八年级上册数学三角形教案
八年级数学上册《角角边判定三角形全等》教案、教学设计
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生主动探索、积极思考的学习态度。
2.培养学生严谨、细致、踏实的科学态度,养成认真检查、自觉订正的良好习惯。
3.培养学生面对困难和挑战时,保持积极心态,勇于克服困难,追求卓越的品质。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、实践、探索发现AAS判定方法。
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的思维。
(3)组织小组合作和讨论,促进学生交流与合作,提高学生的团队意识和沟通能力。
2.教学步骤:
(1)导入:通过复习三角形全等的定义和基本性质,为新课的学习做好铺垫。
(2)新课:以生活实例为载体,引导学生发现AAS判定方法,并通过具体例题进行讲解和演示。
(3)巩固:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(4)拓展:结合学生的实际水平,设计一些拓展性问题,培养学生的创新思维和几何直观。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
3.提问导入:教师提出问题:“我们学过的全等三角形判定方法有哪些?这些方法在解决实际问题时有什么局限性?”引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.教师以直观的动画或实物演示,引导学生观察并思考:当三角形的两个角和一个边分别相等时,这两个三角形是否全等?
2.学生通过观察、实践,发现当三角形的两个角和一个边相等时,这两个三角形确实全等。
四、教学内容与过程
(一)导入新课
1.复习导入:教师引导学生复习三角形全等的定义和基本性质,回顾已学过的全等三角形判定方法(SSS、SAS、ASA),为新课的学习打下基础。
八年级数学上册《三角形中的主要线段》教案、教学设计
针对以上学情,本章节教学应注重分层教学,关注学生个体差异,充分激发学生的学习兴趣,提高其合作学习能力,使学生在掌握三角形主要线段知识的同时,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角形中主要线段(中线、高线、角平分线)的定义及其性质。
(3)选做题和创新与实践题目可根据个人兴趣和能力选择完成,旨在培养学生的探究精神和团队合作能力。
(二)讲授新知,500字
1.教师介绍三角形的中线、高线、角平分线的定义,并通过动态演示和静态图示相结合的方式,让学生直观地理解这些线段的特点。
2.引导学生探索三角形中线、高线、角平分线的性质,如中线将三角形分成面积相等的两个部分,高线与底边垂直,角平分线将角平分等。
3.教师通过具体例题,讲解如何利用三角形的主要线段求解几何问题,并强调解题过程中的注意事项。
5.重视数学思想的渗透,提高学生的逻辑思维能力和解决问题的能力。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示生活中常见的三角形物体,如三角形的警示牌、自行车三角架等,引导学生思考这些三角形物体的稳定性与三角形的主要线段有何关系。
2.学生观察、讨论后,教师提出问题:“三角形中除了边长外,还有哪些重要的线段?这些线段有何作用?”从而引出本节课的主题:三角形中的主要线段。
4.引导学生总结解题方法,培养学生的概括能力和逻辑思维能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习积极性,使其主动投入到三角形相关知识的学习中。
2.培养学生的空间想象能力和直观感知能力,使其能够从几何角度认识和理解世界。
八年级上册数学三角形判定说课稿9篇
八年级上册数学三角形判定说课稿9篇八年级上册数学三角形判定说课稿9篇说课稿能够促进教师的自我反思和专业成长,通过不断反思、总结和探究教学方法和教学策略,来提高自己的教学能力。
能够提高教学效果和教学质量,是课堂教学不可或缺的重要组成部分。
现在随着小编一起往下看看八年级上册数学三角形判定说课稿,希望你喜欢。
八年级上册数学三角形判定说课稿【篇1】一、教材分析(说教材):1、教材所处的地位和作用:这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。
在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。
本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。
2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的SSS和SAS。
④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。
⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、重点、难点:①掌握并理解三角形全等的判定定理②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题二、教学策略(说教法)1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。
探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。
这样学生就更容易理解和掌握定理。
在用两个练习巩固知识。
2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
人教版八年级数学上册11.2与三角形有关的角(教案)
1.理论介绍:首先,我们要了解三角形内角和定理的基本概念。三角形内角和定理指的是一个三角形的三个内角之和为180°。这个定理是几何学中的基础,对于解决与三角形相关的问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过测量不同类型三角形的内角,观察并总结内角和定理在实际中的应用。
人教版八年级数学上册11.2与三角形有关的角(教案)
一、教学内容
人教版八年级数学上册第11章《三角形》的11.2节“与三角形有关的角”,本节课将涵盖以下内容:
1.三角形的内角和定理:引导学生通过实际操作、观察、猜想和证明,理解并掌握三角形内角和为180°的性质。
2.三角形内角的计算:培养学生运用内角和定理,解决三角形内角度量的问题。
-外角与内角的关系理解:学生往往难以直观理解外角与相邻内角的关系,需要通过具体实例和动态演示来加深理解。
-外角不等式的应用:在解决具体问题时,学生可能会对外角不等式的应用感到困惑,不知道如何选择正确的内角进行比较。
举例解释:
-在证明内角和定理时,难点在于如何引导学生通过画辅助线,将三角形的内角转化为同一直线上的角,从而证明其和为180°。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形内角和定理、外角和定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《与三角形有关的角》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否观察过三角形的形状?”(如三角板、自行车架等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形内角和外角的奥秘。
八年级数学上册《直角三角形的性质和判定定理》教案、教学设计
2.选做题:
(1)针对学习程度较好的学生,布置一道拓展题,如直角三角形与圆的相关问题,激发学生的探究兴趣,提高其数学素养。
(2)针对学习程度一般的学生,布置一道实际应用题,如测量距离、计算面积等,让学生将所学知识运用到生活中,培养其实践能力。
1.教师将学生分成小组,每组4-6人,布置讨论题目:直角三角形的性质和判定定理。
2.学生在小组内展开讨论,分享自己对直角三角形的认识和理解,探讨勾股定理的应用。
3.各小组汇报讨论成果,教师点评并总结,强调直角三角形的性质和判定定理的重要性。
(四)课堂练习,500字
1.教师出示几道与直角三角形相关的练习题,如判断一个三角形是否为直角三角形、计算直角三角形的面积等。
二、学情分析
八年级的学生已经在之前的数学学习中掌握了三角形的基本概念和性质,对勾股定理有了初步的了解。在此基础上,他们对直角三角形的性质和判定定理的学习具备了一定的基础。然而,学生对直角三角形的理解程度不一,部分学生对勾股定理的应用还不够熟练,需要在教学中给予关注和引导。
此外,这个年龄段的学生正处于青春期,思维活跃,好奇心强,具备一定的探究能力和合作意识。他们对于富有挑战性和实际应用性的问题表现出较高的兴趣,因此,在教学过程中,教师应结合学生的这些特点,设计具有启发性和实用性的教学活动,激发学生的学习兴趣,提高他们的主动参与度。
1.创设情境,导入新课
通过生活中的实际例子,如建筑物的直角结构、斜拉桥等,引出直角三角形的概念,激发学生学习兴趣。
2.自主探究,合作交流
学生自主探究直角三角形的性质,如内角之和、斜边与直角边的关系等。在此基础上,小组讨论勾股定理的推导过程,引导学生从几何和代数两个角度去理解和掌握勾股定理。
第12章全等三角形教案
八年级数学上册教案第12章 《全等三角形》教案12.1全等三角形的性质【教学目标】1.知识与技能目标掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。
掌握全等三角形的性质。
2.过程与方法目标:围绕全等三角形的这一中心。
让学生找出它的对应顶点、对应边、对应角,进而引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质。
【重点难点】重点:全等三角形的性质难点:寻找全等三角形中的对应元素【教学过程】课前准备 :全等三角形纸片一、引入新课全等形定义:能够完全重合的两个图形叫做全等形。
全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读“全等于”,记作:△ABC ≌△A ′B ′C ′二、 探究1.全等三角形中的对应元素问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。
这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
①对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
②对应边:全等三角形中互相重合的边叫做对应边。
③对应角:全等三角形中互相重合的角叫做对应角。
2.全等三角形的性质全等三角形的对应边相等。
全等三角形的对应角相等。
用几何语言表示全等三角形的性质如图:∵∆ABC ≌ ∆DEF∴AB =DE ,AC =DF ,BC =EF (全等三角形对应边相等)∠A =∠D ,∠B =∠E ,∠C =∠F (全等三角形对应角相等)3.探求全等三角形对应元素的找法1.下图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?用式子表示全等关系.并说出其中的对应关系.回答:两个全等的三角形经过一定的转换可以重合。
2023八年级数学上册第14章全等三角形14.1全等三角形教案(新版)沪科版
发放预习材料,引导学生提前了解全等三角形的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习全等三角形内容做好准备。
教师备课:
深入研究教材,明确全等三角形教学目标和全等三角形重难点。
准备教学用具和多媒体资源,确保全等三角形教学过程的顺利进行。
设计课堂互动环节,提高学生学习全等三角形的积极性。
2. 掌握全等三角形的性质:学习全等三角形对应边相等、对应角相等的性质,并能够运用这些性质解决实际问题。
3. 学会使用全等三角形解决几何问题:通过实际例题,引导学生运用全等三角形的性质解决几何问题,提高学生的几何思维能力和解决问题的能力。
4. 培养学生的合作学习和探究能力:在教学过程中,教师组织学生进行小组合作学习,引导学生主动探究全等三角形的性质和判定方法,培养学生的合作学习和探究能力。
5. 教学工具:准备投影仪、计算机、白板等教学工具,以便教师能够清晰地展示教学内容,并与学生进行互动。
6. 学习任务单:设计一份学习任务单,列出本节课的学习目标、任务和要求。学生可以通过完成学习任务单,巩固所学内容并进行自我评估。
7. 课堂练习题:准备一份课堂练习题,包括一些与全等三角形相关的实际问题。这些练习题应能够帮助学生巩固所学知识,并提高解决问题的能力。
3. 数学建模:培养学生运用全等三角形的性质解决实际问题的能力,提高学生的数学建模素养。
4. 数学交流:在小组合作学习和探究过程中,培养学生运用数学语言表达全等三角形的性质和判定方法,提高学生的数学交流能力。
5. 数学思维:通过解决几何问题,培养学生的数学思维能力,提高学生分析问题、解决问题的能力。
b. SAS(Side-Angle-Side):如果两个三角形有两组对应边和它们夹的对应角分别相等,那么这两个三角形全等;
人教版数学八年级上册《含30°角的直角三角形的性质》教案
人教版数学八年级上册《含30°角的直角三角形的性质》教案一. 教材分析人教版数学八年级上册《含30°角的直角三角形的性质》这一节,主要让学生掌握含30°角的直角三角形的性质。
在学习了锐角三角函数、直角三角形的性质等知识的基础上,通过探索含30°角的直角三角形的性质,培养学生的观察、思考、归纳能力。
二. 学情分析学生在之前的学习中,已经掌握了锐角三角函数、直角三角形的性质等知识,具备了一定的观察、思考、归纳能力。
但对于含30°角的直角三角形的性质,可能还较为陌生,需要通过实例来引导学生探索、总结。
三. 教学目标1.理解含30°角的直角三角形的性质。
2.能够运用含30°角的直角三角形的性质解决实际问题。
3.培养学生的观察、思考、归纳能力。
四. 教学重难点1.含30°角的直角三角形的性质的掌握。
2.运用含30°角的直角三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等,引导学生观察、思考、探索,培养学生的观察、思考、归纳能力。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)利用PPT课件,展示含30°角的直角三角形的图片,引导学生观察,激发学生的学习兴趣。
2.呈现(10分钟)教师通过三角板演示含30°角的直角三角形,让学生直观地感受其性质。
同时,引导学生思考、归纳,总结出含30°角的直角三角形的性质。
3.操练(10分钟)学生分组合作,利用三角板和练习题,进行实践活动,巩固含30°角的直角三角形的性质。
4.巩固(10分钟)教师通过PPT课件,呈现一些有关含30°角的直角三角形的性质的题目,让学生独立完成,检查学生对知识点的掌握情况。
5.拓展(10分钟)教师引导学生运用含30°角的直角三角形的性质,解决实际问题,如测量高度、距离等。
人教版八年级上册11.2.1三角形的内角(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形内角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-内角度数的关系:钝角三角形、锐角三角形和直角三角形的内角度数关系容易混淆,需要教师通过具体例子、分类讨论等方式进行详细讲解。
-实际问题的解决:将三角形内角和定理应用于解决生活中的问题时,学生可能面临问题分析、数据提取和计算方法选择等难题。
举例:
难点一:证明三角形内角和定理时,学生可能难以理解以下概念:
-数学思维的培养:在教学过程中,注重培养学生的几何直观、逻辑推理能力和数学建模意识。
举例:在讲解三角形内角和定理时,可以通过以下案例进行强调:
案例一:给定一个三角形,已知两个角的度数,求第三个角的度数。
案例二:证明一个四边形是凸四边形还是凹四边形。
2.教学难点
-证明三角形内角和定理:对于初学者来说,理解并掌握几何证明过程具有一定难度,需要教师通过直观演示、逐步引导等方法帮助学生突破。
4.在小组合作探究中,培养团队合作精神和交流表达能力,提高数学交流与反思的能力。
三、教学难点与重点
1.教学重点
-三角形内角和定理:强调三角形内角和等于180°的概念,通过几何图形和数学证明,让学生深刻理解这一核心内容。
-内角性质的应用:以实际案例为载体,引导学生学会运用三角形内角和定理解决具体问题,如判断三角形类型、计算未知角度等。
人教版八年级上册11.2.1三角形的内角(教案)
数学八年级上册教案
数学八年级上册教案【篇一:新人教版数学八年级上册教案(全册整理版)】第11章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。
三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。
教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于180的基础上,进行推理论证,从而得出三角形外角的性质。
接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。
最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标等于180,了解三角形外角的性质。
4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。
5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。
〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于180的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。
课时分配11.1与三角形有关的线段 ??????????????? 2课时 11.2 与三角形有关的角 ???????????????? 2课时 11.3多边形及其内角和 ???????????????? 2课时本章小结 ?????????????????????? 2课时11.1.1三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计
人教版八年级数学上册《第十一章三角形》大单元整体教学设计一、内容分析与整合(一)教学内容分析人教版初中数学八年级上册的《第十一章三角形》是几何学习中的一个重要章节,它不仅承载着对三角形基础概念和性质的全面介绍,还扮演着连接学生先前所学与后续几何知识深入探索的桥梁角色。
本章内容丰富多彩,深入浅出地引导学生走进三角形的奇妙世界,为他们构建一个系统而坚实的几何知识体系。
在这一章节中,学生们将首先接触到三角形的各种线段,包括边、高、中线以及角平分线等。
这些看似简单的概念,实则是解锁三角形众多性质的关键。
通过学习,学生们将理解每条线段在三角形中的独特位置和作用,以及它们如何相互关联,共同塑造三角形的形态与特性。
例如,中线不仅将对应的底边平分,还将三角形分为面积相等的两部分,这一性质的学习对于学生后续理解更复杂的几何问题大有裨益。
除了线段,章节还深入探讨了三角形的角,包括内角和外角。
学生将学习如何计算三角形的内角和,这一基础知识是证明许多三角形性质的基础。
外角的概念及其与相邻内角的关系,也将被详尽阐述,帮助学生从多角度审视三角形的角特征,培养他们的空间想象力和逻辑推理能力。
本章还拓展到了多边形及其内角和的内容,进一步丰富了学生的几何视野。
多边形作为三角形的延伸,其内角和的计算方法不仅加深了学生对几何图形内在规律的认识,也为后续学习更复杂几何图形打下了坚实的基础。
更为重要的是,本单元的教学不仅仅局限于理论知识的传授,更注重培养学生的实践操作能力和逻辑推理能力。
通过实际测量、作图、证明等一系列活动,学生被鼓励亲自动手,体验知识的生成过程,从而在实践中深化对三角形性质的理解。
这种“做中学”的方式,极大地提升了学生的学习兴趣和参与度,使他们在探索中发现几何之美,培养解决问题的能力和创新思维。
《第十一章三角形》不仅是初中数学课程中的一个核心章节,更是学生几何思维形成的关键时期。
通过本章的学习,学生不仅能够掌握三角形的基础概念和性质,更能在实践中锻炼几何直觉,学会用数学的眼光观察世界,为后续更深层次的几何学习乃至整个数学学习旅程奠定坚实的基础。
八年级数学上册《三角形全等的判定和性质综合应用》教案、教学设计
(三)情感态度与价值观
1.积极主动:使学生树立积极主动的学习态度,养成良好的学习习惯,不断提高学习效率;
2.勇于探索:培养学生勇于探索、敢于创新的精神,使学生在面对困难和挑战时,能够保持积极向上的心态;
3.知识尊重:教育学生尊重知识、尊重科学,遵循客观规律,树立正确的价值观;
4.作业要求:
-学生在完成作业时,要注意书写规范,保持解答过程的简洁和清晰;
-对于提高作业和拓展作业,学生可以充分利用课余时间,进行小组合作、讨论交流,共同完成任务;
-教师将对学生的作业进行认真批改,并及时给予反馈,帮助学生发现和纠正错误。
5.作业评价:
-评价作业时,注重学生的思考过程和参与程度,鼓励创新思维和团队合作;
-提供丰富的习题和案例分析,帮助学生巩固知识,提高解题能力;
-建议学生使用几何画板等软件,进行自主探索和实验,加深对几何知识的理解。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-通过展示生活中全等三角形的实例,如建筑物的三角结构、拼图游戏等,引发学生对三角形全等的思考;
-提问:“同学们,你们在生活中遇到过全等三角形吗?它们有什么特点?”让学生分享自己的观察和发现。
4.部分学生对团队合作、交流分享的学习方式还不够熟悉,教师需在教学过程中加强引导和培养。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握三角形全等的判定方法(SSS、SAS、ASA、AAS、HL);
-能够运用三角形全等的判定方法解决实际问题;
-培养学生的空间想象能力和逻辑推理能力。
在教学过程中,教师应注重引导学生通过自主探究、合作交流、实践操作等学习方法,培养以下过程与方法:
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案
第十一章三角形11.3 多边形及其内角和11.3.1 多边形一、教学目标【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图的过程,进一步发展空间能力.【情感态度与价值观】经历探索、归纳等过程,学会研究问题的方法.二、课型新授课三、课时第1课时四、教学重难点【教学重点】1.了解多边形的边、顶点、内角、外角、对角线等有关概念.2.了解正多边形的基本性质.【教学难点】1.在多边形的概念中,对“在同一平面内”的理解.2.对多边形对角线的理解.3.对正多边形性质的理解.五、课前准备教师:课件、三角尺、多边形图片等。
学生:三角尺、直尺、多边形纸片。
六、教学过程(一)导入新课在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?(出示课件2-4)(二)探索新知1.师生互动,探究多边形的定义及其有关概念教师问1:观察下面的图片,你能找到哪些我们熟悉的图形?学生回答:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.教师讲解引入多边形:上面这些图形我们要给出一个统一的名称,称它们为多边形.那么到底什么是多边形呢?我们先回忆一下三角形的定义.教师问2:同学们想一想,什么是三角形呢?学生回答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.做一做教师讲解:请同学们拿出准备好的材料,随意画几个多边形.教师问3:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?学生回答:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.(出示课件6)教师问4:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?学生交流,教师讲解并强调“在平面内”,并总结:这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.根据边数的多少来命名为,有四条边就是四边形,有五条边就是五边形,依次命名为六边形、七边形、八边形…学生问:观察这个多边形,为什么有一条边是虚线?教师回答:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.教师问5:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.学生讨论回答,教师引导如下:内角:多边形相邻两边组成的角.外角:多边形的边与它的邻边的延长线组成的角.对角线:连接多边形两个顶点的线段教师问6:多边形按边数分类,可以分为哪一些呢?学生回答:多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.(出示课件8)教师总结如下:(1)多边形的分类:多边形按组成它的线段的条数分成三角形、四边形、五边形……如果一个多边形由n条线段组成,那么这个多边形就叫做n边形. 其中,三角形是最简单的多边形.如图所示的多边形记作五边形ABCDE.(2)多边形的边:所连接的线段叫做多边形的边. 如图中的AB、BC、CD、DE、EA都是五边形ABCDE的边.(3)多边形的角:①内角:多边形相邻的两边所组成的角叫做多边形的内角,如图中的∠EAB、∠ABC、∠BCD、∠CDE、∠DEA都是五边形ABCDE的内角;n 边形共有n个内角.②外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角,如图中的∠DCF是五边形ABCDE的一个外角.n边形共有2n个外角,其中每个顶点处有两个相等的外角,这两个外角是对顶角.(4)多边形的对角线:多边形不相邻的两个顶点的连线组成的线段叫做多边形的对角线. 如图中,AC、AD是五边形ABCDE的两条对角线.教师问7:回想三角形的表示方法,多边形应如何表示?学生讨论回答并得出结论.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.(出示课件7)教师问8:请分别画出下列两个图形各边所在的直线,你能得到什么结论?学生讨论回答,并得出结论:如图(2)这样,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(出示课件9)例:凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.师生共同解答如下:(出示课件10)解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.总结点拨:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.①从所截角的两边截,边数增加1.②从所截角的相邻两角的顶点截,边数减少1.③从所截角的一边及相邻角的顶点截,边数不变.2.动手画图,寻找多边形对角线的特征教师问9:三角形有对角线吗?为什么?学生回答:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.教师问10:四边形有对角线,过四边形的一个顶点有几条对角线?学生画图并回答:过四边形的一个顶点有1条对角线.(如下图所示)教师问11:过五边形的一个顶点有几条对角线?学生回答:过五边形的一个顶点有2条对角线.(如下图所示)(出示课件13)教师问12:请画出下列图形从某一顶点出发的对角线的条数,并看一下边数与对角线的条数之间有何规律?多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数0 1 2 3 5 n-3分割出的三角形的个数1 2 3 4 6 n-2学生动手操作并回答(如上表数字)教师问13:每个多边形被过同一顶点的对角线分为几个三角形?学生观察并回答(如上表数字)(出示课件14)教师指导学生完成下列问题:(1)学生画一画画出下列多边形的全部对角线.(出示课件17)(2)观察下列图形,并阅读图形下面的相关文字,解答下列问题:教师问14:十边形有多少条对角线?n边形呢?(出示课件18)学生解答如下:(出示课件19)解:∵四边形的对角线条数为4×(4-3)×1=2.2=5.五边形的对角线条数为5×(5-3)× 12=9.六边形的对角线条数为6×(6-3)× 12∴十边形的对角线条数为10×(10-3)× 1=35.2n(n-3) .n边形的对角线条数为12教师问15:多边形一共有多少条对角线呢?学生讨论并回答,教师引导总结如下:(出示课件15)从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线n(n−3)条.2例2:过多边形的一个顶点的所有对角线的条数与这些对角线分割多边形所得三角形的个数的和为21,求这个多边形的边数.师生共同解答如下:(出示课件16)解:设这个多边形为n边形,则有(n-3)条对角线,所分得的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.3.自主探索正多边形的概念及基本性质教师问16:观察下列图形,它们的边、角有什么特点?学生回答:它们的边都相等,它们的角也都相等.教师问17:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?学生回答:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:由定义可知,正多边形有什么性质?学生回答:正多边形的各个角都相等,各条边都相等.教师问18:下列多边形是正多边形吗?如不是,请说明为什么?(出示课件21)(四条边都相等)(四个角都相等)学生回答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.总结点拨:判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.(三)课堂练习(出示课件24-27)1.下列多边形中,不是凸多边形的是()2. 九边形的对角线有()A. 25条B. 31条C. 27条D. 30条3. 把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B .五边形C.四边形D.三角形4. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是__________边形.5. 过八边形的一个顶点画对角线,把这个八边形分割成________个三角形.6. 过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,则(m-k)n为多少?参考答案:1.B2.C3.A4. 十三5.六6. 解:∵m=10,n=3,k=5.∴(m-k)n=(10-5)3=53=125.(四)课堂小结今天我们学了哪些内容:1.本节主要学习多边形及有关概念,多边形的分类和正多边形的概念及基本性质.2.本节涉及的思想方法是类比思想.(五)课前预习预习下节课(11.3.2)的相关内容。
人教版八年级数学上册教案(RJ) 第十一章 三角形
11.1 与三角形有关的线段11.1.1 三角形的边1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边与任意两边之差小于第三边的性质,并会初步运用这些性质来解决问题.重点三角形的三边关系. 难点三角形的三边关系.一、创设情境,引入新课老师出示一个用硬纸板剪好的三角形,并提出问题;小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义? 老师出示教具,提出问题.让学生观察教具,然后给出三角形的定义. 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 二、探究问题,形成概念(一)探究三角形的有关概念1.三角形的顶点及符号表示方法. 2.三角形的内角. 3.三角形的边.教师继续利用教具向学生直接指明相关的概念. 学生注意记忆相关的概念. 教师再出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.(二)探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类? 教师提出问题,学生举手回答. 教师提示,分类的标准是什么?学生回答:有两边相等和有三边相等,以及三条边均不相等.教师进一步提出新的问题,并进一步讲解等边三角形、等腰三角形的有关概念,然后给出三角形按边分类的方法:三角形⎩⎪⎨⎪⎧三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.(三)探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C点,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从点B出发沿三角形的边爬到点C有如下几条路线:a.从B→Cb.从B→A→C(2)从B→C路线最短.然后老师进一步提出问题:这条路线为什么是最短的?学生举手回答:“两点之间,线段最短.”然后师生共同归纳得出:AC+BC>AB①AB+AC>BC②AB+BC>AC③即三角形两边的和大于第三边.教师提问:(1)由不等式①②③移项,你能得到怎样的不等式?(2)通过刚才得到的不等式,你有什么发现?学生回答,师生共同归纳:三角形两边的差小于第三边.教师出示教材第3页例题.分析:(1)“用一条长18 cm的细绳围成一个等腰三角形”,这句话有什么含义?(2)有一边长为4 cm是什么意思,哪一边的长度是4 cm?三、练习巩固练习:教材第4页练习第1,2题.老师布置练习,学生举手回答即可.第2题注意让学生说明理由.解决完以后,教师利用投影出示补充练习,学生独立完成.补充练习:一个三角形有两条边相等,周长为20 cm,一条边长是6 cm,求其他两条边长.四、小结与作业小结:谈谈本节课的收获.老师引导学生主要从对三角形的分类和三边关系的认识方面进行小结.布置作业:习题11.1第1,2,7题.三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,让学生自己动手操作,初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。
人教版八年级数学上册第11章《三角形》说课稿
人教版八年级数学上册第11章《三角形》说课稿一. 教材分析人教版八年级数学上册第11章《三角形》是学生在学习了平面几何基本概念和性质之后,进一步深入研究三角形的相关性质和应用。
本章主要包括三角形的概念、三角形的性质、三角形的判定和三角形的中线、高线、角平分线等知识。
通过本章的学习,使学生掌握三角形的的基本性质和判定方法,提高学生的空间想象能力和逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对平面几何的概念和性质有一定的了解。
但学生在学习过程中,对于一些抽象的概念和定理,仍然存在一定的困难。
因此,在教学过程中,需要教师引导学生通过观察、操作、思考、交流等途径,自主探究三角形的性质和判定方法,提高学生的几何素养。
三. 说教学目标1.知识与技能:理解三角形的概念,掌握三角形的性质和判定方法,学会使用三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等途径,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 说教学重难点1.教学重点:三角形的性质和判定方法。
2.教学难点:三角形性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、教具模型等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习平面几何的基本概念,引导学生进入三角形的学习。
2.自主学习:让学生通过观察、操作、思考,探究三角形的性质和判定方法。
3.合作交流:学生分组讨论,分享各自的探究成果,解决存在的问题。
4.教师讲解:针对学生的探究结果,进行点评和讲解,引导学生深入理解三角形的性质和判定方法。
5.巩固练习:布置相关的练习题,让学生巩固所学知识。
6.课堂小结:对本节课的主要内容进行总结,强调三角形的性质和判定方法。
七. 说板书设计板书设计要简洁明了,突出三角形的性质和判定方法。
八年级数学上册《三角形的性质》教案、教学设计
-学生独立完成练习题,教师巡回指导。
-针对学生的错误,进行及时纠正和讲解,帮助学生巩固知识。
(五)总结归纳,500字
1.教学内容:
-对三角形的定义、分类和性质进行梳理和总结。
-强调三角形性质在解决实际问题中的应用。
2.教学方法:
-采用师生互动的方式,让学生回顾本节课所学内容。
-教师进行点评,指出学生在学习过程中的优点和不足,提出改进措施。
3.培养学生合作交流的意识,使他们学会倾听他人意见,尊重他人观点。
4.培养学生克服困难的勇气,使他们面对数学问题时,保持积极的心态。
5.引导学生认识到数学知识在生活中的广泛应用,提高他们的数学素养,培养其实用主义价值观。
二、学情分析
八年级学生已经具备了一定的数学基础和逻辑思维能力,他们对几何图形有一定的认识和了解。在此基础上,学生对三角形的性质这一章节的学习,需要在以下几个方面进行关注和引导:
4.创设生活情境,将三角形的性质应用于实际问题,提高学生的实际应用能力。
5.利用信息技术手段,如几何画板等,辅助教学,增强学生对三角形性质的理解。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发他们探索三角形性质的好奇心。
2.培养学生勇于尝试、善于思考的学习态度,使他们体会数学学习的乐趣。
4.创意设计题:
-鼓励学生利用三角形的性质设计一幅图案或构造一个模型,体现数学在艺术和工程领域的应用。
-学生需要提交设计草图和作品说明,锻炼学生的创意设计和表达能力。
5.反思总结题:
-让学生撰写学习反思,总结自己在学习三角形性质时的收获和困惑,以及对未来学习的计划。
-教师通过学生的反思,了解学生的学习情况,为下一步教学提供参考。
最新人教版八年级数学上册第十一章三角形 优秀教案教学设计 含教学反思
第十一章三角形11.1 与三角形有关的线段 (1)11.1.1 三角形的边 (1)11.1.2 三角形的高、中线与角平分线 (3)11.1.3 三角形的稳定性 (7)11.2 与三角形有关的角 (10)11.2.1 三角形的内角 (10)11.2.2 三角形的外角 (14)11.3 多边形及其内角和 (19)11.3.1 多边形 (19)11.3.2 多边形的内角和 (22)11.1 与三角形有关的线段11.1.1 三角形的边【知识与技能】1.掌握三角形的定义及相关概念.2.掌握等腰三角形、等边三角形、不等边三角形的定义,掌握三角形按边分类的方法.3.掌握三角形三边关系定理.【过程与方法】通过具体的图形学习三角形、等边三角形、不等边三角形的定义,运用“两点之间,线段最短”推导出三角形三边关系定理.【情感态度】通过求三角形的边长时必须注意三角形的三边关系,训练学生思维的严密性.【教学重点】三角形的三边关系.【教学难点】三角形三边关系的运用.一、情境导入,初步认识问题1 画一个三角形,结合图形探究三角形的定义及相关概念.问题2 出示等边三角形、等腰三角形、不等边三角形探究等边三角形、等腰三角形、不等边三角形定义及概念.问题3 如图,利用“两点之间,线段最短”探究AB、AC、BC之间的关系.【教学说明】全班同学合作交流,共同完成上面三个问题,教师巡回指导,必要时给予个别指导或集体指导,在全班同学基本完成的情况下,针对问题3进行重点讲解.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考 1.三角形按边怎样分类?2.三角形的三边关系是怎样的.3.已知三条线段,怎样判断它们能否围成三角形?【归纳结论】 1.主要定义:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.等边三角形:三条边都相等的三角形叫做等边三角形.等腰三角形:有两条边相等的三角形叫做等腰三角形.不等边三角形:三边都不相等的三角形叫做不等边三角形.2.三角形三边关系定理:三角形的两边之和大于第三边.3.已知三条线段,可用如下简易方法判断它们能否围成三角形:若两条较短边的和大于最长边,则能围成三角形,否则不能.4.已知三角形两边长a,b,第三边长为x,则x的取值范围是a-b<x<a+b(a≥b).三、运用新知,深化理解1.以下列长度的三条线段为边,哪些可以构成一个三角形,哪些不能构成一个三角形?(1)6,8,10;(2)3,8,11;(3)3,4,11;(4)三条线长度之比4:6:72.等腰△ABC中,AB=AC,D是AB的中点,连CD,若CD将△ABC周长分成19和8两部分,求△ABC的腰长及底边的长.【教学说明】可由学生抢答完成,再由教师总结归纳.【答案】略.四、师生互动,课堂小结请若干同学口头小结,之后将小结放映在屏幕上.1.布置作业:从教材“习题11.1”中选取.2.完成练习册中本课时的练习.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.11.1.2 三角形的高、中线与角平分线【知识与技能】1.掌握三角形的高、中线与角平分线定义.2.会画三角形的高、中线与角平分线.3.掌握三角形的三条高线、三条中线与三条角平分线的有关性质.【过程与方法】对学生进行操作训练,边训练边讲解,然后学以致用.【情感态度】训练同学们动手操作的能力,提高学习兴趣.【教学重点】画三角形的高线、中线与角平分线.【教学难点】画钝角三角形的高线.一、情境导入,初步认识问题1 如图,已知△ABC,画它的三条高.问题2 如图,已知△ABC,画它的三条中线.问题3如图,已知△ABC,画它的三条角平分线.【教学说明】对问题1,对于钝角三角形的作高要给予集体指导、分类指导,甚至要进行个别指导,以便让绝大部分同学过关.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考 1.锐角三角形的三条高、直角三角形的三条高、钝角三角形的三条高的位置有何不同之处?2.三角形的三条高、三条中线、三条角平分线各自有怎样的位置关系?3.三角形的角平分线与角的平分线有什么区别和联系?【归纳结论】1.定义:三角形的高:从三角形的一个顶点向对边所在的直线作垂线,所得的垂线段叫做三角形的一条高.三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的一条中线. 三角形的角平分线:三角形一个角的平分线与对边相交;以这个顶点和交点为端点的线段叫做三角形的角平分线.2.三角形的三条高所在的直线交于一点,这一点有时在形内,有时在直角顶点上,有时在形外;三角形的三条中线交于一点;三角形的三条角平分线交于一点.3.三角形的角平分线与角的平分线的区别是:三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角.三、运用新知,深化理解1.如图,AD 是△ABC 的中线;BE 是△ABC 的角平分线,CF 是△ABC 的高,填空:(1)BD= =21 ; (2)∠ABE=∠ =21∠ ; (3)∠ =∠ =90°.2.如图,△ABC 中,∠A 是钝角.(1)画出AC 、AB 上的高BD 、CE ;(2)画出∠ABC 的平分线BF ;(3)画出边AB 上的中线CG.3.已知,如图,AB ⊥BD 于B ,AC ⊥CD 于C ,且AC 与BD 交于点E.那么(1)△ADE 的边DE 上的高为,边AE 上的高为 ;(2)若AE=5,DE=2,CD=59,则AB= .。
全等三角形人教版数学八年级上册教案
全等三角形人教版数学八年级上册教案全等三角形指三条边及三个角都对应相等的两个三角形,是几何中全等之一。
根据全等转换,两个全等三角形可以平移、旋转、把轴对称或重叠。
以下是整理的全等三角形人教版数学八年级上册教案,欢迎大家借鉴与参考!12.1全等三角形教案一、课标要求(1)理解全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质。
(2)经历探索三角形全等条件的过程,掌握判定三角形全等的基本事实(“边边边”“边角边”和“角边角”)和定理(“角角边”),能判定两个三角形全等。
(3)能利用三角形全等证明一些结论。
(4)探索并证明角平分线的性质定理,能运用角的平分线的性质。
二、教材分析中学阶段重点研究的两个平面图形间的关系是全等和相似,本章以三角形为例研究全等。
对全等三角形研究的问题和研究方法将为后面相似的学习提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础。
本章还借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程。
由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是后面将学习的等腰三角形、四边形、圆等内容的基础。
全等形在几何中处处可见,为了避免学生将全等的概念局限于全等三角形,本章从现实世界中各种各样的全等图形谈起。
接着,教科书从“重合”的角度定义了全等形和全等三角形的概念,这种定义方式有利于学生借助生活经验直观地认识所定义的对象,也便于引出全等形的对应部分。
性质与判定是研究全等三角形的两个重要方面。
教科书由全等三角形的定义直接导出全等三角形的性质。
在研究全等三角形的判定方法时,由图形的性质与判定在命题陈述上的互逆关系出发,引出由三条边分别相等、三个角分别相等判定两个三角形全等的方法。
接下来,教科书构建了一个完整的探索三角形全等条件的活动——首先提出探究的问题:由全等三角形的定义可知,满足三条边分别相等、三个角分别相等的两个三角形全等,那么能否减少条件,简捷地判定两个三角形全等呢?然后从“一个条件”开始,逐渐增加条件的数量,分别探究“一个条件”“两个条件”“三个条件”……能否保证两个三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1与三角形有关的线段11.1.1三角形的边「引入课」三角形的引入视频助学学习洋葱数学视频【三角形的引入】「概念课」三角形的分类学习目标☐ 了解三角形的分类方法☐ 了解等腰三角形与等边三角形的定义视频助学 请.先.思考..引导问题....,再看视频....【三角形的分类】,然后完成引导问题下方的摘要填空. 引导问题1 三角形如何按角进行分类?(00:00-00:26)1. 三角形按角分类可以分为a :___________、b :____________和c :_____________.引导问题2 三角形如何按边进行分类?(00:26-03:07)2. 等腰三角形:有________相等的三角形是等腰三角形,相等的两边叫做________,另外一条边叫做________,腰和底边的夹角叫做________.如图,等腰三角形ABC 中,AB AC =,B∠和C ∠是____角,且B ∠____C ∠.3. 等边三角形:____边相等的三角形是等边三角形,等边三角形是特殊的________三角形.如图中,等边三角形ABC 中,______AB ==,且______60A ===︒∠.4. 三角形按边分类可分为:三边都不相等的三角形和________________.线上练习完成视频后相应的【专项练习】 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来: ______________________________________________________________________ 扫码边看边学「概念课」三角形的三边关系学习目标☐ 了解三角形的三边关系☐ 掌握三角形的构成条件视频助学 请.先.思考..引导问题....,再看视频....【三角形的三边关系】,然后完成引导问题下方的摘要填空. 引导问题1 三角形的任意两边之和与第三边有什么关系?(00:00-04:00)1. 三角形两边之和________第三边.证明:根据两点之间________最短∴有___AB BC +>___AB AC +>___BC AC +> 2. 我们可以快速验证任意三条线段是否可以构成一个三角形,只需要比较相对________(短/长)的两条边的长度之和与第三边长度的关系,如果________第三边,则可以构成一个三角形.3. 根据上述方法,请你算一算三条分别长为4cm ,6cm 和10cm 的线段能否构成三角形?引导问题2 三角形的任意两边之差与第三边有什么关系?(04:00-04:46)4. 三角形两边之差________第三边.证明:由三角形两边之和大于第三边,得:______AB BC AB BC +>−−→>-______AB AC AC AB +>−−→>- ______BC AC BC AC +>−−→>-引导问题3 已知三角形两条边的长度,如何求第三边长度的范围?(04:46-05:34)扫码边看边学5. 已知三角形两条边的长度,要求第三边长度的范围,需要根据三角形两边之和________第三边以及三角形两边之差________第三边.6. 已知三角形的两边长分别为3和8,则该三角形的第三边a 的长可能是________..4A.5B .6C .11D 7.已知ABC △的AB 边长度为6,BC 边长度为9,求AC 边长度的取值范围.线上练习完成视频后相应的【专项练习】 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________11.1.2三角形的高、中线和角平分线「概念课」三角形的高、中线和角平分线学习目标☐ 了解三角形的高的定义与作法☐ 了解三角形的中线、重心的定义与性质☐ 了解三角形的角平分线的定义与性质视频助学1 请.先.思考..引导问题....,再看视频....【三角形的高】,然后完成引导问题下方的摘要填空. 引导问题1 什么是三角形的高?三角形的高有何特点?(00:00-01:57)1. 三角形的面积公式:()1______2S =⨯2. 三角形的高的定义:从三角形的一个顶点向它的________所在直线画________,顶点和垂足之间的________就是高.三角形的高是一条________(直线/射线/线段).引导问题2 一个三角形有几条高?不同类型三角形的高的位置有何特点?(01:57-05:28)3. 一个三角形有____个顶点,根据三角形高的定义,一个三角形有且只有____条高.4. a 、锐角三角形高的位置特点:三条高都在三角形的________(内部/外部);如上面()a 图所示.b 、直角三角形高的位置特点:其中有两条高是三角形的________,第三条高在三角形的________(内部/外部);如上面()b 图所示.c 、钝角三角形高的位置特点:其中有两条高在三角形的________(内部/外部),一条高在三角形的________(内部/外部);如上面()c 图所示.扫码边看边学视频助学2 请.先.思考..引导问题....,再看视频....【三角形的中线】,然后完成引导问题下方的摘要填空. 引导问题1 什么是三角形的中线?三角形的中线有何性质?(00:00-02:55)1.三角形中线的定义:从三角形一边的________到所对顶点的________. 2. 性质:三角形由中线所切分开的两个小三角形的________相等.证明:已知线段AD 是ABC △的中线,AE 是高∴12ABD S =△____⋅____,12ACD S =△____⋅____又∵点D 是BC 的中点. ∴______=.∴___ABD ACD S S △△. 3. 已知线段AD 是ABC △的中线,BC 的边长为8.则下列选项中正确的是________..4A AB =.4B BD DC == .4C AD = 4. 如右图中,线段AD 是ABC △的中线,14ABC S =△,则ABD ADC S S ==△△________.引导问题2 什么是三角形的重心?(02:55-04:23)5. 三角形的________相交的点叫做重心.视频助学3 请.先.思考..引导问...题.,再看视频....【三角形的角平分线】,然后完成引导问题下方的摘要填空. 引导问题1 什么是三角形的角平分线?三角形的角平分线有哪些特点?(00:00-03:01)1. 三角形的角平分线的定义:三角形的一个内角的...平分线...与它的对边相交,连接这个角的顶点和交点之间的........线段..叫三角形的角平分线.一个三角形有________条角平分线. 2.三角形的三条角平分线________. 3. 只有在________(锐角/直角/钝角/等腰/等边)三角形中,三角形的高线、中线和角平分线才会重合.线上练习完成视频后相应的【专项练习】 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来: ______________________________________________________________________11.1.3三角形的稳定性「概念课」三角形的稳定性学习目标了解三角形的稳定性视频助学 请.先.思考..引导问...题.,再看视频....【三角形的稳定性】,然后完成引导问题下方的摘要填空. 引导问题1 什么是三角形的稳定性?1. 生活中的很多事物都运用到了三角形的稳定性,例如埃及金字塔、________________、________________.请举两个视频中未出现过的例子.2. 下图中的图形有稳定性的是________,没有稳定性的是________.()a ()b ()c()d ()e3. 将不稳定的多边形变成________的组合,它就具有了稳定性.请在下图中的各个图形中连接最少数量的线段,使其具有稳定性.线上练习完成视频后相应的【专项练习】 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来: ______________________________________________________________________扫码边看边学11.2与三角形有关的角11.2.1三角形的内角「概念课」三角形的内角学习目标了解三角形的内角的定义视频助学 请.先.思考..引导问题....,再看视频....【三角形的内角】,然后完成引导问题下方的摘要填空. 引导问题1 三角形的内角和是多少度?请你尝试证明.1. 三角形的内角和等于________︒.如右图,已知ABC △,求证:180A B C ∠+∠+∠=︒.证明:如右图,过点A 作直线EF 与BC 平行EF BC ∥=B EAB ∴∠∠(依据:________,________)________(两直线平行,内错角相等)EAB BAC FAC ∠+∠+∠=________︒(平角定义)180B BAC C ∴∠+∠+∠=︒(等量代换)2. 请尝试利用下图证明三角形内角和等于180︒.已知:ABC △,D 是BC 延长线上的一点,CE BA ∥.求证:=180A B ACB ∠+∠+∠︒.线上练习完成视频后相应的【专项练习】 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________扫码边看边学11.2.2三角形的外角「概念课」三角形的外角学习目标了解三角形的外角的定义视频助学 请.先.思考..引导问题....,再看视频....【三角形的外角】,然后完成引导问题下方的摘要填空. 引导问题1 什么是三角形的外角?(00:00-04:07)1. 三角形的外角的定义:三角形的一条边与另一条边的________________组成的角叫做三角形的外角.右图中的________是ABC △的外角.2. 如右图,AOD △中1∠对应的外角是________和________.3. 如右图,要表示B ∠的外角,应该延长________或________.请你在图上标示出来.4. 一个三角形有________个外角.引导问题2 三角形的外角和与它相邻的内角有什么关系?(04:07-04:42)5. 三角形的外角与相邻的内角________.如图,=50ACB ∠︒,求ACD ∠.线上练习完成视频后相应的【专项练习】 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________扫码边看边学「概念课」三角形外角的性质学习目标了解三角形的外角的性质视频助学 请.先.思考..引导问题....,再看视频....【三角形外角的性质】,然后完成引导问题下方的摘要填空. 引导问题1 三角形的外角有什么性质?(00:00-04:32)1. 三角形内角和定理的推论:三角形的外角等于与它________的两个内角的________.如右图,1=∠∠____+∠____.2. 如图,已知三角形中两个相邻内角A ∠、B ∠的度数,则和这两个角不相邻的外角1∠的度数是________︒.请写出简要的步骤.解:3. 如右图,已知1∠等于150︒,则A B D ∠+∠+∠=________︒.解:如图,延长DC ,与AB 交于E 点.1=∠∠____+∠____又=BEC ∠∠____+∠____1A B D ∴∠=∠+∠+∠=________︒线上练习完成视频后相应的【专项练习】 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________扫码边看边学「解题课」三角形内外角代数应用和几何应用能力目标用三角形内外角的结论解决问题拔高练习1 不看视频....先试试...!.做完再看洋葱数学视频【三角形内外角代数应用】讲题. 1. 三角形中,三个内角的比为1:3:6,求相应的三个外角的比.2. 已知三角形的三个外角的比为2:3:4,求它的最大内角的度数.拔高练习2 不看视频....先试试...!.做完再看洋葱数学视频【三角形内外角几何应用】讲题. 1. 如图,E 、B 、C 、D 在一条直线上,若70A ∠=︒,求ABE ACD ∠+∠.检查梳理 看视频【三角形内外角代数应用】和【三角形内外角几何应用】,核对拔高练习标准........答案..并订..正.,最后完整梳理一遍解题过程. 线上练习 完成视频后相应的【专项练习】.攻略1.三角形内角和等于180︒2.三角形外角和等于360︒3.外角等于不相邻的两个内角和 攻略安能辨我是雄雌——判断内外角放开视野,洞察全局——寻找目标角和已知角间的等量关系「解题课」三角形与平行线能力目标解决三角形与平行线中的角度问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【三角形与平行线】讲题. 1. 如图,BD 是ABC ∠的平分线,DE CB ∥交AB 于点E ,45A ∠=︒,60BDC ∠=︒,求BDE △各内角的度数.检查梳理 看视频【三角形与平行线】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程. 线上练习完成视频后相应的【专项练习】.攻略 判断内外角 寻找目标角与已知角间的等量关系不会做我教你「解题课」三角形中的角度证明能力目标解决与角有关的几何证明问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【三角形中的角度证明】讲题. 1. 如图,在ABC △中,D 在BC 上,DAC B ∠=∠.求证:ADC BAC ∠=∠.2. 如图,在ABC △中,90BAC ∠=︒,AD BC ⊥于D ,CF 平分BCA ∠交AD 于E ,交AB 于F ,证明:AEF AFE ∠=∠.检查梳理 看视频【三角形中的角度证明】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程. 线上练习完成视频后相应的【专项练习】.攻略 同一个角度 同一个梦想 同一个字母表示 相同字母标记相等的角 放开视野 洞察全局 寻找目标角和已知角攻略 同一个角度 同一个梦想 同一个字母表示 相同字母标记相等的角 放开视野 洞察全局 寻找目标角和已知角不会我教你「解题课」三角形折叠与角度能力目标解决与三角形折叠有关的问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【三角形折叠与角度】讲题. 1. 把ABC △纸片沿DE 折叠,当点A 落在四边形BCDE 内部的'A 时,求A ∠与1∠、2∠之间的数量关系.2. 把ABC △纸片沿DE 折叠,当点A 落在四边形BCDE 外部的'A 时,求A ∠与1∠、2∠之间的数量关系.检查梳理 看视频【三角形折叠与角度】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程. 线上练习完成视频后相应的【专项练习】.攻略 折叠 形状相同 大小相等 寻找已知角和目标角 间的等量关系不会做我教你「解题课」两内角平分线求角和内外角平分线求角能力目标解决与两内角平分线和内外角平分线有关的角度问题拔高练习1 不看视频....先试试...!.做完再看洋葱数学视频【两内角平分线求角】讲题. 1. 如图,在ABC △中,若点P 是ABC ∠和ACB ∠的角平分线的交点,求证:1902P A ∠=︒+∠.拔高练习2 不看视频....先试试...!.做完再看洋葱数学视频【内外角平分线求角】讲题. 1. 如图,ABC △,点E 在BC 的延长线上,点P 是ABC ∠和ACE ∠的角平分线的交点,求证:12P A ∠=∠.攻略 相同字母标记相等的角 寻找目标角与已知角间的等量关系攻略 通过条件标出已知角(用相同字母标记相等的角) 寻找目标角和已知角间的等量关系△内角外角2. 如图,在ABC △中,=64A ∠︒,点D 在BC 的延长线上,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠和1A CD ∠的平分线交于点2A ,得2A ∠;2A BC ∠和2A CD ∠的平分线交于点3A ,求3A ∠.检查梳理 看视频【两内角平分线求角】和【内外角平分线求角】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程.线上练习完成视频后相应的【专项练习】.「解题课」两外角平分线求角能力目标解决与两外角平分线有关的角度问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【两外角平分线求角】讲题. 1. 如图,已知点P 为ABC △两外角平分线的交点,求证:1902P A ∠=︒-∠.检查梳理 看视频【两外角平分线求角】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程. 线上练习完成视频后相应的【专项练习】.「解题课」两同类角等分线求角攻略通过条件标出已知角 相同字母标记相等的角寻找目标角和已知角之间的等量关系 基本图形不会做我教你 不会做我教你能力目标解决与两同类角等分线有关的角度问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【两同类角等分线求角】讲题. 1. 如图,ABC △中,ABC ∠的三等分线与ACB ∠的三等分线分别相交于1G ,2G .求:(1)1G ∠与A ∠的数量关系.(2)2G ∠与A ∠的数量关系.检查梳理 看视频【两同类角等分线求角】,核对拔高练习标准........答案..并订正.... 线上练习完成视频后相应的【专项练习】.11.3多边形及其内角和扫码边看边学攻略 用相同字母标出相等的角 找目标角与已知角的等量关系 内角和△外角等于不 相邻的两个 内角之和消元11.3.1多边形「概念课」多边形的概念学习目标了解多边形的定义视频助学请.先.思考....,再看视频....【多边形的概念】,然后完成引导问题下方的摘要填空...引导问题引导问题1 什么是多边形?(00:00-01:21)1.多边形的概念:由三条或三条以上....叫做多边形.....所组成的平面图形.......的线段首尾..顺次连接下列图形中,属于多边形的是________;不属于多边形的是________,原因是________________________________________________________.()a()b()c(d)引导问题2 什么是凸多边形?什么是凹多边形?(01:21-03:25)2.凸多边形的概念:如果把一个多边形的所有边中,任意一条边向两方无限延长成为一直线时,其他各边________(都在/不都在)此直线的同旁,那么这个多边形就叫做凸多边形.凹多边形的概念:如果把一个多边形的所有边中,有一条边向两方无限延长成为一直线时,其他各边________(都在/不都在)此直线的同旁,那么这个多边形就叫做凹多边形.下列图形中,是凸多边形的是________,是凹多边形的是________.()a()b()c(d)引导问题3 什么是正多边形?(03:25-04:46)3.正多边形的概念:________都相等,________都相等的凸多边形叫做正多边形.下列图形中,是正多边形的是________.()a()b()c(d)4.正多边形在生活中十分常见,例如正六边形的地板砖、________________.请举出一个在视频中未出现过的例子.线上练习完成视频后相应的【专项练习】提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________扫码边看边学「概念课」多边形对角线条数学习目标了解多边形对角线的条数视频助学请.先.思考....【多边形对角线条数】,然后完成引导问题下方的摘要填空.....,再看视频..引导问题引导问题1 什么是多边形的对角线?(00:00-01:14)1.多边形对角线的概念:连接多边形________的两个顶点的________,叫做多边形的对角线.三角形________(有/没有)对角线.引导问题2 n边形的一个顶点能连多少条对角线?(01:14-05:33)2.如右图,八边形从一个顶点能连接________条对角线,这些对角线将八边形分成________个三角形.请在图中画出从顶点A出发的所有对角线.3.从一个顶点连接对角线可以将多边形分成________(最多/最少)数量的三角形.4.如图,请你动手用笔连一连,并把操作结果记录在表格中:由上表及推理得出结论,从n边形的一个顶点出发能连________条对角线,同时可以把这个多边形分割成________个三角形.线上练习完成视频后相应的【专项练习】提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________11.3.2多边形的内角和 「概念课」多边形的内角和学习目标了解并会计算多边形的内角和视频助学 请.先.思考..引导问题....,再看视频....【多边形的内角和】,然后完成引导问题下方的摘要填空.引导问题1 四边形的内角和是多少度?怎么求?五边形呢?(00:00-03:22) 1.计算四边形的内角和可以将四边形的内角和转化为________的内角和. 2.试计算如右图所示四边形ABCD 的内角和,并写出步骤. 解:连接AC .∵=BAD ∠∠____+∠____,=BCD ∠∠____+∠____∴=BAD B BCD D ∠+∠+∠+∠(1+3+B ∠∠∠)+(2+4+D ∠∠∠) 在ABC △中,13=B ∠+∠+∠________︒ 在ACD △中,24=D ∠+∠+∠________︒ ∴四边形ABCD 的内角和为________︒ 3.右图中,五边形的内角和是________︒.引导问题2 n 边形的内角和是多少度?(03:22-05:39)4.n 边形会被一个顶点连接的对角线分割成________个三角形,因此n 边形的内角和为________________︒.5.12边形的内角和是________︒.线上练习 完成视频后相应的【专项练习】提出疑问 预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________扫码边看边学「概念课」多边形的外角和学习目标了解并会计算多边形的外角和视频助学 请.先.思考..引导问题....,再看视频....【多边形的外角和】,然后完成引导问题下方的摘要填空.引导问题1 四边形的外角和是多少度?六边形呢?九边形呢?(00:00-01:32) 1.如右图,这个四边形的外角和是________︒.如右图,这个正六边形的外角和是________︒.如右图,这个正九边形的外角和是________︒.引导问题2 n 边形的外角和是多少度?怎么证明?(01:32-05:19)2. n 边形的外角和为________︒.3.证明边数为n 多边形外角和为360︒,并写出步骤. 证明:n 边形外角和=外角1+外角2++外角n=(180︒-内角1)+(180︒-内角2)++(180︒-内角n )=n ⨯________-(内角1+内角2++内角n )=180n ⨯︒-________180⨯︒ =1801801802n n ⨯︒-⨯︒+︒⨯360=︒线上练习 完成视频后相应的【专项练习】提出疑问 预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________扫码边看边学「解题课」8字型中的角度关系和寻找隐藏的8字型能力目标☐ 利用8字型做角度转化 ☐ 在复杂图形中发现8字型拔高练习1 不看视频....先试试...!.做完再看洋葱数学视频【8字型中的角度关系】讲题. 1. 如图,70A ∠=︒,30B ∠=︒,求C D ∠+∠的度数.2. 已知,60A ∠=︒,求D E F G ∠+∠+∠+∠的度数.拔高练习2 不看视频....先试试...!.做完再看洋葱数学视频【寻找隐藏的8字型】讲题. 1. 如图,求A B C D E ∠+∠+∠+∠+∠的度数.2. 如图,求A B E F C D ∠+∠+∠+∠-∠-∠的度数.检查梳理 看视频【8字型中的角度关系】、【寻找隐藏的8字型】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程.线上练习完成视频后相应的【专项练习】.攻略8字型A B C D∠+∠=∠+∠角度转化攻略8字型A B C D∠+∠=∠+∠角度转化攻略角度转化攻略添加辅助线,构建基础图模型 角度转化扫码边看边学「解题课」三角形与多边形的计算能力目标解决三角形与多边形的计算问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【三角形与多边形的计算】讲题. 1. 求证:180A B C D E ∠+∠+∠+∠+∠=︒.2. 如图,求证:123456360∠+∠+∠+∠+∠+∠=︒.检查梳理 看视频【三角形与多边形的计算】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程.线上练习完成视频后相应的【专项练习】.攻略三角形的内角和是180︒ 先转化在同一个图形里的角三角形的两个内角之和等于第三个外角攻略利用基本图形转化角不会做我教你满分必学「解题课」三角形与多边形证明能力目标解决三角形与多边形的证明问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【三角形与多边形证明】讲题. 1. 如图,在ABC △和ADE △中,已知45EAD AED BAC BCA ∠=∠=∠=∠=︒,并且BAD BCF ∠=∠,求证:ED CF ∥.检查梳理 看视频【三角形与多边形证明】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程. 线上练习完成视频后相应的【专项练习】.「解题课」飞镖模型与角平分线攻略明确已知角和目标角找到已知角和目标角的数量关系 通过代数方法将数不会做我教你能力目标解决飞镖模型与角平分线的问题拔高练习不看视频....先试试...!.做完再看洋葱数学视频【飞镖模型与角平分线】讲题. 1. 在凹四边形ABCD 中,求证:A B D BCD ∠+∠+∠=∠.2. 如图所示,DC 平分ADB ∠,EC 平分AEB ∠,试探索A ∠、B ∠、C ∠的关系.检查梳理 看视频【飞镖模型与角平分线】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程. 线上练习完成视频后相应的【专项练习】.攻略 借助基本图形↓飞镖模型。