变形原因分析及其防止措施

焊接变形原因分析及其防止措施

焊接变形原因分析及其防止措施摘要:本文重点对常见焊接变形的原因进行分析,并根据原因分别从设计和工艺两个方面论述防止变形的措施。

关键词:焊接变形原因分析防止措施随着新材料、新结构和新焊接工艺的不断发展,有越来越多的焊接应力变形和强度问题需要研究。

焊接变形在焊接结构生产中经常出现,如果构件上出现了变形,不但影响结构尺寸的准确性和外观美观,而且有可能降低结构的承载能力,引起事故。

同时校正焊接变形需要花费许多工时,有的变形很大,甚至无法校正,造成废品,给企业带来损失。

因此掌握焊接变形的规律和控制焊接变形具有十分重要的现实意义。

一、焊接变形种类生产中常见的焊接变形主要有纵向收缩变形、横向收缩变形、挠曲变形、角变形、波浪变形、错边变形、螺旋变形。

这几种变形在焊接结构中往往并不是单独出现,而是同时出现,相互影响。

在这里重点对生产中经常出现的纵向收缩变形、横向收缩变形、角变形、错边变形进行分析。

二、焊接变形原因分析1.纵向收缩变形。

焊接时,焊缝及其附近的金属由于在高温下自由变形受到阻碍,产生的压缩性变形,在平行于焊缝的变形称之为纵向收缩性变形。

焊缝纵向收缩变形量可近似的用塑性变形区面积S来衡量,变形区面积S于焊接线能量有直接关系,焊接线能量越小,S越小,反之S越大。

同样截面的焊缝可以一次焊成,也可以分几层焊成,多层焊每次所用的线能量比单层焊时小得多,因此每层焊缝产生的塑性变形区的面积S比单层焊时小,但多层焊所引起的总变形量并不等于各层焊缝的总和。

因为各层所产生的塑性变形区面积和是相互重叠的。

从上述分析可以看出多层焊所引起的纵向收缩比单层焊小,所以分的层数越多,每层所用的线能量就越小,变形也越小。

2.横向收缩变形。

横向收缩变形是指垂直于焊缝方向的变形,焊缝不但发生纵向收缩变形,同时也发生横向收缩变形,其变形产生的过程比较复杂,下面分几种焊缝情况来分析。

2.1堆焊和角焊缝。

首先研究在平板全长上对焊一条焊缝的情况。

当板很窄,可以把焊缝当作沿全长同时加热,采用分析纵向收缩的方法加以处理。

焊接工艺常见缺陷和整改措施总结(一)

焊接工艺常见缺陷和整改措施总结(一)

焊接工艺常见缺陷和整改措施总结(一)焊接工艺常见缺陷和整改措施总结焊接是工业、制造业中常见的一种连接技术,它的优劣直接影响着焊接件的质量和使用寿命。

但是,焊接工艺中常会出现一些缺陷,这些缺陷不仅会降低焊接件的使用寿命,还会对生产和使用造成不良影响。

本文将总结焊接工艺常见缺陷和整改措施。

1. 焊接变形焊接变形是焊接工艺中常见的一种缺陷,它会导致焊接件的尺寸和形状发生变化,从而影响使用。

为了消除焊接变形,需要采取一些措施,例如:(1)采用适当的加工顺序和焊接顺序;(2)控制焊接温度和速度;(3)合理改善工件加工和组装精度。

2. 焊接裂纹焊接裂纹是一种严重的焊接缺陷,它会导致焊接件的破裂和失效。

为了消除焊接裂纹,需要采取一些措施,例如:(1)采用适当的焊接工艺参数和材料;(2)消除焊接区域的缺陷和杂质;(3)控制焊接过程中的应力和变形。

3. 焊接气孔焊接气孔是一种常见的焊接缺陷,它会导致焊接件的强度和气密性降低。

为了消除焊接气孔,需要采取一些措施,例如:(1)采用干燥的焊接材料和设备;(2)控制焊接过程中的气体成分和压力;(3)避免焊接材料和基材的氧化和蒸发。

4. 焊接夹渣焊接夹渣是一种焊接缺陷,它会导致焊接件的强度降低和损坏。

为了消除焊接夹渣,需要采取一些措施,例如:(1)采用适当的焊接工艺参数和材料;(2)保持焊接区域的清洁和干燥;(3)控制焊接过程中的焊接速度和焊丝输送。

5. 焊接未熔合焊接未熔合是一种焊接缺陷,它会导致焊接件的强度和连接性降低。

为了消除焊接未熔合,需要采取一些措施,例如:(1)加强预热和焊接温度控制;(2)采用适当的焊接顺序和焊接角度;(3)检查焊接材料和基材的表面情况。

综上所述,焊接工艺中常见的缺陷和整改措施是多种多样的,采取正确的措施和方法可以有效地消除这些缺陷,提高焊接件的质量和使用寿命。

因此,在焊接过程中,应仔细分析焊接缺陷的原因,采取合理的整改措施,确保焊接质量和安全。

焊接变形原因及控制方法

焊接变形原因及控制方法

焊接变形原因及控制方法焊接是一种常见的金属连接方法,但在实际应用中,我们常常会遇到焊接件变形的问题。

本文将探讨焊接变形的原因以及控制方法,帮助读者更好地理解和解决这一问题。

一、焊接变形的原因1. 焊接过程中的温度梯度:焊接时,焊缝区域受到高温的加热,而其它部位则保持较低的温度。

这种温度梯度会导致焊接件产生热应力,从而引起变形。

2. 残余应力的存在:焊接后,冷却过程中会产生残余应力。

这些应力会引起焊接件的变形,尤其是在焊接接头附近。

3. 材料的物理性质:不同材料在焊接过程中会由于热影响区域的不同导致不同的变形情况。

例如,具有较高热膨胀系数的材料在焊接后更容易发生变形。

二、焊接变形的控制方法1. 优化焊接工艺:通过合理安排焊接顺序、增加焊缝长度等方式来减小温度梯度,从而降低焊接变形的发生。

2. 使用预应力技术:在焊接过程中引入预应力,可以通过反向应力来抵消残余应力,从而减小焊接件的变形。

3. 控制焊接变形方向:合理预测焊接变形的方向,并采取相应的措施来控制变形。

例如,在设计中合理选择焊接结构和间隙,减小焊接残余应力对结构的影响。

4. 应用补偿技术:通过在焊接过程中进行额外的加工,例如机械加工或热处理等,来消除或减小焊接变形。

5. 使用支撑和夹具:通过设置支撑物或夹具来限制焊接件的变形,保持其形状和位置。

6. 使用适合的焊接方法:不同的焊接方法具有不同的变形控制效果。

在实际应用中,应根据具体情况选择适当的焊接方法,以减小焊接变形。

三、小结焊接变形是焊接过程中常见的问题,其产生原因主要包括温度梯度、残余应力和材料的物理性质。

为了控制焊接变形,我们可以通过优化焊接工艺、使用预应力技术、控制变形方向、应用补偿技术、使用支撑和夹具以及选择适合的焊接方法等方式进行控制。

只有在理解了焊接变形的原因并采取相应的措施后,我们才能更好地解决这一问题,并获得满意的焊接结果。

通过本文的探讨,相信读者对焊接变形的原因及其控制方法有了更深入的了解,这将有助于在实践中更好地应对焊接变形问题。

焊接应力与变形产生的原因及对策

焊接应力与变形产生的原因及对策

焊接应力与变形产生的原因及对策
焊接过程中,由于焊接热量的作用,会引起材料的膨胀和收缩,从而产生应力和变形。

这些应力和变形会影响焊接件的尺寸精度、强度和耐久性,甚至导致焊接件出现裂纹和变形失效。

造成焊接应力和变形的原因主要有以下几个方面:
1. 热应力:焊接过程中,由于焊接热量的作用,使得焊接区域的温度急剧升高,从而引起材料的扩张和收缩。

这种温度差异会产生热应力,导致焊接件发生变形和应力。

2. 冷却应力:焊接完成后,焊接件会迅速冷却,冷却速度过快会导致焊接件表面和内部温度梯度过大,产生冷却应力,进而引起应力和变形。

3. 材料不匹配:焊接材料的热膨胀系数、熔点、硬度等物理性质不同,容易导致焊接区域产生应力和变形。

4. 焊接结构设计不合理:焊接结构设计不合理,如焊接位置不当、焊接接头不够强壮等,容易导致应力集中和变形。

针对焊接应力和变形的问题,可以采取以下对策:
1. 控制焊接热量:采用合适的焊接参数,控制焊接热源的大小和位置,以减少焊接区域的温度梯度,从而降低应力和变形。

2. 加强冷却措施:在焊接完成后,采取适当的冷却措施,如缓慢冷却、局部加热等,以减少焊接件的冷却速度,从而降低冷却应力。

3. 选择合适的焊接材料:选择合适的焊接材料,如选择热膨胀
系数和熔点相似的材料,可以减少焊接区域的应力和变形。

4. 优化焊接结构设计:优化焊接结构设计,加强焊接部位的加强设计,采用适当的焊接方式和焊接技术,可以减少应力集中和变形。

总之,采取合适的对策,可以有效地控制焊接应力和变形,提高焊接件的质量和性能。

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法一、控制焊接变形的方法1、设计措施(1)选择合理的焊缝尺寸:焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。

(2)尽量减少焊缝数量;适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。

(3)合理安排焊缝位置:焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。

(4)预留收缩余量:焊件焊后纵向横向收缩变形可通过对焊缝收缩量的估算,在设计时预先留出收缩余量进行控制。

(5)留出装焊卡具的位置:在结构上留有可装焊夹具的位置,以便在焊接过程中可利用夹具来控制技术变形。

2、反变形法(1)板厚8~12mm钢板单边V型坡口对接焊,装配时反变形1.5°焊接后几乎无角变形。

(2)工字梁焊后因横向收缩引起的角变形,若采用焊前预先把上、下盖板压成反变形(塑性变形),然后装配后进行焊接,即可消除上、下盖板的焊后角变形。

但是上下盖板反变形量的大小主要与该板的厚度和宽度有关,同时还与腹板厚度和热输入有关。

(3)锅炉、集装箱的管接头都集中在上部,焊后引起弯曲变形所以要借用强制反变形夹紧装置,并配以对称均匀加热的痕迹顺序,交替跳焊法这样采用了在外力作用下的弹性反变形再配合以合理的受热的施焊顺序,焊后基本上可消除弯曲变形。

(4)桥式起重机的两根主梁是由左、右腹板和上、下盖板组成的箱型结构的为提高该梁的刚性,梁内设计有大、小肋板,且这些肋板角焊缝大多集中在梁的上部,焊后会引起下桡弯曲变形。

但桥式起重机技术要求规定,主梁焊后应有一定的上拱度,为解决焊后变形与技术要求的矛盾,常采用预制腹板上拱度的方法,即在备料时,预先使两块腹板留出上拱度。

防止焊接变形的方法

防止焊接变形的方法

焊接变形是焊接过程中常见的问题之一,可能会导致焊接件的尺寸偏差、形状变形等问题。

以下是一些防止焊接变形的方法:
1. 预热焊接件:在进行焊接前,可以先对焊接件进行预热,以减少焊接时的热应力和变形。

预热温度和时间应根据材料和焊接方式来确定。

2. 采用合适的焊接方法:不同的焊接方法会产生不同的热影响区域和热应力,因此需要选择适合的焊接方法。

例如,对于较薄的材料,可以采用冷焊接方法,而对于较厚的材料,则可以采用热输入较小的热熔焊等焊接方法。

3. 采用预热夹具:在进行焊接前,可以采用预热夹具对焊接件进行预热,以减少焊接时的热应力和变形。

4. 控制焊接速度和热输入:焊接速度和热输入对焊接变形也有较大的影响。

应根据材料和焊接方式来控制焊接速度和热输入,以减少焊接变形的发生。

5. 采用反变形措施:在焊接完成后,可以采用反变形措施,例如对焊接件进行退火或加热,以消除焊接变形。

同时,也可以采用一些特殊的工艺措施,例如使用支撑物或夹具等,来减少焊接件的变形。

控制焊接变形的工艺措施

控制焊接变形的工艺措施

控制焊接变形的工艺措施一、控制焊接变形的工艺措施1、宜按下列要求采用合理的焊接顺序控制变形:1)对于对接接头、T形接头和十字接头坡口焊接,在工件放置条件允许或易于翻身的情况下,宜采用双面坡口对称顺序焊接;对于有对称截面的构件,宜采用对称于构件中轴的顺序焊接。

2)对双面非对称坡口焊接,宜采用先焊深坡口侧部分焊缝、后焊浅坡口侧、左后焊完深坡口侧焊缝的顺序。

3)对长焊缝宜采用分段退焊法或与多人对称焊接法同时运用。

4)宜采用反变形法控制角变形。

2、在节点形式、焊接布置、焊接顺序确定的情况下,宜采用熔化极气体保护电弧焊或药芯焊丝自保护电弧焊等能量密度,相对较高的焊接方法,并采用较小的热输入。

3、宜采用反变形法控制角变形。

4、对一般构件可用定位焊固定同时限制变形;对大型板厚构件宜用刚性固定法增加结构焊接时的刚性。

5、对于大型结构宜采取分部组装焊接、分别矫正变形后再进行总装焊接或连接的施工方法。

二、焊后消除应力处理1、设计文件对焊后消除应力有要求时,根据构件的尺寸,工厂制作宜采用加热炉整体退火或电加热器局部退火对焊件消除应力,仅为稳定结构尺寸时可采用震动发消除应力;工地安装焊缝宜采用锤击法消除应力。

2、焊后热处理应符合现行国家标准《碳钢、低合金钢焊接构件焊后热处理方法》的规定。

当采用点加热器对焊接构件进行局部消除应力热处理时,应符合下列要求:1)使用配有温度自动控制仪的加热设备,其加热、测温、控温性能应符合使用要求。

2)构件焊缝每侧面加热板(带)的宽度至少为钢板厚度的3倍,且应不小于200mm。

3)加热板(带)以外的构件两侧尚宜用保温材料适当覆盖。

3、用锤击法消除中间焊层应力时,应使用圆头手锤或小型振动工具进行,不应对根部焊缝,盖面焊缝或焊缝坡口边缘的母材进行锤击。

4、用振动法消除应力时,应符合国家现行标准《振动时效工艺参数选择及技术要求》的规定。

减小或消除焊接变形的措施

减小或消除焊接变形的措施

减小或消除焊接变形的措施
焊接变形是焊接过程中不可避免的问题,会影响到焊接件的结构和精度。

为了减小或消除焊接变形,可以采取以下措施:
1. 控制焊接温度:焊接温度过高会导致焊接变形,因此需要控制焊接温度。

可以采用预热、间歇焊接、多点焊接等方法来控制焊接温度。

2. 选用合适的焊接材料:不同材料的热膨胀系数不同,选用合适的焊接材料可以减小焊接变形的影响。

同时,选择材料时要考虑其焊接性能和机械性能。

3. 控制焊接过程:焊接过程中需要控制焊接速度、电流、电压等参数,避免出现焊接变形的情况。

可以采用纵向或横向交替焊接、对称焊接等方法来控制焊接过程。

4. 采用夹具或支撑:在焊接过程中,可以采用夹具或支撑来固定工件,避免出现变形。

夹具或支撑的设计要合理,能够保证焊接部位的固定和支撑。

5. 后续处理:焊接完成后,需要进行后续处理,如退火、冷却等。

后续处理能够使焊接件的结构和精度得到进一步保证,减小或消除焊接变形的影响。

总之,减小或消除焊接变形需要在焊接过程中控制好各种参数,并采取相应的措施来保证焊接件的质量。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接变形和焊接应力产生的原因和措施
焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。

焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。

减少焊接应力与变形的工艺措施主要有:
一、预留收缩变形量根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊后工件达到所要求的形状、尺寸。

二、反变形法根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的
变形。

三、刚性固定法焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。

此方法会增大焊接应力,只适用于
塑性较好的低碳钢结构。

四、选择合理的焊接顺序:尽量使焊缝自由收缩。

焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。

如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形合理的装配和焊接顺序。

具体如下:
1)先焊收缩量大的焊缝,后焊收缩量较小的焊缝;
2)焊缝较长的焊件可以采用分中对称焊法、跳焊法,分段逐步退焊法交替焊法;3)焊件焊接时要先将所以的焊缝都点固后,再统一焊接。

能够提高焊接焊件的刚度,点固后,将增加焊接结构的刚度的部件先焊,使结构具有抵抗变形的足够
刚度;
4)具有对称焊缝的焊件最好成双的对称焊使各焊道引起的变形相互抵消;
5)焊件焊缝不对称时要先焊接焊缝少的一侧。


6)采用对称与中轴的焊接和由中间向两侧焊接都有利于抵抗焊接变形。

7)在焊接结构中,当钢板拼接时,同时存在着横向的端接焊缝和纵向的边接焊缝。

应该先焊接端接焊缝再焊接边接焊缝。

8)在焊接箱体时,同时存在着对接焊缝和角接焊缝时,要先焊接对接焊缝后焊接角接焊缝。

9)十字接头和丁字接头焊接时,应该正确采取焊接顺序,避免焊接应力集中,以保证焊缝获得良好的焊接质量。

对称与中轴的焊缝,应由内向外进行对称焊接。

10)焊接操作时,减少焊接时的热输入,(降低电流、加快焊接速度、)。

11)焊接操作时,减少熔敷金属量(焊接时采用小坡口、减少焊缝宽度、焊接角焊时减少焊脚尺寸).。

逐步退焊法,常用于较短裂纹的焊缝。

施焊前把焊缝分成适当的小段,标明次序,进行后退焊补。

焊缝边缘区段的焊补,从裂纹的终端
向中心方向进行,其它各区段接首尾相接的方法进行
五、锤击焊缝法在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。

六、加热“减应区”法焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。

七、焊前预热和焊后缓冷预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。

八.合理的焊接工艺方法,采用焊接热源比较集中的焊接方法进行焊接可降低焊接变形。

如CO2气体保护焊、氩弧焊等
减少焊接应力与变形的从设计方面的措施主要有:
一.选用合理的焊缝尺寸和型状,在保证构件的承载能力的条件下,应尽量采用较小的焊缝尺寸;
二。

减少焊缝的数量,在满足质量要求的前提下,尽可能的减少焊缝的数量;三.合理安排焊缝的位置,只要结构上允许应该尽可能使焊缝对称于焊件截面的中和轴或者靠近中和轴;焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。

焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。

相关文档
最新文档