八年级数学一次函数的应用专题汇编(含详细解析)
初中数学一次函数的应用题型分类汇编——销售最大利润问题2(附答案详解)
初中数学一次函数的应用题型分类汇编——销售最大利润问题3(附答案详解) 1.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间为一次函数关系,如图所示.(1)当2080x ≤≤时,y = ;(2)要使销售利润达到800元,销售单价应定为每千克多少元.2.“低碳生活,绿色出行”,自行车成为人们喜爱的交通工具.某品牌共享自行车在温州的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)该品牌共享自行车前3个月的投放量的月平均增长率相同,则这三个月一共投放了多少辆自行车?(2)考虑到增强客户体验,该品牌共享自行车准备投入3万元向自行车生产厂商定制了一批两种规格比较高档的自行车,之后投放到某高端写字楼区域.已知自行车生产厂商生产A 型车的成本价为300元/辆,售价为500元/辆,生产B 型车的成本价为700元/辆,售价为1000元/辆.根据指定要求,B 型车的数量需超过12辆,且A 型车的数量不少于B 型车的2倍.自行车生产厂商应如何设计生产方案才能获得最大利润?最大利润是多少?3.某公司在北部湾经济区农业示范基地采购A ,B 两种农产品,已知A 种农产品每千克的进价比B 种多2元,且用24000元购买A 种农产品的数量(按重量计)与用18000元购买B 种农产品的数量(按重量计)相同.(1)求A ,B 两种农产品每千克的进价分别是多少元?(2)该公司计划购进A ,B 两种农产品共40吨,并运往异地销售,运费为500元/吨,已知A 种农产品售价为15元/kg ,B 种农产品售价为12元/kg ,其中A 种农产品至少购进15吨且不超过B 种农产品的数量,问该公司应如何采购才能获得最大利润,最大利润是多少?4.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.5.一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.()1直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;()2若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?6.某经销商从市场得知如下信息:某品牌空调扇某品牌电风扇进价(元/台)700 100售价(元/台)900 160他现有40000元资金可用来一次性购进该品牌空调扇和电风扇共100台,设该经销商购进空调扇x台,空调扇和电风扇全部销售完后获得利润为y元.(1)求y关于x的函数解析式;(2)利用函数性质,说明该经销商如何进货可获利最大?最大利润是多少元?7.甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(本题满分10分)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20 15 12 12B地25 20 10 8(1)设甲库运往A地水泥x吨,求总运费y(元)关于x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?8.在2019春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,甲队每天能完成绿化的面积是80 m2,乙队每天能完成绿化面积的40 m2(1)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x的函数解析式;(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.9.一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.10.总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?11.武汉市雾霾天气严重,环境治理已刻不容缓,武汉市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台,若供应商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式.(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?(3)当售价x(元/台)满足什么条件时,商场每月销售这种空气净化器所获得的利润w(元)不低于70000元?12.某书店在“读书节”之前,图书按标价销售,在“读书节”期间制定了活动计划.(1)“读书节”之前小明发现:购买5本A图书和8本B图书共花279元,购买10本A 图书比购买6本B图书多花162元,请求出A、B图书的标价;(2)“读书节”期间书店计划用不超过3680元购进A、B图书共200本,且A图书不少于50本,A、B两种图书进价分别为24元、16元;销售时准备A图书每本降价1.5元,B图书价格不变,那么书店如何进货才能使利润最大?13.某商店用2500元采购A型商品的件数是用750元采购B种商品件数数量的2倍,已知一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若商店购进A,B型商品共150件,已知A型商品的售价为30元/件,B型商品的售价为25元/件,且全部售出,设购进A型商品m件,求这批商品的利润W(元)与m之间的函数关系式;(3)在(2)的条件下,若A型商品的件数不少于B型商品的4倍,请你设计获利最大的进货方案,并求最大利润.14.城区某新建住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和等于90?15.某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种玩具盒的进价和售价如下表,预计购进乙品牌文具盒的数量y(个)与甲品牌玩具盒数量x(个)之间的函数关系如图所示.甲乙进价(元)15 30售价(元)20 38(1)y与x之间的函数关系式是;(2)若超市准备用不超过6000元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?(3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的关系式,并求出获得的最大利润.16.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?17.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B 型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.18.某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?19.一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果每箱的单价是多少元?(2)该水果店主计划两批水果的售价均定为每千克4元,每箱10千克,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了2%的损耗,但这两批水果销售完后仍赚了不低于2346元,求a的最大值.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,其中A型净水器每台的利润为400元,B型净水器每台的利润为500元.该公司计划再一次性购进两种型号的净水器共100台,其中B型净水器的进货量不超过A 型净水器的2倍,设购进A 型净水器x 台,这100台净水器的销售总利润为y 元.(1)求y 关于x 的函数关系式;(2)该公司购进A 型、B 型净水器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型净水器出厂价下调a (0<a <150)元,且限定公司最多购进A 型净水器60台,若公司保持同种净水器的售价不变,请你根据以上信息,设计出使这100台净水器销售总利润最大的进货方案.21.在某水果店进行了一次促销活动,一次性购买A 种水果的单价y (元)与购买量x (千克)的函数关系如图.(1)当05x <≤时,单价y 为_______元.(2)求图中第②段函数图象的解析式,并指出x 的取值范围.(3)促销活动期间,张老师计划去该店买A 种水果10千克,那么张老师共需花费多少钱?22. 黄石知名特产“黄石港饼”“白鸭牌松花皮蛋”“珍珠果米酒”一直以来享有美誉,深受人们喜爱.端午节快到了,为了满足市场需求,某公司组织20辆汽车装运港饼、皮蛋、米酒共120吨去外地销售,按计划20辆汽车都要装满,且每辆汽车只能装运同一类食品,根据下表提供的信息解答以下问题. 港饼 皮蛋 米酒每辆汽车载重量(吨) 8 65 每吨食品获利(万元) 0.20.4 0.6(1)设装运港饼的车辆为x 辆,装运皮蛋的车辆为y 辆,求y 与x 之间的函数关系式;(2)此次销售获利为W 万元,试求W 关于x 的函数关系式;(3)如果装运每种食品的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.23.我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用 6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.24.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往C、D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C、D两乡运送农机的费用分别为250元/台和200元/台,从B城往C、D两乡运送农机的费用分别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并直接写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(100<a<250)作为优惠,其他费用不变.在(2)的条件下,若总费用最小值为10740元,直接写出a的值.25.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:信息三:按件计酬:每生产一件甲产品可得3.00元,每生产一件乙产品可得5.60元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)小王该月最多能得多少元,此时生产甲、乙两种产品分别多少件.26.黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种,B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.21.(2013年四川攀枝花8分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元;(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案;(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大;最大利润是多少元.28.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y (万件),年获利为z (万元)。
一次函数的应用(知识点+例题)
1.(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).一次函数的应用知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数b kx y +=的图象是经过(0,b )和(-kb,0)两点。
【典型例题】1.直线y=-x+2与x 轴的交点坐标是 ,与y 轴的交点坐标是 2.直线y=-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 3.函数y=x+1与x 轴交点为( )A .(0,-1)B .(1,0)C .(0,1)D .(-1,0)4.直线y=-32x+3与x 轴、y 轴所围成的三角形的面积为( ) A .3 B .6 C .34 D .325.直线y=-2x-4交x 轴、y 轴于点A 、B ,O 为坐标原点,则S △AOB = 。
6.若直线y=3x+b 与两坐标轴所围成的三角形的面积是6个单位,则b 的值是 。
7.如图所示,已知直线y=kx-2经过M 点,求此直线与x 轴交点坐标和直线与两坐标轴围成三角形的面积.2:面积问题面积:一次函数y=kx+b 与x 、y 轴所交的两点与原点组成的三角形的面积为2b k(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。
(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。
(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。
1. 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
初中八年级一次函数实际常用的应用题【有答案】
一次函数实际常用应用类问题1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3、教室里放有一台饮水机,饮水机上有两个放水管。
课间同学们到饮水机前用茶杯接水。
假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。
两个放水管同时打开时,它们的流量相同。
放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。
饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨49cm 30cm36cm 3个球有水溢出(第23题) 图2 图2(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?.8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。
人教版八年级数学下一次函数的应用含答案全解全析
s人教版八年级数学下一次函数的应用一.选择题(共2小题)1.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.6B.8C.9D.12二.填空题(共1小题)2.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程(km)随时间(分)变化的函数图象.乙出发分钟后追上甲.三.解答题(共11小题)3.甲、乙两人同求方程ax﹣b y=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.4.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量A种型号第一周3台销售收入B种型号5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?6.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题(1)起点A与终点B之间相距米.(2)哪支龙舟队先到达终点?(填“甲”或“乙”)(3)分别求甲、乙两支龙舟队离开起点的距离y关于x的函数关系式;(4)甲龙舟队出发多长时间时,两支龙舟队相距200米?8.某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖蓝色地砖原价销售原价销售以八折销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.9.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?10.某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.11.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)第一次第二次A21B135565根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.12.武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)求甲、乙两种收费方式的函数关系式;(2)当印刷多少份学案时,两种印刷方式收费一样?13.春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案.一次函数的应用参考答案一.选择题(共2小题)1.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.6B.8C.9D.12解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,,解得:,∴y=10x(0≤x≤2);当x≥2时,将(2,20)、(4,36)代入y=kx+b中,,解得:,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5﹣44=6(元).故选:A.二.填空题(共1小题)2.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程s(km)随时间(分)变化的函数图象.乙出发6分钟后追上甲.解:根据图象得出:乙在28分时到达,甲在40分时到达,设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故答案为:6.三.解答题(共11小题)3.甲、乙两人同求方程ax﹣b y=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.解:把x=3,y=4代入ax﹣by=7中,得3a﹣4b=7①,把x=1,y=2代入ax﹣by=1中,得a﹣2b=1②,解由①②组成的方程组得,.4.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入第一周第二周A种型号3台4台B种型号5台10台1800元3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:解得:,,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.5.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢6.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?解:(1)340﹣(24﹣22)×5=330(件),(8﹣6)×330=660(元).故答案为:330;660.(2)设直线OD的函数关系式为y=kx+b,将(0,0)、(17,340)代入y=kx+b,,解得:,∴直线OD的函数关系式为y=20x.设直线DE的函数关系式为y=mx+n,将(22,340)、(24,330)代入y=mx+n,,解得:,∴直线DE的函数关系式为y=﹣5x+450.联立两函数解析式成方程组,,解得:,∴点D的坐标为(18,360).∴y与x之间的函数关系式为y=.(3)640÷(8﹣6)=320(件),当y=320时,有20x=320或﹣5x+450=320,解得:x=16或x=26,∴26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵折线ODE的最高点D的坐标为(18,360),360×2=720(元),∴当x=18时,日销售利润最大,最大利润为720元.7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题(1)起点A与终点B之间相距3000米.(2)哪支龙舟队先到达终点?乙(填“甲”或“乙”)(3)分别求甲、乙两支龙舟队离开起点的距离y关于x的函数关系式;(4)甲龙舟队出发多长时间时,两支龙舟队相距200米?解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得,解得,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=(符合题意);综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.故答案为:3000;乙.8.某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.解:(1)设红色地砖每块a元,蓝色地砖每块b元,由题意可得:,解得:,答:红色地砖每块8元,蓝色地砖每块10元;(2)设购置蓝色地砖x块,则购置红色地砖(12000﹣x)块,所需的总费用为y元,由题意可得:x≥(12000﹣x),解得:x≥4000,又x≤6000,所以蓝砖块数x的取值范围:4000≤x≤6000,当4000≤x<5000时,y=10x+8×0.8(12000﹣x)=76800+3.6x,所以x=4000时,y有最小值91200,当5000≤x≤6000时,y=0.9×10x+8×0.8(1200﹣x)=2.6x+76800,所以x=5000时,y有最小值89800,∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.9.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?=kx,把(2000,1600)代入,解:(1)设y甲得2000k=1600,解得k=0.8,=0.8x;所以y甲=ax,当0<x<2000时,设y乙把(2000,2000)代入,得2000a=2000,解得a=1,所以y=x;乙=mx+n,当x≥2000时,设y乙把(2000,2000),(4000,3400)代入,得,解得.=;所以y乙(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.10.某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:y 最大 ﹣200×18+27000=23400 元. (1)生产 A ,B 两种产品的方案有哪几种;(2)设生产这 30 件产品可获利 y 元,写出 y 关于 x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.解:(1)根据题意得:,解得 18≤x ≤20,∵x 是正整数,∴x =18、19、20,共有三种方案:方案一:A 产品 18 件,B 产品 12 件,方案二:A 产品 19 件,B 产品 11 件,方案三:A 产品 20 件,B 产品 10 件;(2)根据题意得:y =:700x+900(30﹣x )=﹣200x+27000,∵﹣200<0,∴y 随 x 的增大而减小,∴x =18 时,y 有最大值,=答:利润最大的方案是方案一:A 产品 18 件,B 产品 12 件,最大利润为 23400 元.11.小明购买 A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件) 购买总费用(元)第一次第二次A21 B135565根据以上信息解答下列问题:(1)求 A ,B 两种商品的单价;(2)若第三次购买这两种商品共 12 件,且 A 种商品的数量不少于 B 种商品数量的 2 倍,请设计出最省钱的购买方案,并说明理由.解:(1)设 A 种商品的单价为 x 元,B 种商品的单价为 y 元,根据题意可得:,解得:,答:A种商品的单价为20元,B种商品的单价为15元;(2)设第三次购买商品A种a件,则购买B种商品(12﹣a)件,根据题意可得:a≥2(12﹣a),得:8≤a≤12,∵m=20a+15(12﹣a)=5a+180∴当a=8时所花钱数最少,即购买A商品8件,B商品4件.12.武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)求甲、乙两种收费方式的函数关系式;(2)当印刷多少份学案时,两种印刷方式收费一样?解:(1)设甲的函数解析式是y=kx+b,根据题意得:,解得:,则甲的函数解析式是:y=0.1x+6;设乙的函数解析式是y=mx,根据题意得:100m=12,解得:m=0.12,则乙的函数解析式是:y=0.12x;(2)根据题意得:0.1x+6=0.12x,解得:x=300,故当印刷300份学案时,两种印刷方式收费一样.13.春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案.解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故当租车时间为当租车时间大于当租车时间小于小时时,两种选择一样;小时时,选择租车公司合算;小时时,选择共享汽车合算.。
八年级数学一次函数应用知识点归纳
八年级数学一次函数应用知识点归纳八年级数学一次函数的应用知识点归纳1一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
常用公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴*行线段的中点:(x1+x2)/23.求与y轴*行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)^2+(y1-y2)^2]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1y2=k2x+b2令y1=y2得k1x+b1=k2x+b2将解得的x=x0值代回y1=k1x+b1y2=k2x+b2两式任一式得到y=y0则(x0,y0)即为y1=k1x+b1与y2=k2x+b2交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]八年级数学一次函数的应用知识点归纳2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
八年级数学一次函数的应用专题练习汇总(含答案)
一次函数的应用专题练习汇总1.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.2.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;②求出预估利润的最大值,并写出此时购进三款手机各多少部3.如图,某工厂D与A,B两地有公路、铁路相连,且A→C→D与B→E→D距离相等,BE=2CD,C→D→E的距离为120千米,A→C→D比C→D→E的距离远10千米.这家工厂从A地购买一批每吨1000元的原料运回工厂,全部制成产品后(加工过程中有材料损耗),以每吨8000元把全部产品运到B地销售.已知公路运输费用为1.5元/吨?千米,铁路运输费用为 1.2元/吨?千米,这两次运输共支出公路运费15000元,铁路运输97200元.请回答下列问题:(1)设该工厂从A地购买了x吨原料,运往B地的产品为y吨,根据题意,完成表格的填空:(2)试确定x,y的值,并求出这批产品全部销售后所获得的利润(利润=售价﹣原料成本﹣运输费用)。
4.4+一次函数的应用++知识考点梳理+课件+2024-2025学年北师大版数学八年级上册
4.4 一次函数的应用
返回目录
考
典例3 如图,直线 y =ax +b(a≠0)过点A(0,1),
点
清 B(2,0),则关于 x的方程 ax+b=0 的解为 _______.
单
解
读
[答案] x=2
4.4 一次函数的应用
返回ቤተ መጻሕፍቲ ባይዱ录
重 ■题型一 借助两个一次函数图象解决问题
将(1,40)代入,得 m=40,所以 L2 的表达式为
s=40t;
4.4 一次函数的应用
(2)根据题意,得-60t+300=40t,解得 t=3.
重
难
答:两辆火车行驶 3 h 时相遇;
题
型
(3)由题意,得相遇前相距 100 km:-60t+300突
破 40t=100,解得 t=2;
相遇后相距 100 km:40t-(-60t+300)=100,解得
返回目录
归纳总结
考
点
从图象上获取信息可以从两个方面去分析:(1)根据函
清
单 数图象可判断函数类型;(2)从横轴、纵轴的实际意义去
解
读 理解函数图象上点的坐标的实际意义,进而结合所学知识解
决实际问题.
4.4 一次函数的应用
返回目录
对点典例剖析
考
点
典例2 如图所示的是某种蜡烛在燃烧过程中高度与时间
清
单 之间关系的图象,此蜡烛经过 ____ h 燃烧完毕.
函数;
(2)画图象:画出一次函数的图象;
(3)找交点:找出一次函数的图象与 x
轴交点的横坐标,即为一元一次方程的解
一次函数的应用(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题4.18一次函数的应用(知识梳理与考点分类讲解)【知识点1】确定一次函数的表达式1.正比例函数的表达式为y=kx(k为常数k≠0),只有一个待定系数k,因而只需一个条件就可以求得k的值,从而确定表达式。
2.一次函数一次函数的表达式y=kx+b(k、b为常数k≠0)中,只有确定k,b的值,才能得到表达式,所以利用待定系数法确定一次函数的表达式时需要两个条件,即两个变量的两对对应值才能求出k和b的值,从而确定表达式。
特别提醒:在正比例函数y=kx(k为常数k≠0)中,只有一个待定系数k,只需要一个除(0,0)外的条件即可求出k的值,在一次函数y=kx+b(k、b为常数k≠0)中,有两个待足系数k,b因而需要两个条件才能求出k和b的值.【知识点2】建立一次函数的模型解实际应用题利用一次函数的图象解决实际问题,关键是找到图象中两个变量之间的数量关系,把实际问题抽象、升华为一次函数模型,即建模,再利用一次函数的相关性质解决实际问题,常见类型如下:(1)题目中已知一次函数的关系式,可直接运用一次函数的性质求解;(2)题目中没有给出一次函数的关系式,而是通过语言、表格或图象给出一次函数的情境,这时需要先根据题目给出的信息求出一次函数的关系式,再利用一次函数的性质解决实际问题.特别提醒:实际问题中的函数图象一般是射线或线霈结合题薏理解段,它们的图象是射线或线段的原因,应用一次函数解决实际问题的关键是建立一次函数模型,同时注薏实际问题中目变量的取值范围要使实际问题有薏义【知识点3】一次函数与一元一次方程之间的关系一次函数y=kx+b(k、b为常数k≠0)与一元一次方程kx+b=0(k,b为常数,k≠0)的关系数:函数y=kx+b,函数值y=0时自变量x值是方程kx+b=0的解;形:函数y=kx+b图象与x交点的横坐标是方程kx+b=0的解.特别提醒:实际问题中的函数图象一般是射线或线段,需结合题薏理解它们的图象是射线或线段的原因,应用一次函数解决实际问题的关键是建立一次函数模型,同时注意实际问题中自变量的取值范围要使实际问题有意义。
初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)
初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)1.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元2.小卖部从批发市场购进一批李子,在销售了部分李子之后,余下的每千克降价3元,直至全部售完.销售金额(元)与李子销售量(千克)之间的关系如图所示.若销售这批李子一共赢利220元,那么这批李子的进价是_____元.3.某商店卖水果,数量x(千克)与售价y(元)之间的关系如下表,(y是x的一次函数): x/(千克) 0.51 1.52···y/(元) 1.60.1+ 6.40.1+···+ 3.20.1+ 4.80.1x=千克时,售价_______________元当74.某蔬菜公司收到某种绿色蔬菜20吨,准备一部分进行精加工,其余部分进行粗加工,加工后销售获利的情况如下表:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000设该公司精加工的蔬菜为x吨,加工后全部销售获得的利润为y元.(1)求y与x间的函数表达式;(2)若该公司加工后全部销售获得的利润为28000元,求该公司精加工了多少吨蔬菜?5.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.6.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞20 1.6第2次捕捞15 2.0第3次捕捞15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.7.某商人进货时,进价已按原价a扣去了25%,他打算对此货订一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额与货物售出件数之间的函数关系式.8.某县盛产苹果,春节期问,一外地经销商安排15辆汽年装运A、B、C三种不同品质的苹果120吨到外地销售,按计划15辆汽年都要装满且每辆汽车只能装同一种品质的苹果,每辆汽车的运载量及每吨苹果的获利如下表:苹果品种A B C 每辆汽车运载数9 8 7 每吨获利(元)600 1000 800(1)设装运A 种苹果的车辆数为x 辆,装运B 种苹果车辆数为y 辆,据上表提供的信息,求出y 与x 之间的函数关系式;(2)为了减少苹果的积压,县林业局制定出台了促进销售的优惠政策,在外地经销商原有获利不变情况下,政府对外地经销商按每吨50元的标准实行运费补贴若A 种苹果的车辆数x 满足36x ≤≤.若要使该外地经销商所获利W (元)最大,应采用哪种车辆安排方案并求出最大利润W (元)的最大值.9.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图(1)所示,成本y 2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y 1、y 2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?10.某养殖户长期承包一口鱼糖养鱼,每年养殖一批,从鱼苗放入养到成品需要300天,鱼糖承包费用每年5000元,他记录了前几年平均每天投入饲料量(单位:kg )与年底成品鱼(达到一定规格可以销售)产量之间的关系如下表:平均每天投入饲料(kg )2025 30 40 50 60 70 80 成品鱼产量(kg )2800 3000 3200 3600 3900 4000 3900 3600(1)请用适当的函数模型描述平均每天投入饲料数量与成品鱼产量之间的关系;(2)如果今年的饲料价格为1.6元/kg ,成品鱼销售价为20元/kg ,鱼苗费用4000元,假设养成的成品鱼全部都能按此价格卖出.请建立适当的函数模型分析:平均每天投入饲料多少千克时,该养殖户当年在该鱼糖养殖这种鱼获得的利润最多,最多利润是多少元?(利润=销售收入﹣饲料成本﹣鱼糖承包费﹣鱼苗成本).11.我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价x (元)与年销售量y (万件)之间的变化可近似的看作是如下表所反应的一次函数: 销售单价x (元) 200 230250 年销售量y (万件) 1411 9(1)请求出y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?12.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 13.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y (万元)与产量x (吨)之间的关系如图所示()0100x ≤≤.已知草莓的产销投入总成本p (万元)与产量x x (吨)之间满足1p x =+.(1)直接写出草莓销售单价y (万元)与产量x (吨)之间的函数关系式;(2)求该合作社所获利润w (万元)与产量x (吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润'w (万元)不低于55万元,产量至少要达到多少吨?14.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表: 商品甲 乙 进价(元/件)60x + x 售价(元/件)200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a 件(30a ≥),设销售完50件甲、乙两种商品的总利润为w 元,求w 与a 之间的函数关系式,并求出w 的最小值.15.为加快“智慧校园”建设,某市准备为试点学校采购一批,A B 两种型号的一体机,经过市场调查发现,每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机.(1)列二元一次方程组解决问题:求每套A 型和B 型一体机的价格各是多少万元? (2)由于需要,决定再次采购A 型和B 型一体机共1100套,此时每套A 型体机的价格比原来上涨25%,每套B 型一体机的价格不变.设再次采购A 型一体机()600m m ≤套,那么该市至少还需要投入多少万元?16.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?17.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?18.某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题: 产品名称核桃 花椒 甘蓝 每辆汽车运载量(吨)10 6 4 每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.(1)求y 与x 之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.19.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数).(I )根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.20.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x 为整数)每件产品的成本是p 元,p 与x 之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x 天生产的产品件数y (件)与x (天)满足如下关系:y=()()220110401015x x x x x ⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数, 设李师傅第x 天创造的产品利润为W 元.(1)直接写出p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围: (2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?21.某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?22.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x(件),销售甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.23.为建设最美恩施,一旅游投资公司拟定在某景区用茶花和月季打造一片人工花海,经市场调查,购买3株茶花与4株月季的费用相同,购买5株茶花与4株月季共需160元. (1)求茶花和月季的销售单价;(2)该景区至少需要茶花月季共2200株,要求茶花比月季多400株,但订购两种花的总费用不超过50000元,该旅游投资公司怎样购买所需总费用最低,最低费用是多少. 24.某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?25.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x元(x为非负整数),每周的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?26.已知某服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.(1)求y (元)与x (套)的函数关系式.(2)有几种生产方案?(3)如何生产使该厂所获利润最大?最大利润是多?27.某商店分两次购进A 、B 两种商品进行销售,每次购进同一种商品的进价相同,具体情况如下表所示:(1)求A 、B 两种商品每件的进价分别是多少元?(2)商店计划用5300元的资金进行第三次进货,共进A 、B 两种商品100件,其中要求B 商品的数量不少于A 商品的数量,有几种进货方案?(3)综合考虑(2)的情况,商店计划对第三次购进的100件商品全部销售,A 商品售价为30元/件,每销售一件A 商品需捐款a 元(1≤a≤10)给希望工程,B 商品售价为100元/件,每销售一件B 商品需捐款b 元给希望工程,a+b =14.直接写出当b = 时,销售利润最大,最大利润为 元.28.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵? (2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.29.某生产商存有1200千克A 产品,生产成本为150元/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产B 产品,B 产品售价为200元/千克.经市场调研发现,A 产品存货的处理价格y (元/千克)与处理数量x (千克)满足一次函数关系(01000x ),且得到表中数据. x (千克)y (元/千克) 200 350400 300(1)请求出处理价格y (元千克)与处理数量x (千克)之间的函数关系;(2)若B 产品生产成本为100元千克,A 产品处理数量为多少千克时,生产B 产品数量最多,最多是多少?(3)由于改进技术,B 产品的生产成本降低到了a 元/千克,设全部产品全部售出,所得总利润为W (元),若5001000x <≤时,满足W 随x 的增大而减小,求a 的取值范围.30.(2017黑龙江省龙东地区,第27题,10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A 型口罩和3个B 型口罩共需26元;3个A 型口罩和2个B 型口罩共需29元.(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A 型口罩数量不少于35个,且不多于B 型口罩的3倍,有哪几种购买方案,哪种方案最省钱?31.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数关系式;(2)直接写出自变量x 的取值范围.32.为节能减排,某公交公司计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车2辆,B 型公交车3辆,共需650万元;若购买A 型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于830万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?33.为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y (元)与使用面积x ()2m 间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y 与x 间的函数解析式;(2)若校园文化墙总面积共2600m ,其中使用甲石材x 2m ,设购买两种石材的总费用为w 元,请直接写出w 与x 间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于2300m ,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?34.某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB BC CD →→所示(不包括端点A ).(1)当5001000x <≤时,写出y 与x 之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?35.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x (元/箱)与销售量y(箱)有如表关系:每箱售价x(元) 68 67 66 65 (40)每天销量y(箱) 40 45 50 55 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.36.佳佳商场卖某种衣服每件的成本为80元,据销售人员调查发现,每月该衣服的销售量y(单位:件)与销售单价x(单位:元/件)之间存在如图中线段AB所示的规律:(1)求y与x之间的函数关系式,并写出x的取值范围;(2)若某月该商场销售这种衣服获得利润为1350元,求该月这种衣服的销售单价为每件多少元?37.瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数). (2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少? (3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元? 38.某文具店计划购进A ,B 两种笔记本共60本,每本A 种笔记本比B 种笔记本的利润高3元,销售2本A 种笔记本与3本B 种笔记本所得利润相同,其中A 种笔记本的进货量不超过进货总量的23,B 种笔记本的进货量不少于30本. (1)每本A 种笔记本与B 种笔记本的利润各为多少元?(2)设购进B 种笔记本m 本,销售总利润为W 元,文具店应如何安排进货才能使得W 最大?(3)实际进货时,B 种笔记本进价下降n (35n ≤≤)元.若两种笔记本售价不变,请设计出笔记本销售总利润最大的进货方案.39.某公司欲将m 件产品全部运往甲,乙,丙三地销售(每地均有产品销售),运费分别为40元/件,24元/件,7元/件,且要求运往乙地的件数是运往甲地件数的3倍,设安排x (x 为正整数)件产品运往甲地. (1)根据信息填表:(2)若总运费为6300元,求m 与x 的函数关系式并求出m 的最小值.40.为了“还城市一片蓝天”,市政府决定大力发展公共交通,鼓励市民乘公交车或地铁出行.设每天公交车和地铁的运营收入为y 百万元,客流量为x 百万人,以(x ,y )为坐标的点都在左图中对应的射线上.其中,运营收入=票价收入﹣运营成本.交通部门经过调研,采取了如图所示的调整方案.(1)在左图中,代表公交车运营情况的(x,y)对应的点在射线上,公交车的日运营成本是百万元,当客流量x满足时,公交车的运营收入超过4百万元;(2)求调整后地铁每天的运营收入和客流量之间的函数关系,不要求写自变量的取值范围.参考答案1.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.2.10【解析】【分析】观察函数图象,利用单价=总价÷数量及数量=总价÷单价,可分别求出李子的原价及降价后销售的数量,设这批李子的进价是x元/千克,根据利润=销售收入−成本,即可得出关于x的一元一次方程,解之即可得出结论.【详解】李子的原价为600÷40=15(元/千克),降价后销售的数量为(720﹣600)÷(15﹣3)=10(千克). 设这批李子的进价是x 元/千克, 依题意,得:720﹣(40+10)x =220, 解得:x =10. 故答案为:10. 【点睛】本题考查了一元一次方程的应用以及一次函数的应用,找准等量关系,正确列出一元一次方程是解题的关键. 3.22.5 【解析】 【分析】根据表格可直接得到数量x (千克)与售价y (元)之间的关系式,然后把7x =代入计算,即可得到答案. 【详解】解:根据表格,设一次函数为:y kx b =+,则1.60.1=0.5+b3.20.1k k b+⎧⎨+=+⎩, 解得: 3.20.1k b =⎧⎨=⎩,∴ 3.20.1y x =+; 把7x =代入,得:3.270.1=22.5y =⨯+;∴当7x =千克时,售价为22.5元. 【点睛】本题考查了一次函数的性质,求一次函数的解析式,解题的关键是熟练掌握待定系数法求一次函数的解析式.4.(1)y 100020000x =+;(2)该公司精加工了8吨蔬菜. 【解析】 【分析】。
初中数学一次函数的应用题型分类汇编——销售最大利润问题B(附答案详解)
初中数学一次函数的应用题型分类汇编——销售最大利润问题B(附答案详解)1.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第27天的日销售利润是875元2.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?3.某零件制造厂有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件的成本为400元,可获利150元,每制造一个乙种零件的成本为500元,可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)写出次厂家每天获利y(元)与x(元)之间的函数关系式;(2)若该厂家每天最多能投入的成本为49000元,那么该厂家每天最多能获利多少元?4.某校为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个(其中乙种书柜的数量不少于甲种书柜的数量的23).设该校计划购进甲种书柜m个,资金总额为W元.求W与m的函数关系式,并请你为该校设计资金最少的购买方案.5.某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种圭特产,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.6.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆. (1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。
八年级数学一次函数的应用(代数综合篇)专项训练+答案解析
1.如图,在菱形纸八年级数学⼀次函数的应⽤(代数综合篇)专项训练+答案解析⽚中,是边上⼀点,将沿直线翻折,使点落在上,连接.已知、,则的度数为()A .B .C .D .2.已知,在内有⼀定点P ,点M ,N 分别是,上的动点,若的周⻓最⼩值为3,则的⻓为()A .B .3C .D .3.如图,有⼀张矩形纸⽚ABCD .先对折矩形ABCD ,使AD 与BC重合,得到折痕EF ,把纸⽚展平.再⼀次折叠纸⽚,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN .观察所得的线段,若AE =1,则MN =()B .1D .24.如图,在矩形ABCD 中,E 为AD 的中点,F 为AB 上⼀点,将△AEF 沿EF 折叠,点A 恰好落在CF 上的点G 处.若AB=BC =12,则折痕EF 的⻓为.点E 为射线DC 上⼀个动点,把△ADE 沿直线AE 折叠,当点D 的对应点F 刚好落在线段AB 的垂直平分线上时,5.如图,在矩形ABCD 中,AD =5,AB =8,则DE 的⻓为.6.如图,在边⻓为6的正⽅形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折⾄△AFE ,延⻓EF 交BC 于点G ;连接AG .(1)求证:△ABG ≌△AFG ;(2)求BG的⻓.答案解析Z B A E=Z B AE=50°,A B=A B,:四边形A B CD是菱形,:A B=A D,Z B A D=Z C=120°:Z B A D=Z B A D-2Z B A E=20°,:A B=A D解:由翻折得,故选:C.2.解:作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB于N,连接PM,PN,则此时△PMN的周长最小连接O D,OE,‘P、D关于O A对称,..OD=OP,P M=D M,同理OE=O P,P N=E N,··O D=OE=O P,∵P、D关于O A对称,..O A1PD,·'O D=O P,..Z D O A=2PO A,同理z P O B=Z EOB,2DOE=2Z A OB=2×30°=60°,·'OD=O E,△DOE是等边三角形,.D E=O D=O P,3.解:∵对折矩形ABCD,使AD与BC重合,得到折痕EF,∴AE=BE=1,AB=2AE=2,∠AEF=∠BEN=90°,∵折叠纸⽚,使点A落在EF上,并使折痕经过点B,∴BN=AB=2,∠ABM=∠NBM,∠BNM=∠A=90°,4.5.解:分两种情况:①如图1,当点F在矩形内部时,∵点F在AB的垂直平分线MN上,∴AN=4;∵AF=AD=5,由勾股定理得FN=3,∴FM=2,设DE为y,则EM=4-y,FE=y,在△EMF中,由勾股定理得:y2=(4-y)2+22,∴y=,即DE的⻓为.②如图2,当点F在矩形外部时,同①的⽅法可得FN=3,∴FM=8,设DE为z,则EM=z-4,FE=z,在△EMF中,由勾股定理得:z2=(z-4)2+82,∴z=10,即DE的⻓为10.综上所述,点F刚好落在线段AB的垂直平分线上时,DE的⻓为或10.故答案为:或10.6.(1)证明:∵四边形ABCD是正⽅形,∴AB=AD,∠B=∠D=90°,由折叠得AF=AD,∠AFE=∠D=90°,∴AB=AF,∠AFG=180°-∠AFE=90°,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL).(2)解:∵Rt△ABG≌Rt△AFG,∴BG=FG,设BG=FG=x,∵四边形ABCD是边⻓为6的正⽅形,E是边CD的中点,∴∠C=90°,CG=6-x,FE=DE=CE=CD=×6=3,∴EG=3+x,∵CG2+CE2=EG2,∴(6-x)2+32=(3+x)2,解得x=2,∴BG的⻓为2.。
初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解)
初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解) 1.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为( )A .购买A 类会员卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡2.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 3.学校准备租用甲乙两种大客车共8辆,送师生集体外出研学,每辆甲种客车的租金是400元,每辆乙种客车的租金是280元,设租用甲种客车x 辆,租车费用为y 元. (1)求出y 与x 的函数关系式;(2)若租用甲种客车不少于6辆,应如何租用租车费用最低,最低费用是多少? 4.某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.优惠期间,设某游客(或一个家庭)采摘草莓的重量为x (kg ),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.(1)分别求y1,y2与x之间的函数关系式;(2)求点A的坐标,并解释坐标的实际意义;(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)5.某市为支援灾区建设,计划向A、B两受灾地运送急需物资分别为60吨和140吨,该市甲、乙两地有急需物资分别为120吨和80吨,已知甲、乙两地运到A、B两地的每吨物资的运费如表所示:甲乙A20元/吨15元/吨B25元/吨24元/吨(1)设甲地运到A地的急需物资为x吨,求总运费y(元)关于x(吨)的函数关系式,并写出x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.6.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?7.为了争创全国文明卫生城市,优化城市环境,节约能源,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多10万元,购买3台A型车比购买4台B型车少30万元.(1)请求出a和b的值;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的油量不低于21.6万升,请问有几种购车方案?请写出解答过程.(3)求(2)中最省钱的购车方案及所需的购车款.8.某电视机厂要印制产品宜传材料甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y元与印制数量x(份)之间的关系式(2)在同一直角坐标系内画出它们的图象;(3)根据图像回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些? 9.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买,A B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)10.中国移动公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴12元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.3元.(通话均指拨打本地电话)()1设一个月内通话时间约为x分钟(3x≥且x为整数),求这两种用户每月需缴的费用分别是多少元?(用含x的式子表示)()2若张老师一个月通话约180分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?并说明理由.11.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?12.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.13.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费设小丽家每月所用煤气量为x立方米,应交煤气费为y元.(1)若小丽家某月所用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的解析式.(3)若小丽家4月份的煤气费为88元,则她家4月份所用煤气量为多少立方米?(4)已知小丽家6月份所交的煤气费平均每立方米为0.95元,那么6月份小丽家用了多少立方米的煤气?14.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.15.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.16.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。
部编数学八年级下册专题38一次函数的应用之几何问题(解析版)含答案
专题38一次函数的应用之几何问题1.如图,在平面坐标系中,直线:l y kx b =+分别与x 轴,y 轴交于点3,02A æö-ç÷èø,点()0,3B .(1)求直线l 的解析式;(2)若点C 是y 轴上一点,且ABC V 的面积是154,求点C 的坐标;(3)在(2)的条件下,当点C 在y 轴负半轴时,在平面内是否存在点D ,使以A ,B ,C ,D 为顶点的四边形是平行四边形?若存在,直接写出点D 的坐标;若不存在,请说明理由.2.如图①,在矩形OACB 中,点A 、B 分别在x 轴、y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)请直接写出点C 的坐标;(2)如图②,点F 在BC 上,连接AF ,把ACF V 沿着AF 折叠,点C 刚好与线段AB 上一点C ¢重合,求线段CF 的长度;(3)如图③,点(,)P x y 为直线26y x =-在第一象限内的图象上的个动点,点D 在线段AC 上(不与点A 、C 重合),是否存在直角顶点为P 的等腰直角BDP △,若存在,请求出点P 的坐标:若不存在,请说明理由.Q BPD D 是等腰三角形,\ BP PD =,90BPD Ð=°,\EF BC ∥,\BEP Ð=90PFD Ð=°,\BPE DPF DPF PDF Ð+Ð=Ð+Ð,\BPE PDF Ð=Ð,\()BPE PDF AAS D D ≌,\6(26)122PF BE a a ==--=-,EP DF =,Q 1228EF EP PF a a =+=+-=,\4a =,\点(4,2)P ,点D 为(8,6)在端点上,点(4,2)P 不符合题意,舍去;②当点P 在BC 的上方时,如图④,过点P 作EF BC ∥,交y 轴于E ,交AC 的延长线于F ,同理可证BPE PDF D D ≌,\266212BE PF a a ==--=-,3.如图,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y =2x-6经过线段OA的中点D,与y轴交于点G,E是线段CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)写出点B的坐标是( , );(2)当43OABCBEGFS S=正方形四边形时,求点E的坐标;(3)在点E的整个运动过程中,①当四边形BEGF为菱形时,求点E的坐标;②若N为平面内一点,当以B,E,F,N为顶点的四边形为矩形时,m的值为 .(请直接写出答案)4.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M 在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.5.如图1,在平面直角坐标系中,直线AB 分别交x 轴、y 轴于A(a ,0)、B(0,b)两点,且a ,b 满足(a ﹣b )2+|a ﹣4t|=0,且t >0,t 是常数.直线BD 平分∠OBA ,交x 轴于D 点.(1)若AB 的中点为M ,连接OM 交BD 于N ,求证:ON =OD ;(2)如图2,过点A 作AE ⊥BD ,垂足为E ,猜想AE 与BD 间的数量关系,并证明你的猜想;(3)如图3,在x 轴上有一个动点P (在A 点的右侧),连接PB ,并作等腰Rt △BPF ,其中∠BPF =90°,连接FA 并延长交y 轴于G 点,当P 点在运动时,OG 的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【答案】(1)见解析;(2)BD =2AE ,证明见解析;(3)OG 的长不变,OG =4t【分析】(1)根据直线解析式求出点A 、B 的坐标,然后得出AOB D 是等腰直角三角形,再根据角平分线的定义求出22.5ABD Ð=°,根据等腰三角形三线合一的性质OM AB ^,然后根据直角三角形两锐角互余的性质与三角形的一个外角等于与它不相邻的两个内角的和求出67.5OND Ð=°,67.5ODB Ð=°,利用等角对等边得到ON OD =;(2)延长AE 交BO 于C ,得ABE CBE D @D ,得到2AC AE =,再证OAC OBD D @D 得到BD AE =,从而得到2BD AE =;()ABE CBE ASA \D @D ,AE CE \=,2AC AE \=,AE BD ^Q ,90OAC ADE \Ð+Ð=°,又90OBD BDO Ð+Ð=°,ADE BDO Ð=Ð(对顶角相等),OAC OBD \Ð=Ð,在OAC D 与OBD D 中,OAC OBD OA OB BOD AOCìÐ=Ðïïïï=íïïïÐ=Ðïî,()OAC OBD ASA \D @D ,BD AC \=,2BD AE \=;(3)OG 的长不变,且4OG t =.过F 作FH OP ^,垂足为H ,90FPH PFH \Ð+Ð=°,90BPF Ð=°Q ,90BPO FPH \Ð+Ð=°,FPH BPO \Ð=Ð,BPF D Q 是等腰直角三角形,BP FP \=,在OBP D 与HPF D 中,90FPH BPO BOP FHP BP FPìÐ=ÐïïïïÐ=Ð=°íïïï=ïî,()OBP HPF AAS \D @D ,FH OP \=,4PH OB t ==,=,Q,OA OB=+=+AH PH AP OB AP\=+=,AH OA OP OP\=,FH AH\Ð=Ð=°,45GAO FAH\D是等腰直角三角形,AOG\==.OG OA t4【点睛】本题综合考查了一次函数,全等三角形的判定与全等三角形的性质,以及等腰直角三角形的性质,角平分线的定义,等腰三角形三线合一的性质等等知识点,熟悉相关性质是解题的关键.6.如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.【点睛】本题主要考查一次函数的图象的平移和正方形的性质的综合,掌握待定系数法和求直线和坐标轴的交点坐标是解题的关键.7.已知,一次函数364y x =-+的图像与x 轴、y 轴分别交于点A 、点B ,与直线54y x = 相交于点C ,过点B 作x 轴的平行线l .点P 是直线l 上的一个动点.(1)求点A ,点B 的坐标.(2)若AOC BCP S S =△△,求点P 的坐标.(3)若点E 是直线54y x =上的一个动点,当△APE 是以AP 为直角边的等腰直角三角形时,求点E 的坐标.8.如图,将一矩形纸片OABC 放在平面直角坐标系中,()0,0O ,()6,0A ,()0,3C .动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t (秒).(Ⅰ)OE =_____________,OF =_____________;(用含t 的代数式表示)(Ⅱ)当1t =时,将OEF V 沿EF 翻折,点O 恰好落在CB 边上的点D 处.①求点D 的坐标及直线DE 的解析式;②点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,S 为MBN △的面积,当点M 与点B 重合时,0S =.求S 与b 之间的函数关系式,并求出自变量b 的取值范围.∵OEF V 沿EF 翻折得到DEF V ,∴53FD OF ==.∴1410BM b=-+.9.已知,直线y=2x-2与x轴交于点A,与y轴交于点B.(1)如图①,点A的坐标为_______,点B的坐标为_______;(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.①求点C的坐标;②过动点P(m,0)且垂直与x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是_______;(3)若∠ABN=45º,求直线BN的解析式.令y=0,则2x-2=0,即x=1过点C 作CD⊥x 轴,垂足是D,∵∠BOA=∠ADC=90°,∠BAO=∠CAD,CA=AB,∴△BOA≌△CAD(AAS),∴CD=OB=2,AD=OA=1,∴C(2,2);②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2.故答案是:m<0或m>2;(3)如图③,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.∵∠AOB=∠BAN=∠AHN=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAN=90°,∴∠ABO=∠HAN,∵AB=AN,∴△ABO≌△NAH(AAS),∴AH=OB=2,NH=OA=1,∴N(3,-1),设直线BN的解析式为y=kx+b,则有:312k bb+=-ìí=-î,解得132kbì=ïíï=-î,∴直线BN的解析式为y=13x-2,当直线BN′⊥直线BN时,直线BN′也满足条件,直线BN′的解析式为:y3x2=--.∴满足条件的直线BN的解析式为y=13x-2或y=-3x-2.【点睛】本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动23秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(1)OE= ,OF= (用含t的代数式表示)(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=0.求S 与b之间的函数关系式,并求出自变量b的取值范围.11.如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;(3)求△ABC的面积.12.已知11y kx =+过点(2,-1),与x 轴交于点A,F 点为(1,2).(Ⅰ)求k 的值及A 点的坐标;(Ⅱ)将函数1y 的图象沿y 轴方向向上平移得到函数2y ,其图象与y 轴交于点Q,且OQ=QF,求平移后的函数2y 的解析式;(Ⅲ)若点A 关于2y 的对称点为K,请求出直线FK 与x 轴的交点坐标.13.在平面直角坐标系中,直线1l:142y x=-+分别与x轴、y轴交于点A、点B,且与直线2l:y x=于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且BODV的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图1,直线AB交x轴于点A(4 ,0),交y轴于点B(0 ,-4),(1)如图,若C的坐标为(-1, ,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH ,求证:∠OHP=45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子BDM ADN S S -V V 的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【答案】(1)P (0 ,-1);(2)证明见解析;(3)不变;4.【分析】(1)利用坐标的特点,得出△OAP ≌△OB ,得出OP=OC=1,得出结论;(2)过O 分别做OM ⊥CB 于M 点,ON ⊥HA 于N 点,证出△COM ≌△PON ,得出OM=ON ,HO 平分∠CHA ,求得结论;(3)连接OD ,则OD ⊥AB ,证得△ODM ≌△ADN ,利用三角形的面积进一步解决问题.试题解析:(1)由题得,OA=OB=4.【详解】解:∵AH ⊥BC 于H ,∴∠OAP +∠OPA=∠BPH +∠OBC=90°,∴∠OAP=∠OBC在△OAP 和△OBC 中,90COB POA OA OB OAP OBC Ð=Ð=°ìï=íïÐ=Ðî∴△OAP ≌△OBC (ASA ),∴OP=OC=1,则点P (0 ,-1)(2)过点O 分别作OM ⊥CB 于M 点,ON ⊥HA 于N 点,15.如图,直线12y x b=-+与x轴,y轴分别交于点A,点B,与函数y=kx的图象交于点M(1,2).(1)直接写出k,b的值和不等式012x b kx£-+£的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数y=﹣12x+b和y=kx的图象于点C,点D.若2CD=OB,求点P的坐标.16.无刻度直尺作图:图1 图2(1)直接写出四边形ABCD的形状.(2)在图1中,先过E点画一条直线平分四边形ABCD的面积,再在AB上画点F,使得AF=AE.(3)在图2中,先在AD上画一点G,使得∠DCG=45°;连接AC,再在AC上画点H,使得GH=GA.【答案】(1)四边形ABCD是菱形,理由见解析(2)见解析(3)见解析【分析】(1)只需要证明AB=CD=AD=BC即可得到结论;(2)如图连接AC,BD交于点T,作直线ET交BC于G,连接AG交BD于H,连接CH并延长交AB于F,则直线EG,点F即为所求;(3)如图所示,取格点T,连接CT交AD于G,取格点M、N,连接MN交BC于P,连接GP交AC于H,则点G、H即为所求;(1)求直线AB 的解折式;(2)如图2,已知P 为直线l :152y x =-+上一点,且512ABI ABCO S S =四边形△,求点P 的坐标;(3)若点D 为第一象限内一动点,且45ODC Ð=°,求BD 的最小值.∴∠BDA =90°,∵BC ∥OA ,BC =2,OA =6,∴AD =6−2=4,在Rt △ABD 中,BD =(22213AB AD -=∴PQ=|yQ−yP|=31922m m -++∵xA−xB=6−2=4,∴S△ABP=12PQ•(xA−xB)=12×4×|4−S四边形ABCO=12×(2+6)×6=24,∵∠ODC=45°,∠MOD=90°,18.如图,直线y =x +9与直线y =-2x -3交于点C ,它们与y 轴分别交于A 、B 两点.(1)求A 、B 、C 三点的坐标;(2)点F 在x 轴上,使10BFC S =△,求点F 的坐标;(3)点P 在x 轴上,使∠PBO +∠PAO =90°,直接写出点P 的坐标.。
初中数学一次函数的应用题型分类汇编——销售最大利润问题4(附答案详解)
(2)若该商店决定拿出10000元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种的6倍,且少于B种纪念品数量的8倍,设购进B种纪念品a件,则该商店共有几种进货方案?
(3)在第(2)问的条件下,若销售每件A种纪念品可获利润30元,每件B种纪念品可获利润40元,设总利润为y元,请写出总利润y(元)与a(个)的函数关系式,并根据函数关系式说明总利润最高时的进货方案.
(1)求y与x的函数关系式;
(2)如何分配工人才能获利最大?
3.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.
(1)求A,两种奖品的单价;
(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的 .请设计出最省钱的购买方案,并说明理由.
初中数学一次函数的应用题型分类汇编——销售最大利润问题4(附答案详解)
1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
9.某厂计划生产A、B两种产品共100件,已知A产品每件可获利润400元,B产品每件可获利润500元,其中规定生产B产品的数量不超过A产品数量的2倍,设生产A产品的数量为x(件),生产两种产品的获利总额为y(元)
一次函数的应用与综合篇(解析版)--中考数学必考考点总结+题型专训
知识回顾一次函数的应用与综合--中考数学必考考点总结+题型专训1.一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,kb ;与y 轴的交点坐标公式为:()b ,0。
2.一次函数的平移:①左右平移,自变量上进行加减。
左加右减。
即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。
②上下平移,解析式整体后面进行加减。
上加下减。
即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。
3.一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。
即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。
②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。
即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。
③若一次函数关于原点对称,则自变量与函数值均变成相反数。
即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。
4.待定系数法求函数解析式:具体步骤:①设函数解析式——()0≠+=k b kx y 。
②找点——经过函数图像上的点。
③带入——将找到的点的坐标带入函数解析式中得到方程(或方程组)。
④解——解③中得到的方程(或方程组),求出b k ,的值。
⑤反带入——将求出的k ,5.一次函数与一元一次方程:①若一次函数()0≠+=k b kx y 的图像经过点()n m ,,则一元一次方程n b kx =+的解为m x =。
初中数学一次函数的应用大题专练《行程问题》重难点培优30题含答案解析
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题19.7一次函数的应用大题专练(1)行程问题(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题1.(2022春·黑龙江大庆·七年级校考期中)如图,甲骑自行车与乙骑摩托车沿相同路线由A 地到B地行驶,两地之间的路程是60km,请根据图象解决下列问题:(1)分别求出甲行驶的路程y1(km)、乙行驶的路程y2(km)与甲行驶的时间x(ℎ)之间的函数表达式;(2)若甲、乙都行驶且甲与乙相距的路程为12km,求x的值.【答案】(1)y1=10x;y2=40x−120(2)3.6或4.4【分析】(1)根据函数图象上的数据,利用待定系数法求函数表达式即可;(2)观察图象可知,有两种情况下甲与乙相距的路程为12km,一种是甲与乙相遇前,一种是甲与乙相遇后,分情况列式计算即可求解.(1)解:设甲行驶的路程y1(km)与甲行驶的时间x(ℎ)之间的函数表达式为y1=k1x,∵函数图像经过(4,40)点,∴40=4k1,解得k1=10,∴甲行驶的路程y1(km)与甲行驶的时间x(ℎ)之间的函数表达式为y1=10x;设乙行驶的路程y2(km)与甲行驶的时间x(ℎ)之间的函数表达式为y2=k2x+b,∵函数图像经过(4,40)和(4.5,60),∴40=4k2+b60=4.5k2+b,解得k2=40,b=−120,∴y2=40x−120,∴乙行驶的路程y2(km)与甲行驶的时间x(ℎ)之间的函数表达式为y2=40x−120;(2)解:甲、乙都行驶且甲与乙相遇前相距的路程为12km时,10x−(40x−120)=12,解得x=3.6;甲、乙都行驶且甲与乙相遇后前相距的路程为12km时,(40x−120)−10x=12,解得x=4.4;∴甲、乙都行驶且甲与乙相距的路程为12km时,x的值为3.6或4.4.【点睛】本题考查一次函数的实际应用,学会观察函数图象,利用数形结合思想是解答本题的关键.2.(2022春·辽宁丹东·七年级校考期末)一条公路旁边依次有A,B,C三地,甲、乙两人同时分别从A地、B地骑自行车前往C地,他们距C地的路程S(km)与行驶时间t(h)之间的函数关系如图所示,请根据图像提供的信息解答下列问题:(1)A,B两地相距千米,A,C两地相距千米;(2)分别求出甲、乙两人距C地的路程S与行驶时间t之间的函数关系式;(3)甲、乙两人谁先到达C地,此时另一人距C地的路程还有多少?【答案】(1)10,40(2)S甲=﹣20t+40,S乙=﹣12t+30(3)甲先到达C地,此时乙距C的路程还有6千米【分析】(1)根据图象得出A,B两地和A,C两地之间的距离即可;(2)设函数关系式为S甲=k1t+40,把(0,40)、(2,0)代入解答即可,设函数关系式为S 乙=k2t+30,把(0,30)、(2.5,0)两点代入解答即可;(3)由图象解答即可.(1)解:A,B两地相距40﹣30=10千米,A,C两地相距40千米;故答案为:10,40;(2)解:由函数图象知,甲距C地的路程S甲与行驶时间t之间的函数图象过(0,40)、(2,0)两点,设函数关系式为S甲=k1t+40,则有0=2 k1+40,即k1=﹣20.所以所求函数关系式为:S甲=﹣20t+40;因为乙距C地的路程s与行驶时间t之间的函数图象过(0,30)、(2.5,0)两点,可设函数关系式为S乙=k2t+30,则有0=2.5 k2+30,即k2=﹣12.所以所求函数关系式为:S乙=﹣12t+30;(3)解:由图象知,当t=2,S甲=0,即甲到达C地.而当t=2时,S乙=﹣12×2+30=6(千米).答:甲先到达C地,此时乙距C的路程还有6千米.【点睛】本题考查了函数的图象及待定系数法求一次函数解析式,待定系数法是数学解题中经常用到的,也是中考的热点问题,同学们注意熟练掌握.3.(2022春·黑龙江大庆·七年级统考期末)甲、乙两车分别从BA两地同时出发,甲车匀速前往A地,乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,设甲、乙两车离A地的路程为y(千米),乙车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)乙车从A地到达B地的速度是__________千米/时;(2)乙车到达B地时甲车距A地的路程是__________千米;(3)m=_________;n=_________.【答案】(1)120(2)100三地,A、B两地相距420千米,甲、乙两辆汽车分别从A、B两地同时出发,沿公路匀速相向而行,分别开往B、A两地.甲、乙两车到C地的距离y1,y2(千米)与行驶时间x(小时)的关系如图所示.根据图象进行以下探究:(1)直接写出相应距离:AC=______千米;BC=______千米;(2)求甲车的速度,并求出图中b的值.(3)在行驶过程中,求甲、乙两车之间的距离y3(千米)与行驶时间x(小时)的关系式.回学校,两人都沿同一条路直线运动,小红回到学校停留三分钟后又以同样的速度去美术馆,小明的速度是80米/分钟,如图是两人与学校的距离s(米)与小明的运动时间t(分钟)之间的关系图.(1)学校与美术馆之间的距离为_________米;(2)求小红停留再出发后s与t的关系式;(3)请直接写出小明和小红在途中相遇时小明的运动时间.答是解题的关键.6.(2022春·江西抚州·七年级统考期末)“双减”政策下,孩子们的课余支配时间更多了.肖强每周都会去图书馆看课外书.这个周末,他早晨8时从家出发步行去图书馆.途中发现忘了带借书证,于是原路原速返回,同时电话联系爸爸.爸爸马上骑自行车送借书证并在路上遇见肖强.为了多一些阅读时间,爸爸按原速骑自行车送肖强去图书馆.肖强离家的距离s (m)与时间t(min)之间的关系如图所示.请根据图中所提供的信息,回答下列问题:(1)图象中自变量是______,因变量是______;(2)肖强步行的速度是______m/min,爸爸骑自行车的速度是______m/min;(3)肖强离家______m时遇到爸爸,图书馆离肖强家有______m;(4)写出爸爸骑自行车送肖强去图书馆时肖强离家的距离s与时间t之间的关系式.【答案】(1)时间,肖强离家的距离(2)80,160(3)800,2400(4)s=160t−2400【分析】(1)图象中横轴为自变量,纵轴为因变量,由此可解;(2)根据速度=路程÷时间,即可求解;(3)根据路程=速度×时间,即可求解;(4)利用待定系数法即可求解.(1)解:由题意,图象中自变量是时间,因变量是肖强离家的距离,故答案为:时间,肖强离家的距离;(2)解:观察图象可知,肖强步行15分钟离家1200米,∴肖强步行的速度是1200÷15=80m/min,观察图象可知,爸爸从第15到第20分钟骑行了5分钟,离家800米,∴爸爸骑自行车的速度是800÷5=160m/min,故答案为:80,160;(3)解:观察图象可知,肖强离家800m时遇到爸爸,从第20到第30分钟骑行10分钟,到达图书馆,∴图书馆离肖强家的距离为:800+160×(30−20)=2400m,故答案为:800,2400;(4)解:由(3)知,当t=20时,s=800,当t=30时,s=2400,设s与时间t之间的关系式为:s=kt+b,将(20,800)和(30,2400)代入得,800=20k+b2400=30k+b,解得k=160b=−2400,∴s与时间t之间的关系式为s=160t−2400.【点睛】本题考查一次函数的实际应用,读懂题意,从图象中获取相关信息是解题的关键.7.(2022春·陕西西安·七年级统考期末)甲、乙两位同学从A地出发,在同一条路上骑自行车到B地,他们离出发地的距离S(千米)与甲行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息解答下列问题:(1)A地到B地的距离多少千米?甲中途停留了多长时间?(2)求乙骑行的速度多少?(3)求甲在停留时离A地的距离是多少千米?(4)求甲在停留后,他离出发地的距离S和t之间的函数关系式;(5)求乙到达B地时,甲离B地的距离是多少?地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s(km)与甲行驶的时间为t(h)之间的关系如图所示.(1)以下是点M、点N、点P所代表的实际意义,请将M、N、P填入对应的括号里.①甲到达终点②甲乙两人相遇③乙到达终点(2)AB两地之间的路程为千米:(3)求甲、乙各自的速度;(4)甲出发多长时间后,甲、乙两人相距180千米?【点睛】本题考查函数图象在实际问题中的应用,正确理解图象各点意义、熟练把握行程问题各量的等量关系是解题关键.9.(2022春·重庆·七年级重庆八中校考期中)一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地距离y(km)与轿车行驶时间x(h)的关系.(1)求轿车在返回甲地过程中的速度;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处离甲地的距离.两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢辆车距各自出发地的路程y(km)与所用的时间x(h)的关系如图所示.(1)甲乙两地之间的距离为_______km,快车的速度为______km/h,慢车的速度为______km/h;(2)出发_______h,快慢两车距各自出发地的路程相等;(3)快慢两车出发_______h相距150km.沿相同路线前行,途中爸爸有事返回,小明继续前行5分钟后也原路返回,两人恰好同时回家,小明和爸爸在整个运动过程中离家的距离y(米)与所用时间x(分)的关系如图所示:(1)m=______,n=______;(2)小明返回时和爸爸之间的距离是多少?(3)从家出发多长时间,两人相距900米?(直接写出答案)车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量S(km)表示,甲所用的时间用变量t(小时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程S与t的变化关系,请根据图象回答:(1)直接写出:甲出发后 小时,乙才开始出发;(2)乙的行驶速度是 千米/小时;(3)求乙行驶几小时后追上甲,此时两人相距B地还有多少千米?路程S(km)与行驶时间t(ℎ)之间的关系如图所示.请根据图象所提供的信息解答下列问题:(1)甲的速度是km/ℎ,乙的速度是km/ℎ(2)求出甲或乙距A地的路程S与行驶时间t之间的函数关系式(任求一个);(3)直接写出在什么时间段内乙比甲离A地更近?。
初中数学一次函数的应用题型分类汇编——销售最大利润问题5(附答案详解)
初中数学一次函数的应用题型分类汇编——销售最大利润问题5(附答案详解)1.某公司根据市场需求销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划用不超过9.8万元购进A,B两种型号的净水器共50台,其中A型、B型净水器每台售价分别为2500元、2180元,设A型净水器为x台.①求x的取值范围.②若公司决定从销售A型净水器的利润中每台捐献a(100<a<150)元给贫困村饮水改造爱心工程,求售完这50台净水器后获得的最大利润.2.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.3.某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:设其中甲种商品购进x件,商场售完甲、乙两种商品的总利润为y元.(1)写出y关于x的函数关系式;(不要求写出自变量的范围)(2)若商场售完甲、乙两种商品的总利润为2500元,则购进甲、乙两种商品各多少件?4.某商店购进了一种新款小电器,为了寻找合适的销售价格,进行了为期5周的试营销,试营销的情况如表所示:已知该款小电器的进价每台30元,设该款小电器每台的售价为x 元,每周的销量为y 台.(1)观察表中的数据,推断y 与x 满足什么函数关系,并求出这个函数关系式; (2)若想每周的利润为9000元,则其售价应定为多少元?(3)若每台小电器的售价不低于40元,但又不能高于进价的2倍,则如何定价才能更快地减少库存?此时每周最多可销售多少台?5.甲,乙两件衣服的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.(1)求甲、乙两件服装的定价各是多少元?(2)商店老板计划购进甲、乙两款服装共1000件,仍按九折出售,设购进甲服装a 件,所获利润为W 元,写出W (元)与a (件)之间的函数关系式.(3)应顾客需求,最多可购进甲款服装600件,则商店可获得最大利润为多少? 6.某水产养殖户进行小龙虾养殖. 已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量()y kg 与时间第t 天之间的函数关系式为2100y t =+(180t ≤≤,t 为整数),销售单价p (元/kg )与时间第t 天之间满足一次函数关系如下表:(1)写出销售单价p (元/kg )与时间第t 天之间的函数关系式;(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?7.我县黄墩镇有“安徽蓝莓第一镇”的美誉,截至目前,初步形成了以良种繁育、规模种植、休闲采摘、预冷保鲜、食品加工等较为完整的蓝莓产业.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗) 已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;()2试求如何分配工人,才能使一天的销售收入最大?并求出最大值.8.某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间具有某种函数关系,其对应规律如下表所示售价x(元/本)…22 23 24 25 26 27 …销售量y(件)…36 34 32 30 28 26 …(1)请直接写出y与x的函数关系式:.(2)设该文店每周销售这种纪念册所获得的利润为W元,写出W与x之间的函数关系式,并求出该纪念册的销售单价定为多少元时,才能使文具店销售该纪念册每周所获利润最大?最大利润是多少?9.温州瓯柑,声名远播.某经销商欲将仓库的120吨瓯柑运往A,B两地销售.运往A,B两地的瓯柑(吨)和每吨的运费如下表.设仓库运往A地的瓯柑为x吨,且x为整数...瓯柑(吨) 运费(元/吨)A地x 20B地30(1)设仓库运往A,B两地的总运费为y元.①将表格补充完整.②求y关于x的函数表达式.(2)若仓库运往A地的费用不超过...运往A,B两地费用的13,求总运费的最小值.10.我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?11.某公司销售一种产品,经分析发现月销量y(万件)于月份x(月)的关系如下表所示,每件产品的利润z(元)与x月份(月)满足关系式z=-x+20(1≤x≤12,且x为整数)x 1 2 3 4 5 6 7 8 9 10 11 12y 27 30 33 36 39 42 45 48 46 44 42 40(1)请你根据表格分别求出1≤x≤8,9 ≤x≤12(x为整数)时,销售量y(万件)与月份x(月)的关系式;(2)求当x为何值时,月利润w(万元)有最大值,最大值为多少?(3)求该公司月利润不少于576万元的月份是哪几个月?12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价2万元.如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆销售多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为8.5万元,B款汽车每辆进价为6万元,公司预计用多于100万元且少于110万元的资金购进这两款汽车共15辆,问有几种进货方案?(3)在(2)的前提下,如果B款汽车每辆售价为12万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,奖励顾客现金1.8万元,怎样进货公司的利润最大(假设能全部卖出)?最大利润是多少?13.小张到老王的果园里一次性采购一种水果,他俩商定:小张的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式,并写出x的取值范围;(2)已知老王种植水果的成本是2400元/吨,那么小张的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?14.某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?15.某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销售,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天多售出4箱.(1)如果要使每天销售饮料获利14000元,则每箱应该降价多少元?(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应该降价多少?若不能,请说明理由.(3)要使每天销售饮料获利最大,每箱应该降价多少元?最大获利是多少?16.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.该产品在第x周(x为正整数,且1≤x≤8)个销售周期的销售价格为y元,y与x之间满足如图所示的一次函数.(1)求y与x之间的函数关系;(2)产品在第x个销售周期的销售数量为p万台,p与x之间满足:11p x22=+.已知在某个销售周期的销售收入是16000万元,求此时该产品的销售价格是多少元?17.今年的猪肉价格一直以来一路飙升,市民们一致声称:吃不起!近日,王老师通过相关部门了解到2019年1月到10月湖州各大超市的猪肉的月平均售价,并绘制了如图所示的函数图象,其中1月份到5月份的猪肉售价y与月份x之间的关系符合线段AB,5月份到10月份的猪肉售价y与月份x之间的关系符合抛物线BC.已知点A(1,16),点B(5,17),点C(10,42),且点B是抛物线的顶点.(1)求线段AB和抛物线BC的解析式;(2)已知1月份到5月份猪肉的平均进价为13元/斤,5月份到10月份猪肉的平均进价z与月份x之间的关系为z=3x﹣2(x为正整数),若设每销售一斤猪肉获得的利润为w,试求1月到10月w至少是多少元?18.水果店张阿姨以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y (元)与销售量x (千克)之间的关系如图所示.(1)情境中的变量有_______________.(2)求降价后销售额y (元)与销售量x (千克)之间的函数表达式;(3)当销售量为多少千克时,张阿姨销售此种水果的利润为150元?19.某商场计划购进A,B两种新型节能台灯共80盏,这两种台灯的进价、售价如下表所示:(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20.某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不少于2500元且不多于2600元的资金购进这批台灯,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a<20),问该商场该如何进货,才能获得最大的利润?21.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 23.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱. (1)求y关于x的函数表达式;(2)若要求购进A水果的数量不少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?24.春节临近,各家各户将会准备置办年货,为满足顾客的需求,某超市计划用不超过20000元购进甲、乙两种商品共1200件进行销售.甲、乙两种商品的进价分别为每件20元、14元,甲种商品每件的售价是乙种商品每件售价的1.4倍,若用280元在超市可购买甲种商品的件数比用800元购买乙种商品的件数少30件.(1)甲乙两种商品的售价分别为每件多少元?(2)超市为了让利顾客,决定甲种商品售价每件降低3元,乙种商品售价每件降低2元,问超市应如何进货才能获得最大利润?(假设购进的两种商品全部销售完)25.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设.洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元.(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富士的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由.26.某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价)(1)销售单价x=元时,日销售利润w最大,最大值是元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?27.为庆祝“六一”国际儿童节,学校团委王老师计划到超市购买A种文具100件,她到超市后发现还有B种文具可供选择,如果调整文具购买的品种,每减少购买1件A种文具,需增加购买2件B种文具.设购买x件A种文具时,需购买y件B种文具.(1)①当减少购买3件A种文具时,x=,y=;②求y与x之间的函数关系式;(2)已知A种文具每件6元,B种文具每件4元,王老师想尽可能的多购买B种文具,但总金额不能超过680元,那么王老师最多能购买B种文具几件?28.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?29.某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?30.海水养殖是莱州经济产业的亮丽名片之一,某养殖场响应山东省加快新旧动能转换的号召,今年采用新技术投资养殖了200万笼扇贝,并且全部被订购,已知每笼扇贝的成本是40元,售价是100元,打捞出售过程中发现,一部分扇贝生长情况不合要求,最后只能按照25元一笼出售,如果纯收入为y万元,不合要求的扇贝有x万笼. (1)求纯收入y关于x的关系式.(2)当x为何值时,养殖场不赔不嫌?参考答案1.(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)①x的取值范围为:0≤x≤40且为x整数,②售完这50台净水器后获得的最大利润为23800﹣40a 【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)①根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围;②由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量﹣a×购进A型净水器的数量,即可得出w关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:5000045000200m m=-,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)①根据题意得:2000x+1800(50﹣x)≤98000,解得:x≤40∴x的取值范围为:0≤x≤40且为x整数;②总利润w=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵100<a<150,∴i).当100<a<120时,120﹣a>0,w随x增大而增大,∴当x=40时,w取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,ii).当a=120时,w为一个定值w=0+19000=19000,iii)当120<a<150时,120﹣a<0,w随x的增大而减小,∴当x=0时,w取最大值,其最大值为:(120﹣a)×0+19000=19000,综上,当100<a<120时,19000<23800﹣40a<19800,∴售完这50台净水器后获得的最大利润为23800﹣40a.【点睛】本题主要考查一次函数的应用、一元一次不等式的应用、分式方程的应用,解答本题就明确题意,充分利用一次函数的性质,注意分式方程要检验.解题的关键是找准等量关系,列出分式方程及函数关系式,并学会分段讨论其最值.2.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解;②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m)×40-21000-700m=2400解得:m=2∴m的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.3.(1)y=﹣10x+3000(0<x<100);(2)购进甲、乙两种商品各50件.【解析】【分析】(1)根据总利润=(甲的售价﹣甲的进价)×购进甲的数量+(乙的售价﹣乙的进价)×购进乙的数量代入列关系式,并化简;(2)将y=2500代入关系式可求解.【详解】(1)已知可得:y=(60﹣40)x+(120﹣90)(100﹣x)=﹣10x+3000(0<x<100).(2)当y=2500时,2500=﹣10x+3000,∴x=50,∴100﹣x=50,答:购进甲、乙两种商品各50件.【点睛】本题考查了一次函数的应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润×数量,商品利润率=商品利润/商品进价×100%;认真读题,弄清题中的每一个条件.4.(1)y与x满足一次函数关系,y=﹣6x+660;(2)若想每周的利润为9000元,则其售价应定为每台60元或每台80元;(3)定价为40元/台时,才能更快地减少库存,此时每周最多可销售420台【解析】【分析】(1)根据题意和表格中的数据可以判断出y与x的函数关系式,并求出这个函数关系式;(2)根据题意可以得到每周的利润为9000元,则其售价应定为多少元;(3)根据题意和(1)中的函数关系式,利用一次函数的性质可以解答本题.【详解】解:(1)y 与x 满足一次函数关系,设y 与x 的函数关系式为y =kx+b ,5036040420k b k b +=⎧⎨+=⎩,得k 6b 660=-⎧⎨=⎩, 即这个函数关系式是y =﹣6x+660;(2)(x ﹣30)(﹣6x+660)=9000,解得,x 1=60,x 2=80,答:若想每周的利润为9000元,则其售价应定为每台60元或每台80元;(3)由题意可得,40≤x≤30×2,即40≤x≤60,∵y =﹣6x+660,∴当x =40时,y 取得最大值,此时y =420,答:定价为40元/台时,才能更快地减少库存,此时每周最多可销售420台.【点睛】本题考查的知识点是一次函数在实际问题中的应用,用一元二次方程求函数解析式是解此题的关键.5.(1)甲的定价为450元,乙的定价为280元;(2)W =53a +52000;(3)83800元【解析】【分析】(1)若设甲服装的成本为x 元,则乙服装的成本为(500﹣x )元.根据公式:总利润=总售价﹣总进价,即可列出方程;(2)根据公式:总利润=总售价﹣总进价,即可得出W (元)与a (件)之间的函数关系式;(3)把a =600代入(2)的结论解答即可.【详解】解:设甲服装的成本为x 元,则乙服装的成本为(500﹣x )元,根据题意得:90%•(1+50%)x +90%•(1+40%)(500﹣x )﹣500=157,解得:x=300,500﹣x=200.甲服装的成本为300元、乙服装的成本为200元,300×1.5=450(元),200×1.4=280(元),故甲的定价为450元,乙的定价为280元;(2)根据题意得W=(450×0.9﹣300)a+(280×0.9﹣200)(1000﹣a)=53a+52000;(3)当a=600时,W=53×600+52000=83800(元).答:商店可获得最大利润为83800元.【点睛】考核知识点:一次函数与最大值.理解实际问题的意义是关键.6.(1)1502p t=-+;(2)第19天的日销售利润最大,最大利润是4761元.【解析】【分析】(1)设销售单价p(元/kg)与时间第t天之间的函数关系式为:p=kt+b,将(1,49.5),(2,49)代入,再解方程组即可得到结论;(2)设每天获得的利润为w元,由题意根据利润=销售额-成本,可得到w=-(t-19)2+4761,根据二次函数的性质即可得到结论.【详解】(1)设销售单价p(元/kg)与时间第t天之间的函数关系式为:p kt b=+,将(1,49.5),(2,49)代入,得49.5 249k bk b+=⎧⎨+=⎩,解得1250 kb⎧=-⎪⎨⎪=⎩.∴销售单价p(元/kg)与时间第t天之间的函数关系式为1502p t=-+.(2)设每天获得的利润为w元.由题意,得1(2100)506(2100)2w t t t⎛⎫=+-+-+⎪⎝⎭2384400t t=-++2(19)4761t =--+.∵10a =-<,∴w 有最大值. 当19t =时, w 最大,此时,4761w =最大(元)答:第19天的日销售利润最大,最大利润是4761元.【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.7.(1)y=-350x+63000;(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【解析】【分析】(1)根据“总销售收入=总销售量×单价”即可得出答案;(2)由采摘的蓝莓数量要大于加工的蓝莓数量得出x 的取值范围,再结果(1)中求出的y 和x 的函数关系式,即可得出答案.【详解】解:(1)根据题意得:y=[70x-(20-x)×35]×40+(20-x)×35×130=-350x+63000 答:y 与x 的函数关系式为y=-350x+63000.(2)∵70x≥35(20-x) ∴203x ≥ ∵x 为正整数,且x≤20∴7≤x≤20∵y=-350x+63000中k=-350<0∴y 的值随着x 的增大而减小∴当x=7时,y 取最大值,最大值为-350×7+63000=60550答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【点睛】本题考查的是一次函数的应用,根据题意写出函数解析式是解决本题的关键,结合函数图像和性质可求最大最小值.8.(1)y =﹣2x +80;(2)W =﹣2x 2+120x ﹣1600;当该纪念册销售单价定为30元/件时,才能使文具店销售该纪念册所获利润最大,最大利润是200元【解析】【分析】(1)由表中数据可知,y 是x 的一次函数,设y=kx+b ,代入表中的两组数据,即可得出函数解析式,再将其余数据验证一下更好;(2)根据(售价-进价)×销售量=利润,列出函数关系式,再由二次函数的性质可得何时取最大值即可.【详解】(1)由表中数据可知,y 是x 的一次函数,设y =kx+b ,由题意得:22362334k b k b +=⎧⎨+=⎩ 解得280k b =-⎧⎨=⎩∴y =﹣2x+80检验:当x =24时,y =﹣2×24+80=32;当x =25时,y =﹣2×25+80=30; 当x =26时,y =﹣2×26+80=28; 当x =27时,y =﹣2×27+80=26.故y =﹣2x+80符合要求.故答案为:y =﹣2x+80.(2)W 与x 之间的函数关系式为:W =(x ﹣20)(﹣2x+80)=﹣2x 2+120x ﹣1600=﹣2(x ﹣30)2+200,∵﹣2<0∴当x =30时,W 的值最大,最大值为200元.∴W 与x 之间的函数关系式为W =﹣2x 2+120x ﹣1600;当该纪念册销售单价定为30元/件时,才能使文具店销售该纪念册所获利润最大,最大利润是200元.【点睛】本题考查了猜测函数关系式,并用待定系数法求解,以及二次函数在成本利润问题中的应用,明确成本利润之间的基本数量关系及二次函数的性质,是解题的关键.9.(1)①x-20; ②y=-10x+3600 (0≤x≤120);(2)当x=51时,总运费有最小值,最小为3090元【解析】【分析】(1)①由仓库运往A 地瓯柑x 吨,根据题意首先求得仓库运往B 地瓯柑(120-x )吨,将表格补充完整jk ;②根据表格求得总运费y (元)关于x (吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=51时,总运费y 最省,然后代入求解即可求得最省的总运费.【详解】(1)①将表格补充完整为:②y 关于x 的函数表达式为y=30(120-x )+20x=-10x+3600 (0≤x≤120);(2)依题意有20x≤()11036003x -+, 解得x≤3607, ∵k=-10<0,y 随x 的增大而减少,∵x 是整数,∴当x=51时,y 最小值=3090.答:总运费的最小值为3090元.【点睛】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.10.(1)()22003060y x x =-+≤≤ ;(2)销售单价为每千克60元时,日获利最大,最大获利为1900元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学一次函数的应用专题汇编一.解答题(共12小题)1.(?常德模拟)抗战救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食全部转移到具有较强抗震功能的A、B两仓库,已知甲库有粮食80吨,乙库有粮食100吨,而A库的容量为110吨,B库的容量为70吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨?千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨?千米)甲库乙库甲库乙库A库20 15 13 12B库25 20 10 8(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?2.(?深圳模拟)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.薄板的边长(cm)20 30出厂价(元/张)50 70(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)40cm的薄板,获得的利润是26元(利润=出厂价﹣成本价).①求一张薄板的利润与边长之间满足的函数关系式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?3.(?武昌区校级模拟)某商店购进A型和B型两种电脑进行销售,已知B型电脑比A型电脑的每台进价贵500元,若商店用3万元购进的A型电脑与用 4.5万元购进的B型电脑的数量相等.A型电脑每台的售价为1800元,B型电脑每台的售价为2400元.(1)求A、B两种型号的电脑每台的进价各是多少元?(2)该商店计划用不超过12.5万元购进两种型号的电脑共100台,且A型电脑的进货量不超过B型电脑的.①该商店有哪几种进货方式?②若该商店将购进的电脑全部售出,请你用所学的函数知识求出获得的最大利润.4.(?深圳二模)在“五?一”期间,“佳佳”网店购进A、B两种品牌的服装进行销售,已知B 种品牌服装的进价比A种品牌服装的进价每件高20元,2件A种品牌服装与3件B种品牌服装进价共560元.(1)求购进A、B两种品牌服装的单价;(2)该网站拟以不超过1120元的总价购进这种两品牌服装共100件,并全部售出.其中A 种品牌服装的售价为150元/件,B种品牌服装的售价为200元/件,该网站为了获取最大利润,应分别购进A、B两种品牌服装各多少件?所获取的最大利润是多少?5.(?玄武区一模)已知A市出租车原收费标准如下:不超过3km的路程按起步价10元收费,超过3km以外的路程按 2.4元/km收费.为了减少出租车空车返回的损失,现A市决定实施返空费方案,设出租车行驶的路程为xkm,具体方案如下:当0<x≤20时,按原收费标准收费;当x>20时,在原收费标准基础上,再加收0.01x元/km.例如,当出租车行驶了50km时,收费总额为: 2.4×(50﹣3)+10+(0.01×50)×(50﹣20)=137.8(元).(1)A市实施返空费方案后,当x>20时,求收费总额y(元)与x(km)的函数关系式;(2)自4月1日起,南京市实施的返空费方案是:不超过20km的路程,与A市的原收费标准相同;超过20km以外的路程,按原单价 2.4元/km的1.5倍收费.若行驶路程x超过20km,分别按两市返空费方案计算,当收费总额相同时,求x的值.6.(?长春二模)甲、乙两个工程队共同开凿一条隧道,甲对按一定的工作效率先施工,一段时间后,乙队从隧道的另一端按一定的工作效率加入施工,中途乙队遇到碎石层,工作效率降低,当乙队完成碎石层时恰好隧道被打通,此时甲对工作了50天.设甲、乙两队各自开凿隧道的长度为y(米),甲对的工作时间为x(天),y与x之间的函数图象如图所示.(1)求甲队的工作效率;(2)求乙队在碎石层施工时y与x之间的函数关系式;(3)求这条隧道的总长度.7.(?蓬安县校级自主招生)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B 地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.8.(?赤峰模拟)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的 1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?9.(?扬州模拟)某84消毒液工厂,去年五月份以前,每天的产量与销售量均为500箱,进入五月份后,每天的产量保持不变,市场需求量不断增加.如图是五月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(五月份以30天计算)(1)该厂月份开始出现供不应求的现象.五月份的平均日销售量为箱;(2)为满足市场需求,该厂打算在投资不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:型号 A B价格(万元/台)28 25日产量(箱/台)50 40请设计一种购买设备的方案,使得日产量最大;(3)在(2)的条件下(市场日平均需求量与5月相同),若安装设备需5天(6月6日新设备开始生产),指出何时开始该厂有库存?10.(?湖北模拟)在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走.为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高.这样每天生产的服装数量y(套)与时间x(元)的关系如下表:时间x(天) 1 2 3 4 …每天产量y(套)22 24 26 28 …由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.(1)判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.(2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?(3)从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?11.(?夏津县一模)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)4000 2500售价(元/部)4300 3000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共 2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.12.(?保定一模)小明妈妈,每天需赶头班公交车,驶往终点站.离他家最近的公交站点离终点站15km,一天他妈妈从家步行到公交站点,恰好赶上头班公交车,上车后才发现有重要物品落在家中,急忙通知小明将物品送到终点站,这时妈妈已上车5min,小明马上取了东西,用时6min赶到妈妈上车的公交站点,乘坐刚好路过的出租车,沿公交车的线路驶往公交车的终点站,结果比公交车早4min到达,出租车与小明一起等候公交车.若公交车,出租车均视为全程匀速行驶,出租车的速度为60km/h(即:1km/min).设妈妈所乘公交车离开她上车的站点的时间为t(min),小明上车后,小明所乘出租车距妈妈上车的公交站点的路程为S1(km),妈妈所乘的公交车与小明所乘出租车之间相距的路程为S(km)(1)求S1与t之间的函数关系式,并写出t的取值范围;(2)写出11≤t≤30,S与t之间的函数关系式;(3)公交车到达终点之前,经多长时间两车相距500m.2014- 学年湖南省澧县城关中学八年级数学下册一次函数的应用综合练习参考答案:1.解:(1)由题意,得y=20×13x+25×10(80﹣x)+15×12×(110﹣x)+20×8×(x﹣10),y=﹣10x+38200.答:y与x之间的关系式为y=﹣10x+38200;(2)由题意,得,解得:10≤x≤80.∵y=﹣10x+38200.∴k=10<0,∴当x=80时.y最小=37400.∴甲库运往A库粮食80吨,则甲仓库运往B库粮食0吨,乙仓库运往A库30吨,乙仓库运往B库70吨,总运费最省,最省的总运费是37400元.2.解:(1)设一张薄板的边长为xcm,它的出厂价为y元,基础价为n元,浮动价为kx 元,则y=kx+n.由表格中的数据,得,解得k=2,n=10,所以y=2x+10;(2)①设一张薄板的利润为p元,它的成本价为mx2元,由题意,得:p=y﹣mx 2=2x+10﹣mx2,将x=40,p=26代入p=2x+10﹣mx2中,得26=2×40+10﹣m×402.解得m=.所以p=﹣x2+2x+10.②因为a=﹣<0,所以,当x=﹣=﹣═25(在5~50之间)时,p最大值===35.即出厂一张边长为25cm的薄板,获得的利润最大,最大利润是35元.3.解:(1)设A型电脑每台的进价为a元,则B型电脑每台的进价为(a+500)元,根据题意得:=,解得:a=1000,经检验a=1000是分式方程的解,且满足题意,则A型电脑每台进价为1000元,B型电脑每台进价为1500元;(2)设该商店购进A型电脑x台,则购进B型电脑(100﹣x)台,所获的利润为W元,根据题意得:W=(1800﹣1000)x+(2400﹣1500)(100﹣x)=﹣100x+90000,且,解得:50≤x≤54,①有5种方案:A型50 51 52 53 54B型50 49 48 47 46;②∵k=﹣100<0,∴W随x的增大而减小,当x=50时,W有最大值,为85000,则获得最大利润为85000元.4.解:(1)设购进A、B两种品牌服装的单价为x元,y元,可得:,解得:,答:购进A、B两种品牌服装的单价为100元;120元;(2)设购进A种服装z件,则B种服装是(100﹣z)件,可得:w=(150﹣100)z+(200﹣120)(100﹣z)整理得:w=﹣30z+8000,因为k=﹣30<0,所以w的最大值为8000,因为该网站拟以不超过11200元的总价购进这种两品牌服装,可得:,解得:z=40.答:分别购进A、B两种品牌服装各40,60件,所获取的最大利润是8000元.5.解:(1)A市实施返空费方案后,当x>20时,收费总额y(元)与x(km)的函数关系式为:y=2.4×(x﹣3)+10+0.01x(x﹣20)=0.01x 2+2.2x+2.8;(2)当x>20时,南京市收费总额y(元)与x(km)的函数关系式为:y=10+2.4×(20﹣3)+2.4×1.5×(x﹣20)=3.6x﹣21.2,当收费总额相同时,即0.01x2+2.2x+2.8=3.6x﹣21.2,。