小学六年级数学圆柱体积

合集下载

六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期圆柱的体积知识概要1、圆柱的体积将圆柱切割拼成一个近似长方体:长方体的长:圆柱底面圆周长的一半πr长方体的宽:圆柱的底面半径r长方体的高:圆柱的高hV=πr·r·h =πr2hV=底面积×高2、体积单位及换算体积单位:立方米、立方分米、立方厘米相邻两个体积单位间的进率是10001立方米=1000立方分米1立方分米=1000立方厘米精讲精练例1、(1)圆柱的半径扩大为原来的3倍,高不变,体积扩大为原来的____倍。

如果高变成2倍,半径不变,体积变为原来的_____倍。

(2)判断:①圆柱的半径扩大为原来的2倍,表面积扩大为原来的4倍。

()②圆柱的半径扩大为原来的2倍,体积扩大为原来的6倍。

()演练1、(1)圆柱的半径缩小为原来的二分之一,高不变,体积缩小为原来的_____。

(2)判断:圆柱的半径扩大为原来的2倍,高不变,体积扩大为原来的4倍。

()例2、(1)已知圆柱体的底面半径3厘米,高10厘米。

那么这个圆柱体的体积是_____立方厘米.(2)如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.问这个物体的体积是多少平方米?(圆周率取3)1110.511.5演练2、(1)一个圆柱底面积是1⒉56平方分米,高是2分米,则圆柱的体积是多少立方分米?(2)一个双层的圆柱形蛋糕,两层都高15厘米,第一层和第二层蛋糕的半径分别为10厘米和5厘米。

求这个蛋糕的体积。

例3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

这个零件的体积是多少?演练3、有一个圆柱体的零件,高6厘米,底面直径是8厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

这个零件的体积是多少?例4、(1)圆柱体的侧面展开,放平,是长宽分别为18厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。

圆柱的体积说课稿7篇

圆柱的体积说课稿7篇

圆柱的体积说课稿7篇圆柱的体积说课稿7篇作为一名教职工,时常需要用到说课稿,借助说课稿我们可以快速提升自己的教学能力。

快来参考说课稿是怎么写的吧!下面是小编为大家整理的圆柱的体积说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆柱的体积说课稿1各位领导、老师:大家好!:今天,我说课的内容是《圆柱的体积》。

我将从说教材、说学情、说教学流程三个方面进行说课。

一、说教材。

1.说内容。

《圆柱的体积》这节课选自冀教版六年级数学第12册三单元,主要内容是圆柱体的体积计算公式的推导和应用。

2.教材简析。

这一单元是小学阶段学习几何体知识的最后部分,是几何知识的综合运用。

《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆拼成近似的长方形的经验,很容易联想到把圆柱切拼成长方体。

学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3、分析教材的编写思路、结构特点。

为了更好地理解教材,我认真研读了人教版与冀教版两种不同版本的教材:冀教版教材:教材由过生日的情景图和两个不易直观比较出体积的茶叶桶,呈现了问题情境。

接着由“议一议”启发学生猜想怎样计算圆柱体积,在猜想的基础上,小组合作,动手操作,利用手中的圆柱体学具把一个圆柱体等分成16份、32等份拼成新的拼成长方体。

然后提出“说一说”引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式。

通过例题1得以简单应用。

人教版教材:教材没有创设生动有趣的问题情境,直接奔入主题猜想怎样计算圆柱体积,直接引导学生利用手中的圆柱体学具,把一个圆柱体等分成16份、32份等新的拼成长方体。

引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式,出示例4巩固应用,出示例5应用公式计算容积。

通过对比分析,发现:从教材内容安排和活动设计上,主导思想是一致的,都非常重视动手操作活动,让学生经历探究圆柱体积公式的全过程,在这些教学活动中,着重以引导学生运用自主学习、合作探究两种学习方式交替进行,让他们真正以课堂主人的身份参与全程,教师只是探究活动的组织者、引导者、合作者。

圆柱的体积教学设计(精选15篇)

圆柱的体积教学设计(精选15篇)

圆柱的体积教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

下面是小编整理的圆柱的体积教学设计(精选15篇),欢迎大家分享。

圆柱的体积教学设计篇1一、情景引入1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?2、提问:“能用一句话说说什么是圆柱的体积吗?”(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。

)二、自主探究1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。

(课件出示)(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。

即圆柱的体积的大小与它的底面积和高有关。

(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。

)2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。

那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。

小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,

《圆柱的体积(1)》(课件)-六年级下册数学人教版

《圆柱的体积(1)》(课件)-六年级下册数学人教版

(3) 把一个棱长为10分米的正方体木块削成一个最大的圆柱,
这个圆柱的体积是( B )立方分米。
A.100
B.785
C.78.5
D.314
(4) 圆柱的底面半径和高都扩大到原来的2倍,它的体积扩大
到原来的( C )倍。
A.2
B.4
C.8
D.6
2 挖一口圆柱形水井,地面以下的井深为10m,底面直径 为1m。挖出的土有多少立方米?(教材P24第2题)
V=75×90=6750(cm3) 答:它的体积是6750cm3。
3 一个圆柱形的水池,从里面量底面半径是5m,深是3.2m。 这个水池能蓄水多少吨?(1m3的水重1t。) (教材P25第2题)
V=3.14×52×3.2=251.2(m3)=251.2(t)
答:这个水池能蓄水251.2t。
当堂练习 及时反馈
2 下图中的圆柱与长方体的体积相等。这个圆柱的高是多 少?(单位:dm)
15.7
12
3
V=15.7×6×3=282.6(dm3) h=282.6÷[3.14×(12÷2)2]=2.5(dm) 答:这个圆柱的高是2.5dm。
3 如图,一根长6m的圆木,如果把它截成三段,表面积就 增加942cm2。原来这根原木的体积是多少立方米?
7 cm 6 cm
一个圆柱所占空间的大小, 叫作这个圆柱的体积。
怎样计算圆柱的体积呢?
合作交流 探索新知
探究圆柱的体积计算公式
想一想:圆的面积公 式是怎样推导的呢?
34 56
2
7
1
8
16
9
15

10
1413 12 11
12345678 9 10 11 12 13 14 15 16

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

第三单元第3课时圆柱的体积(1)教学设计情境导入—引“探究”教师谈话导入:什么是物体的体积?你会计算哪些物体的体积?长方体和正方体的体积计算公式?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?V长=长×宽×高V正=棱长×棱长×棱长V=底面积×高字母表示:V=Sh思考:圆柱的体积怎样计算呢?前面的学习中我们遇到过这样的问题吗?知识链接—构“联系”回忆一下圆面积的计算公式是如何推导出来的?(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的长方形。

长方形的长相当于圆周长的一半,长方形的宽就当于圆的半径,用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式。

圆柱的体积该怎么计算呢?今天我们就一起来研究这个问题。

(板书课题:圆柱的体积)学习任务一:圆柱体积公式的推导【设计意图:由复习圆面积公式的推导过程入手,实现知识的迁移,从而调动学生学习的积极性,激发学生探求新知的欲望,在教学中充分运用课件中的动画直观演示的同时,广泛让学生动手、动脑、动口,在操作中感知,在猜想中验证,在观察中理解,在比较中归纳。

让学生在自主探究、合作交流中发现和解决问题,培养学生乐学、积极探究的学习态度,获得成功的体验。

这样进行教学,不仅有利于学生理解公式的推导过程,而且在公式的推导过程中,充分让学生感受和体验“转化”这一解决数学问题重要的思想方法。

】新知探究—习“方法”结合教材的内容,探究圆柱体积公式的推导。

1.提问:什么是圆柱的体积?圆柱的体积怎么求?(说一说、想一想、猜一猜)让学生自由发言。

(1)学生猜想可以把圆柱转化成什么图形?(借助于圆面积公式的推导进行知识迁移学习)出示推导示意图,建立直观,巩固旧知(2)阅读教材内容,利用手中的学具进行探索,小组交流。

2.圆柱体积公式的推导(1)多媒体课件演示圆柱体等分转化为长方体。

(让学生观察)通过课件的演示、观察、思考:(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?(4) 你认为圆柱的体积可以怎样计算?3.交流展示,小组讨论,交流汇报。

六年级下册圆柱的体积

六年级下册圆柱的体积

课题:圆柱的体积教学目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算体积的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力。

3、渗透转化思想,培养学生的自主探索意识。

教学重、难点:1、掌握圆柱体积的计算公式。

2、圆柱体积的计算公式的推导。

教学过程一、复习。

1、长方体的体积公式是什么?(长方体的体积=长x宽x高,长方体和正方体体积的统一公式“底面积x高”,即长方体的体积=底面积x高)2、观察一个圆柱体,知名学生指出圆柱的底面、高、侧面、表面各式什么,怎么求?3、复习圆面积的计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、授新课。

1、圆柱体积计算公式的推导。

例5(1)用将圆转化的成长方形来求出圆的面积的方法推导圆柱的体积。

(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得大小相等的16块,把它们拼成一个近似长方体的立体图形------课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体,如果分成的扇形越多,拼成的立体图形就越接近长方体。

(课件演示将圆柱细分,拼成一个长方体)。

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

(长方体的体积=底面积x高,所以圆柱的体积=底面积x高,V=sh)2.教学补充例题出示例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。

它的体积是多少?指名学生分别回答下面的问题:(1)这道题已知什么?求什么?(2)能不能根据公式直接计算?(3)计算之前要注意什么?(计算既要分析已知条件和问题,还要注意要先统一,计量单位)(4)教师指导列式计算:第一种计算方法:2.1米=210厘米V=sh50X210=10500(立方厘米)答:它的体积是10500立方厘米。

第二种计算方法:50平方厘米=0.005平方米V=sh0.005x2.1=0.0105(立方米)答:它的体积是0.0105立方米。

2024年人教版数学六年级下册圆柱的体积说课稿3篇

2024年人教版数学六年级下册圆柱的体积说课稿3篇

人教版数学六年级下册圆柱的体积说课稿3篇〖人教版数学六年级下册圆柱的体积说课稿第【1】篇〗一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。

在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。

学生经过思考、讨论、交流,找到了解决的方法。

而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。

在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

二、鼓励学生独立思考,引导学生自主探索、合作交流数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。

在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。

那么怎样来切割呢?此时采用小组讨论交流的形式。

同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。

在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。

同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。

这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。

不足之处:在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。

在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。

数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。

小学六年级数学《圆柱的体积》教案一等奖范文

小学六年级数学《圆柱的体积》教案一等奖范文

小学六年级数学《圆柱的体积》教案一等奖范文1、小学六年级数学《圆柱的体积》教案一等奖范文教学内容:北师大版数学六年级下册5——6页。

教学目标:1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学重点:目标1。

教学难点:目标2。

教学过程:活动一:复习旧知,巩固学过的公式。

1、一个直径是100毫米的圆,求周长。

2、一个半径3厘米的圆,求周长和面积。

3、一个长为3米,宽为2米的长方形,它的面积是多少?4、出示圆柱体的模型,说说它有什么特征?活动二;探究新知。

1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)要解决这个问题,就是求什么?2、圆柱的表面积包括哪几部分?3、圆柱的表面积的计算关键在哪一部分?4、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?3)师;圆柱的侧面积就是求长方形的面积。

用长乘宽。

4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

5)请你来总结一下圆柱侧面积的计算方法。

6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

活动三:新知识的运用。

1、求底面半径是10厘米,高30厘米的圆柱的表面积。

2、教师板书:侧面积:2╳3.14╳10╳30=1884(平方厘米)底面积:3.14╳10╳10=314(平方厘米)表面积:1884+314╳2=2512(平方厘米)要求按步骤进行书写。

2、试一试。

做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?求至少需要多少铁皮,就是求水桶的表面积。

这道题要注意什么?无盖就只算一个底面。

这种题如果求整数,一般用进一法。

3、练一练。

书第6页第1题。

3个小题:已知底面直径或底面周长和高,求圆柱的表面积。

人教版六年级数学下册《圆柱的体积》课件

人教版六年级数学下册《圆柱的体积》课件
的值。 3. 求方程的解的过程叫解方程。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学六年级数学《圆柱的体积》教案(优秀9篇)作为一名教职工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。

六年级下册数学教案-《圆柱的体积》人教版

六年级下册数学教案-《圆柱的体积》人教版
突破方法:提醒学生注意单位统一,以及π的取值(一般取3.14),培养学生严谨的计算习惯。
(4)合作交流中的难点:在小组合作过程中,学生可能无法充分表达自己的观点,或者无法倾听他人的意见。
突破方法:教师引导学生学会倾听、尊重他人,培养学生的团队协作能力和人际沟通能力。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“圆柱体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如圆柱体积计算在工程设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.理论介绍:首先,我们要了解圆柱体积的基本概念。圆柱体积是指圆柱体所占空间的大小。它是我们研究几何体积的一个重要部分,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过将圆柱切割、拼凑成近似长方体的方式,推导出圆柱体积的计算公式,并展示如何运用这个公式解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调圆柱体积公式V=πr²h和圆柱与长方体体积关系这两个重点。对于难点部分,如空间观念的建立和公式的应用,我会通过实物操作和举例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆柱体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量水桶的半径和高度,计算其体积,从而验证圆柱体积公式的正确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

六年级数学圆柱的体积和容积

六年级数学圆柱的体积和容积

六年级数学圆柱的体积和容积一、计算公式1、圆柱的体积:一个圆柱所占空间的大小。

2、圆柱的体积=底面积×高。

如果用V表示圆柱的体积,S表示底面积,h 表示高,那么V=Sh。

3、圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr²h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d÷2)²h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C÷π÷2)²h;4、圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

5、圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

二、常见题型1.下图是一个圆柱的展开图,这个圆柱表面积是多少平方厘米?体积是多少立方厘米?6.28÷3.14÷2=1(厘米) 6.28×3+3.14×1²×2=25.12(平方厘米)3.14×1²×3=9.42(立方厘米)答:这个圆柱的表面积是25.12平方厘米,体积是9.42立方厘米。

2.如图,李师傅把一个正方体改造成了一个笔筒,从中挖出一个半径为3cm的圆柱后,表面积增加131.88cm²。

这个笔筒的容积约是多少?(得数保留整数)表面积增加的部分是圆柱的侧面积高:131.88÷(3.14×3×2)=7(厘米)3.14×3²×7≈198(立方厘米)3.把一个铁块放入一个底面半径是4厘米的装有水的圆柱形量杯(如图),当把完全浸没在水中的铁块取出后,水面下降了3cm。

这个铁块的体积是多少立方厘米?3.14×4²×3=150.72(立方厘米)4.如图是一卷卫生纸,你能求出这卷卫生纸的体积吗?3.14×(13÷2)²×10-3.14×(3÷2)²×10=1256(立方厘米)5.下面是一根钢管,它所用的钢材的体积是多少立方厘米?10÷2=5(厘米)(10+2+2)÷2=7(厘米)3.14×7²×35-3.14×5²×35=2637.6(立方厘米)6.一瓶装满的矿泉水,小强喝了一些,瓶中水深15cm,把瓶盖拧紧后倒置放平,无水部分高6cm,瓶内直径是6cm,小强喝了多少毫升水?3.14×(6÷2)²×6=169.56(毫升)7.一个底面内直径是10cm,高是8cm的圆柱形容器中装有一些水,把一个石块完全浸入水中后溢出100mL水。

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

统一公式:V=( Sh )
新知讲解
根据长方体、正方体的体 积计算公式以及左图叠硬 币过程,你能大胆猜想一 下圆柱体的体积应该怎样 求吗?
从叠硬币来看,用“底积 ×高”能计算出圆柱的体积。
新知讲解
你还记我们是如何推导出圆的面积计算公式的吗?
转化的思想
C r
2
新知讲解
a.你准备把圆柱体转化成什 么立体图形?
新知讲解

笑笑了解到一根柱子 从水杯里面量,水
的底面半径为0.4m,高 杯的底面直径是6cm,
为5m。你能算出它的 高是16cm,这个水
体积吗?
杯能装多少毫升水?
柱子的体积: 3.14×0.42×5
=0.5024×5 =2.512(m3)
杯子的容积:
3.14×(6÷2)2×16
=28.26×16 =452.16(cm3) 452.16 cm3=452.16 mL
04
会计算只给底面半径或直径和高的圆柱体的体积。
长方体体积=长×宽×高 正方体体积=边长³ 长(正)方体的体积=底面积×高
新知讲解
回忆了老朋友, 我们再来认识一 位新朋友。
老朋友
新朋友 (圆柱体)
新知讲解
他们在讨论什么问题呢?
一个圆柱体所占空间的大小叫做圆柱的体积。
新知讲解
你能根据已有知 识补充完整并用 语言来叙述吗?
V=( abh)
V=( a3 )
新知讲解
1. 想一想,填一填。 (1)7.8立方米=( 7800 )立方分米
3升56毫升=( 3056 )毫升=( 3056 )立方厘米 (2)一个圆柱形水杯(水杯厚度忽略不计),它的底面积是10 cm2, 高是12 cm,则这个水杯可以装水 ( 0.12 )升。 (3)一个圆柱的体积是62.8立方厘米,底面半径是2厘米,则高是 ( 5 )厘米。

六年级下册数学圆柱的体积

六年级下册数学圆柱的体积

六年级下册数学讲义圆柱的体积☆☆知识讲解:知识点一:圆柱体积的意义和计算公式1.圆柱体积的意义:一个圆柱所占空间的大小,叫做这个圆柱的体积.2.圆柱体积公式的推导:圆柱的体积=长方体的体积=长方体的底面积×长方体的高=圆柱的底面积×圆柱的高如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,可以得到圆柱的体积计算公式为:h r Sh V 2π==知识点二:圆柱的体积计算公式的应用知识应用1:已知圆柱的底面积和高,求圆柱的体积。

点击例题:一根圆柱形钢材,底面积是402cm ,高是2.1m ,它的体积是多少?知识应用2:已知圆柱的底面半径和高,求圆柱的体积。

点击例题:一个圆柱形罐头盒的底面半径是5cm ,高是18cm 。

体积是多少?知识应用3:已知圆柱的底面直径和高,求圆柱的体积。

点击例题:一个圆柱形水桶,从里面量底面直径是4分米,高是5分米,这个水桶的容积是多少?(得数保留整立方分米)可装水多少千克?(1立方分米水重1千克)知识应用4:已知圆柱的底面周长和高,求圆柱的体积。

点击例题:一个圆柱形水泥柱,底面周长是1.884米,高是3米,这根水泥柱的体积是多少立方米?知识应用5:已知圆柱的体积和高(或底面积),也可以求出圆柱的底面积(或高)。

点击例题:在地面挖一个圆柱形水池,底面周长62。

8米,要使池内存水1570立方米,水池至少要挖多深?过关精练:一个圆柱形容器的底面直径为4分米,现在往容器里倒入25。

12升的水,水深多少分米?☆☆思维拓展:点拨方法1:如果把一个正方体的木料加工成一个最大的圆柱体,这个圆柱体的高就等于正方体的棱长,这个圆柱体的底面直径也就等于正方体的棱长。

点击例题:有一块正方体的木料,它的棱长是3分米,把这块木料加工成一个最大的圆柱体(如图),这个圆柱体的体积是多少?过关精练:点拨方法2:将物体浸没在容器里,物体的体积等于升高的那部分液体的体积;如果物体没有完全浸没在液体中,则浸没在液体中的那部分体积等于升高的液体的体积。

《小学奥数》专题系列之二:圆柱的体积(六年级)

《小学奥数》专题系列之二:圆柱的体积(六年级)

《小学奥数》专题系列之二圆柱的体积
你们知道吗?
表面积增加了1部分侧面 (原底面周长×增加的高) 体积增加了上升的那部分 (原底面积×增加的高)
《小学奥数》专题系列之二圆柱的体积
你们知道吗?
一个圆柱的侧面积是12.56平方厘米,底面半径是2 厘米,那么这个圆柱的体积是(12.56cm3 ).
注意: 圆柱体的体积可以这样算: 侧面积乘以半径÷2
装石油
吨。
4.一个圆柱形铁皮油桶中装满了汽油,将汽油倒出十分之 三后还剩下56升。油桶的高是8分米,它的占地面积是 平方分米。(铁皮厚度忽略不计)
《小学奥数》专题系列之二圆柱的体积
➢已知长方形的长为6分米,宽为3分米.将该长方形围 成一个圆柱,那么这个圆柱的体积大约是多少立方分 米?(π取3)
《小学奥数》专题系列之二圆柱的体积
《小学奥数》专题系列之二圆柱的体积
4、 只列式不计算 1.5米
1分钟压
《小学奥数》专题系列之二圆柱的体积
5.一个圆柱体的侧面展开是个边长9.42 c m的正方形,这个圆柱体的表面积是多 少cm2?(得数保留两位小数)
解:9.42×9.42+3.14(9.42÷3.14÷2)2×2
=88.728+14.13
1.滨海化工厂有一个圆柱形油罐,从里面量底面半径是
4m,高是20m。如果每立方米汽油重0.7t,这个油罐
最多能装 吨汽油。
2.一个圆柱,底面半径是2厘米,高是5厘米。这个圆柱
的体积是
立方厘米。
《小学奥数》专题系列之二圆柱的体积
3.化工厂建造一个圆柱形大油罐,油罐底面周长是62.8米,
高是5米,如果每立方米可装石油700千克,这个油罐可

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

20cm
圆柱的底面半径是 10cm,高20cm。
=314×20
=6280(cm³)
答:以长为轴旋转一周,得到的圆柱的体积是6280cm³。
右面这个方形的长是20cm,宽是10cm。 分别以长和宽 为轴旋转一周,得到两个圆柱体。它们的体积各是多少?
10cm
3.14×20²×10
以宽为轴旋转,得到 圆柱的底面半径是
162 π
(dm³)
底面周长:
图2
π×(12÷π÷2)²×3=
108 π
(dm³)
1π62>
108 π

81 π

54 π
图3
π×(9÷π÷2)²×4=
81 π
(dm³)
图1的体积最大。
图4
π×(6÷π÷2)²×6=
54 π
(dm³)
下面4个图形的面积都是36dm2(图中单位:dm)。
用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最
3 圆柱与圆锥
圆柱的体积 复习
说一说:圆柱的体积是怎么求出来的。 圆柱的体积是指一个圆柱所占空间的大小叫做这个圆柱的体积。
把圆柱切开,拼成一 个近似的长方形。
圆柱的体积 圆柱的底面积
圆柱的高
长方体的体积 长方体的底面积 长方体的高
运用割补法把圆柱转化成与它体积相等的长方体推导圆柱的体 积计算公式。
3.14×[(10÷2)2-(8÷2)2]×80 =3.14×9×80 =2260.8(cm3)
答:它所用钢材的体积是2260.8cm3。
右面这个长方形的长是20cm,宽是10cm。 分别以长和宽 为轴旋转一周,得到两个圆柱体。它们的体积各是多少?
10cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱体积(1)
1、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?
2、把一个棱长为6分米的正方体木块,削成一个最大的圆柱,这个圆柱的体积多少立方分米?削去的体积是多少?
3、一块长方体木料,长 1.2米,宽1.1米,高1米,以某一个面为底画最大的圆,以另一条棱的长为高,把它加工成一个圆柱体。

问:圆柱体的体积最小是多少立方米?最大是多少立
方米?(得数保留两位小数)
4、把一块长12.56厘米,宽2厘米,高10厘米的长方体铁块熔化后铸成底面半径是2厘米的圆柱,这个圆柱的高是多少厘米?这个圆柱的体积是多少立方厘米?
5、在一个圆柱的侧面积是113.04平方分米,底面半径是2分米。

它的体积是多少立方分米?。

相关文档
最新文档