数学建模简单13个例子

合集下载

生活中的数学建模问题例子

生活中的数学建模问题例子

生活中的数学建模问题例子生活中的数学建模问题数学建模是将实际问题抽象为数学模型的过程,通过数学模型的建立和求解,可以对问题进行分析、预测和优化。

在生活中,我们会遇到许多需要用数学建模来解决的问题。

下面是一些常见的例子。

1. 交通拥堵问题问题描述在城市交通流量较大时,往往会出现交通拥堵的情况。

为了合理规划交通流量,我们需要建立一个能预测交通拥堵程度的数学模型。

建模过程•收集数据:首先,我们需要收集一段时间内的交通数据,包括车辆数量、行驶速度等信息。

•分析数据:根据收集到的数据,我们可以分析交通拥堵的原因和模式。

例如,可以通过分析车辆密度和速度的关系来确定交通流量的阈值。

•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述交通拥堵程度。

例如,可以使用流体力学中的守恒方程,考虑车辆的流入、流出和流动等因素。

•模型求解:通过求解建立的数学模型,我们可以得到交通拥堵程度的预测结果。

•模型评估和优化:根据模型预测的结果,我们可以评估当前交通规划的效果,并提出优化建议。

2. 疫情传播问题问题描述在疫情爆发时,我们希望能够及早预测疫情的传播趋势和规模,以便采取相应的措施来控制疫情。

建模过程•收集数据:收集疫情传播的相关数据,包括感染人数、治愈人数、病毒传播速度等信息。

•分析数据:利用收集到的数据,我们可以分析疫情传播的特点和规律。

例如,可以通过分析感染人数的增长速度来预测疫情的传播趋势。

•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述疫情传播的过程。

例如,可以使用传染病数学模型中的传染病传播动力学模型,考虑人群的感染、康复和死亡等因素。

•模型求解:通过求解建立的数学模型,我们可以得到疫情传播的预测结果。

•模型评估和优化:根据模型预测的结果,我们可以评估当前疫情防控的效果,并提出优化建议。

3. 资产投资问题问题描述在投资领域,我们希望能够通过建立数学模型来分析不同投资策略下的收益和风险,并进行优化选择。

数学建模13道题

数学建模13道题

数学建模13道题1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。

该投资者列出了她的投资组合目标为:1)年收益至少为5000美元; 2)股票投资至少为10000美元;3)股票投资额不能超过储蓄和市政债券投资额之和;4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。

2.用长8米的角钢切割钢窗用料。

每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:工序相机类型机身制造零件装配检验包装1A 0.1 0.2 0.1 2A0.70.10.3此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合而成,具体要求,产品单价,日销售量表如下:原料A 原料B 原料C 日销量(t )售价(百元/t )雏鸡饲料不少于50% 不超过20%5 9 蛋鸡饲料不少于30%不超过30% 18 7 肉鸡饲料不少于50%10 8 原料价格(百元/t ) 505 4 5受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?5.某公司用木头雕刻士兵模型出售。

公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。

制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。

数学建模实例

数学建模实例

数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。

以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。

2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。

3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。

4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。

5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。

6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。

7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。

初中数学建模的若干简要案例

初中数学建模的若干简要案例

初中数学建模的若干简要案例初中数学建模学习案例1 :----- 与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。

问题1 :用自己或同学的一辆自行车为观察对象,观察并解决下列问题:( 1 )我观察的这辆自行车是什么牌子的?( 2 )它的直径是_______cm ,轮子转动一周,在地面走过的距离是_______cm ,精确到1cm 。

( 3 )自行车中轴的大齿轮盘的齿数是_______齿,后轴的小齿轮(飞轮)的齿数是_______,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_______周(保留2 位小数)。

问题2 :如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。

问题3 :如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。

如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?:选做问题4 :你认为对问题 3 中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?求解工作的表格省略初中数学数学建模案例 2 :----- 线路设计问题(自学、探索、创新实践)课题:为所在小区设计一个最佳的邮政投递路线, 、一个合理的保安巡逻路线。

实施建议:1: 按居住地成立4-6 人的小组,对你们要研究的小区, 进行观察, 收集必要的数据和信息,( 如平面图, 楼的门洞的朝向, 道路情况, 小区的进出口位置等). 发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。

数学建模简单13个例子

数学建模简单13个例子

总距离为 n 1 ,
故有砖点n块 出向人右意可料时 叠。k1至, 2knk任1 2意1k远,n这1 一21n结果多少返回
10、寻找黑匣子
飞机失事时,黑匣子会自动打开,发射出某种 射线。为了搞清失事原因,人们必须尽快找回匣子。 确定黑匣子的位置,必须确定其所在的方向和距离, 试设计一些寻找黑匣子的方法。由于要确定两个参 数,至少要用仪器检测两次,除非你事先知道黑匣 子发射射线的强度。
分析:在这场“价格战”中,我们将站在乙加油站的立 场上为其制定价格对策.因此需要组建一个模型来描述 甲站汽油价格下调后乙加油站销售量的变化情况.
为描述价格和汽油销售量之间的关系,我们引入如下 一些指标:
影响乙加油站汽油销售量的因素 (1)甲加油站汽油降价的幅度; (2)乙加油站汽油降价的幅度; (3)两站之间汽油销售价格之差.
在这场“价格战”中,我们假设汽油的正常销售价格 保持定常不变,并且假定以上各因素对乙加油站汽油 销售量的影响是线性的.于是乙加油站的汽油销售量 可以由下式给出
返回
13、遗传模型
1.问题分析
所谓常染色体遗传,是指后代从每个亲体的基因 中各继承一个基因从而形成自己的基因型.
如果所考虑的遗传特征是由两个基因A和B控制的, 那么就有三种可能的基因型:AA,AB和BB.
换显一然种是想由法于,节问省题了就从迎 刃相而遇解点了到。会假合如点他,的又妻从子会遇合 到 点点故他,返,后那回故仍么相由似载这遇相乎着一点遇条他天这点件开他一到不往就段会够会不路合哦合会的点。地提缘需。 前开回5分家钟了。。而提此前人的提十前分了钟三时 间十从分何钟而到来达?会合点,故相遇 时他已步行了二十五分钟。
另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线

中学数学建模经典例题

中学数学建模经典例题

中学数学建模经典例题中学数学建模经典例题包括:1.最大利润问题:某公司生产一种产品,每件成本为3元,售价为10元,年销售量为10万件。

为了扩大销售量,公司计划通过广告宣传来增加销售量。

经调查发现,广告费用与年销售量之间的关系可以近似地用函数y=−0.2x+10来表示,其中x为广告费用(单位:万元)。

问:广告费用为多少时,公司可获得最大年利润?2.最小费用问题:某公司需要将货物从甲地运往乙地,由于路途遥远,需要采用飞机、火车、汽车三种运输方式来完成。

运输方式的费用分别为x万元、y万元、z万元。

三种运输方式的单程运输能力分别为10万吨、15万吨、5万吨,而货物的总重量为35万吨。

为确保运输过程顺利进行,单程运输能力不能超过总重量。

请为该公司设计一个总费用最少的运输方案,并求出最少的总费用。

3.最小路径问题:某城市有若干个居民小区,每个小区有一定数量的居民。

为了方便居民出行,市政府计划修建地铁连接这些小区。

已知任意两个小区之间的距离可以近似地用欧几里得距离来表示,而修建地铁的费用与小区之间的距离成正比。

问:市政府应该如何规划地铁线路,使得总费用最低?4.人口预测问题:某城市的人口数量在过去几年里呈现出指数增长的趋势。

已知该城市的人口数量在过去的几年中每年以10%的速度增长,并且目前该城市的人口数量为50万。

我们要预测未来5年该城市的人口数量。

5.资源分配问题:某公司拥有一定的资源,需要将其分配给若干个项目以获得最大的收益。

每个项目的收益与分配到的资源数量成正比,而不同项目之间的收益增加率是不同的。

问:公司应该如何分配资源,使得总收益最大?这些例题涵盖了中学数学建模的多个方面,包括函数模型、最优化问题、线性规划等。

通过这些例题的解答,可以帮助学生提高数学建模的能力和解题技巧。

数学建模简单13个例子_2022年学习资料

数学建模简单13个例子_2022年学习资料

7、气象预报问题-在气象台A的正西方向300km处有一台风中心,它以-40km/h的速度向东北方向移动;根 台风的强度,在距-其中心250km以内的地方将受到影响,问多长时间后气象-台所在地区将遭受台风的影响?持续 间多长?-此问题是某气象台所遇到的实际问题,为了搞好气象-预报,现建立解析几何模型加以探-以气象台A为坐标 点建立-平而直角坐标系,设台风中心为B,-如图
某人第一天由A地去B地,第二天由B地沿原路-返回A地。问:在什么条件下,可以保证途中-至少存在一地,此人在 天中的同一时间到达该-假如我们换一种想法,把第二天的返回改变成另一-人在同一天由B去A,问题就化为在什么条 下,两-人至少在途中相遇一次,这样结论就很容易得出了:-只要任何一人的到达时间晚于另一人的出发时间,-两人 会在途中相遇。
1.皮的厚度一样2.汤圆(饺子)的形状-假设-R大皮的半径,r小皮的半-模型-S=ns-S=k R,V=k R3V=kS2-s=kr2,v=kr3 v=ks2-=n32v-应用-V=√nv≥vv是nv是√n倍-若1 0个汤圆(饺子包1公斤馅,-则50个汤圆(-问题杀羊方案-现有26只羊,要求7天杀完且每天必须杀奇数只,-问各天分别杀几只?-分析:-1 这是一个有限问题,解决此类问题的一-类方法是枚举,你可以试试。-建模:-2.依题意,设第i天杀2k,+1k 自然数只,-则所提问题变为在自然数集上求解方程-之2k,+10=26-i=1-于是,我们有了该问题的数学语 表达—数学模型-求解:-用反证法容易证明本问题的解不存在。-返回
x+y=l-y+z=m-x+7=n-由三元一次线性方程组解出x,y,z即得三根-电线的电阻。-说明:此问题 难,点也是可贵之处是用方程-“观点”、”立场”去分析,用活的数学思想使实-际问题转到新剑设的情景中去。-返

数学建模各类实际问题实例

数学建模各类实际问题实例

一 北京飞至底特律的航程计算北京0A (北纬40°,东经116°),底特律坐标11A (北纬43°,西经83°), 纬度以北为正,南为负;经度以东为正,西为负。

而且以下计算中,飞机航线途中站点经纬度用表一的数据。

表一站点 A 0 A 1 A 2 A 3 A 4 A 5 纬度B (°) 40 31 36 53 62 59 经度L (°)116 122 140 -165 -150 -140 站点 A 6 A 7 A 8 A 9 A 10 A 11 纬度B (°) 55 50 47 47 42 43 经度L (°)-135-130-125-122-87-83设椭球体上任意两点10,2,1,0),,(),,(111 =+++i L B A L B A i i i i i i ,⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-=-=+++++).sin(),cos (cos )(),sin (sin )(1311221121i i i i i i i i i i L L n tgB L tgB L a b n tgB L tgB L a b n 其中a =6388千米,b =6367千米,21032221,||n n arctgn n n n =+=ϕ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++=++=2022202022220222)(sin )sin(sin )(sin cos )(sin b L n a L abn z L b L n a ab y Lb L n a ab x ϕϕϕϕ曲面上两点的弧长公式用|)()()(|21222dL L z L y L x S L L ⋅'+'+'=⎰。

试求北京至底特律的航程,你能对上述公式进行简化处理吗?精度如何?二 抢渡长江选手的竞游路线图用⎪⎪⎩⎪⎪⎨⎧=+=θθsin )(cos u dt dy y v u dt dx,初始条件为:⎪⎪⎩⎪⎪⎨⎧====HT y L T x y x )()(0)0(0)0( 画出)(x y y =的图像 。

数学建模在实际生活中的应用

数学建模在实际生活中的应用

数学建模在实际生活中的应用
数学建模是将实际问题用数学语言进行描述,利用数学工具对其进行分析、求解和预测的过程。

它已经被广泛应用于各个领域,如环境科学、工程技术、金融经济、医学生物等。

在日常生活中,也有很多场景可以应用数学建模。

1.交通流量预测
在城市交通管理中,如何预测道路上的交通流量就成为了一个重要的问题。

通过对历史交通数据的分析和建模,可以得出未来某个时间段内的交通流量预测结果。

这样,交通管理部门就可以根据预测结果对交通流量进行合理的调度,从而避免交通拥堵和事故的发生。

2.气象预报
天气预报是数学建模的典型应用之一。

通过对历史天气数据的分析和建模,可以得出未来某个时间段内的天气预报结果。

这样,人们就可以提前做好防范措施,避免受到恶劣天气的影响。

3.金融风险评估
在金融领域中,风险评估是一个很重要的问题。

通过对历史数据的分析和建模,可以得出未来某个时间段内的风险评估结果。

这样,金融机构就可以根据风险评估结果来制定相应的风险管理策略,从而保障投资人的利益。

4.医学诊断
在医学领域中,数学建模也有着广泛的应用。

例如,通过对病人的历史数据进行分析和建模,可以得出病人未来的治疗方案和预后情
况。

这样,医生就可以根据治疗方案来制定相应的治疗方案,从而提高治疗效果。

总之,数学建模在实际生活中有着广泛的应用。

它可以帮助人们更好地了解和掌握事物的本质规律,从而更好地预测和应对各种问题。

简单数学建模应用例子

简单数学建模应用例子

5
建模实例
图中椅脚连线为正 方形ABCD,对角线 AC与x轴重合 椅子 绕中心点旋转角度 后,正方形ABCD转 至A`B`C`D`的位置, 所以对角线AC与x
2024/5/10
6
建模实例
轴的夹角 表示了椅子的位置。 其次要把椅子脚着地,用数学符号表示出 来,如果用某个变量表示椅脚与地面的竖 直距离,那么当这个距离为零时就是椅脚 着地了,椅子在不同的位置椅脚与地面的 距离不同,所以这个距离就是位置变量 的 函数。
2024/5/10
27
建模实例
阻滞增长模型(Logistic模型)
将增长率r表示为人口x(t)的函数r(x),按照前 面的分析,r(x)应是x的减函数。一个最简单的 假设是设 r(x)为x的线性函数, r(x)=r-sx, s>0, 这里r相当于x=0时的增长率,称为固有增长率, 它与指数模型中的增长率r不同,显然,对于 任意的x>0,增长率r(x)<r。为确定系数s的意 义,引入自然资源和环境条件所能容纳的最大 人口数量xm, 称为最大人口容量。
2024/5/10
15
建模实例
安全渡河条件下的状态集称为允许状态集合, 记作S,不难写出
S={(x,y)|x=0, y=0, 1, 2, 3; x=y=1,2} - (1)
记第k次渡船上的商人数为uk ,随从数为vk ,将 二维向量dk = (uk,vk)定义为决策,允许决集合 记作D,由小船的容量可知
2024/5/10
14
建模实例
用状态变量表示某一岸的人员状况,决策变量 表示船上的人员状况,可以找出状态随决策变 化的规律。问题转化为在状态的充许变化范围 内,确定每一步的决策,达到渡河的目标 模型的过成: 记第k次渡河前此岸的商人数为xk随从数为yk, k=1,2,……,xk , yk =0,1,2,3,将二维向量 sk=(xk,yk)定义为状态,

数学建模简单13个例子讲义.

数学建模简单13个例子讲义.

支 球队中的胜者及轮空者进入下一轮,直至比赛结
束。问共需进行多少场比赛?
一般思维:
36 18 10 4 2 1 18 9 5 2 1 1 36 2 2 2 2 2
逆向思维:
每场比赛淘汰一名失败球队,只有一名冠军,即 就是淘汰了36名球队,因此比赛进行了36场。
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么? 解法一: 将两天看作一天,一人两天的运动看作一天两 人同时分别从山下和山顶沿同一路径相反运功,因为 两人同时出发,同时到达目的地,又沿向一路径反向 运动,所以必在中间某一时刻t两人相遇,这说明某人 在两天中的同一时刻经过路途中的同一地点。
1、从包汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S V s v s v

s v
( 共 n个 )
定性分析
根据题意,A点的坐标为(-300,0), 单位为km.台风中心的运动轨迹为直 线BC,这里的∠CBA=450,当台风中 心在运动过程中处于以A为圆心、半径 为250 km的圆内(即MN上)时,气象台 A所在地区将遭受台风的影响。 因为圆的方程为: 直线BC的方程为: 当台风中心处于圆内时,有: 解得 其中参数t 为时间(单 位为h)。
马路的宽度D是容易测得的,问题的关键在于L的确定。 为确定L,还应当将L划分为两段:L1和L2。 其中 L1是司机在发现黄灯亮及判断应当刹车的反应 时间内驶过的路程,L2为刹车制动后车辆驶过的路程。 L1较容易计算,交通部门对司机的平均反应时间 t1早有测 算,反应时间过长将考不出驾照),而此街道的行驶速度 v 也是交管部门早已定好的,目的是使交通流量最大,可 另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线拟 合方法得出,也可利用牛顿第二定律计算出来 黄灯究竟应当亮多久现在已经变得清楚多了。 第一步,先计算出L应多大才能使看见黄灯的司机停 得住车。 第二步,黄灯亮的时间应当让已过线 D 的车顺利穿过马路, L 即T 至少应当达到 (L+D)/v。

数学建模经典问题

数学建模经典问题

数学建模经典问题
数学建模是一种将现实问题转化为数学问题,并通过数学方法求解的过程。

经典的数学建模问题有很多,以下列举几个典型的例子。

1. 集装箱装载问题:如何在给定的集装箱内,最大化货物的装
载量?这个问题可以转化为一个优化问题,通过线性规划等方法求解。

2. 旅行商问题:如何在给定的一组城市中,找到一条遍历所有
城市且总路程最短的路径?这个问题可以通过遗传算法等方法求解。

3. 贪心算法:贪心算法是一种基于贪心策略的算法,它通常用
于优化问题。

比如,假设有一组活动,每个活动都有一个开始时间和结束时间,如何在不发生冲突的情况下,安排尽可能多的活动?这个问题可以通过贪心算法求解。

4. 马踏棋盘问题:如何让一匹马在棋盘上走遍所有格子,且每
个格子只走一次?这个问题可以通过回溯算法求解。

5. 神经网络:神经网络是一种模仿人脑神经元结构和功能的计
算模型。

它可以用于分类、回归、聚类等问题。

这些经典的数学建模问题都有着广泛的应用价值,它们不仅给我们提供了解决实际问题的方法,也为我们深入理解数学方法的应用提供了宝贵的经验和启示。

- 1 -。

初中数学建模举例

初中数学建模举例

初中数学建模举例所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。

笔者以一次函数的应用为例,探讨几种不同的数学建模过程。

一、直接给出模型例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。

现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。

求所挂重物重量为6kg 时弹簧的长度。

既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。

可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。

求解二元一次方程组,得出k=0.3,b=6。

从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。

于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。

这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。

但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。

二、猜测建立模型例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为24.5cm。

小明穿41码的鞋子,长度为多少?可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型关系式中,可得:26=42k+b,24.5=39k+b。

求解二元一次方程组,得解k=0.5,b=5。

得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。

从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。

本例至此,似乎已经解决了问题。

但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。

因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。

简单数学建模100例

简单数学建模100例
文档大全
实用标准
分析与假设
①将 243 颗珠子平均分成 3 份,每份 81 颗,任取其 2 份放置在天平两边,若平衡则稍重的一颗在另 1 份中;若不平衡则
稍重的一颗在天平下沉的 1 份中.
②在找出含有稍重珠子的一份中(含 81 颗),再将其 81 颗珠子平均分成 3 份,每份 27 颗,任取其 2 份放置在天平两边,若 平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
③在找出含有稍重珠子的一份中(含 27 颗),再将其 27 颗珠子平均分成 3 份,每份 3 颗,任取其 2 份放置在天平两边, 若平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
④在找出含有稍重珠子的一份中(含 1 颗),再将其 3 颗珠子平均分成 3 份,每份 1 颗,任取其 2 颗放置在天平两边,若 平衡则另 1 颗稍重的一颗;若不平衡则稍重的一颗为天平下沉的 1 颗.
【8】甲、乙两人去沙漠中探险,他们每天向沙漠深处走 20 千米,已知每人最多可带一个人 4 天的食物和水。如果允许将部分食物存放于途 中,其中 1 人最远可深入沙漠多少千米?(要求最后两人返回出发点)
分析与假设 要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和 水?
练习题
文档大全
实用标准
小敏把 100 只彩色小灯泡串联起彩灯,用来布置教室,可是其中有只小灯泡坏了,这可急坏了小敏。你能用最速捷的方法很快地找出了 那只损坏的小灯泡吗?
【7】水果店进了十筐苹果,每筐
10 个,共 100 个,每筐里的苹果重 量都一样,其中有九筐每个苹果的 重量都是 1 斤,另一筐中每个苹果 的重量都是 0.9 斤,但是外表完全 一样,用眼看或用手摸无法分辨。 现在要你用一台普通的大秤一次把 这筐重量轻的找出来。你可以办到么?

数学建模13道题

数学建模13道题

数学建模13道题数学建模是数学中的一个分支,它是指将现实世界中的问题抽象成数学模型,并用数学方法来解决这些问题。

数学建模题一般包含数学模型的建立,问题的分析和求解等几个方面。

下面介绍13道数学建模题,希望读者可以从中得到启发。

题目一:如何预测股票价格?这是一个经典的数学建模题。

股票价格是由多种因素决定的,如市场供求关系、经济政策等。

数学建模者需要考虑这些因素,并根据历史数据建立合适的模型来预测未来的股票价格。

题目二:如何优化物流配送?对于物流配送问题,数学建模者需要考虑到多种因素,如配送距离、时间、运输工具等。

通过建立运输成本函数,制定合适的配送策略,可以实现物流配送的优化。

题目三:如何求解最优化问题?在最优化问题中,数学建模者需要考虑多种因素,如成本、效率、质量等。

通过建立目标函数、限制条件等方程,可以求得最优解。

题目四:如何优化网络布局?网络布局优化是一个复杂的问题。

数学建模者需要考虑到多种因素,如节点距离、带宽、延迟等。

通过建立合适的模型,可以制定出最优的网络布局方案。

题目五:如何预测自然灾害?自然灾害是不能预测的,但数学建模可以通过历史数据、气象预报等多种信息来建立模型,以预测未来可能发生的自然灾害,提前做好应对措施。

题目六:如何优化生产流程?生产流程优化需要考虑多种因素,如成本、效率、质量等。

数学建模者可以通过建立合适的模型,分析生产流程的瓶颈和优化空间,从而实现生产流程的优化。

题目七:如何优化城市规划?城市规划优化需要考虑多种因素,如人口密度、交通拥堵、环境保护等。

数学建模者可以通过建立合适的模型,预测城市未来的发展趋势,制定出最优的城市规划方案。

题目八:如何提高学生的学习成绩?学生的学习成绩受多种因素影响,如个人能力、学习环境、教学质量等。

数学建模者可以建立合适的模型,帮助学生发现自己的学习问题,并制定出最优的学习策略。

题目九:如何优化教学质量?教学质量优化需要考虑多种因素,如教师水平、教材质量等。

常用数学建模方法及实例

常用数学建模方法及实例

常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。

常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。

一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。

它常用于资源分配、生产计划、供应链管理等领域。

例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。

产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。

工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。

公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。

二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。

整数规划常用于离散决策问题。

例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。

公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。

它广泛应用于经济、金融和工程等领域。

例3:公司通过降低售价和增加广告费用来提高销售额。

已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。

已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。

四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。

例4:求解最短路径问题。

已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。

求从起始城市到目标城市的最短路径。

五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。

数学建模典型例题

数学建模典型例题

数学建模典型例题(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、人体重变化某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。

每天的体育运动消耗热量大约是69焦/(千克•天)乘以他的体重(千克)。

假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。

试研究此人体重随时间变化的规律。

一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。

二、模型假设1、以脂肪形式贮存的热量100%有效2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存3、假设体重的变化是一个连续函数4、初始体重为W0三、模型建立假设在△t时间内:体重的变化量为W(t+△t)-W(t);身体一天内的热量的剩余为(*W(t))将其乘以△t即为一小段时间内剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/41686W(0)=W0解得:5429-69W=(5429-69W0)e(-69t/41686)即:W(t)=5429/69-(5429-69W)/5429e(-69t/41686)当t趋于无穷时,w=81;二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。

5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。

在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)。

以千元计数a ij的由下面的表给出:请寻找什么时间买进和卖出汽车的最便宜的策略。

二、问题分析本问题是寻找成本最低的投资策略,可视为寻找最短路径问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
则所提问题变为在自然数集上求解方程
7
(2ki 1) 26
i 1
于是,我们有了该问题的数学语言表达——数学模型
求解: 用反证法容易证明本问题的解不存在。
返回
3、相遇问题
某人平时下班总是按预定时间到达某处,然 然后他妻子开车接他回家。有一天,他比平时提早 了三十分钟到达该处,于是此人就沿着妻子来接他 的方向步行回去并在途中遇到了妻子,这一天,他 比平时提前了十分钟到家,问此人共步行了多长时 间?
1、从包汤圆(饺子)
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大? 定性分析
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么?
解法一: 将两天看作一天,一人两天的运动看作一天两人 同时分别从山下和山顶沿同一路径相反运功,因为两 人同时出发,同时到达目的地,又沿向一路径反向运 动,所以必在中间某一时刻t两人相遇,这说明某人在 两天中的同一时刻经过路途中的同一地点。
某人第一天由 A地去B地,第二天由 B地沿原路 返回 A 地。问:在什么条件下,可以保证途中至 少存在一地,此人在两天中的同一时间到达该地。
假如我们换一种想法,把第二天的返回改变成另一 人在同一天由B去A,问题就化为在什么条件下, 两人至少在途中相遇一次,这样结论就很容易得出 了:只要任何一人的到达时间晚于另一人的出发时 间,两人必会在途中相遇。
换显一然种是想由法于,节问省题了就从迎 刃相而遇解点了到。会假合如点他,的又妻从子会遇合 到 点点故他,返,后那回故仍么相由似载这遇相乎着一点遇条他天这点件开他一到不往就段会够会不路合哦合会的点。地提缘需。 前开回5分家钟了。。而提此前人的提十前分了钟三时 间十从分何钟而到来达?会合点,故相遇 时他已步行了二十五分钟。
解法二: 以时间t为横 坐标,以沿上山路线从山下旅 店到山顶的路程x为纵坐标, 从山下到山顶的总路程为d;
严格的数学论证: 令
思考题:有一边界形状任意的蛋糕,兄妹俩都想吃,
妹妹指着蛋糕上的一点P,让哥哥过点P切开一人一半,
能办到吗?
返回
5、测量电阻
在一摩天大楼里有三根电线从底层控制室通向顶 楼,但由于三根电线各处的转弯不同而有长短,因 此三根电线的长度均未知。现在工人师傅为了在顶 楼安装电气设备,需要知道这三根电线的电阻。如 何测量出这三根电线的电阻?
若100个汤圆(饺子)包1公斤馅, 则50个汤圆(饺子) 可以包 公斤1.4馅

2、杀羊方案
问题杀羊方案 现有26只羊,要求7天杀完且每天必须杀奇数只,
问各天分别杀几只?
分析: 1). 这是一个有限问题,解决此类问题的一 类方法是枚举,你可以试试。
建模:
2). 依题意,设第 i 天杀 2ki 1 (ki为自然数) 只,
此问题是某气象台所遇到的实际问题,为了搞好气象 预报,现建立解析几何模型加以探讨。
以气象台A为坐标原点建立 平而直角坐标系,设台风中心为B, 如图
根据题意,A点的坐标为(-300,0), 单位为km.台风中心的运动轨迹为直 线BC,这里的∠CBA=450,当台风 中心在运动过程中处于以A为圆心、 半径为250 km的圆内(即MN上)时, 气象台A所在地区将遭受台风的影响。
x y l
y
z
m
x z n
由三元一次线性方程组解出x,y,z即得三根电线 的电阻。
说明:此问题的难点也是可贵之处是用方程 “观点”、”立场”去分析,用活的数学思想使实 际问题转到新创设的情景中去。
返回
6、比赛场次
37支球队进行冠军争夺赛,每轮比赛中出场的每两 支 球队中的胜者及轮空者进入下一轮,直至比赛结 束。问共需进行多少场比赛?
一般思维:
36 18 10 4 2 1 18 9 5 2 11 36 2 2 2 22
逆向思维: 每场比赛淘汰一名失败球队,只有一名冠军,即 就是淘汰了36名球队,因此比赛进行了36场。
返回
7、气象预报问题
在气象台A的正西方向300 km处有一台风中心,它 以40 km/h的速度向东北方向移动;根据台风的强度, 在距其中心250 km以内的地方将受到影响,问多长时间 后气象台所在地区将遭受台风的影响?持续时间多长?
定。为确定L,还应当将L划分为两段:L1和L2。
其中 L1是司机在发现黄灯亮及判断应当刹车的反应时
间内驶过的路程,L2为刹车制动后车辆驶过的路程。
L1较容易计算,交通部门对司机的平均反应时间t1早有测
算,反应时间过长将考不出驾照),而此街道的行驶速度
v 也是交管部门早已定好的,目的是使交通流量最大,可
V比 nv大多少?
定量分析
假设
1. 皮的厚度一样 2. 汤圆(饺子) 的形状一 样
模型
R ~大皮 的半径;r ~小皮的半

S ns
S k1R2 , V k2R3 s k1r 2 , v k2r3
V kS3/2 v ks3/2
V n3/2v
应用 V n(nv) nv V是 nv是 n倍
因为圆的方程为:
直线BC的方程为:
当台风ห้องสมุดไป่ตู้心处于圆内时,有:
其中参数t 为时间(单 位为h)。
解得
所以,大约在2h以后气象台A所在地区将会遭 受台风的影响,持续时间大约为6.6h。
8、黄灯应当亮多久
交通灯在绿灯转换成红灯时,有一个过渡状态— —亮一段时间的黄灯。请分析黄灯应当亮多久。
设想一下黄灯的作用是什么,不难看
相关文档
最新文档