勾股定理综合应用习题精选

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理综合应用习题精选

1、在△ABC 中,∠C=30°,AC=4cm,AB=3cm ,求BC 的长.

1题图 变式1

变式1、在△ABC 中,∠B=120°,BC=4cm ,AB=6cm ,求AC 的长.

变式2、在等腰△ABC 中,AB =AC =13cm ,BC=10cm,求△ABC 的面积和AC 边上的高.

ABC 中,AB=26,BC=25,AC=17,求△ABC 的面积

.

2、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形

ABCD 的面积.

方法1

方法2

变式训练:如图,在平面直角坐标系中,点C 的坐标为(0,4),∠B=90°,∠BCO=60°,AB=2,求点B 的坐

标.

3、如图,在Rt △ABC 中,∠C=90°,AD 平分∠BAC , AC=6cm ,BC=8cm ,(1)求线段CD 的长;(2)求△ABD 的面积.

变式练习:如图,在直角坐标系中, △ABC 的顶点A 为(0,6),B 为(8,0),AD 平分∠BAC 交x 轴于点D , DE ⊥AB 于E.

(1)求△ABD 的面积;

4AC=10cm ,BC=6cm,你能求出CE 的长吗?

5、矩形ABCD 如图折叠,使点D 落在BC 边上的点F 处,已知AB=8,

BC=10,求折痕AE 的长。

6、Rt ΔABC 中,AB 比BC 多2,AC=6,如图折叠,使C 落到AB 上的E 处,求CD 的长度,

8-x C

8 E C A

B

D 10-x

6 A C D

E

B C

D

E x

7、三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC

8、.将一根长24 cm 的筷子置于底面直径为5 cm,高为12 cm 的圆柱形水杯中,如图,设筷子露在杯子外

面的长是h cm,则h 的取值范围是______________.

9.(2011•济宁)去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道

建一座水泵站,分别向河的同一侧张村A 和李村B 送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O 为坐标原点,以河道所在的直线为x 轴建立直角坐标系(如图).两村的坐标分别为A (2,3),B (12,7).

(1)若从节约经费考虑,水泵站建在距离大桥多远的地方可使所用输水管道最短?

(2)水泵站建在距离大桥多远的地方,可使它到张村、李村的距离相等?

10.(2011•呼伦贝尔)根据题意,解答问题:

(1)如图①,已知直线y=2x+4与x 轴、y 轴分别交于A 、B 两点,求线段AB 的长.

(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M (3,4)与点N (﹣2,﹣1)之间的距离.

8 A

B C

11

8

D

1.已知:直线y=kx+b的图象过点A(﹣3,1);B(﹣1,2),

(1)求:k和b的值;

(2)求:△AOB的面积(O为坐标原点);

(3)在x轴上有一动点C使得△ABC的周长最小,求C点坐标.

2.(2005•双柏县)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?

3.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)

4.有一根竹竿,不知道它有多长.把竹竿横放在一扇门前,竹竿长比门宽多4尺;把竹竿竖放在这扇门前,竹竿长比门的高度多2尺;把竹竿斜放,竹竿长正好和门的对角线等长.问竹竿长几尺?

5.如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?

6.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?

7.如图,有一块塑料矩形模板ABCD,长为8cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P 落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.

8.一只蚂蚁从长、宽都是30cm,高是80cm的长方体纸箱的A点沿纸箱爬到B点,求它所行的最短路线的长.

9.如图,长方体的长为15cm,宽为10cm,高为20cm,点B在棱CD上,CB=5cm.一只壁虎要沿长方休的表面从A点爬到B点,需要爬行的最短路径是多少cm?

10.如图,圆柱形玻璃容器高19cm,底面周长为60cm,在外侧距下底1.5cm的点A处有一只蜘蛛,距蜘蛛正对面的圆柱形容器的上底1.5cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短长度.

11.华罗庚爷爷说:数学是我国人民所擅长的学科.请同学们求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐.问葛长几何?”

白话译文:如图,有圆柱形木棍直立地面,高20尺,圆柱底面周长3尺.葛藤生于圆柱底部A点,等距离缠绕圆柱七周,恰好子长到圆柱上底面的B点.问葛藤的长度是多少尺?

11.(2007•聊城)(1)如图1是一个重要公式的几何解释.请你写出这个公式;

(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;

(3)伽菲尔德(Garfield,1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.

12.如图18-1-24,A市气象站测得台风中心在A市正东方向300千米的B处,以107千米/时的速度向北偏西

60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域.

(1)A市是否会受到台风的影响?写出你的结论并给予说明;

(2)如果A市受这次台风影响,那么受台风影响的时间有多长?

相关文档
最新文档