七年级数学图形的平移与旋转复习课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变换方式
移动一定的距离 转动一定的角度
知识梳理
轴对称
图
形
连结对应点的线段___平__行__(__或__在__同__一__条__直__线__上__)__且__相__等__;
之
对应线段_平__行__(__或__在__同__一___条__直__线__上__)__且__相__等_____;
间 的 三
平移 对应角___相__等_____. 主要是由_平__移__方__向___和__平__移__距__离___决定的.
B
GC
第2题图
B
C
第3题图
创
新
一个圆经过四次平移得到的,每次平移的方向是一个圆的圆心 到另一个圆的圆心的方向,平移的距离是两圆圆心之间的距离.
提 高
或者一个圆经过四次旋转得到的,每次旋转的中心是在连接两圆 圆心的线段的垂直平分线上的点,旋转角为旋转中心与两圆圆心连线
ห้องสมุดไป่ตู้
段之间的夹角。
3、如图,平面直角坐标系中有一个正方形ABCD,点E是AC与BD的交 点。将正方形 ABCD 沿CA方向平移,使点C平移到点E的位置,得到正 方形EMNH,EH交x轴于P,EM交y轴于F。有以下三个结论:①BE=DE,② BP=DF,③两个正方形重合部分的面积=1/4S正方形。(1)这三个结 论成立吗?(2)当正方形ABCD绕点A旋转到图②的位置时,以上的 结论中有哪些成立的?写出来,并说明理由。
作 业
1、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得 到的是( )
C
B
A
(A)
(B)
(C)
(D)
2、如图,点P为正方形ABCD内一点,且PA=1,PB=2,PC=3。试求 ∠APB的度数。
A
D
P
B
C
第2题图
探 究 创 新
14米
1 、如图,学校有一块长为20米,宽为14米的草地,要在 草地上开一条宽为2 米的曲折小路,你能用学过的知识求 出这条小路的面积吗?面积是多少?
作业
2、如图,在正方形ABCD中,M是BC上一点,连接AM,作AM的 垂直平分线GH交AB与G点,交CD与H点,已知AM=10cm,求 GH的长.
A
D
H
E
G
B
M
C
驶向胜利的彼岸
A O
D
MG
A
B
N
C
E
F
B
DG
O
M
F NC
E
综 合
如图,平面上有一个边长为8㎝的正方形ABCD,点O是AC与 BD的交点。将正方形 ABCD 沿AC方向平移,使点A与点O重合, 得到正方形OEFG。请说出图(1)中两个正方形重合部分的面积。
②
③
④
综
如图1,平面中有两个完全重合的正方形ABCD与正方形EFGH 。现将正
合 方形 EFGH 沿CA方向平移,使点E平移到CA的中点处。EF交AD于P,EH
应 交AB于Q,连接BE、DE(如图2), 有以下三个结论成立:①BE=DE,②
用 BQ=DP,③两个正方形重合部分的面积S=1/4S正方形ABCD。
知 识 梳 理B
A EC
D B C
F A
D E
概
F
平移:把一个图形整体沿某一直线方向移动一定的距离。
念 旋转:把一个图形绕着某一点转动一个角度。
平 相同:
移 与 旋
转 不同:
的 异 同
都是一种 __图__形__变__换__ ,变换前后的___图_形__全__等____.
平移 旋转
变换方向
直线 顺时针或逆时针
应
当正方形OEFG绕点O逆时针旋转到图(2)的位置时,计算
用
图(2)中两个正方形重合的面积是多少?
当正方形OEFG绕点O旋转到其他的位置时,这两个正方形重 合部分的面积是否变化,若变化,说明理由,若不变,是多少。
D A
O M
⊿BP3P ′为______三角形直,角∠BPP ′ =_____度,
90
于是, ∠APB=__1_5_0__度.
B
B
P〞
P′
P
P
A
C
A
C
P′
B
P′
P
A
C
小结
1、知识技能方面
平移与旋转变换的
概念和性质
2、思想方法方面 利用平移可以“化曲为
直”、化复杂为简单,利用旋转可以变分散为
集中。
驶向胜利的 彼岸
种
变
换
旋转
对应点到旋转中心的距离_相__等___;对应点与旋转中心 所连线段的夹角_相__等_____;对应线段___相__等______; 对应角__相__等___.
主要是由__旋__转__中__心_ 和___旋__转__角___决定的,还与 __旋__转__方__向___有关.
在轴对称、平移、旋转这些图形变换下,变换 前后的图形 ____全__等_______.
若再将正方形ABCD绕点A逆时针旋转(旋转角为锐角),旋转后, EF交
AD于M,EH交AB于N(如图3)。以上的结论中有哪些成立的?写出来,
并说明理由。
D(F)
C(E)
D FP
C E
A(G)
A QB
B(H) G
H
C
D
PE
FM
NB
A
Q
G
H
图1
图2
图3
探 究
1 、如图,学校有一块长为20米,宽为14米的 草地,要在草地上开一条宽为2 米的曲折小路,
64平方米
20米
作业
1、如图,A和B是一条河两岸的村庄,现要架一座桥MN,如 何架桥才能使路程最短?
2、如图,点P为正方形ABCD内一点,且PA=1,PB=2,PC=3。
试求∠APB的度数。 A
D
P
驶向胜利
B
C
的彼岸
作
1、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得 到的是( )
C
业
B
A
(A)
(B)
(C)
(D)
2、如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将 腰DC绕点D逆时针方向旋转90°至DE,连接AE,则⊿ADE的面积是 _________。
3、如图,点P为正方形ABCD内一点,且PA=1,PB=2,PC=3。试求
∠APB的度数。 E
A
D
A
P
D
基
下列图形均可以由其中的一部分作为“基本
础
图案”通过变换得到。
闯
(1)可以通过平移变换但不能通过旋转变换
关
得到的图案是_①____;
(2)可以通过旋转变换但不能通过平移变换
得到的图案是__②__④_______ ;
(3)既可以由平移变换, 也可以由旋转变换得
到的图案是___③__ . (填序号)
①
创
你能用学过的知识求出这条小路的面积吗?面积
新
是多少?
64平方米
20米
14米
探
2、如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,
究
求∠APB的度数。
创
分析: 若将⊿PAC绕点A逆时针旋转60°后,得到⊿P′AB,则
新
△APP′是___等__边___三角形,点P与P′之间的距离 为_______,