小学数学《三角形的等积变形》练习题
四年级几何三角形的等积变形学生版
知识要点三角形的等积变形我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积。
如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化。
但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化。
比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样。
这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。
同时也告诉我们:面积相同三角形有无数多个不同的形状。
在实际问题的研究中,我们还会常常用到以下结论: ① 等底等高的两个三角形面积相等。
② 若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么ACD BCD S S ∆∆=;反之,如果ACD BCD S S ∆∆=,则可知直线AB 平行于CD 。
ACDB等底等高【例 1】 如图,在ABC ∆中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与ABE ∆等积的三角形一共有哪几个三角形?EABDC【例 2】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积。
HBD F【例 3】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与BEC ∆等积的三角形一共有哪几个三角形?ABCEDF【例 4】 如图,ABCD 为平行四边形,EF 平行AC ,如果ADE ∆的面积为4平方厘米。
小学四年级奥数题三角形的等积变形及答案【三篇】
小学四年级奥数题三角形的等积变形及答案【三篇】【第一篇】1. 三角形把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.分析分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如下左图所示的图形.分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右图所示的符合条件的图形.2.比较比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解: A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.【第二篇】如图,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积.三角形面积答案:通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用"四边形ABCD和四边形DEFG 是正方形"这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形 HDC与三角形AFH面积相等,也是6平方厘米.【第三篇】如下图,BE=2AB,BC=CD。
三角形面积等积变形测试题
三角形面积等积变形测试题Revised by Hanlin on 10 January 2021三角形面积和等积变形测试题姓名得分1. 右图中,四边形ABCD 的面积是320平方厘米,四边形ABED 2. 是个正方形,已知BC 等于CE 的3倍,求三角形ECD 的面积。
2.已知三角形ABC 中,BC =3.5cm,AD =2cm,AC =2.8cm BE 的长度。
3.已知三角形ABC 中,DC =BD,阴影部分的 面积是36平方厘米,求:三角形的面积。
4. 如下左图,D 、E 、F 分别是BC 、AD 、BE 的三等分点,5.已知S △ABC=27平方厘米,求S △DEF 。
5.求下面阴影部分的面积:6.如图,由两个边长分别是4cm 和3cm的正方形组成,求阴影部分的面积。
7.求右图中阴影部分的面积。
(单位:dm)8.长方形ABCD 中,三角形ABE 、ADF,四边形AECF的面积都相等,求三角形AEF 的面积。
9.如下左图,在平行四边形ABCD 中,E 、F 分别 是AC 、BC 的三等分点,且SABCD=54S △BEF 。
10.如图,已知△ABC 的面积为12,M 为AB 边的中点。
MD 与EC 平行。
求△EBD 的面积。
★★CDA B CD E A BCD 73EACFD B12dm9dm一块长方形的菜地,长为15米,宽为12米,请用经过A点的两条直线把这个长方形分成面积相等的三部分。
说明怎样划分。
12CD15。
【小升初专项训练】04 等积变形
第5讲等积变形第一关三角形的等积变形【例1】如图,在等腰直角三角形ABC中,已知AB的长是7厘米,那么这个直角三角形的面积为 平方厘米。
【答案】12.25【例2】如图,E、F分别是梯形ABCD两腰上的中点,已知阴影部分的面积是43c㎡,那么梯形ABCD 的面积是多少?【答案】172【例3】如图:三条直线互相平行,l1与l3之间的距离是7厘米,l2上AB=4厘米.求阴影部分三角形的面积是多少平方厘米? 【答案】14【例4】你能看出下面两个阴影部分A与B面积的大小关系吗?(两个长方形面积相等)【答案】A与B的面积相等【例5】如图,在斜边长为20cm的直角三角形ABC中去掉一个正方形EDFB,留下两个阴影部分直角三角形AED和DFC.若AD=8cm,CD=12cm,则阴影部分面积为多少?给出答案并说明你的计算依据.【答案】48【例6】如图,在直角三角形中有一个正方形,已知BD=10厘米,DC=7厘米,阴影部分的面积是多少?【答案】35平方厘米【例7】如图,梯形ABCD的面积是36,下底长是上底长的2倍,阴影三角形的面积是多少?【答案】16【例8】下图中阴影部分甲的面积与阴影部分乙的面积哪个大?【答案】图中甲乙的面积相等【例9】如图,在三角形ABC中,D是BC上靠近C的三等分点,E是AD中点,已知三角形ABC的面积为1,那么图中两个阴影三角形面积之和是多少?【答案】0.4【例10】已知△ABC面积为5,且BD=2DC,AE=ED,求阴影部分面积.要求写出关键的解题推理过程.【答案】2【例11】如图,将一个梯形分成四个三角形,其中两个三角形的面积分别为10与12.已知梯形的上底长度是下底的.请问:阴影部分的总面积是多少?【答案】23【例12】如图,已知梯形ABCD中,CD=10,梯形ABCD的高是4,那么阴影部分的面积是多少。
【答案】20【例13】(1)如图1,阴影部分的面积是多少?(2)如图2,一个长方形长4厘米,宽3厘米.A为长方形内的任意一点,阴影部分的面积是多少?【答案】(1)100;(2)6【例14】如图,在图中△ABE、ADF和四边形AECF面积相等.阴影部分的面积是多少?【答案】15【例15】如图,两个正方形(单位:厘米)中阴影部分的面积是多少平方厘米?【答案】8【例16】由面积为1,2,3,4的矩形拼成如图的长方形,图中阴影部分的面积为多少?【答案】【例17】如图所示,正方形ABCD的对角线BD长20厘米,BDFE是长方形.那么,五边形ABEFD的面积是多少平方厘米。
小学数学《三角形的等积变形》练习题(含答案)
内容概述
我们已经知道三角形面积的计算公式:三角形面积=底×高÷2
从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.
如果三角形的底不变,高越大(小),三角形面积也就越大(小);
如果三角形的高不变,底越大(小),三角形面积也就越大(小);
这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.
于是:三角形ABD的面积=12×高÷2=6×高
三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
【例6】如右图所示,在平行四边形ABCD中,E为AB的中点,AF=2CF,三角形AFE(图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
例题精讲
小学五年级数学思维专题训练—等积变形(含答案解析)
小学五年级数学思维专题训练—等积变形例1.长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点,三角形EFG的面积是平方厘米例 2.梯形ABCD中,AE与DC平行,S ABE∆=15,S BCF∆= .例3。
如下图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD= 15.四边EFGO 的面积为。
例4.如下图所示,在平行四边形ABCD中,已知三角形ABP.BPC的面积分别是73、100,求三角形BPD的面积.例5.如下图所示,BD是平行四边形ABCD的对角线,EF平行于BD,如果三角形ABE的面积是12平方厘米,那么三角形AFD的面积是平方厘米。
例6.如下图所示,已知AE=EC,CD=DB,S ABC =60,求四边形FDCE的面积.例7.如右图所示,正方形ABC D和正方形ECGF并排放置,BF与CD相交于点H,已知AB=6厘米,则阴影部分的面积是平方厘米.例8.如下图所示,E、F、G、H分别是四边形ABCD各边的中点,EG与FH交于点O,S1、S2、S3及S4分别表示4个小四边形的面积.试比较S1+S3与S2+S4的大小.例9.将长15厘米、宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如右图所示,则阴影部分的面积是 平方厘米.例10.右图所示ABCD 是个直角梯形(∠DAB=∠ABC= 900),以 , AD 为一边向外作长方形ADEF ,其面积为6.36平方厘米,连接BE 交AD 于P ,再连接PC .则图中阴影部分的面积是 平方厘米。
A.6.36B.3.18C.2.12D.1.59例11.如下图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 。
A .21B .32C .52D .125例12.如下图所示,矩形ABCD 的面积是24平方厘米,三角形ADM 与三角形BCN 的面积之和是7.8平方厘米,则四边形PMON 的面积是 平方厘米.例13.一个矩形分成4个不同的三角形(如下图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?例14.如下图所示,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的。
等积变形例题
解 在直角三角形CDH和直角三角形EKD 中,CD=DE 又∵∠EDK=180°-∠CDH-90° ∠DCH=180°-∠CDH-90° ∴ DCH与 EDK完全相等。 而ABCD是等腰梯形
K A
E
故CH=(BC-AD) ÷2 =(35-23) ÷2
23
D F
=6(厘米) ∴DK=CH=6厘米
B
35
求绿色四边形的面积。 解 连BF,则四边形BCDF为梯形。 4 6 6 ∵S黄÷S红=6÷4=1.5 ∴S白÷S红=1.5×1.5=2.25 ∴S白=S红×2.25=4 ×2.25=9(平方厘米) ∴S绿=S白+S黄-S红 =9+6-4=11(平方厘米) 答:绿色四边形ABEF的面积为11平方厘米。
S KGE=S C D S DGE=S F G P 所以 阴影部分面积= H A B 解:14÷4=3.5(厘米) 正方形BEFG的周长=14厘米, E K
FGE BGE
正方形BEFG的面积
3.5×3.5=12.25(平方厘米) 求阴影部分面积。 答:图中阴影部分面积是 12.25平方厘米。
分析与解: 分析与解:
答:丙、丁两个三角形面 积之和是甲、乙两个三角 形面积之和的1.25倍。
分析与解:
等积变形
例5
G
F
∵∠DAB=∠GAE=90° ∴ ∠GAD+ ∠EAB =360°-90 °×2 =180°
D
A C
E
∴三角形BAE绕A点顺时针旋转, 使AB与AD重合,这时,点E落 在点H,且G,A,H在一条直线上。 ∵AG=AE=AH,三角形DAH与 三角形DAG等底同高, ∴S DAH=S DAG 答:内圈三角形石板的总面积 与外圈石板的总面积一样大。
三角形的等积变形2
习题十三解答一、选择题:1.(D) 2.(D) 3.(D) 4.(A) 5.(C).提示:以KH为边,再在对边的五个点A、B、C、D、E中任取一点为顶点,可分别构成5个面积为3平方厘米的三角形.同理,以JG、AD、BE为边也各自可以构成5个面积为3平方厘米的三角形.又因为△AFI、△BFJ、△CFK、△ELI、△DLH和△CLG也是面积为3平方厘米的三角形.所以面积为3平方厘米的三角形一共有26个.二、填空题:提示:如右图连结BD,设Ⅰ=S△BEG,Ⅱ=S△CEG,Ⅲ=S△CFG,Ⅳ=S△DFG,设S1=Ⅰ+Ⅱ,S2=Ⅲ+Ⅳ,S3=S△BDG.∵Ⅲ=Ⅳ∴F为CD中点,有:S△BCF=S△BDF,又∵Ⅲ=Ⅳ,∴ S△BGD=S△BCG,即 S3=S1,由已知Ⅰ为Ⅱ的2倍,∴BE=2EC,S△BDE=2S△CDE,两边分别减去Ⅰ和2Ⅱ,可得:S△BDG=2S△CDG,即 S3=2S2,因此:4.甲∶乙∶丙=1∶2∶6,提示:∵ EF∥BC, AB=2AE∴ AC=3AF,BC=3EF,∵甲∶乙=1∶2,又∵(甲+乙)∶丙=1∶2∴甲∶乙∶丙=1∶2∶6.三、解答题:4.如右图所示,连结AB'、AC,∴ S△AA'B'=S△ABB'即 S△A'BB'=2S△ABC同理 S△D'DC'=2S△ADC∴ S△A'BB'+S△C'DD'=2△C'DD'=2S四边形ABCD同理 S△AA'D'+S△B'CC'=2S四边形ABCD∴四边形A'B' C' D' 的面积=5×S四边形ABCD=5.5.解:连结AG、CG,如右图所示,∵ AF=EC,有S△AGF=S△CGE,又∵ED=BG,有S△AED=S△ABG且 S△CDE=S△BCG,由此可见:△EFG的三个部分中S△ABG补到了S △EAD,S△AFG补到了S△CEG之后,又将其中的S△BCG补到了S△CDE 而S△AEG的位置不变,由此一来相当于将△EFG等积变形到了四边形ABCD,两者面积相同,即:S△EFG=1.。
四年级下册数学试题-思维训练:三角形等积变形(上)(含答案)全国通用
三角形面积的计算公式:三角形面积=底×高÷2在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等。
②若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
③夹在一组平行线之间的等积变形,如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边CD那么S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。
如图,在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形?如图所示,在平行四边形ABCD中,E为AB的中点,AF=2CF,三角形AFE(图中阴影部分)的面积为8平方厘米。
平行四边形的面积是多少平方厘米?例2例1三角形等积变形(上)如图,三角形ABC被分成了甲、乙两部分,BD=DC=4,BE=3,AE=6,乙部分面积是甲部分面积的几倍?如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC面积是多少平方厘米?如图,长方形ABCD的面积是56平方厘米,点E、F、G分别是长方形ABCD边上的中点,H为AD边上的任意一点,求阴影部分的面积。
如图所示,正方形ABCD的边长为8厘米,长方形EBGF的长为BG为10厘米,那么长方形的宽为几厘米?例6例5例4例3如图,ABCE是一个平行四边形,ADE是一个直角三角形,它们组合成了梯形ABCD。
如果这个梯形的上底、下底和高分别为2cm、5cm和4cm,则图中阴影部分的面积是_____cm2。
测试题1.如图,三角形ABC的面积为1,其中3AE AB=,2BD BC=,三角形BDE的面积是多少?EDCBA2.如图,3BE BC=,4CD AC=,那么,ABC∆的面积是AED∆面积的________倍。
三角形的等积变形1
三角形的等积变形1习题十三一、选择题(有且只有一个正确答案):1.如下左图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有______个.(A)0个(B)1个(C)2个(D)3个2.如上右图,在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有______个.(A)0个(B)1个(C)2个(D)3个3.如下左图,在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有______对.(A)0对(B)1对(C)2对(D)3对4.如上右图,是一个长方形花坛,阴影部分是草地,空地是四块同样的菱形,那么草地与空地面积之比是______.(A)1∶1 (B)1∶1.1(C)1∶1.2 (D)1∶1.45.如右图,长方形AEGK四周上共有12个点,相邻两点的距离都是1厘米,以这些点为顶点构成的三角形面积是3平方厘米的共有______个.(A) 24个(B) 25个(C) 26个(D) 27个二、填空题:1.如下左图,A、B两点是长方形长和宽的中点,那么阴影部分面积占长方形面积的______.2.如上右图,平行四边形ABCD的面积是40平方厘米,图中阴影部分的面积是______.3.如下左图,正方形ABCD的面积为1平方厘米,S△BEG∶S△CEG=2∶1,S△CFG∶S△DFG=1∶1,那么这四个小三角形面积之和______.4.如上右图,在△ABC中,EF平行BC,AB=3AE,那么三角形甲、乙、丙面积的连比是______.三、解答题:1.如下左图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.3.如下左图,在平行四边形ABCD中,E、F分别是AC、BC的三等分点,且SABCD=54平方厘米,求S△BEF.4.如上页右图,将四边形ABCD各边都延长一倍至 A'、B'、C'、D'.连接这些点得到一个新的四边形 A' B' C' D'.如果四边形ABCD的面积是1,求四边形A'B'C'D'的面积.5.如右图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD的面积是1,求△EFG的面积?。
等积变形题目五年级
等积变形题目五年级等积变形是指图形在形状发生改变的过程中,其面积大小保持不变的一种变形。
例如,一个四边形可以变成正方形、长方形、梯形或不规则的其他几边形,只要其面积大小保持不变,就是等积变形。
1.问题:有一个长方体,它的长、宽、高分别是a、b、c(a>b>c),现在进行等积变形,把长方体的长变成d,宽和高保持不变。
请问变形后的长方体与原长方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原长方体和变形后的长方体的体积是相等的。
2.问题:有一个正方体,边长为a,现在进行等积变形,把正方体的边长变成d,请问变形后的正方体与原正方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原正方体和变形后的正方体的体积是相等的。
3.问题:有一个三角形,它的底边为a,高为h,现在进行等积变形,把三角形的底边变成d,高保持不变。
请问变形后的三角形与原三角形的面积相比,是变大还是变小?解析:因为等积变形不改变三角形的面积,所以原三角形和变形后的三角形的面积是相等的。
4.问题:有一个正方形,边长为a,现在进行等积变形,把正方形的边长变成d,请问变形后的正方形与原正方形的面积相比,是变大还是变小?解析:因为等积变形不改变正方形的面积,所以原正方形和变形后的正方形的面积是相等的。
5.问题:有一个长方形,长为a,宽为b,现在进行等积变形,把长方形的长变成d,宽保持不变。
请问变形后的长方形与原长方形的面积相比,是变大还是变小?解析:因为等积变形不改变长方形的面积,所以原长方形和变形后的长方形的面积是相等的。
小学奥数——三角形的等积变形(附答案)
小学奥数三角形的等积变形我们已经掌握了三角形面积的计算公式:三角形面积=底乂高十2这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积•如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小)•这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化•但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化•比如当高变为原来的3倍,底变为原来的土则三角形面积与原来的一样.这就是说’ 一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状•本讲即研究面积相同的三角形的各种形状以及它们之间的关系.为便于实际问题的研究,我们还会常常用到以下结论:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.例如在右圈中,若A ABD与/XAEC的底边相等(KD=DE=EC=|BC)3,它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.同时也可以知道厶ABC的面积是厶ABD或△ AEC面积的3倍.例如在右图中,△ ABC与△ DBC的底相同(它们的底都是BC,它所对的两个顶点A D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等.例如右图中,△ ABC与△ DBO的底相同(它们的底都是BC , △ ABC的高是△ DBC高的2倍(D是AB中点,AB=2BD有AH=2DE,则△ ABC的面积是厶DBC W积的2倍.上述结论,是我们研究三角形等积变形的重要依据.例1用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.方跑如右圏,将EC边四尊分(EDJEPAFC詁玩)・连结AD、AL. AF.则△AED. “ADE、ZXAEF. AAF洋积.方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ ABD M^ ADC等积.然后取AC AB中点E、F,并连结DE DF.以而得到四个等积三角形,即△ADF △ BDF △DCE △ ADE等积.方法如右耳先将EC四等分,即BD=yBC,连结AD,再将AD三等分,即AE二EF = FD二扣,连结CE* CF,从而得到四个等积的三诵形,即公ABD< ACDF, △CEE △ACE等积.例2用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为及 1 : 3: 4.方法1 :如下左图,将BC边八等分,取1 : 3 : 4的分点D E,连结AD AE,从而得到厶ABD△ ADE △ AEC的面积比为1 : 3 : 4.方法厶如上右图,先取EC中点D再取AE的+分点E,连结AD*DE 从而得到三个三角形:△ ADE △ BDE △ ACD其面积比为1 : 3 : 4.方法玉如右图,先取AB中点D,连结CD,再取B上扌分点E,连^ AE,从而得到三个三角形[△AGE. △ABE、△BCD耳面积比为1 : 3:4 +当然本题还有许多种其他分法,同学们可以自己寻找解决.例3如右图,在梯形ABCD中,AC与BD是对角线,其交点0,求证:△COD面积相等.证明:•••△DBC等底等高,••• S A ABC=S\ DBC又••• S △AOB=S\ ABC-S A BOCS △DOC=^ DBC- S A BOC• S A AOB=S\ COD例4如右图,把四边形ABCD改成一个等积的三角形.分析本题有两点要求,一是把四边形改成一个三角形,二是改成的三角形与原四边形面积相等•我们可以利用三角形等积变形的方法,如右图,把顶点A移到CB的延长线上的A'处,△ A' BD与△ ABD面积相等,从而△ A DC面积与原四边形ABCD 面积也相等•这样就把四边形ABCD等积地改成了三角形△ A' DC问题是A'位置的选择是依据三角形等积变形原则•过A作一条和DB平行的直线与CB的延长线交于A'点.解:①连结BD②过A作BD的平行线,与CB的延长线交于A'.③连结A'。
小学数学《三角形的等积变形》练习题
小学数学《三角形的等积变形》练习题基础班1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形?解答:3个。
△AEC、△BED、△DEC 。
2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形?解答:△AEC、△AFC、△ABF。
3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。
4.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。
解答:4×4÷2=85.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.解答:提高班习题二1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形?解答:3个。
△AEC、△BED、△DEC 。
2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形?解答:△AEC、△AFC、△ABF。
3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。
4.如图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与△COD面积相等.证明:∵△ABC与△DBC等底等高,∴S△ABC=S△DBC又∵S△AOB=S△ABC—S△BOCS△DOC=S△DBC—S△BOC∴S△AOB=S△COD.5.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。
解答:4×4÷2=86.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.解答:精英班1.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形?解答:△AEC、△AFC、△ABF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《三角形的等积变形》练习题
基础班
1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形?
解答:3个。
△AEC、△BED、△DEC 。
2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形?
解答:△AEC、△AFC、△ABF。
3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?
解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。
4.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。
解答:4×4÷2=8
5.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.
解答:
提高班
习题二
1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形?
解答:3个。
△AEC、△BED、△DEC 。
2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形?
解答:△AEC、△AFC、△ABF。
3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?
解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。
4.如图,在梯形ABCD中,AC与BD是对角线,其交点O,
求证:△AOB与△COD面积相等.
证明:∵△ABC与△DBC等底等高,
∴S△ABC=S△DBC
又∵S△AOB=S△ABC—S△BOC
S△DOC=S△DBC—S△BOC
∴S△AOB=S△COD.
5.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。
解答:4×4÷2=8
6.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.
解答:
精英班
1.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形?
解答:△AEC、△AFC、△ABF。
2.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?
解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。
3.如图,在梯形ABCD中,AC与BD是对角线,其交点O,
求证:△AOB与△COD面积相等.
证明:∵△ABC与△DBC等底等高,
∴S△ABC=S△DBC
又∵S△AOB=S△ABC—S△BOC
S△DOC=S△DBC—S△BOC
∴S△AOB=S△COD.
4.(北京市第四届“迎春杯”刊赛)下图中三角形ABC的面积为1,
其中AE=3AB,BD=2BC,那么三角形BED的面积是________.
分析:连接辅C助线E.
(三角形BCE的面积)︰(三角形DCE的面积)=BC﹕CD=1﹕1,
所以三角形BCE的面积等.于三角形DCE的面积.
又因为(三角形BCE的面积)︰l=BE﹕AB=2﹕1,
所以三角形BCE的面积等于2.
因此三角形BDE的面积等于2+2=4.
5.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.
解答:
6.如右图,在平行四边形ABCD中,E、F分别是AC、BC的三等分点,且S ABCD=54平方厘米,求S△BEF.
解答:。