1-1函数的表示方法与分段函数
北师大版高中数学必修第一册 第二章 2-2《分段函数》课件PPT
+ = 1,
= −1,
解得ቊ
= 2,
= 2.
∴左侧射线对应的函数解析式为y=-x+2(x≤1).
同理,当x≥3时,对应的函数解析式为y=x-2(x≥3).
再设抛物线对应的二次函数解析式为y=a(x-2)2+2(1<x<3,a<0).
∵点(1,1)在抛物线上,∴a+2=1,∴a=-1.
2.已知函数值求自变量的值的步骤
(1)先确定所求自变量的值可能存在的区间及其对应的函数解析式.
(2)再将函数值代入不同的解析式中.
(3)通过解方程求出自变量的值.
(4)检验所求的值是否在所讨论的区间内.
延伸探究
在本例已知条件下,若f(x)>0,求x的取值范围.
≥ 2,
0 ≤ < 2,
< 0,
可得到以下函数解析式y=
4,10 < ≤ 15,∈N+ ,
5,15 < ≤ 19,∈N+ .
根据这个函数解析式,可画出函数图象,如图所示.
典例剖析
例
分段函数的理解与应用
如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为2 2 cm,
当垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l
第二章
§2
函 数
2.2
函数的表示法
第2课时
分段函数
学习目标
1.了解分段函数的概念.
2.会求分段函数的函数值,能画出分段函数的图象.
3.能在实际问题中列出分段函数,并能解决有关问题.
核心素养:数学抽象、直观想象、数学建模
高中数学必修一第五讲 函数的表示方法
第五讲 函数的表示方法1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2、 了解简单的分段函数,并能简单应用;一、函数的常用表示方法简介: 1、解析法如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。
例如,s =602t ,A =π2r ,2S rl π=,2)y x =≥等等都是用解析式表示函数关系的。
特别提醒: 解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。
中学阶段研究的函数主要是用解析法表示的函数。
解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。
2、列表法:通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。
例如:初中学习过的平方表、平方根表、三角函数表。
我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.特别提醒:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。
这种表格常常应用到实际生产和生活中。
列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。
3、图象法:用函数图象表示两个变量之间的函数关系的方法,叫做图像法。
例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。
特别提醒:图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。
图像法的缺点:不能够精确地求出某一自变量的相应函数值。
二、函数图像:1、判断一个图像是不是函数图像的方法:要检验一个图形是否是函数的图像,其方法为:任作一条与x 轴垂直的直线,当该直线保持与x 轴垂直并左右任意移动时,若与要检验的图像相交,并且交点始终唯一的,那么这个图像就是函数图像。
第1讲 函数的定义域、解析式及分段函数 - 学生版
D.[-1,1)∪(1,2 015] )
5.若函数 y=f(x)的定义域是[0,2],则函数 g(x)= A.[0,1] B.[0,1) C.[0,1)∪(1,4]
角度 3:已知定义域求参数问题 【例】 (1)若函数 f(x)=
x 2 2ax a 的定义域为 R,则 a 的取值范围为________.
3.若函数 f(x)= ax2+abx+b的定义域为{x|1≤x≤2},则 a+b 的值为________. 题型 2 函数解析式的求法
求函数解析式的常见方法 待定系数法 若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根 据题设条件,列出方程组,解出待定系数即可 已知 f(h(x))=g(x), 求 f(x)时, 往往可设 h(x)=t, 从中解出 x, 代入 g(x)进行换元, 求出 f(t)的解析式,再将 t 替换为 x 即可 已知 f(h(x))=g(x), 求 f(x)的问题, 往往把右边的 g(x)整理构造成只含 h(x)的式子, 用 x 将 h(x)替换 已知 f(x)满足某个等式,这个等式除 f(x)是未知量外,还有其他未知量,如 f(- 函数方程法 1 x ), f x , 则可根据已知等式再构造其他等式组成方程组, 通过解方程组求出 f(x)
)
fx2-1 (2)已知函数 y=f(x)的定义域是[0,8],则函数 g(x)= 的定义域为________. 2-log2x+1
第 2 页 共 11 页
万家学子教育
黄金数学工作室
【对应训练】 1.(2017·唐山模拟)已知函数 f(x)的定义域是[0,2],则函数 g(x)=f 是________. 2.已知函数 f(x)的定义域为[0,1],值域为[1,2],则函数 f(x+2)的定义域为________,值域为 ________. 1 ,2 3.若函数 y=f(2x)的定义域为 2 ,则 y=f(log2x)的定义域为________. fx+1 4.若函数 y=f(x)的定义域是[1,2 016],则函数 g(x)= 的定义域是( x-1 A.[0,2 015] B.[0,1)∪(1,2 015] C.(1,2 016] f2x 的定义域是( ln x D.(0,1) ) x+ 1 1 x- + f 2 2 的定义域
函数的概念及其表示(第三课时教学设计)-高中数学人教A版2019必修第一册
3.1函数的概念及其表示(第三课时)教学设计一、内容及内容解析(一)教学内容1.函数的表示法;2.分段函数。
(二)教学内容解析学生在初中阶段已经接触了函数的三种表示,本节课直接给出函数的三种表示方法,并通过典型例题训练学生选择适当的方法表示函数,并且通过例题引进分段函数。
学习函数的表示,不仅是研究函数本身和应用函数模型解决实际问题的需要,而且是进一步理解函数概念,深化对具体函数模型的认识需要。
同时,基于高中所涉及的函数大多数均可用几种不同的方式表示,因此学习函数的表示也是向学生渗透数形结合的思想,培养学生直观想象素养的重要过程。
(三)教学重点函数的三种表示法及各自的优缺点,分段函数。
二、教学目标1.通过研究实例,能总结出函数三种表示法各自的特点,体会数形结合的思想.2.通过用图象法表示一些函数,能利用函数图象探索解决问题的思路,体会利用图象简化代数运算的过程.3.通过具体实例,能认识分段函数,并能简单应用.三、教学问题诊断分析问题:提炼函数的三种表示法各自的优缺点。
突破:课本3.1.1中四个实例为学习函数的三种表示方法做了铺垫。
在实际教学中,先引导学生比较三种表示方法各自的特点,再师生一起进行评价并总结。
四、教学支持条件为了增加学生对分段函数的理解,可以利用GGB软件,作出图像,让学生观察各段图象函数解析式.五、教学过程设计上一节我们已经学习过了函数的概念,那么函数的具体表示方法有哪些呢,在不同的情境中函数如何表示呢?带着这样的疑问来深入学习一下本节课的内容吧.问题1:我们在初中已经接触过函数的三种表示法,分别是什么?如何表示?师生活动:教师提出问题,学生观察思考后回答问题.根据学生的回答,教师进行必要的补充.解析法,就是用数学表达式表示两个变量之间的对应关系.列表法,就是列出表格来表示两个变量之间的对应关系.图象法,就是用图象表示两个变量之间的对应关系.设计意图:本节课就是学习函数的三种表示方法,通过回顾初中函数表示的三种方法,为后面的学习奠定基础。
高一数学必修1第一章分段函数
(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.7.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B 中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)8.集合相等与真子集的概念定义符号表示图表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集A B(或B A)9.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.10.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.11.并集和交集的概念及其表示类别概念自然语言符号语言图形语言并集由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)A∪B={x|x∈A,或x∈B}交集由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)A∩B={x|x∈A,且x∈B}12.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩AA∪A=A A∩A=AA∪∅=A A∩∅=∅A⊆B⇔A∪B=B A⊆B⇔A∩B=A13.全集(1)定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.14.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言15.补集的性质∁U U=∅,∁U∅=U,∁U(∁U A)=A.【新知识梳理与重难点点睛】1.函数的概念(1)函数的定义:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域与值域:函数y =f (x )中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.2.区间概念(a ,b 为实数,且a <b)定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ) {x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b }半开半闭区间(a ,b ]3.其他区间的表示定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.要点一 分段函数求值例1 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f [f (-52)]的值;(2)若f (a )=3,求实数a 的值.解 (1)由-5∈(-∞,-2],-3∈(-2,2), -52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2(-3)=3-2 3.∵f ⎝⎛⎭⎫-52=-52+1=-32,而-2<-32<2, ∴f [f (-52)]=f ⎝⎛⎭⎫-32=⎝⎛⎭⎫-322+2×⎝⎛⎭⎫-32=94-3=-34. (2)当a ≤-2时,a +1=3, 即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0. 所以(a -1)(a +3)=0,得a =1,或a =-3. ∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意. 当a ≥2时,2a -1=3,即a =2符合题意. 综上可得,当f (a )=3时,a =1,或a =2.规律方法 1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求值.2.已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围;也可先判断每一段上的函数值的范围,确定解析式再求解. 跟踪演练1 已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <1,x -1,x >1,则f (2)等于( )A .0 B.13 C .1 D .2答案 C解析 f (2)=2-1=1.要点二 分段函数的图象及应用例2 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1),1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].规律方法 1.分段函数的解析式因其特点可以分成两个或两个以上的不同解析式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段或射线,而分段函数的定义域与值域的最好求法也是“图象法”.2.对含有绝对值的函数,要作出其图象,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图象. 3.画分段函数图象时还要注意端点是“实心点”还是“空心点”. 跟踪演练2 作出y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞) 的图象,并求y 的值域.解 y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞). 值域为y ∈[-7,7].图象如下图.要点三 映射的概念例3 以下给出的对应是不是从集合A 到集合B 的映射?(1)集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应;(2)集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;(3)集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;(4)集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生. 解 (1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数对与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射. (4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f :A →B 不是从集合A 到集合B 的一个映射.规律方法 映射是一种特殊的对应,它具有:(1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的;(2)唯一性:集合A 中的任意一个元素在集合B 中都有唯一元素关系,可以是:一对一,多对一,但不能一对多.跟踪演练3 下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2,x ∈M ,y ∈N ;③M =N =R ,f :x →y =1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N .A .①②B .②③C .①④D .②④ 答案 D解析 对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D.1.下列集合A 到集合B 的对应中,构成映射的是( )答案 D解析 在A 、B 选项中,由于集合A 中的元素2在集合B 中没有对应的元素,故构不成映射,在C 选项中,集合A 中的元素1在集合B 中的对应元素不唯一,故构不成映射,只有选项D 符合映射的定义,故选D. 2.函数y =|x |的图象是( )答案 B解析 ∵y =|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0, ∴B 选项正确.3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 ∵f (3)=23,∴f (f (3))=⎝⎛⎭⎫232+1=139. 4.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0. 若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或2答案 C解析 f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,画出f (x )的图象可知选C.4.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( ) A .(1,3) B .(1,6) C .(2,4) D .(2,6) 答案 A解析 由题意得⎩⎪⎨⎪⎧ x +y =4,x -y =-2, 解得⎩⎪⎨⎪⎧x =1,y =3.5.设f :x →ax -1为从集合A 到B 的映射,若f (2)=3,则f (3)=________. 答案 5解析 由f (2)=3,可知2a -1=3,∴a =2, ∴f (3)=3a -1=3×2-1=5.6.函数f (x )=⎩⎪⎨⎪⎧x 2+1(x ≥0),2-x (-2≤x <0) 的值域是________.答案 [1,+∞)解析 当x ≥0时,f (x )≥1, 当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f [f (2)]的值; (2)若f (x 0)=8,求x 0的值. 解 (1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0, f [f (2)]=f (0)=02-4=-4. (2)当0≤x 0≤2时,由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4. 二、能力提升8.已知f (x )=⎩⎪⎨⎪⎧x -5,x ≥6,f (x +2), x <6,则f (3)为( )A .2B .3C .4D .5 答案 A解析 f (3)=f (3+2)=f (5), f (5)=f (5+2)=f (7), ∴f (7)=7-5=2.故f (3)=2.9.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f [f ⎝⎛⎭⎫13]等于( )A .-13 B.13C .-23 D.23答案 B解析 由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,∴f ⎝⎛⎭⎫13=13-1=-23, ∴f [f ⎝⎛⎭⎫13]=f ⎝⎛⎭⎫-23=-23+1=13. 10.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎫1f (2)的值是________.答案1516解析 f (2)=22+2-2=4,∴1f (2)=14,∴f ⎝⎛⎭⎫1f (2)=f ⎝⎛⎭⎫14=1-⎝⎛⎭⎫142=1516.11.已知函数y =|x -1|+|x +2|. (1)作出函数的图象; (2)写出函数的定义域和值域.解 (1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x =1,第二个绝对值的分段点x =-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞), 所以已知函数可写为分段函数形式: y =|x -1|+|x +2|=⎩⎪⎨⎪⎧ -2x -1 (x ≤-2),3 (-2<x ≤1),2x +1 (x >1).在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象,如图.(2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞).三、探究与创新12.“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y (单位:元). 解 由题意知,当0<x ≤5时,y =1.2x ,当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6.当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎪⎨⎪⎧ 1.2x ,0<x ≤5,2.4x -6,5<x ≤6,4.8x -20.4,6<x ≤7.13.如图所示,在边长为4的正方形ABCD 边上有一点P ,由点B (起点)沿着折线BCDA ,向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数解析式.解 当0≤x ≤4时,S △APB =12×4x =2x ; 当4<x ≤8时,S △APB =12×4×4=8; 当8<x ≤12时,。
函数的表示方法课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册
数值,而且有时误差较大
高中数学
必修第一册
配套江苏版教材
示例 下表是某校高一(1)班三名同学在高一学年六次数学测试的成绩及班级平均分表.
测试序号
姓名
1
2
3
4
5
6
小伟
98
87
91
92
88
95
小城
90
76
88
75
86
80
小磊
68
65
73
72
75
82
班级平均分
88.2
78.3
85.4
高中数学
必修第一册
配套江苏版教材
例6 某镇响应“绿水青山就是金山银山”的号召,因地制宜地将该镇打造成“生态水果特色镇”.经调
研发现:某珍稀水果树的单株产量W(单位:千克)与施用肥料x(单位:千克)满足如下关系:
配套江苏版教材
3.分段函数的图象
分段函数有几段,它的图象就由几条曲线组成,在同一直角坐标系中,根据每段的定义区间和表达式依次
画出图象,要注意每段图象的端点是空心点还是实心点.
示例 已知函数f(x)=1+
−
(-2<x≤2).
2
(1)用分段函数的形式表示f(x);(2)画出f(x)的图象;(3)写出函数f(x)的值域.
高中数学
必修第一册
配套江苏版教材
+ 1 2 , ≤ −1,
例5 已知函数f(x)= 2 + 2, −1 < < 1, 若f(a)>1,则实数a的取值范围是(
C )
1
, ≥ 1,
1
1函数的表示法3种表示法和分段函数
此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),参知政事范仲淹等人遭谗离职,欧阳修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文
会员免费下载 顺字1.初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
三种表示方法举例:
(1).解析法: y kx (k 0) , h 1 gt2
2
(2).列表法:
国内生产总值(单位:亿元)
年份
1990
1991
1992 1993
生产总值 18598.4 21662.5 26651.9 34560.5
(3).图象法:
我国人口出生率变化曲线Fra bibliotek例2.下表是某校高一(1)班三位同学在高一学年度几次 数学测试的成绩及班级平均分表:
(1)求f{f[f(-2)]} ;
(2)当f (x)=-7时,求x ;
解 (1) f{f[f(-2)]} = f{f[-1]}
= f{1} =0 (2)若x<-1 , 2x+3 <1,与
f (x)=-7相符,由
2x+3 =-7得x=-5
易知其他二段均不符合f (x)=-7 。
故 x=-5
思考
x+2, (x≤-1)
120
100
80 王伟
60
张城
赵磊
班平均分 40
(2)请你对这三位同学在高一学年度
20 的数学学习情况做一个分析,
0 第一次 第二次 第三次 第四次 第五次 第六次
例3 . 画出函数y | x | 的图象.
高数学习之分段函数导数计算方式
高数学习之分段函数导数计算方式1 分段函数的概念分段函数(Piecewise Function)是一类常见的函数,它的定义域和值域都是实数集,它可以被划分为多个区段,每个区段上函数有着不同的函数表达式,若选取一点,其左右可以存在不同的函数表达式,亦可称为分段函数。
求解分段函数的导数,即求解分段函数在某点处的斜率,需要先将分段函数表示为两个函数,分别在该点左右求导数,然后再根据定义求出该点处的斜率。
2求解分段函数导数的方法(1)根据定义,当分段函数有如下形式时:y={a1x+b1,for x/epsilon[a,b]a2x+b2,for x/epsilon(b,c]其中,a1,a2,b1,b2是实数,且a1≠a2,则a1和a2分别作为x/epsilon[a,b]和x/epsilon(b,c]时,分段函数的导数分别为:a1、a2。
(2)当分段函数有如下形式时:y={ax+b,for x/epsilon[a,b]c,for x/epsilon(b,c]其中,a,b,c是实数,且a≠0,则当x/epsilon[a,b]时,分段函数的导数为:a,当x/epsilon(b,c]时,分段函数的导数为:0。
(3)如果分段函数不符合上述的函数形式,则可以用辨识函数表结合极限数学的思想来求解。
在定义域中选择一点x=x0,将该点位于函数不同区段上两端,用值函数表求出左右两点的函数值;分别求出从左右两点追忆到该点x0的切线斜率m1、m2;然后比较m1、m2的大小,可以求得x=x0时分段函数的导数。
3分段函数的应用分段函数拥有丰富的用途,其中一个比较重要的用途是将复杂的函数表示为更简单的函数表达式,使得运算更加简单,计算量降低,提高计算效率。
在统计分析领域,分段函数可用于表示聚类过程中某类别群体的分布;在数学几何领域,分段函数作为非线性函数,可用于求解各类微分方程、动力方程、椭圆方程和积分的问题;在机械运动学领域,常会用分段函数表示运动物体的位置函数或者速度函数,用以表示运动物体在特殊时间内的位置和速度状态;而在控制系统设计中,分段函数常被用来根据控制对象的特征回应,来调整控制量,从而实现连续控制。
高中数学第三章函数-分段函数教师用书新人教B版必修第一册
第3课时分段函数问题导学预习教材P90-P92的内容,思考以下问题:1.什么是分段函数?2.分段函数是一个函数还是多个函数?1.分段函数如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数.■名师点拨(1)分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.(2)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围.(3)分段函数的定义域是所有自变量取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.(4)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.2.分段函数的图像分段函数有几段,它的图像就由几条曲线组成.在同一直角坐标系中,根据每段的定义区间和表达式依次画出图像,要注意每段图像的端点是空心点还是实心点,组合到一起就得到整个分段函数的图像.■名师点拨在画每一段函数图像时,可以先不管定义域的限制,用虚线作出其图像,再用实线保留其在该段定义区间内的相应图像即可,即“分段作图”.3.常数函数值域只有一个元素的函数,通常称为常数函数.判断正误(正确的打“√”,错误的打“×”)(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0是分段函数.( )(3)分段函数的定义域是各段上自变量取值的并集.( ) 答案:(1)× (2)√ (3)√下列给出的式子是分段函数的是( )①f (x )=⎩⎪⎨⎪⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎪⎨⎪⎧x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎪⎨⎪⎧2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎪⎨⎪⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④答案:B已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0B .13 C .1D .2解析:选C.f (2)=2-1=1.函数y=⎩⎪⎨⎪⎧x 2,x >0,-2,x <0的定义域为______________,值域为______________.答案:(-∞,0)∪(0,+∞) {-2}∪(0,+∞)分段函数的定义域、值域(1)已知函数f (x )=|x |x,则其定义域为( )A .RB .(0,+∞)C .(-∞,0)D .(-∞,0)∪(0,+∞)(2)函数f (x )=⎩⎪⎨⎪⎧-x 2+1,0<x <1,0,x =0,x 2-1,-1<x <0的定义域为________,值域为________.【解析】 (1)要使f (x )有意义,需x ≠0, 故定义域为(-∞,0)∪(0,+∞).(2)由已知得,f (x )的定义域为{x |0<x <1}∪{0}∪{x |-1<x <0}={x |-1<x <1},即(-1,1),又0<x <1时,0<-x 2+1<1,-1<x <0时,-1<x 2-1<0,x =0时,f (x )=0,故值域为(-1,0)∪{0}∪(0,1)=(-1,1).【答案】 (1)D (2)(-1,1) (-1,1)(1)分段函数定义域、值域的求法①分段函数的定义域是各段函数定义域的并集; ②分段函数的值域是各段函数值域的并集.(2)绝对值函数的定义域、值域通常要转化为分段函数来解决.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,则函数的定义域为________,值域为________.解析:由已知得,f (x )的定义域为[-1,1]∪(1,+∞)∪(-∞,-1)=R ,又x ∈[-1,1]时,x 2∈[0,1],故函数的值域为[0,1].答案:R [0,1]分段函数的求值问题已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.试求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值.【解】 由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2(-3)=3-2 3.因为f ⎝ ⎛⎭⎪⎫-52=-52+1=-32, -2<-32<2,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-32 =⎝ ⎛⎭⎪⎫-322+2×⎝ ⎛⎭⎪⎫-32 =94-3=-34.(变问法)本例条件不变,若f (a )=3,求实数a 的值. 解:①当a ≤-2时,f (a )=a +1, 所以a +1=3,所以a =2>-2不合题意,舍去. ②当-2<a <2时,a 2+2a =3, 即a 2+2a -3=0, 所以(a -1)(a +3)=0, 所以a =1或a =-3.因为1∈(-2,2),-3∉(-2,2), 所以a =1符合题意. ③当a ≥2时,2a -1=3, 所以a =2符合题意.综合①②③知,当f (a )=3时,a =1或a =2.(1)分段函数求函数值的方法①确定要求值的自变量属于哪一段区间;②代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.(2)已知函数值求字母取值的步骤 ①先对字母的取值范围分类讨论; ②然后代入到不同的解析式中; ③通过解方程求出字母的值;④检验所求的值是否在所讨论的区间内.1.已知函数f (x )=⎩⎪⎨⎪⎧x -2,x <2,f (x -1),x ≥2,则f (2)=( )A .-1B .0C .1D .2解析:选A.f (2)=f (2-1)=f (1)=1-2=-1.2.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.若f (x )>2,求x 的取值范围.解:当x ≥-2时,f (x )=x +2,由f (x )>2,得x +2>2,解得x >0,故x >0; 当x <-2时,f (x )=-x -2, 由f (x )>2,得-x -2>2, 解得x <-4,故x <-4. 综上可得:x >0或x <-4.分段函数的图像及应用角度一分段函数图像的识别(2019·济南检测)函数y=x2|x|的图像的大致形状是( )【解析】 因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图像为选项A.【答案】 A角度二 分段函数图像的画法分别作出下列分段函数的图像,并写出定义域及值域.(1)y =⎩⎪⎨⎪⎧1x ,0<x <1,x ,x ≥1.(2)y =⎩⎪⎨⎪⎧3,x <-2,-3x ,-2≤x <2,-3,x ≥2.【解】 各函数对应图像如图所示:由图像知,(1)的定义域是(0,+∞),值域是[1,+∞);(2)的定义域是(-∞,+∞),值域是(-6,6].角度三分段函数图像的应用某地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)关于用电量x(度)的函数图像是一条折线(如图所示),根据图像解下列问题:(1)求y 关于x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应交费多少元?若该用户某月交费105元,则该用户该月用了多少度电?【解】 (1)当0≤x ≤100时,设函数关系式为y =kx . 将x =100,y =65代入, 得k =0.65,所以y =0.65x .当x >100时,设函数关系式为y =ax +b . 将x =100,y =65和x =130,y =89代入,得⎩⎪⎨⎪⎧100a +b =65,130a +b =89,解得⎩⎪⎨⎪⎧a =0.8,b =-15. 所以y =0.8x -15.综上可得y =⎩⎪⎨⎪⎧0.65x ,0≤x ≤100,0.8x -15,x >100.(2)由(1)知电力公司采取的收费标准为:用户月用电量不超过100度时,每度电0.65元;超过100度时,超出的部分,每度电0.80元.(3)当x =62时,y =62×0.65=40.3(元); 当y =105时,因为0.65×100=65<105,故x >100, 所以105=0.8x -15,x =150.即若用户月用电62度时,则用户应交费40.3元;若用户月交费105元,则该用户该月用了150度电.分段函数图像的画法(1)对含有绝对值的函数,要作出其图像,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图像.(2)作分段函数的图像时,分别作出各段的图像,在作每一段图像时,先不管定义域的限制,作出其图像,再保留定义域内的一段图像即可,作图时要特别注意接点处点的虚实,保证不重不漏.已知函数f (x )=|x |-x2+1(-2<x ≤2).(1)利用绝对值及分段函数知识,将函数解析式写成分段函数; (2)在坐标系中画出该函数的图像,并写出函数的值域. 解:(1)①当0≤x ≤2时,f (x )=x -x2+1=1.②当-2<x <0时,f (x )=-x -x2+1=-x +1.故f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,-x +1,-2<x <0.(2)函数f (x )的图像如图所示:由图可知,函数f (x )的值域为[1,3).1.函数f (x )=y =⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,+∞)C .[0,3]D .{y |0≤y ≤2或y =3}解析:选D.值域为[0,2]∪{2}∪{3}={y |0≤y ≤2或y =3}.2.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是 ( )A .-2B .2或-52C .2或-2D .2或-2或-52解析:选A.当x ≤0时,x 2+1=5,x =-2.当x >0时,-2x <0,不合题意.故x =-2. 3.函数y =x +|x |x的图像是( )解析:选C.对于y =x +|x |x ,当x >0时,y =x +1;当x <0时,y =x -1.即y =⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,故其图像应为C.4.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4, 所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4.所以x 0=4.[A 基础达标]1.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图像可以近似地刻画出这列火车的速度变化情况的是( )解析:选B.根据题意,知这列火车从静止开始匀加速行驶,所以排除A ,D.然后匀速行驶一段时间后又停止了一段时间,排除C ,故选B.2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D.f (3)=23,f (f (3))=f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=49+1=139.3.(2019·广东深圳中学期中考试)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,x 2,0<x ≤3,若f (x )=3,则x 的值是( )A. 3 B .9C .-1或1D .-3或 3解析:选A.依题意,若x ≤0,则x +2=3,解得x =1,不合题意,舍去.若0<x ≤3,则x 2=3,解得x =-3(舍去)或x = 3.故选A.4.函数f (x )=x 2-2|x |的图像是( )解析:选C.f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+2x ,x <0,分段画出,应选C.5.已知函数f (x )的图像是两条线段(如图所示,不含端点),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13等于 ( ) A .-13B.13 C .-23D.23解析:选B.由题图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,所以f ⎝ ⎛⎭⎪⎫13=13-1=-23,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=-23+1=13.6.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f (f (n +5)),n <10,则f (8)=________.解析:因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13)).因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.答案:77.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2-ax ,x ≥1,若f (f (0))=a ,则实数a =________.解析:依题意知f (0)=3×0+2=2,则f (f (0))=f (2)=22-2a =a ,求得a =43.答案:438.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月交水费16m 元,则该职工这个月实际用水量为________立方米.解析:该单位职工每月应交水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13.答案:139.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图像;(2)若f (x )≥14,求x 的取值范围;(3)求f (x )的值域.解:(1)利用描点法,作出f (x )的图像,如图所示.(2)由于f ⎝ ⎛⎭⎪⎫±12=14,结合此函数图像可知,使f (x )≥14的x 的取值范围是⎝⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞. (3)由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1.所以f (x )的值域为[0,1]. 10.已知函数f (x )=⎩⎪⎨⎪⎧x +4,x ≤0,x 2-2x ,0<x ≤4,-x +2,x >4.(1)求f (f (f (5)))的值;(2)画出函数f (x )的图像.解:(1)因为5>4,所以f (5)=-5+2=-3.因为-3<0,所以f (f (5))=f (-3)=-3+4=1.因为0<1<4,所以f (f (f (5)))=f (1)=12-2×1=-1,即f (f (f (5)))=-1.(2)图像如图所示.[B 能力提升]11.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是( ) A .{x |x ≤1}B .{x |x ≤2}C .{x |0≤x ≤1}D .{x |x <0}解析:选A.当x ≥0时,f (x )=1, xf (x )+x ≤2⇔x ≤1,所以0≤x ≤1;当x <0时,f (x )=0,xf (x )+x ≤2⇔x ≤2,所以x <0.综上,x ≤1.12.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1, 若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a =2+2a +a ,解得a =-34. 答案:-3413.如图,△OAB 是边长为4的正三角形,记△OAB 位于直线x =t (0<t <6)左侧的图形的面积为f (t ),求函数f (t )的解析式.解:当0<t ≤2时,f (t )=12×t ×3t =3t 22; 当2<t ≤4时,f (t )=12×4×23-12(4-t )×3(4-t )=-32t 2+43t -43; 当4<t <6时,f (t )=12×4×23=4 3. 所以函数f (t )的解析式为 f (t )=⎩⎪⎨⎪⎧3t 22,0<t ≤2,-32t 2+43t -43,2<t ≤4,43,4<t <6. 14.设集合A =⎣⎢⎡⎭⎪⎫0,12,B =⎣⎢⎡⎦⎥⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B ,若x 0∈A ,且f (f (x 0))∈A ,求x 0的取值范围.解:因为x 0∈A ,所以0≤x 0<12, 且f (x 0)=x 0+12, 又12≤x 0+12<1, 所以 x 0+12∈B ,所以f (f (x 0))=2⎝ ⎛⎭⎪⎫1-x 0-12=2⎝ ⎛⎭⎪⎫12-x 0, 又f (f (x 0))∈A ,所以0≤2⎝ ⎛⎭⎪⎫12-x 0<12, 解得14<x 0≤12,又0≤x 0<12, 所以14<x 0<12. [C 拓展探究]15.讨论方程x 2-4|x |+5=m 的实根的个数.解:将方程x 2-4|x |+5=m 的实根个数问题转化为函数y =x 2-4|x |+5的图像与直线y =m 的交点个数问题.作出函数y =x 2-4|x |+5=⎩⎪⎨⎪⎧x 2-4x +5,x ≥0,x 2+4x +5,x <0的图像,如图所示.由图像可以看出:①当m <1时,直线y =m 与该图像无交点,此时方程无解;②当m =1时,直线y =m 与该图像有2个交点,此时方程有2个实根;③当1<m <5时,直线y =m 与该图像有4个交点,此时方程有4个实根; ④当m =5时,直线y =m 与该图像有3个交点,此时方程有3个实根;⑤当m >5时,直线y =m 与该图像有2个交点,此时方程有2个实根.。
高中数学 第3章 函数的概念与性质 3.1.2 第2课时 分段函数课件 a高一第一册数学课件
释
业
疑 难
义区间的各段上,然后相应求出自变量的值,切记代入检验.
返 首 页
12/12/2021
第十七页,共五十页。
情
[跟进训练]
课 堂
景
小
导 学 探 新
1.函数 f(x)=xf-fx3+,5x≥,1x0<,10, 则 f(7)=________.
结 提 素
知
养
合 作 探
8 [∵函数 f(x)=xf-fx3+,5x≥,1x0<,10,
作 业
疑
难
返 首 页
12/12/2021
第三十二页,共五十页。
课
情
堂
景
小
导
结
学 提
探
新
素
知
养
把本例条件改为“f(x)=|x|-2”,再求本例的3个问题.
综上可得,当 f(a)=3 时,a=1 或 a=2.
返 首
页
12/12/2021
第十五页,共五十页。
课
情
堂
景
小
导
结
学 探
1.分段函数求函数值的方法:
提
新
素
知
(1)确定要求值的自变量属于哪一段区间.
养
(2)代入该段的解析式求值,直到求出值为止.当出现 f(f(x0))的 课
合
时
作 探
形式时,应从内到外依次求值.
小 结
学
探 新
f(- 3)=(- 3)2+2×(- 3)=3-2 3.
提 素
知
养
∵f-25=-25+1=-32,
课
合
时
作 探 究
而-2<-32<2,
高数1-1映射与函数12121
C { x x 2 3 x 2 0}, 则 A C .
不含任何元素的集合称为空集. (记作 )
2 { x x R , x 1 0} 例如,
规定 空集为任何集合的子集.
表示法: (1) 列举法:按某种方式列出集合中的全体元素 . 例: 有限集合 A a1 , a2 , , an (2) 描述法: M x x 所具有的特征 例: 整数集合 Z x
a
a
a
0
x
点a的去心的邻域, 记作U (a, ).
U (a, ) {x 0 x a }.
0
a a0 4.绝对值: a a a 0 ab a b ; 运算性质:
( a 0)
x a ( a 0) x a ( a 0)
o
a o
b
x x
区间长度的定义: 两端点间的距离(线段的长度)称为区间的长度. 3.邻域:
设a与是两个实数, 且 0.
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心 , 叫做这邻域的半径.
U (a, ) {x a x a }.
o
x
o
x
(5)绝对值函数
y
x ,x 0 y | x | x, x 0 值域 [0, ) 定义域 R
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
例如,
2 x 1, f ( x) 2 x 1,
x0 x0
y x2 1
恒有 (2) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调减少的 ;
人教版高一数学必修一第一章知识点解析:函数及其表示
三一文库()/高一〔人教版高一数学必修一第一章知识点解析:函数及其表示〕考点一、映射的概念1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。
包括:一对一多对一考点二、函数的概念1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B 中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。
记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。
函数是特殊的映射,是非空数集A到非空数集B的映射。
2.函数的三要素:定义域、值域、对应关系。
这是判断两个函数是否为同一函数的依据。
3.区间的概念:设a,bR,且a①(a,b)={xa⑤(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx考点三、函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同部分,有不同的对应法则的函数。
注意两点:①分段函数是一个函数,不要误认为是几个函数。
②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
考点四、求定义域的几种情况①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。
⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。
⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题。
人教新课标版数学高一必修1学案 函数的表示法(二)
1.2.2 函数的表示法(二)自主学习1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题. 2.了解映射的概念及含义,会判断给定的对应关系是否是映射.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.(3)作分段函数图象时,应分别作出每一段的图象. 2.映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
3.映射与函数由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是非空数集.对点讲练分段函数的求值问题【例1】 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2 (-1<x <2),2x (x ≥2).(1)求f [f (3)]的值; (2)若f (a .)=3,求a . 的值.分析 本题给出的是一个分段函数,函数值的取得直接依赖于自变量x 属于哪一个区间,所以要对x 的可能范围逐段进行讨论. 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a .≤-1时,f (a .)=a .+2,又f (a .)=3,∴a .=1(舍去);当-1<a .<2时,f (a .)=a .2,又f (a .)=3,∴a .=±3,其中负值舍去,∴a .=3;当a .≥2时,f (a .)=2a .,又f (a .)=3, ∴a .=32(舍去).综上所述,a .= 3.规律方法 对于f (a .),究竟用分段函数中的哪一个对应关系,与a . 所在范围有关,因此要对a .进行讨论.由此我们可以看到: (1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x (x <0),若f (a .)>a .,则实数a .的取值范围是________.答案 a .<-1解析 当a .≥0时,f (a .)=12a .-1,解12a .-1>a .,得a .<-2与a .≥0矛盾,当a .<0时,f (a .)=1a ,解1a>a .,得a .<-1.∴a .<-1.分段函数的图象及应用【例2】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 化简f (x )的解析式 →化简f (x )的解析式 →把f (x )表示为分段函数形式→画出f (x )的图象→求f (x )的值域 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎨⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移 2 设函数f (x )=⎩⎪⎨⎪⎧|x +1| (x <1)-x +3 (x ≥1),使得f (x )≥1的自变量x 的取值范围是______________________. 答案 (-∞,-2]∪[0,2] 解析在同一坐标系中分别作出f (x )及y =1的图象(如图所示),观察图象知,x 的取值范围是(-∞,-2]∪[0,2].映射概念及运用【例3】 判断下列对应关系哪些是从集合A 到集合B 的映射,哪些不是,为什么?(1)A={x|x 为正实数},B={y|y ∈R[},f :x →y=±x(2)A=R ,B={0,1},对应关系f :x,→y =⎩⎪⎨⎪⎧1, x ≥0;0, x<0;(3)A=Z ,B=Q ,对应关系f :x →y=1x;(4)A={0,1,2,9},B={0,1,4,9,64},对应关系f:a →b=()21a -解 (1)任一个x 都有两个y 与之对应,∴不是映射.(2)对于A 中任意一个非负数都有唯一的元素1和它对应,任意一个负数都有唯一的元素0和它对应, ∴是映射.(3)集合A 中的0在集合B 中没有元素和它对应,故不是映射. (4)在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,∴是映射.规律方法 判断一个对应是不是映射,应该从两个角度去分析:(1)是否是“对于A 中的 每一个元素”;(2)在B 中是否“有唯一的元素与之对应”.一个对应是映射必须是这两个方面都具备;一个对应对于这两点至少有一点不具备就不是映射.说明一个对应不是映射,只需举一个反例即可. 变式迁移3 下列对应是否是从A 到B 的映射,能否构成函数? (1)A=R ,B=R,f:x →y =1x +1;(2)A ={a.|a.=n ,n ∈N +},B =⎩⎨⎧⎭⎬⎫b|b =1n ,n ∈N +,f :a.→b =1a;(3)A=[)0,+∞,B=R ,f:x→y 2=x ;(4)A ={x|x 是平面M 内的矩形},B ={x|x 是平面M 内的圆},f :作矩形的外接圆. 解 (1)当x =-1时,y 的值不存在, ∴不是映射,更不是函数.(2)是映射,也是函数,因A 中所有的元素的倒数都是B 中的元素.(3)∵当A 中的元素不为零时,B 中有两个元素与之对应,∴不是映射,更不是函数. (4)是映射,但不是函数,因为A ,B 不是数集.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,主要利用映射的定义:(1)集合A 到B 的映射,A 、B 必须是非空集合(可以是数集,也可以是其他集合); (2)对应关系有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;(3)与A 中元素对应的元素构成的集合是集合B 的子集.课时作业一、选择题1.下列集合A 到集合B 的对应f 是映射的是( ) A .A ={-1,0,1},B ={-1,0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =N *,f :a .→b =(a .+1)2D .A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ) A . f:x→y =12x B. f:x→y =13xC. f:x→y =14xD. f:x→y =16x答案 A由f:x →y =12x ,集合A 中的元素6对应3∉{y |0≤y ≤2},故选项A 不是映射.3.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .5 答案 A解析 由题意知f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.4.已知f (x )=⎩⎪⎨⎪⎧ x 2 (x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]等于( )A .-xB .-x 2C .xD .x 2 答案 B解析 当x <0时,g (x )=-x 2<0, ∴f [g (x )]=-x 2. 二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.答案 π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥00,x <0,则不等式xf (x )+x ≤2的解集是__________.答案 {x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2, 解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2, 解得x ≤2,∴x <0. 综上可知x ≤1. 三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x <3)的图象. 解 作出y =[x ]的图象如下图所示.8.已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1).∵点(1,1)、(0,2)在射线上,∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2.∴左侧射线对应的函数解析式为y =-x +2 (x <1). 同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a .(x -2)2+2 (1≤x ≤3,a .<0),∵点(1,1)在抛物线上,∴a .+2=1,a .=-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为 y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).【探究驿站】9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1, 当x ∉[0,1]时,f [f (x )]=f (x -3),若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1, 若x -3∉[0,1],f (x -3)=(x -3)-3, 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。
高等数学 第六版 1-1函数
x1 , x2 R ,
f ( x1 ) f ( x1 x2 ) < x1 x1 x2 f ( x2 ) f ( x1 x2 ) < x2 x1 x2
f ( x) L.
注:(1)界是不惟一的; (2)上述定义中的“≤”与“≥”可去掉等号. (3)可定义函数在定义域D的某子集上有(无)界的定义.
1 1 例4. 证明函数 f ( x) sin 在(0,1]上无界. (P42第7题) x x 1 证: M 0, 取 x , (M ] 1 2 [ ) 而 f ( x) [ M ] 1 >M , 所以f (x)在(0,1]上无界. ( ) 2
狄里克雷函数
1, 0,
x 为有理数 x 为无理数
例6. 证明函数f(x)=xcosx不是周期函数. (P22 13(4)) 证: 设T(>0)是函数的周期, 则f(x+T)= f(x)
即(x+T)cos(x+T) =xcosx 令x=0得, TcosT=0,得cosT=0.矛盾,所以f(x)不是周期函数.
(1) (2)
即
f ( x1 )( x1 x2 )< x1 f ( x1 x2 )
(1)′
(2)′ f ( x2 )( x1 x2 )< x2 f ( x1 x2 ) 两式相加得 [ f ( x1 ) f ( x2 )]( x1 x2 )< ( x1 x2 ) f ( x1 x2 ) 约去 x1 x2 得: f ( x1 ) f ( x2 )< f ( x1 x2 ). (3) 奇偶性 (定义略) 例5. 证明定义在(-a,a)上的函数f(x),必定可以表示为奇函 数与偶函数的和. 证: 设 f ( x) 表示成(-a,a)上的奇函数g(x)与偶函数h(x)的和 即 f ( x) g ( x) h( x) 解得 h( x) 1 [ f ( x) f ( x)]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的表示方法与分段函数
一、选择题
1.已知A={x|x=n2,n∈N},给出下列关系式:①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)=x4;⑤f(x)=x2+1,其中能够表示函数f:A→A的个数是()
A.2 B.3 C.4 D.5
2.函数()
y f x
=的图象与直线1
x=的公共点数目是()
A.1B.0C.0或1D.1或2
3.如图所示,能表示“y是x的函数”的有( ).
①
A.1个B.2个C.3个D.4个
4.下列对应中有几个是映射?()
①②③④A.1个B.2个C.3个D.4个
5.已知集合{}
04
A x x
=≤≤,{}
02
B y y
=≤≤,下列从A到B的对应f不是映射的是A.
1
:
2
f x y x
→=B.
1
:
3
f x y x
→=C.
2
:
3
f x y x
→=D.2
1
:
8
f x y x
→=
6.
函数y=+)
2
ln(x
-的自变量x的取值范围是()
A.)
,0[+∞B.)2,
(-∞C.)2,0[D.)2,1(
)1,0[
7.下列各组函数中,表示同一个函数的是()
A.y=x-1和y=
x2-1
x+1
B.y=x0和y=1
C.f(x)=x2和g(x)=(x+1)2 D.f(x)=
x 2
x和g(x)=
x
x 2
8设()12
32,
2()log 1,2
x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( ) A.0 B.1 C.2 D.3 9.下表表示y 是x 的函数,则函数的值域是( )
A.[2,5] C .(0,20]
D .{2,3,4,5}
10.设函数⎩⎨⎧<+≥+-=0
,60
,64)(2x x x x x x f ,则不等式)1()(f x f >的解集是( )
A.),3()1,3(+∞⋃-
B.),2()1,3(+∞⋃-
C.),3()1,1(+∞⋃-
D.)3,1()3,(⋃--∞ 11.函数y =
2
x -1
的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝⎛⎦⎤
12,2 B .(-∞,2] C.⎝
⎛⎭⎫-∞,1
2∪[2,+∞) D .(0,+∞) 12.函数f (x )=⎩⎪⎨⎪
⎧
sin (πx 2),-1<x <0,e x -1,x ≥0
满足f (1)+f (a )=2,则a 所有可能的值为( )
A .1或-22
B .-
22 C .1
D .1或
22
13.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )
A .f (x )=x 2+a
B .f (x )=ax 2+1
C .f (x )=ax 2+x +1
D .f (x )=x 2+ax +1
14.设函数f (x )=⎩
⎪⎨⎪⎧
1+log 2(2-x ),x <1,
2x -1,x ≥1,则f (-2)+f (log 212)等于( )
A .3
B .6
C .9
D .12
二、填空题(每题8分,共24分)
15.函数f (x )x x x ++-=-02)1(的定义域是________. 16.下列结论中所有不.正确..
的序号是 . (1)对于函数f :A →B ,其值域是集合B .(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.
(3)映射是特殊的函数.(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.
17.已知函数(1)y f x =+定义域是[2,3]-,则(21)y f x =-的定义域是
设函数3,(10)
()((5)),(10)
x x f x f f x x -≥⎧=⎨
+<⎩,则(5)f = 。
18.设函数31
()1
x f x x -=
+,则该函数的值域为________________. 19.已知实数a ≠0,函数f (x )=⎩
⎪⎨⎪⎧
2x +a ,x <1,
-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为
___________.
三、解答题
20.求下列函数的定义域.
(1
)()f x = (2
)()f x = (3
)0
y =
21、(1)已知函数f (x )的定义域为[3,6]
,求函数y =
.
(2)若函数y =mx -1
mx 2+4mx +3的定义域为R ,求实数m 的取值范围.
22、求下列函数的解析式:
(1)已知f (x )是二次函数,且满足f (0)=1,f (x +1)=f (x )+2x ,求f (x );
(2)已知12)1(-=+x x f 的定义域是]1,1[-,求)(x f ;
(3)已知x x x f +=+)2(,求f (x );
(4)已知x x
f x f =-)1(2)(,求)(x f .
23.已知f (x )=⎩⎪⎨⎪
⎧
f (x +1),-2<x <0,2x +1,0≤x <2,
x 2-1,x ≥2.
(1)求f (-3
2
)的值;
(2)若f (a )=4且a >0,求实数a 的值.。