微带天线课件.

合集下载

第四讲-微带天线

第四讲-微带天线

第四讲微带天线一、引言上一讲介绍了对称振子和接地单极子天线。

这两种天线本质上属于线天线。

但是手机内置天线往往都不是线天线的形式,常见的PIFA天线和单极子变形天线往往都是平面天线的形式。

尽管在某种程度上它们也和对称振子或接地单极子天线有某种程度的相似性。

在现有理论基础下,由于专门对手机天线进行严格理论分析的论著还很少,所以为更加深入地理解手机天线,我们还有必要了解几种其他类型的天线的一般特性。

这一讲主要介绍微带天线的概念和基本原理。

二、微带天线的结构如下图所示,结构最简单的微带天线是由贴在带有金属地板的介质基片()上的辐射贴片所构成的。

贴片上导体通常是铜和金,它可以为任意形状。

但通常为便于分析和便于预测其性能都用较为简单的几何形状。

为增强辐射的边缘场,通常要求基片的介电场数较低。

三、微带天线的特点微带天线的典型优点是:1.重量轻、体积小、剖面薄;2.制造成本低,适于大量生产;3.通过改变馈点的位置就可以获得线极化和圆极化;4.易于实现双频工作。

但微带天线也有如下缺点:1.工作频带窄;2.损耗大,增益低;3.大多微带天线只在半空间辐射;4.端射性能差;5.功率容量低。

四、微带天线的辐射机理微带天线的辐射是由微带天线导体边沿和地板之间的边缘场产生的。

这可以从以下图中的情况简单说明,这个图是一个侧向馈电的矩形微带贴片,与地板相距高度为h。

假设电场沿微带结构的宽度和厚度方向没有变化,则辐射器的电场仅仅沿约为半波长()的贴片长度方向变化。

辐射基本上是由贴片开路边沿的边缘场引起的。

在两端的场相对地板可以分解为法向和切向分量,因为贴片长度为,所以法向分量反相,由它们产生的远区场在正面方向上互相抵消。

平行于地板的切向分量同相,因此合成场增强,从而使垂直于地板的切向分量同相,因此合成场增强,从而使垂直于结构表面的方向上辐射场最强。

根据以上分析,贴片可以等效为两个相距、同相激励并向地板以上半空间辐射的两个缝隙。

对微带贴片沿宽度方向的电场变化也可以采用同样的方法等效为同样的缝隙。

微带天线课件.76页PPT

微带天线课件.76页PPT
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
微带天线课件.
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成

实验五-微带天线设计_图文_图文

实验五-微带天线设计_图文_图文

• 把Layout层映射到金属层,也就是把Cond层粘贴到Sub介质板上,如下图所 示,选择“Layout Layer”标签,在“Name”下拉列表中选择贴片所在的Layout层 cond,单击【Strip】按钮完成贴片的粘贴。设置金属层参数,单击【Applay】 ,然后单击“OK”
(4)添加端口
end Zt=sqrt(50*Zin) %计话框
优化目标对话框
• 进行优化仿真,下图为优化后的仿真结果。
• 打开前面仿真过的微带贴片的Layout文件,按照原理图尺寸在Layout中划出 匹配结的图形,然后设置板材参数,插入端口。
• S参数仿真。 中心频率还是发生了偏移! 改进方法:减少匹配线长度,减少贴片长度
板材参数:
H:基板厚度(1.5 mm),
Er:基板相对介电常数(2.65)
Mur:磁导率(1),
Cond:金属电导率(5.88E+7)
Hu:封装高度(1.0e+33 mm), T:金属层厚度(0.035 mm)
TanD:损耗角正切(1e-4), Roungh:表面粗糙度(0 mm)
报告要求:
(1)简单叙述微带天线工作原理; (2)给出微带天线的版图尺寸; (3)给出版图仿真结果,并对其结果进行分析; (4)制作该天线,进行测试,给出天线的驻波测试结果,分析误差原因。
使天线辐射尽可能多的功率,必须使天线与空气匹配,输入驻波比尽可 能小。阻抗、驻波比与反射系数的关系为
(5) 辐射效率 Pr为天线辐射出的功率,单位为W;Pi为馈入天线的功率,单位为W 。 天线增益、方向性系数和辐射效率的关系: (6) 半功率角
(a) 按电场定义; (b) 按功率定义
1.3 常见的天线类型

微带天线PPT教材

微带天线PPT教材
间接馈电法:与贴片无直接接触, 主要是 电磁耦合法

馈电技术直接影响到天线的阻抗特性
微带天线的设计

微带天线的主要参数
方向图、增益、波瓣宽度、 辐射电阻、损耗、效率 输入阻抗 带宽、品质因数




微带天线的设计

微带天线的主要分析方法
传输线模型法 谐振腔模型法 全波模型法即矩量法,有限元法


微带天线
尽管微带天线的研究思想可以追溯到1953年, 但是直到七十年代初期才被人们所重视。微带 天线是在微带电路出现后发展起来的一种新型 天线。从七十年代中期开始,从理论、技术到 应用对这种天线进行了大量的研究,至今势头 不减。微带天线主要用在微波、毫米波段。
微带天线的结构及微带电路

微带天线由一块厚度远 小于波长的介质板(称为 介质基片)和覆盖在它的 上、下两个面上的金属片 构成。其中,下面完全覆 盖介质板的金属片称为接 地板;上面的金属片如果 尺寸可以和波长相比拟, 则称为辐射元;如果上面 的金属是长窄带,就构成 了微带传输线
微带天线的优缺点



体积小,重量轻,低剖面, 性能多样化,不同设计的 微带元,其最大辐射方向 可以在边射到端射的范围 内调整,易于得到各种极 化方式,特殊设计的微带 天线可以再多频方式下工 作 能和有源器件、电路集成 为一个统一的组件,因此 适合大规模生产,简化了 整机的制作和调试,大大 降低了成本


相对带宽窄(高Q值), 特别是谐振式的微带天线 损耗较大,效率较低,这 类似于微带电路,特别是 行波微带天线,在匹配负 载上有较大的损耗 单个微带天线的功率容量 较小 介质基片对性能的影响大
RFID中的微带天线

微带天线PPT

微带天线PPT
微带天线
尽管微带天线的研究思想可以追溯到1953年, 但是直到七十年代初期才被人们所重视。微带 天线是在微带电路出现后发展起来的一种新型 天线。从七十年代中期开始,从理论、技术到 应用对这种天线进行了大量的研究,至今势头 不减。微带天线主要用在微波、毫米波段。
微带天线的结构及微带电路

微带天线由一块厚度远 小于波长的介质板(称为 介质基片)和覆盖在它的 上、下两个面上的金属片 构成。其中,下面完全覆 盖介质板的金属片称为接 地板;上面的金属片如果 尺寸可以和波长相比拟, 则称为辐射元;如果上面 的金属是长窄带,就构成 了微带传输线
微带电路:是微波电路的一 种。它是一种微波信号的 传输线。类似于波导。只 是它做在印制电路板上的 带状电路。
微带天线的分类


微带贴片天线:导体贴片通常是规则形状 的面积单元 微带振子天线:它是一个窄长的条状薄片 振子 微带线型天线:它利用微带线的某种形变 来形成辐射 微带缝隙天线:它利用开在接地板上的缝 隙,由介质基片另一侧的微带线或其他馈 线对其馈电
微带天线的工作原理

微带天线的辐射机理实际上是高频的电磁泄漏。 一个微波电路如果不是被导体完全封闭,电路中 的不连续处就会产生电磁辐射。例如微带电路的 开路端, 结构尺寸的突变、折弯等不连续处也会 产生电磁辐射(泄漏)。当频率较低时, 这些部 分的电尺寸很小,因此电磁泄漏小;但随着频率 的增高,电尺寸增大,泄漏就大。再经过特殊设 计,即放大尺寸做成贴片状,并使其工作在谐振 状态。辐射就明显增强,辐射效率就大大提高, 而成为有效的天线。
间接馈电法:与贴片无直接接触, 主要是 电磁耦合法

馈电技术直接影响到天线的阻抗特性
微带天线的设计

微带天线的主要参数

北大天线理论课件:第六章 微带天线

北大天线理论课件:第六章  微带天线

第六章缝隙天线与微带天线§6.1 缝隙天线缝隙天线:开在波导或谐振腔上缝隙,用以辐射或接收电磁波。

6.1.1 理想缝隙天线理想缝隙天线:开在无限大、无限薄的理想导体平面上的直线缝隙,用同轴传输线激励。

For personal use only in study and research; not for commercial useFor personal use only in study and research; not for commercial use假设位于yoz 平面上的无限大理想导体平面上开有宽度为ω(λω<<)、长度2/2λ=l 的缝隙。

缝隙被激励后,只存在垂直于长边的切向电场,并对缝隙的中点呈对称驻波分布,其表达示为:()()[]y m ez l k E z E ˆsin --=m E ---缝隙中间波腹处的场强值。

缝隙相当于一个磁流源,由电场分布可得到等效磁流密度为:()[]()[]⎩⎨⎧<-->-=⨯-==0,ˆsin 0,ˆsin ˆ0x e z l k E x ez l k E E nJ z m z m z m等效磁流强度为:()[]()[]⎩⎨⎧<-->-=⋅=⎰0,sin 20,sin 2x z l k E x z l k E l d E I m m l m ωω 也就是说,缝隙可等效成沿Z 轴放置的、与缝隙等长的线状磁对称阵子。

根据对偶原理,磁对称阵子的辐射场可由电对称阵子的辐射场对偶得出。

对于电对称阵子,电流分布为:)(sin )(z l k I z I -=辐射场表达式:θθθsin )cos()cos cos(60kl kl r Ie j E jkr -=- ()()ϑϑπϕsin cos cos cos 2kl kl r Ie j H jkr -=- 由此得到0>x 半空间,磁对称阵子的辐射场为:()()ϑϑπωϕsin cos cos cos kl kl r e E j E jkr m m--=- ()ϑϑμεπωθsin cos cos cos klkl re E jH jkrm m-=- 在0<x 的半空间,电场和磁场的符号与上式相反。

微波仿真论坛微带天线练习课件

微波仿真论坛微带天线练习课件

0 (electr.)
0 (magnet.)
343 (electr.)
281 (magnet.)
0 (electr.)
0 (magnet.)
0 (electr.)
0 (magnet.)
0 max. nodes: MAXNKNO =
12
2 max. conn.: MAXNV =
10
0 max. cuboids: MAXNQUA =
– 剖分部分变量 tri_len=lambda/12 fine_tri=lambda/16 segl=lambda/15 segr=diam/2
建立模型
• 点击图标 创建矩形贴片
– 输入以下坐标 (-len_x/2,-len_y/2,0) (-len_x/2,len_y/2,0) (len_x/2,len_y/2,0) (len_x/2,-len_y/2,0)
1640 0
• 在Edges中修改模型ant中的馈源天线线段名称为feed
网格剖分
• 点击菜单Mesh\Create Mesh进行网格剖分
• 按ALT+2进行Prefeko预处理并保存项目文件
EditFeko 定义
• 按住ALT+1运行EditFeko – 填加快速多极子控制卡 FM – 填加 SF 控制卡进行长度单位换算(mm->m) – 填加 DI 介质定义控制卡
EditFeko 定义
• 完整的EditFeko
PostFeko 结果分析
• 按住Alt+4进行Feko运算 • 按住Alt+3运行PostFeko查看结果
– 由于EditFeko中第三个FF的结果没有写入输出文件,因此这里只有前两个FF的结 果

第四讲 微带天线

第四讲 微带天线

第四講微帶天線一、引言上一講介紹了對稱振子和接地單極子天線。

這兩種天線本质上屬於線天線。

但是手機內置天線往往都不是線天線的形式,常見的PIFA天線和單極子變形天線往往都是平面天線的形式。

儘管在某種程度上它們也和對稱振子或接地單極子天線有某种程度的相似性。

在現有理論基礎下,由於专門對手機天線進行嚴格理論分析的論著還很少,所以為更加深入地理解手機天線,我们還有必要瞭解幾種其他類型的天線的一般特性。

這一講主要介绍微帶天線的概念和基本原理。

二、微帶天線的結構如下圖所示,結構最簡單的微帶天線是由貼在帶有金屬地板的介質基片()上的輻射貼片所構成的。

貼片上導體通常是銅和金,它可以為任意形狀。

但通常為便於分析和便於預測其性能都用较為簡單的幾何形狀。

為增強輻射的邊緣场,通常要求基片的介电場數較低。

三、微帶天線的特點微帶天線的典型優點是:1.重量輕、体積小、剖面薄;2.製造成本低,適於大量生產;3.通過改變馈點的位置就可以獲得線極化和圓極化;4.易於實現双頻工作。

但微帶天線也有如下缺點:1.工作頻帶窄;2.損耗大,增益低;3.大多微帶天線只在半空間輻射;4.端射性能差;5.功率容量低。

四、微帶天線的輻射機理微帶天線的輻射是由微帶天線導體邊沿和地板之間的邊緣场產生的。

這可以從以下圖中的情況簡單說明,這個圖是一個側向饋電的矩形微帶貼片,與地板相距高度為h。

假設電場沿微帶結構的宽度和厚度方向沒有变化,則輻射器的電場仅僅沿約為半波長()的貼片长度方向變化。

輻射基本上是由貼片開路邊沿的邊緣場引起的。

在兩端的場相對地板可以分解為法向和切向分量,因為貼片長度为,所以法向份量反相,由它们產生的遠區場在正面方向上互相抵消。

平行於地板的切向分量同相,因此合成場增強,從而使垂直於地板的切向份量同相,因此合成場增強,从而使垂直於結構表面的方向上輻射場最強。

根據以上分析,貼片可以等效为兩個相距、同相激励並向地板以上半空间輻射的兩個縫隙。

對微帶貼片沿寬度方向的電場變化也可以采用同樣的方法等效為同样的縫隙。

缝隙天线和微带天线教育课件

缝隙天线和微带天线教育课件
缝隙天线不仅仅是指矩形波导缝隙天线, 而且还有异形波导面上的缝隙天线,例如为 了保证与承载表面共形,波导的一个表面或 两个表面常常是曲面形状。
(a)
(b)
(a)圆突—矩形波导缝隙天线; (b)扇面波导缝隙天线
其主要的研究热点为精确地计算相应缝隙的等效阻抗。
5.2 微带天线(Microstrip Antennas)
沿每条b边的磁流都由反对称的两部分构成, 它们在H面(yz平面)上各处的辐射相互抵消; 而两条b边的磁流又彼此呈反对称分布,因而 在E面(xz平面)上各处,它们的场也都相消, 在其它平面上这些磁流的辐射不会完全相消, 但与沿两条a边的辐射相比,都相当弱。
微带天线工作原理—辐射机理
矩形微带天线的辐射主要由沿两条a边的 缝隙产生,该二边称为辐射边。由于接 地板的存在,天线主要向上半空间辐射。 对上半空间而言,接地板的效应近似等 效于引入磁流 M s 的正镜像。由于 h<<0 , 因此它只相当于将 M s 加倍,辐射图形基 本不变。
g/2
图示的波导宽壁上的匹配偏斜缝隙天线阵,适当地调整缝隙对中线的偏移x1和 斜角δ,可使得缝隙所等效的归一化输入电导为1,其电纳部分由缝隙中心附近 的电抗振子补偿,各缝隙可以得到同相,最大辐射方向与宽壁垂直。
带宽
匹配偏斜缝隙天线阵能在较宽的频带内与 波导有较好的匹配,带宽主要受增益改变的 限制,通常是5%~10%。其缺点是调配元件 使波方导向图功率容量降低。
缝隙两端间有一辐射电导Gs,利用级数 展开式表示,略去高阶项后可得近似结 果如下:
1
90
a 0
2
G
s
1
120
a 0
1 60
2
1 a 120 0

第五讲微带天线

第五讲微带天线

School of Electronic Engineering
微带天线的结构和特点
School of Electronic Engineering
图1 微带天线形式
(a)微带贴片天线 (b)微带振子天线 (c)微带线性天线 (d)微带缝隙天线
EMW Propagation Engineering
EMW Propagation Engineering
School of Electronic Engineering
微带天线的结构和特点
接地板之间激励起射频电磁场,并通过贴片四周与接地 板间的缝隙向外辐射。其基片厚度与波长相比一般很小, 因而它实现了一维小型化。 导体贴片一般是规则形状的面积单元,如图2中所 示的矩形、圆形或圆环形薄片等;也可以是窄长条形的 薄片振子,此时形成的天线便称为微带振子天线,如图1 (b)所示。如果利用微带线的某种变形(如直角弯头、 弧形弯曲等)来产生辐射,便称为微带线性天线,如图1 (c)所示,这种天线大多沿线传输行波,它们又称为微 带行波天线。还可利用开在接地板上的缝隙来产生辐射, 此时由介质基片另一侧的微带线或其它馈线对其馈电。 这种单元形成的天线称为微带缝隙天线或微带开槽天线。 如图1(d)所示。 除此四种单元及其阵列之外,还有一些变形、混合 EMW Propagation Engineering 型或其它形式。
EMW Propagation Engineering
第五讲 微带天线
2012,f Electronic Engineering
微带天线的结构和特点 微带天线的传输线模型 微带天线的腔体模型 微带天线的全波设计
EMW Propagation Engineering
微带天线的结构和特点

第六章-微带天线

第六章-微带天线
《天线原理》讲义
郭景丽 邹艳林
第六章 微带天线
微带辐射器的概念首先由 Deschamps 于 1953 年提出来。但是,过了 20 年, 到了 20 世纪 70 年代初,当较好的理论模型以及对敷铜或敷金的介质基片的光刻 技术发展之后,实际的微带天线才制造出来,此后这种新型的天线得到长足的发 展。
微带天线可以分为三种基本 类型:微带贴片天线、微带行波天 线和微带缝隙天线。微带行波天线 (MTA)是由基片、在基片一面 上的链形周期结构或普通的长 TEM 波传输线(也维持一个 TE 模)和基片另一面上的地板组成。 TEM 波传输线的末端接匹配负 载,当天线上维持行波时,可从天 线结构设计上使主波束位于从边 射到端射的任意方向。
−h / 2 m
(6-1-3) (6-1-4)
将上式转化到球坐标系下应为:
∫ ∫ r
F
=
(−rˆ cosϕ
+ θˆ sinθ
)
1
4πr
W2 −W 2
J e dzdx h / 2
− jk (r − x sin θ cosϕ + z cosθ )
−h / 2 m
(6-1-5)
设磁流沿
x

z
的分布都是均匀的,则由
sin
θ
cosϕ ⎟⎞ sinθ ⎠
(6-1-8)
2
2
当介质厚度非常小时 kh << 1,上式可化简为:
Ev
= ϕˆ
jUkW
e − jkr πr
sin( kW cosθ 2
kW cosθ
)
cos⎜⎛ ⎝
1 2
kL
sin
θ
cosϕ ⎟⎞ sinθ ⎠

5微带天线

5微带天线

(∇
2
+ k mn ψ mn = 0
2
)
ψ mn 在磁壁处需满足的边界条件为
∂ψ mn ∂n = 0
空腔模型理论
可得内场的一般解 * < J zψ mn > 1 E z = jk 0η0 ∑ 2 ψ mn 2 * m , n k − k mn < ψ mnψ mn > 式中 * * < J zψ mn >= ∫ J zψ mn ds
微带天线工作原理—辐射机理 微带天线工作原理 辐射机理
电场可近似表达为(设沿贴片宽度和基 片厚度方向电场无变化)
E z = E0 cos(πx / b)
天线的辐射由贴片四周与接地板间的窄 缝形成。由等效原理知,窄缝上的电场 的辐射可由面磁流的辐射来等效。等效 的面磁流密度为 M s = −n × E
w + 0.264 ε e + 0.3 h ∆l = 0.412h ⋅ ε e − 0.258 w + 0.8 h
矩形贴片天线的传输线模型
当从辐射边对矩形贴片馈电时,将一条 缝隙的导纳加上长为b的传输线变换后的 另一缝隙导纳,便得出微带天线的输入 导纳:
Ys + jYc tan βb Yin = Ys + Yc Yc + jYs tan βb
jnφ
空腔模型理论
圆环贴片的本征函数和谐振波数
ψ mn
N ′ (k a )J (k ρ ) − J ′ (k a )N (k ρ ) e jnφ = n mn n mn n mn n mn
J n (k mn a ) J n (k mnb ) = ′ ′ N n (k mn a ) N n (k mnb )

《微带贴片天线讲义》课件

《微带贴片天线讲义》课件
03
提高微带贴片天线的效率可以提 高天线的辐射能力和能量利用率

04
PART 04
微带贴片天线的应用
无线通信系统
无线局域网(WLAN)
微带贴片天线广泛应用于无线局域网中,作为接入点(AP)和客户端(如笔记本 电脑和智能手机)的通信天线,实现高速数据传输。
蓝牙通信
蓝牙耳机和蓝牙设备中使用的微带贴片天线,用于无线传输语音和数据信号,方 便用户进行无线连接和通信。
雷达系统
车载雷达
在自动驾驶汽车中,微带贴片天线常 被用作车载雷达系统的发射和接收天 线,用于探测障碍物、车辆和行人的 位置和速度。
气象雷达
气象雷达中的微带贴片天线,能够发 射和接收微波信号,用于监测降雨、 风速、冰雹等气象信息。
卫星通信系统
卫星电视接收
微带贴片天线在卫星电视接收系统中应用广泛,用于接收来自卫星的电视信号,提供高清电视节目。
小型化和宽频带是微带贴片天线面 临的挑战之一,需要研究新型材料 和优化设计方法来实现。
高增益与低交叉极化问题
高增益
为了提高通信质量和距离,需要微带贴片天线具有较 高的增益。
低交叉极化
交叉极化会导致信号质量下降,因此需要微带贴片天 线具有较低的交叉极化。
总结
在提高增益的同时降低交叉极化是微带贴片天线的另 一个挑战,可以通过改进结构和材料来实现。
高效率与低成本问题
高效率
为了减少能量损失,微带贴片天线需要具有较高 的效率。
低成本
在满足性能要求的同时,降低微带贴片天线的制 造成本也是重要的考虑因素。
总结
高效率和低成本是微带贴片天线的第三个挑战, 可以通过优化制造工艺和采用新型材料来实现。
PART 06

微带传输线《微波技术与天线》课件典型实例

微带传输线《微波技术与天线》课件典型实例
微带传输线《微波技术与 天线》课件典型实例
• 微带传输线概述 • 微带传输线的分类 • 微带传输线的性能参数 • 微带传输线的应用实例 • 微带传输线的未来发展
01
微带传输线概述
定义与特点
定义
微带传输线是一种在介质基片上 制作的一维传输线结构,通常由 金属导带和接地板组成。
特点
具有较小的体积和重量,易于集 成到微波集成电路中,成本较低 ,适用于高频信号传输。
工作原理
电磁波在微带导带和接地板之间传播,通过导带和接地板之间的电容效应实现信号 的传输。
导带和接地板之间的电场主要集中在导带与接地板之间的狭缝中,磁场则主要集中 在导带附近。
随着频率的升高,电磁波的传播常数增大,导致相位速度减小,从而产生相位失真。
应用场景
01
02
03
微波集成电路
微带传输线广泛应用于微 波集成电路中,作为信号 传输线、元件间连接线等。
传播常数
总结词
传播常数是描述微带传输线中电磁波传播特性的参数,它由相位常数和衰减常数组成。
详细描述
传播常数是描述微带传输线中电磁波传播行为的参数,它由相位常数和衰减常数组成。 相位常数决定了电磁波在传输线中的相速度和相位移,而衰减常数则表示电磁波在传输 过程中的能量损失。传播常数是微带传输线设计中的关键参数,它影响着信号的传输距
离和信号质量。
损耗
总结词
损耗是微带传输线中信号能量损失的参数,主要包括 导体损耗、介质损耗和辐射损耗。
详细描述
损耗是微带传输线设计中必须考虑的重要参数。在信 号传输过程中,由于导体电阻、电介质损耗以及辐射 等因素,信号能量会逐渐损失。导体损耗主要是由于 传输线中导体的电阻引起的能量损失;介质损耗是由 于电介质材料的损耗引起的能量损失;而辐射损耗则 是由于传输线中电磁波向空间辐射引起的能量损失。 了解和减小这些损耗是提高微波传输系统性能的关键 。

天线原理与设计—第九章微带天线 PPT

天线原理与设计—第九章微带天线 PPT
矩形微带天线的辐射功率
缝隙辐射功率为
定义缝隙两端间有一辐射电导Gr,它所损耗的功 率等于缝的辐射功率:
于是,辐射电导
9.1 微带天线
9.1 微带天线
侧馈矩形微带天线的等效电路
9.1 微带天线
Jackson近似公式
辐射电阻 频带宽度 天线的有效高度
9.1 微带天线
有效口径
9.1 微带天线
微带天线的基本形式
微带天线阵
9.2 微带天线阵
9.3 微带行波天线
微带行波天线
用各种形状的弯曲微带线,在其终端接匹配负载, 则在线上形成行波。
微带天线
微带天线
9.1 微带天线
与普通天线相比,微带的优点: ♣剖面薄,体积小,重量轻,易共形。 ♣适合于用印刷电路技术大量生产,成本低。 ♣易于与有源器件集成,构成有源集成天线。 ♣易于实现圆极化、多频段、双极化等。
与普通天线相比,微带天线的缺点:
♣频带窄(相对带宽一般为1-5%)。 ♣辐射区只限于半个平面。 ♣有导体和介质损耗,并且激励表面波,导致辐 射效率低。 ♣功率容量较小。
单缝的辐射
单缝的等效磁流为
9.1 微带天线
单缝的辐射场为
9.1 微带天线
矩形微带天线的辐射场
以相距d=l的二元阵因子乘以单缝的辐射场,便
可以得到矩形微带天线的辐射场:
由பைடு நூலகம்式可得两个主平面的方向函数:
9.1 微带天线
取w=1cm,l=3.05cm,f=3.1GHz,计算得到的
方向图:
9.1 微带天线
9.1 微带天线
不同的微带天线结构
9.1 微带天线
矩形微带天线的基本结构:
9.1 微带天线
微带天线的辐射原理

微带天线的历史与优缺点ppt课件

微带天线的历史与优缺点ppt课件

Lg
L
a
同轴探针
h
H
z
Theta x
y
0 Phi
x
2.02GHz~3.9GHz ,64%
天线E面辐射方向图
天线H面辐射方向图
四、使用金属斜面馈电的微带天线
z Theta
h 50
100 53
塑料支撑杆
馈电点
y
28
18
U 形接地板
80 Phi x
2.15GHz~4.76GHz ,BW=75.5%
a ß d
五、蜿蜒探针馈电的微带天线
W
L
y
Ws
x z
蜿蜒馈 电片
接地板
Hp 同轴探针
y z
x
g2 h1 h2 S g1
z x
y
1.6GHz~2.24GHz, 640M , 33.3%
1.64GHz~2.16GHz , 540M,27%
天线E面辐射方向图
天线H面辐射方向图
最大增益达到了9.19dBi 最大变化幅度不超过1.45dB
腔模理论(CM-Cavity Model) :是在对微带谐振腔分析的基础上发展起 来的 ,发展到基于二维边值问题的求解 ,可用于各种规则贴片
积分方程法(IEM-Integral Equation Method),即全波(FW-Full Wave)分 析理论:最为复杂也是最精的,计入第三维的变化,可用于各种结构、 任意厚度的微带天线,然而要受到计算模型的精度和机时的限制
对微带天线的研究正在蓬勃地展开,这是一个具有极强生命力的课题。 随着相关技术的发展,微带天线无论在理论研究,还是在工艺制造上都 将越来越成熟,必将开辟更为广阔的应用领域。

微带天线课件

微带天线课件
微带天线理论与技术
教师 王昊
电子工程与光电技术学院 南京理工大学
南京理工大学毫米波技术研究室
微带天线理论与应用
内容提要
1 微带天线基本理论 *#(8学时)
2 微带天线的元技术 (8学时) 3 有效利用商用软件进行微带天线的设计 *#(8学时)
4 微带阵列天线 #(8学时)
5微带天线近场测量与近场诊断 ★(6学时) 6 微带天线制造技术 (4学时)
南京理工大学毫米波技术研究室
微带天线理论与应用
微带线的特性
当频率较高时,微带宽度W和高度h与波长可相比拟时,微 带中可能出现波导型横向谐振模。最低模为TE10
微带中还存在着表面波,最低次TM型表面波的截止频率无 下限,而最低次TE型表面波的截止波长为 上述的波导模和表面波模称为微带的高次模。为抑制高次模 的出现。微带尺寸的选择需要满足以下的条件
南京理工大学毫米波技术研究室 微带天线理论与应用
微带天线的空腔模型
用磁流模型和用电流模型 进行分析方向图的差别。
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的空腔模型-输入阻抗
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的空腔模型-等效电路
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的空腔模型-带宽、效率和方向系数
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的设计过程
1、选择基片
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的设计过程
2、初步估算微带天线的值
南京理工大学毫米波技术研究、确定馈电方式
需要同轴馈电还是微带馈电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的性能定义
a)工作频段:XXXX MHz~XXXXMHz; b)口径尺寸:XX mm * XX mm c)水平面方向(阵面法线方向): 波束宽度:≥5.5°; 副瓣电平:≤-18dB; d)垂直面方向: 波束宽度:≥30°; e)天线增益(阵面法线方向): ≥19dB; f)极化方向:垂直; g)驻波比: ≤1.8; h)波束覆盖范围:±20°。
南京理工大学毫米波技术研究室
微带天线理论与应用
天线的发展
赫兹
马可尼
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的发展
利用微带线的辐射来制成微带微波天线的概念最早由德尚 (G.A.Deschamps) 教授在 1953 年提出 [1] ,在 1955 年由法国 Gutton[2] 和 Baissinot[3] 发表了专利。微带天线是一种随系统对天线的要求 而发展起来的典型的低剖面、平板结构的天线,但是因为没有较 好的微波介质材料,所以在随后的近20年里对此只有零星的研究, 当时人们只是把微带结构作为波导元器件的一种小、薄、轻又低 廉的替代品。70 年代期间,由于获得了具有低损耗正切特性和有 吸引力的热特性及机械特性的良好基片,改进的照相平板印刷技 术和更好的理论模型,使微带天线取得突破性进展。最早的微带 天线是Howell和Munson在二十世纪七十年代初期研制成的。之后, 世界各国的研究人员对微带天线的贴片形状、馈电技术、基板构 造和阵列排列等方面作了大量的研究,微带天线无论在理论与应 用的深度上和广度上都获得了进一步的发展。
南京理工大学毫米波技术研究室 微带天线理论与应用
微带天线的优点
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的优缺点
微带天线以其重量轻、体积小、成本低、共形结构、以及与集 成电路兼容等优点,成为天线家族中充满生命力的一个分支, 最适宜于航空和车载应用。如今,这种新型天线技术已日趋成 熟,其应用正在与日俱增。 早期微带天线具有频带窄、极化纯度差、寄生馈电辐射大、功 率容量有限等不足。因此微带天线的大部分研究工作都是为了 克服这些缺点,以便满足系统对天线愈来愈苛刻的要求。这些 工作所取得的进展使得微带天线的发展和应用前景变得更为广 阔。
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的传输线模型
该模型将矩形微带贴片看成沿横向L没化变化的传输线谐振 器。场沿纵向呈驻波变化,辐射由两开路端的边缘场产生
南京理工大学毫米波技术研究室 微带天线理论与应用
微带天线的空腔模型
该理论基于薄微带天线的假设,而将微带贴片与接地板之间的空 间看成是四周为磁壁、上下为电壁的谐振空腔。天线辐射场由空 腔四周的等效磁流来得出,天线输入阻抗可根据空腔内场和馈源 的边界条件来求得。
ห้องสมุดไป่ตู้
南京理工大学毫米波技术研究室
微带天线理论与应用
绪论
通信的目的是传递信息, 根据传递信息的途径不同, 可将通信系 统大致分为两大类:
一类是在相互联系的网络中用各种传输线来传递信息, 即 所谓的有线通信, 如电话、计算机局域网等有线通信系统;
另一类是依靠电磁辐射通过无线电波来传递信息, 即所谓 的无线通信, 如电视、 广播、 雷达、 导航、卫星等无线 通信系统。 无线通信系统中, 将来自发射机的导波能量转变为无线电波, 或 者将无线电波转换为导波能量, 用来辐射和接收无线电波的装臵 称为天线。
微带天线理论与技术
教师 王昊
电子工程与光电技术学院 南京理工大学
南京理工大学毫米波技术研究室
微带天线理论与应用
内容提要
1 微带天线基本理论 *#(8学时)
2 微带天线的元技术 (8学时) 3 有效利用商用软件进行微带天线的设计 *#(8学时)
4 微带阵列天线 #(8学时)
5微带天线近场测量与近场诊断 ★(6学时) 6 微带天线制造技术 (4学时)
南京理工大学毫米波技术研究室
微带天线理论与应用
微带线的特性
当频率较高时,微带宽度W和高度h与波长可相比拟时,微 带中可能出现波导型横向谐振模。最低模为TE10
微带中还存在着表面波,最低次TM型表面波的截止频率无 下限,而最低次TE型表面波的截止波长为 上述的波导模和表面波模称为微带的高次模。为抑制高次模 的出现。微带尺寸的选择需要满足以下的条件
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的工作原理
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的分析方法 传输线模型 腔模型 分析 有限差分+匹配边界(理想匹配等效) 积分方程 矩量法 有限元
方法
南京理工大学毫米波技术研究室
微带天线理论与应用
微带线的特性
微带线是一种开放的线路。 它的场空间是由两个不同介 电常数的区域构成。我们知 道,只有填充均匀媒质的传 输线才能传输单一的纯横向 场(TEM)。现在存在空气 与介质分界面,存在着混合 模,只有当基片厚度远小于 工作波长时,能量大部分都 集中在导体带下面的介质基 片内时,称为准TEM模。
南京理工大学毫米波技术研究室
微带天线理论与应用
教材
教材: • 方大纲著,天线理论与微带天线,科学出版社,2006年 • 钟顺时著, 微带天线理论与应用, 西安电子科技大学出版社, 1991年 参考资料:
1. 张钧著,微带天线理论与工程,国防工业出版社,1988年
2. (加) 鲍尔,I.J., (加) 布哈蒂亚,P.著,微带天线,电子工业出版社, 1984
南京理工大学毫米波技术研究室 微带天线理论与应用
微带天线的空腔模型
(1)TMmn模的磁流沿X方向有m个 零点,沿Y方向有n个零点。 (2)两个相邻零点的间隔为λm/2。 (3)每经过一个零点,Ms便改变方 向 (4)贴片四角处MS为最大值
辐射特性
极化特性 阻抗特性 扫描特性
南京理工大学毫米波技术研究室
微带天线理论与应用
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的结构
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的结构
A.贴片型
B.振子型
C.微带线型
D….
南京理工大学毫米波技术研究室
微带天线理论与应用
微带天线的工作原理
相关文档
最新文档