磁共振DTI弥散张量成像.ppt
磁共振和弥散张量成像课件
03 DTI在临床诊断中 的应用
脑部疾病的DTI表现
脑部肿瘤
DTI可以检测肿瘤对周围白 质纤维束的浸润和破坏, 有助于肿瘤的早期诊断和 分级。
脑卒中
DTI可以显示脑卒中后白质 纤维束的损伤程度,有助 于判断预后和制定康复计 划。
癫痫
DTI可以检测癫痫病灶对周 围白质纤维束的改变,有 助于癫痫灶的定位和手术 治疗。
DTI可以检测肌腱损伤后纤维排列和走向的变化, 有助于肌腱损伤的诊断和康复。
关节软骨损伤
DTI可以显示关节软骨损伤后纤维排列和走向的变 化,有助于关节软骨损伤的诊断和手术治疗。
肌肉萎缩
DTI可以检测肌肉萎缩后纤维排列和走向的变化, 有助于肌肉萎缩的诊断和治疗。
04 DTI与功能连接研 究
功能连接的概念与测量方法
脊髓疾病的DTI表现
脊髓肿瘤
DTI可以检测肿瘤对脊髓白质纤 维束的浸润和破坏,有助于肿瘤
的早期诊断和手术治疗。
脊髓损伤
DTI可以显示脊髓损伤后白质纤 维束的损伤程度,有助于判断预
后和制定康复计划。
脊髓炎
DTI可以检测炎症对脊髓白质纤 维束的改变,有助于炎症的诊断
和治疗。
肌肉骨骼疾病的DTI表现
肌腱损伤
02 弥散张量成像( DTI)基础
DTI的概念与原理
DTI(弥散张量成像)是一种基 于磁共振的成像技术,用于研究 活体组织中水分子的扩散运动。
它通过测量多个方向的扩散敏锐 梯度,获取水分子的扩散系数和 方向性,从而反应组织的微观结
构和纤维排列。
DTI原理基于分子扩散的随机性 ,通过测量扩散系数和方向性, 可以反应组织的微观结构和纤维
通过DTI技术,可以研究白质纤维束的完整性、方向性以及各向异性扩散系数等参数 ,从而评估大脑功能连接的强度和方向性。
脑肿瘤磁共振影像DWI和DTI鉴别诊断PPT
ADC图
对指数图像(Exp)作算术运算可获ADC图: SI=SI0×Exp(-b×ADC)
SI=DWI组织体素的信号强度 SI0=T2WI(b=Osec/mm2)组织体素的信号
强度 b=弥散感敏因数
ADC图
DWI
假-DWI(指数图像)
ADC图
SI0×Exp×-b(ADC)
Exp ×-b(ADC)
DTI 的 物 理
本征矢量 本征值
神经束对MR机的三个轴(X,Y,Z,)的关系形成其在MR成像 中的方向性,并导致与方向有关的弥散测量(各向异性)
3-D弥散呈椭圆形,三个本征矢量代 表其弥散方向,本征值确定其形态
源于弥散方向性的 张量(ADC’)
本征值
三个本征矢 量的矩阵
弥散张量磁共振成像
通过对弥散张量的测算,可得出许多数字 系列或数字集(data set);即应用简单 或复杂的算术公式以不同的方法计算, 或用基本的本征值再运算,可得出弥散 各向异性的各种测算值。
皮质脊髓束
矢状面
横断面
各神经束可随意标示为各种不同颜色
脑肿瘤的DWI和DTI
DWI高信号(低ADC值) 的脑部病变
D W I 高 信 号 病 灶(Ⅰ)
细胞毒性水肿
神经元/胶质细胞细胞毒性水肿
急性脑梗死
脑炎
早期坏死灶(未液化者)
脑病(如线粒体性脑病等)
缺氧缺血性脑病
Reys综合征
癫痫持续状态 脑外伤
脑肿瘤的DWI和DTI
什么是DWI和DTI? DWI高信号(低ADC值)的病变。 脑肿瘤不同成分的DWI和ADC值。 脑部病变的神经束成像形态类型。 DWI和DTI在脑肿瘤诊断和鉴别诊断 中的作用。 常见脑肿瘤的DWI表现。
磁共振新技术幻灯片课件
48
肝脏THRIVE扫描
肝 癌 多 期 增 强 扫 描
49
前列腺THRIVE扫描
前列腺癌:动脉期快速强化
50
乳腺THRIVE动态扫描
右乳小结节, 8动态增强扫 描,绘制时间 信号曲线,呈 缓升平台型, 为良性结节
术后病理:
小纤维腺瘤
51
乳腺THRIVE动态扫描
乳腺增生并纤维腺瘤形成 曲线:缓慢上升型
22
MRA:TOF
23
MRA:PC
24
左侧大脑中动脉狭窄
25
CE-MRA
依赖于Gd-DTPA将邻近的自旋质子的T1时间显著 缩短,使动静脉血液与周围组织之间的T1时间产 生差别而成像。 优缺点 (1)扫描快速、多时相显示、伪影少;减影方法可 以去除短T1物质的干扰;无创伤性,对比剂使用 剂量小;避免因扭曲血管、湍流及慢血流等所致 信号丧失。 (2)操作相对复杂,要求扫描与注射过程准确配合, 才能使K空间中心与对比剂注入中心重叠。
1. 5.
神经系统变性疾病(铁质增加:亨廷顿病、阿 尔茨海默病、多发性硬化、肌萎缩侧索硬化等)
18
病史:右侧头痛多年,SWI显示海绵状血管瘤
19
20
MRA
根据原理分为两类: 1、依靠血液流动特性来实现的MRA,包括时间飞跃法 (time-of-flight technique,简称TOF)和相位对比法 (phase contrast technique,简称PC) 2、对比剂增强磁共振血管成像
1
中枢神经系统磁共振新技术
弥散加权成像(DWI) 弥散张量成像(DTI) 脑灌注成像(PWI、ASL) 磁化率敏感成像(SWI) 脑血管成像(MRA、MRV) 波谱分析(MRS) 脑功能成像(f-MRI)
DTI的基本原理及其在中枢神经系统中的应用PPT课件
02
DTI在中枢神经系统中的应用
BIG DATA EMPOWERS TO CREATE A NEW
ERA
DTI在脑白质中的应用
DTI在脑白质中的应用主要关注于脑白质纤维束的完整性评 估。
05
DTI的未来发展与展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
DTI技术的改进与创新
01
02
03
更高分辨率的成像
随着技术的进步,DTI有 望实现更高分辨率的成像 ,从而更准确地检测和定 位病变。
实时成像
实时DTI技术能够提供更 快速、无创的成像,有助 于在临床实践中实时监测 治疗效果。
脑干和小脑疾病的治疗
DTI在脑干和小脑疾病治疗中具有潜 在的应用价值,有助于了解疾病的进 展和治疗效果。
VS
脑干和小脑是维持人体重要生命功能 和运动控制的关键区域。DTI能够检 测脑干和小脑区域的水分子扩散变化 ,从而评估这些区域的神经纤维结构 和完整性。在脑干和小脑疾病中, DTI可以用于监测疾病的进展,以及 评估手术治疗和康复训练的效果。通 过比较治疗前后的DTI参数变化,可 以了解疾病的改善情况,为后续治疗 提供指导。
脑干和小脑病变的诊断
DTI在脑干和小脑病变的诊断中具有局限性 ,但对于某些特定类型的病变仍有一定帮助 。
由于脑干和小脑的结构复杂且重要,DTI在 诊断这些部位的病变时存在一定的局限性。 然而,对于某些特定类型的病变,如脑干缺 血或小脑萎缩等,DTI可以提供有价值的诊 断信息。通过观察水分子的扩散方向和程度 ,可以帮助医生判断病变的性质和程度,为
磁共振和弥散张量成像课件
在此添加您的文本16字
缺点比较
在此添加您的文本16字
DTI:对脑灰质病变的评估能力有限;对磁场均匀性要求 高。
在此添加您的文本16字
MRI:对脑白质纤维束完整性的评估能力有限;需要注射 对比剂。
DTI与MRI的联合应用
联合应用的优势
可以相互补充,全面评估脑组织的结 构和功能;提高诊断的准确性和可靠
01
, and the挣扎蔡一象: (L"0 (
02
,ux️“ zy. ch the mainchipus. re -chip
03
...IR. ones Gel, chip onchipengis on (sarris, chip on, on the ones.una
04
IRCA dynamic KITIM 商业.]( on
DTI的主要参数
扩散系数(ADC):描述水分子的扩 散程度,与组织的微观结构有关。
相对各向异性(Relative Anisotropy, RA):衡量扩散系数的不均匀性,反 映组织结构的复杂性。
纤维方向(Fiber Orientation):反 映组织中纤维束的走向,对于脑白质 纤维束的追踪和重建具有重要意义。
磁共振和弥散张量成像课件
目录
• 磁共振成像(MRI)基础 • 弥散张量成像(DTI)基础 • DTI在临床诊断中的应用 • DTI与MRI的比较和联合应用 • DTI的局限性及解决策略
01
磁共振成像(MRI)基础
MRI的工作原理
核磁共振现象
利用原子核的自旋磁矩在强磁场 中的进动,通过射频脉冲激发产 生磁共振信号,经过接收和转换
• . onesiric ( ,披 into夫' opposite of the: 只不过 ballander,ARS' of dis reliable ones of into ,,M1 exclusive into , ,,<%摊 into an , Pass into into into , howeverrote aw system, ,:,“ Mir
关于磁共振扩散张量成像课件
弥散张量成像
( Diffusion Tensor Imaging, DTI)
▪ 扩散加权成像(DWI): ADC:一方向或三个方向(X、Y、Z) 各项同性
▪ 脑白质结构:高度各项异性
脑白质水分子扩散的各向异性
是白质纤维束方向性的表现
▪ 受组织细微结构和宏观结构影响 ▪ 组织细微结构特征、轴突内结构在很大程度
弥散张量成像
( Diffusion Tensor Imaging, DTI)
philips 弥散张量成像
• GRE tensor 与SE Tensor 比较
SE-EPI 弥散张量成像
GRE-EPI 弥散张量成像
弥散张量成像
( Diffusion Tensor Imaging, DTI)
扩散张量的成像方法及纤维追踪技术 ▪ 数据的获取
关于磁共振扩散张量成像
弥散张量成像
( Diffusion Tensor Imaging, DTI)
弥散张量成像(DTI)又称扩散张量成像 1965年,Stejskal EO等提出了测量扩散
的梯度自旋回波序列 的时序图
弥散张量成像
( Diffusion Tensor Imaging, DTI)
▪ 扩散成像是目前最理想的测量扩散的方法。
▪ 各向异性指标: 部分各向异性(各向异性指数)AI 相对各向异性 RA 容积比率 VR
脑的参数定量图
弥散张量成像 ( Diffusion Tensor Imaging, DTI)
▪ 扩散各向异性:描述在3D空间内一个椭圆体 的特征。
▪ 一个2列张量的特征是可被对角斜线化,仅剩 下3个沿着张量的主对角线上非零元素,称为 本征值(λ1、λ2、λ3)。
DTI原理及应用 ppt课件
2021/3/26
DTI原理及应用 ppt课件
6
南京军区福州总医院医学影像中心——新技术汇报
Diffusion Tensor imaging 弥散张量成像
• 如果分子扩散取决 于方向,方向不一 致,成为各向异性 (anisotropic diffusion),可用 扩散椭圆形表示
2021/3/26
DTI原理及应用 ppt课件
12
南京军区福州总医院医学影像中心——新技术汇报
部分各向异性 (fractional anisotropy, FA)
➢ 目前描述脑白质纤维束各向异性特征的主要参数 ➢ 其值的大小与髓鞘的完整性、纤维致密性及平行
性有密切关系,能够较真实全面地反映白质纤维 是否完整。
3
南京军区福州总医院医学影像中心——新技术汇报
Diffusion Tensor imaging 弥散张量成像
解剖成像组织的形态学研究
分子水平 (细胞内外水分子跨膜运动) 目前已应用于脑、心脏、脊髓微细结构的研究
2021/3/26
DTI原理及应用 ppt课件
4
南京军区福州总医院医学影像中心——新技术汇报
水分子在自由状态下的弥散是各向同性的南京军区福州总医院医学影像中心新技术汇报diffusiontensorimaging弥散张量成像在纯水中分子在所有方向的扩散一致称各向同性isotropicdiffusion可用扩散球形体表示南京军区福州总医院医学影像中心新技术汇报diffusiontensorimaging弥散张量成像如果分子扩散取决于方向方向不一致成为各向异性anisotropicdiffusion可用扩散椭圆形表示南京军区福州总医院医学影像中心新技术汇报diffusiontensorimaging弥散张量成像dti就是一种用数学的方法来表示脑组织内水分子弥散的各向异性南京军区福州总医院医学影像中心新技术汇报diffusiontensorimaging弥散张量成像正常组织结构水分子各向异性病理组织结构成分改变扩散扩散南京军区福州总医院医学影像中心新技术汇报在脑白质中由于髓鞘的阻挡水分子的弥散被限制在与纤维走向一致的方向上具有较高的各向异性根据脑白质水分子沿神经纤维方向运动快垂直方向运动慢的特点mr图像显示出神经纤维的方向diffusiontensorimaging10南京军区福州总医院医学影像中心新技术汇报diffusiontensorimaging弥散张量成像diffusiontensorfibertractographydtftdti数据处理软件纤维束11南京军区福州总医院医学影像中心新技术汇报diffusiontensorimaging各向异性指标
磁共振弥散成像对重型颅脑损伤应用评价ppt课件
图A为测梗塞侧及对侧ADC值 图B测双额部挫伤ADC值
A
B
各个病期梗塞灶ADC 值变化
在超早期,梗塞区脑组织细胞毒性脑水肿, 组织内水含量尚未有明显变化,组织内水 分子弥散强度下降,ADC值降低,在DWI 图像上呈高信号。进一步发展,血管内皮 细胞损伤,细胞通透性增加,细胞间隙水 分聚积导致血管源性脑水肿,水分子弥散 能力进一步下降,ADC值进一步降低 ,并 维持一定时间至亚急性期升高。
热点
磁共振弥散加权成像(DWI)、 弥散张量成 像(DTI)应用于重型颅脑损伤合并脑梗塞以 及判断伤情、损伤部位、范围、病情进展及 预后预测提供了新的方法和理念。
颅脑损伤合并梗塞
▪ 外伤合并梗塞是影响脑外伤伤情及预后重 要因素,其病情发展判断、诊断、治疗存 在一个“时间差”,而且临床症状常被原 发脑外伤症状所掩盖,CT、常规MRI发现 异常要在梗塞后6-12小时以上,不能在超早 期得到及时诊断治疗。
ADC值
各期梗塞侧与对侧的 ADC关系
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 超急性期
急性期
亚急性期
梗塞侧 梗塞对侧
各期梗塞侧与对侧FA值关系 0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
超急性期
急性期
亚急性期
梗塞侧 梗塞对侧
预后不同两组与对照组各感兴趣区
ADC值( x±S)
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
磁共振弥散张量成像.
弥散张量成像 ( Diffusion Tensor Imaging, DTI)
如果分子扩散取决于方 向,方向不一致,称为 各向异性的扩散 (anisotropic diffusion),可用扩散 椭圆体表示。
弥散张量成像 ( Diffusion Tensor Imaging, DTI)
扩散敏感性用b表示, b值是由持续时间 (δ)、敏感脉冲梯度强度(G)和两个脉梯 度之间的间隔时间(Δ)决定。用公式表示为: b value=γ2 G2 δ2( Δ –δ/3), 是一个旋磁定量,所以, b值随梯度强度(G) 和长的梯度脉冲(Δ)或增加脉冲间隔时间 (δ)而升高。
弥散张量成像 ( Diffusion Tensor Imaging, DTI)
扩散成像是目前最理想的测量扩散的方法。 是目前唯一一种追踪脑白质纤维并反映其解 剖连通性的方向。
弥散张量成像 ( Diffusion Tensor Imaging, DTI)
解剖成像组织的形态学研究 分子水平
(细胞内外水分子跨膜运动)
目前已应用于脑、心脏、脊髓微细结构的研究
弥散张量成像 ( Diffusion Tensor Imaging, DTI)
水分子的自由运动 称为弥散,在脑脊 液和脑灰质中的水 分子的弥撒运动基 本上是各项同性的。
水分子在自由状态下的弥散是各向同性的
弥散张量成像 ( Diffusion Tensor Imaging, DTI)
弥散张量成像
( Diffusion Tensor Imaging, DTI)
白质纤维内的ADC值
脑肿瘤DWI DTI-PPT精品文档
弥散张量磁共振成像
这些测量值之间的差别在于它们对各向
异性的敏感性不同:
FA:对弥散各向异性的低值更为敏感
VR:对弥散各向异性的高值更为敏感
RA:对不同高低的弥散各向异性作线性测量
弥散张量磁共振成像
DTI 可用于观察白质神经束各向异性的弥 散,但难于显示神经束各向异性的弥散方 向和空间关系。 采用特殊设计的方法,如彩色编码的FA图
脑肿瘤的DWI和DTI
什么是DWI?
弥散加权磁共振成像
弥散所指为分子的随机运动(Brownian
motion)。
当温度高于绝对零度时,所有分子均具 有Brownian运动。 DWI MRI提供的图像对比所表达者为机 体各种组织内水分子的弥散相对速度。
弥散加权磁共振成像
对急性缺血性脑卒中的诊断DWI可
D W I 的 “T 2 透 过 效 应”
大多数DWI用SE EPI程序成像,故这种DWI
除具有因近似弥散系数(ADC)不同而形成的 对比之外,还可能存在T2对比。 T2和弥散效果均能引起DWI信号增高,因此 弥散降低或受限的病灶在DWI图像上信 号更高。但是,由于T2成分的残余,可能造 成弥散降低的假阳性表现。
脑肿瘤的MR DWI和DTI
诊断和鉴别诊断 陈星荣 沈天真
上海复旦大学附属华山医院
ห้องสมุดไป่ตู้
前
言
磁共振弥散加权成像(DWI)和磁共振弥散张
量成像(DTI)对脑肿瘤的诊断和鉴别诊断的 价值如何?目前的研究表明:颇有前途!颇有
帮助!颇有用途!现将其进展和我们的经验报
告于后。
脑肿瘤的DWI和DTI
什么是DWI和DTI? DWI高信号(低ADC值)的病变。 脑肿瘤不同成分的DWI和ADC值。 脑部病变的神经束成像形态类型。 DWI和DTI在脑肿瘤诊断和鉴别诊断 中的作用。 常见脑肿瘤的DWI表现。
MRI和DTI的原理和应用简介课件
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
BOLD-fMRI的原理 (2)
• 这两种血红蛋白对磁场影响不同:脱氧血红蛋白 属顺磁物质,引起加权像信号减低。氧合血红蛋 白是抗磁性物质,可增加加权信号强度。
• 当氧合/脱氧血红蛋白的比例增加时,或说脱氧 血红蛋白含量减少,其( PT2PRE)T2 缩短效应减 弱,表现为延长。在加权像上表现为信号增强, 故而神经元活动区的加权像信号即高于非活动区 。
BOLD的运作及结果的计算、分析
1.实验设计—刺激模式 2. 统计分析—相关系数
2 8 18 28 38 48 58 68 78 88 98 108 118
BOLD 的运动刺激模式
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
fMRI 效 果 图
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
• 黄穗乔等对48 例位于中央沟附近的脑肿瘤患者接 受常规和功能磁共振检查,其中转移瘤10例,胶 质瘤11例,脑膜瘤6例,动静脉畸形2例,蛛网膜 囊肿2例。功能成像方法采用在手静止和开合运动 中,行快速梯度平面回波连续成像。
结果 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
BOLD-fMRI的优点
• 无创伤,无示踪剂 • 无电离辐射性,无需暴露于放射活性物质
环境 • 空间分辨率高(2~3mm内)及时间分辨率高(
1s以内,快速成像时间为30~100ms) • 可将功能成像与解剖细节结合起来,具有
可见大部分患者的fMRI结果与PET、TMS、DECS结果的相差距离小于1cm
弥散张量成像(DTI)
弥散张量成像(DTI)弥散张量成像(DTI)2010-06-17 02:11 P.M.弥散张量成像(Diffusion Tensor Imaging)是磁共振(MRI)领域发展最迅速的技术之一1,不同于其他磁共振技术,它计量的是组织内水分子的随机运动方向的特性,并以此作为判断组织结构和功能部分特性的依据。
DTI也是第一种有提取软纤维组织中纤维轨迹潜力的活体、非侵入式的成像方法。
已经证明,该技术在中风后早期变化方面比常规MRI的T1和T2影像更加的敏感。
由于弥散张量成像的特性,该技术通常应用在脑皮层中水分子各向异性比较明显的区域——脑白质结构的检查中。
第一张DTI影像出现在上世纪90年代早期,自此该技术在科研和临床应用上都迅速的发展起来。
在早期的研究工作中,Basser等人对DTI影像的原理,特征提取和纤维素追踪的理论作出了突出的贡献,由此建立了DTI研究的理论体系。
Basser因而在2008年被授予国际磁共振医学协会(International Society for Magnetic Resonance in Medicine,ISMRM)金质奖章。
在1994年的论文2中,Basser等人首次系统的描述了DTI的基本成像原理,并提出了弥散椭圆的重建方法。
至今该论文已经被引用1143次。
在1996年的论文3中,Basser等人首次提出DTI的特征参数平均弥散率(Mean Diffusivity,MD)和分数各向异性(Fractional Anisotropy,FA)计算方法。
至今该论文被引用1052次。
2000年,Basser等人提出了一种可靠的使用DTI数据进行纤维素追踪的方法4,至今该论文被引用730次。
在DTI理论基础之上,人们进行了许多应用性的科学研究。
这些研究主要使用DTI的特征参数,比如MD,FA等进行特定神经疾病的分析。
这种研究比较通用的操作方法是,通过DTI扫描得到原始图像,然后计算出MD图和FA图,再对得到的MD图和FA图进行统计分析。
磁共振DTI弥散张量成像课件
多模态成像融会
临床应用拓展
将DTI与其他成像技术(如MRI、CT等)进 行融会,实现多模态成像信息的互补。
进一步探索DTI在神经退行性疾病、脑肿瘤 等临床疾病中的应用价值,提高诊断准确 性和治疗效果评估。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
2023-2026
ONE
KEEP VIEW
磁共振DTI弥散张量成 像课件
REPORTING
CATALOGUE
目 录
• 磁共振DTI弥散张量成像概述 • DTI图像解读基础 • DTI弥散张量成像在神经系统的应用 • DTI弥散张量成像在肌肉骨骼系统的应用 • DTI弥散张量成像在心血管系统的应用 • DTI弥散张量成像的局限性及未来展望
PART 01
磁共振DTI弥散张量成像 概述
定义与原理
定义
磁共振DTI弥散张量成像(Diffusion Tensor Imaging,DTI)是一种基于磁共 振技术的无创性检查方法,用于评估活体组织中水分子的扩散特性。
原理
DTI通过测量组织内水分子的随机运动(扩散),生成反应组织微观结构的弥散 张量图像。通过分析弥散张量,可以评估组织的微观结构、纤维排列和细胞外 液的流动性。
骨肿瘤与肿瘤样病变
DTI技术可以检测到骨肿瘤和肿瘤样病变,为疾 病的诊断和治疗提供根据。
3
骨质疏松与骨折
DTI技术可以检测到骨质疏松和骨折的特殊,为 疾病的诊断和治疗提供根据。
PART 05
DTI弥散张量成像在心血 管系统的应用
心肌纤维束形态研究
心肌纤维束形态研究
DTI技术可以无创地评估心肌纤维束的形态和方向,对于理解心脏解剖结构和功能具有 重要意义。通过分析心肌纤维束的排列和走向,有助于揭示心肌病变的病理生理机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
广义的功能磁共振成像
? 弥散加权成像( DWI) ? 灌注加权成像( PWI) ? 磁共振波普成像( MRS) ? 血氧饱和水平依赖成像( BOLD)
5
狭义的功能磁共振成像
? 特指血氧饱和水平依赖成像( blood oxygen level dependent ,BOLD) ? 静息态(活动)和任务态(激活)
ps :ASL-fMRI (脑血流变化)
6
BOLD-FMRI的优点
? 无创伤,无示踪剂 ? 无电离辐射性,无需暴露于放射活性物质环境 ? 空间分辨率及时间分辨率高 ? 可将功能成像与解剖细节结合起来
7
BOLD-FMRI的原理
1.耗氧量增加 —氧 含量减少
2.血流量增加 —氧 含量增加
3.增加快于减少
DTI的基本原理
? DTI是在DWI(Diffusion weighted imaging)技术基础上
发展起来
? 在三维空间内定时定量地分析组织内水分子弥散特
性
? 各向同性(isotropy) ? 各向异性 (anisotropy)
15
DTI的基本原理
16
DTI的基本原理
各向同性
各向异性
17
DTI的基本原理
21
纤维束追踪技术
?利用最大本征向量λ1对应纤维束传导方向将大脑中
神经纤维束轨迹描出来,实现活体查看和研究中枢以 及周围神经系统的神经通路的连接和连续性
?方法:从一个设置的种子位置开始追踪,直至遇到体
素的FA值小于0.2
22
纤维束追踪技术
23
RS-FMRI和DTI联合应用
24
RS-FMRI和DTI联合应用
4.氧合/脱氧血红蛋 白比例加大
8
BOLD-FMRI的原理
?血红蛋白对磁场影响不同:脱氧血红蛋白属顺磁
物质,引起加权像信号减低。氧合血红蛋白是抗 磁性物质,可增加加权信号强度。
?当氧合/脱氧血红蛋白的比例增加时,或说脱氧
血红蛋白含量减少,其 T2缩短效应减弱,表现为 延长。在加权像上表现为信号增强, 故而神经元 活动区的加权像信号即高于非活动区。
?DTI利用弥散张量场中的各向异性扩散的方向信息来
追踪神经通路的走行,从而得到脑白质中神经纤维和 功能束的走行方向和立体形态
19
DTI研究
?定量研究—常用指标包括:ADC、MD、FA、RA、VR ?纤维束追踪技术—用于显示脑白质中量研究
? ADC--平均弥散系数 ? MD--平均弥散率 ? FA--部分各向异性 ? RA--相对各向异性 ? VR--容积比
SOFTWARE
?DiVa--diffusion imaging visualization and analysis
toolbox for matlab
?3D-DOCTOR--三维重建
?VOLUME-ONE--fMRI和DTI融合
27
谢谢!
28
RS-FMRI和DTI的原理及应 用
1
内容
1.静息态功能磁共振( RS-fMRI)的原理及应用。
2.弥散张量成像( DTI)的原理及应用。
3. RS-fMRI 和DTI联合应用。
2
3
MRI VS. FMRI
MRI studies brain anatomy
fMRI studies brain function
11
12
磁共振弥散张量成像
(DIFFUSION TENSOR IMAGING, DTI)
? 实现活体观察组织结构的完整性和连通性
? 利于白质纤维束的损害程度及范围的判断
? 显示脑白质内神经传导束的走行方向,实现对人的中枢
神经纤维精细成像
? 目前唯一可在活体显示脑白质纤维束的无创成像方法
13
14
9
RS-FMRI应用
? 认知科学 ? 神经科学 ? 针灸 ? 药物滥用 ? 临床应用等。
10
RS-FMRI应用
? 数据处理分析方法: ? ReHo(Regional Homogeneity ) ? ALFF(Amplitude of Low Frequency Fluctuation ) ? FC(Functional Connectivity )
?观察脑功能皮层及与之相连的皮层下传导通路的关系 ?研究脑结构和功能的关系
25
RS-FMRI和DTI联合应用
A:增强MRI显示右额后紧贴中央前同脑膜瘤。B:fMRI和DTI图像融 合,红色为双侧手运动区,彩棕色为双侧皮质脊髓束,黄色为脑膜 瘤。c—F:3D增强MRl、fMRI和DTI图像融合,右侧运动区与病变相 邻,功能区受压后移,右侧皮质脊髓柬受病变压迫外侧移位 26
?至少在6个不同非共线方向上施加敏感梯度 ?采集一幅具有同样参数而未施加敏感梯度的图像 ?差异而得到6幅表观弥散系数图(ADC) ?得到一个六元一次方程组,利用这些图可以求得每个
体素的有效弥散张量D
18
DTI的基本原理
?在梯度场强下水分子的弥散存在会导致磁矩改变,而
细胞外水分子运动对信号的改变起主导作用