函数知识点及例题(有答案)解读

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}C B A x y y x C x y y B x y x A 、、,,,如:集合lg |),(lg |lg |====== 中元素各表示什么?

A 表示函数y=lgx 的定义域,

B 表示的是值域,而

C 表示的却是函数上的点的轨迹

2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况,注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {}

{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂

(答:,,)-⎧⎨⎩

⎫⎬⎭

1013

显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。故B 只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。

3. 注意下列性质:

{}()集合,,……,的所有子集的个数是;1212a a a n n

要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n

个子集。

当然,我们也要注意到,这2n

种情况之中,包含了这n 个元素全部在和全部不在的情况,故真子集个数为21n

-,非空真子集个数为22n

-

()若,;2A B A B A A B B ⊆⇔==

(3)德摩根定律:

()()()()()()C C C C C C U U U U U U A B A B A B A B ==,

4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x a

M M M a --<∈∉5

0352

的取值范围。

()(∵,∴

·∵,∴

·,,)335

30555

50

1539252

2∈--<∉--≥⇒∈⎡

⎢⎫⎭⎪M a a M a a

a

注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax 2+bx+c(a>0) 在(,1)-∞上单调递减,在(1,)+∞上单调递增,就应该马上知道函数对称轴是x=1. 5、熟悉命题的几种形式、

()()().

∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”

若为真,当且仅当、均为真p q p q ∧

若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p

命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。 6、熟悉充要条件的性质(高考经常考)

x x A |{=满足条件}p ,x x B |{=满足条件}q ,

若 ;则p 是q 的充分非必要条件B A _____⇔; 若 ;则p 是q 的必要非充分条件B A _____⇔; 若 ;则p 是q 的充要条件B A _____⇔;

若 ;则p 是q 的既非充分又非必要条件___________⇔;

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B 中有元素无原象。)

注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。

如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。

函数)(x y ϕ=的图象与直线a x =交点的个数为 个。

8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

9. 求函数的定义域有哪些常见类型?

()()

例:函数的定义域是y x x x =

--432

lg ()()()

(答:,,,)022334

函数定义域求法:

● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于1;

对数式的底数大于零且不等于一,真数大于零。 ●

正切函数x y tan = ⎪⎭

⎫ ⎝

⎛∈+

≠∈Z π

πk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ●

反三角函数的定义域

函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,

函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .

当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

10. 如何求复合函数的定义域?

[]

如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。 []

(答:,)a a -

复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例 若函数)(x f y =的定义域为⎥⎦

⎤⎢⎣⎡2,2

1,则)(log 2x f 的定义域为 。

分析:由函数)(x f y =的定义域为⎥⎦

⎤⎢⎣⎡2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 21

2≤≤x 。

解:依题意知: 2log 2

1

2≤≤x 解之,得

42≤≤x

∴ )(log 2x f 的定义域为{

}

42|

≤≤x x

11、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例:求函数y=

x

1

的值域 2、配方法

配方法是求二次函数值域最基本的方法之一。

例:求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面

下面,我把这一类型的详细写出来,希望大家能够看懂

相关文档
最新文档