复变函数习题解答(第3章)
复变函数第三章答案
��� 在 C +1, 0 上,所以
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
1 ( ����
−
1
)dz = 1 (2π i) = π ,
C+1,0 z − i z + i
2i
同理如果 C 仅围绕 i 按顺时针转一周,有
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
( ���� 1 − 1 )dz = 1 (−2πi) = −π ,
dz = 1 ⋅( z −1)1−n 1− n
3 =
1
2 1− n
21−n −1
=
1 n−
1 ⎛⎜⎝1
−
1 2n−1
⎞ ⎟
。
⎠
所以,
⎧k ⋅(±2π i) + ln 2, n =1
In
=
⎪
⎨ ⎪⎩
n
1 −1
⎛⎜1 ⎝
−
1 2n−1
⎞ ⎟
,
⎠
。
n ≠1
6. 设 C = 0�,1是不过点 ±i 的简单光滑曲线,证明:
���
���
显然 C + 3, 2 构成简单闭曲线,并且1在 C + 3, 2 的内部,所以
∫ ���� 1 dz = 2π i ,
C+3,2 z −1 同理如果 C 仅围绕1按顺时针转一周,有
于是
∫ ���� 1 dz = −2π i ,
C+3,2 z −1
∫ ∫ ∫ ∫ I1 =
1 dz =
复变函数习题三参考答案
习题三 3.1计算积分2Cz dz ⎰,其中C 是:(1)原点到()2i +的直线段; (2)原点到2再到()2i +的折线; (3)原点到i 再沿水平到()2i +的折线。
解:(1)C 的参数方程为()()22201z t i t tit =+=+≤≤()2dz i dt =+于是()()()2221222113Ci i d z d t i z t +++==⎰(2)12C C C =+,1C 参数方程为()02z tt =≤≤,2C 参数方程为()201z itt =+≤≤()()122212222122113CC C z dz z dz z dz t dt id it i t +=+=+=+⎰⎰⎰⎰⎰ (3)12C C C =+,1C 参数方程为()01z itt =≤≤,2C 参数方程为()02z t it =+≤≤()()()12212222212113CC C z dz z dz z dz it idt dt t i i +=+++==⎰⎰⎰⎰⎰ 3.2设C 是,i z e θθ=是从π-到π的一周,计算: (1)()Re Cz dz ⎰;(2)()Im Cz dz ⎰;(3)Czdz ⎰解:cos sin i z e i θθθ==+,()sin cos dz i d θθθ=-+(1)()()Re cos sin cos Cz dz i d i ππθθθθπ-=-+=⎰⎰;(2)()()Im sin sin cos Cz dz i d ππθθθθπ-=-+=-⎰⎰;(3)()()cos sin sin cos 2Czdz i i d i ππθθθθθπ-=--+=⎰⎰3.3计算积分Cz zdz ⎰,其中C 是由直线段11,0x y -≤≤=及上半单位圆周组成的正向闭曲线。
解:12C C C =+,1C 表示为z x iy =+,()11,0x y -≤≤=;2C 表示为()cos sin 0z x iy i θθθπ=+=+≤≤,()sin cos dz i d θθθ=-+,()()1211cos sin sin cos CC C z zdz z zdz z zdzx xdx i i d iπθθθθθπ-=+=+--+=⎰⎰⎰⎰⎰3.5沿下列指定曲线的正向计算积分()21C dzz z +⎰ 的值:(1)1:2C z =;(2)3:2C z =;(3)1:2C z i +=;(4)3:2C z i -=。
复变函数第3篇习题课
y
C2
解 设C1 : z x, x : 1 1
C1 1 O
|z|z dz C1
0 1
1
x
|x|x dx
1
C2 : z ei t , t : 0 d z eit i d t
|z|z dz
C2
ei
t
e i
t
i d t
idt i
0
0
i 原式= | z | z d z | z | z d z
解(C解3i1C)Cg自C22C:1CC:1z原C11zz2z::C22点d1dzzCz3沿xz2虚3ix•iy3iy轴,,0,1,03yx(至(i3yx::x::0i0,00i再yi))1水223dd13平((x3C至1 zCi3i21y)zd)2izd6z3019(ii原y032原)3式x62 式d2i=(d=i6yx)6232962363ii i
故 被积函数 在 | z | 1 上 处处解析
积分结果为0. 6
49页8 直接得到下列积分的结果,并说明理由
Ñ (3) ez (z2 1) d z |z|1
解 结果为 0 , 因为 被积函数 ez (z2 1) 在 | z | 1上 处处解析, 所以 积分结果为0.
Ñ (4)
|z| 1 2
1 (z2 1) (z3 1)
dz
解 结果为 0 , 由 (z2 1) (z3 1) 0 得到
z 1, z 1 3 i
2 这2些点都在圆 | z | 1 的外部。
故
被积函数
在
|
z
|
1
上
2
处处解析
2
积分结果为0. 7
49页9 沿指定曲线的正向计算下列积分
复变函数第三章习题答案
第三章柯西定理柯西积分掌握内容:1.柯西积分定理:若函数()f z 在围线C 之内是处处解析的,则()Cf z dz =⎰0 。
2.柯西积分定理的推广:若函数()f z 在围线C 之内的,,...n z z z 12点不解析,则()()()...()nCC C C f z dz f z dz f z dz f z dz =+++⎰⎰⎰⎰12,其中,,...nC C C 12是分别以,,...n z z z 12为圆点,以充分小的ε为半径的圆。
3.若在围线C 之内存在不解析点,复变函数沿围线积分怎么求呢?——运用柯西积分公式。
柯西积分公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()Cf z dz if z z z π=-⎰002 4.柯西积分公式的高阶求导公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()()()!n n Cf z i dz f z z z n π+=-⎰0102习题:1.计算积分⎰++-idz ix y x 102)(积分路径是直线段。
解:令iy x z +=,则idy dx dz += 积分路径如图所示:在积分路径上:x y =,所以313121212131211032223211211211210102102102i x ix y i x ix x dxix x i iydy xdx dx ix x dy ix x i iydy ydx dx ix x idy dx ix y x dz ix y x ii+-=-+--+=++--+=++--+=++-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++)()()()()())(()(2.计算积分⎰-iidz z 。
积分路径分别是:(1)直线段,(2)右半单位圆,(3)左半单位圆。
解:(1)令z x i y =+,则z dz xd idy ==+,在积分路径上,0x =,所以11iiz dz iydy iydy i--=-+=⎰⎰⎰(2)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//222i i iz dz ie d i πθπθ--==⎰⎰(3)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//2322ii iz dz ie d i πθπθ-==⎰⎰5.不用计算,证明下列分之值为零,其中为单位圆。
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
复变函数习题答案第3章习题详解
解:分四种情形讨论:
1)若是 与 都在 的外部,那么 在 内解析,柯西—古萨大体定理有
2)若是 与 都在 的内部,由柯西积分公式有
3)若是 在 的内部, 都在 的外部,那么 在 内解析,由柯西积分公式有
和 知足拉普拉斯方程: ,
,
故 是 的解析函数。
23.设 为区域 内的调和函数及 ,问 是不是 内的解析函数?什么缘故?
解:设 ,那么 ,
,
,
因为 为区域 内的调和函数,具有二阶持续偏导且知足拉普拉斯方程
, 是 内的解析函数。
24.函数 是 的共轭调和函数吗?什么缘故?
解: , , , ,
故函数 不是 的共轭调和函数。
证明:因为 在 内解析,故积分 与途径无关,取从原点沿实轴到 ,再从 沿圆周 到 的曲线作为 ,那么:
13.设 和 为相交于 、 两点的简单闭曲线,它们所围的区域别离为 与 。 与 的公共部份为 。若是 在 与 内解析,在 、 上也解析,证明: 。
证明:如下图, 在 与 内解析,在 、 上也解析,由柯西—古萨大体定理有:
第三章习题详解
1.沿以下线路计算积分 。
1)自原点至 的直线段;
解:连接自原点至 的直线段的参数方程为:
2)自原点沿实轴至 ,再由 铅直向上至 ;
解:连接自原点沿实轴至 的参数方程为:
连接自 铅直向上至 的参数方程为:
3)自原点沿虚轴至 ,再由 沿水平方向向右至 。
解:连接自原点沿虚轴至 的参数方程为:
25.设 和 都是调和函数,若是 是 的共轭调和函数,那末 也是 的共轭调和函数。这句话对吗?什么缘故?
复变函数习题答案第3章习题详解.docx
第三章习题详解1・沿下列路线计算积分J;' z2dz o1)自原点至3 + i的直线段;解:连接自原点至34-1的直线段的参数方程为:z =(3+》0<r<l dz =(3 + i)dt2)自原点沿实轴至3,再由3铅直向上至3 +八解:连接自原点沿实轴至3的参数方程为:z = t 0</<1 dz = dt3 1=-33 «3连接自3铅直向上至3 +,的参数方程为:z = 3 + ir O<Z<1 dz = idt J J z2dz = £(3 + it)2 idt = -(34-17)3=-(3 + i)3彳" 3 n 3・・・ f z2dz = £t2dt 4- £(3 + it)2id/ = 133 4-1(3 4-1)3 - i33 = |(3 + i)33)自原点沿虚轴至i,再由i沿水平方向向右至3+i。
解:连接自原点沿虚轴至i的参数方程为:z = it 0</<1 dz = idtJ:Z2dz = J;(it)2 idt = | (i/)3= * 尸连接自i沿水平方向向右至3 + i的参数方程为:z = t^i 0<^<1 dz = dtr*edz=jo edz+广eaz=y+敦+厅-|/3=|(1+厅2.分别沿y =兀与y =兀2算出积分J;'(兀2 + iy^dz的值。
解:•/ j = x x2 + iy = x2 + ix ••• dz = (1 + i)dx・・・『(x2 + iy)dz = (1+ (x2 + ix)dx = (1 +•/ y = x2A x2 + iy = x2 4- ix2 = (1 + i)x2:. rfz = (1 + ilx)dxf 衣=[(3+03&二(3+讥♦3+i0=(3 + 厅0 d^ed Z=[\2dt=护而(W 宙討…T + 一 11.1.11 5. i = 1—i3 3 2 26 6/(z) =1 _ 1 z 2+2z + 4~ (z + 2)2在c 内解析,根据柯西一古萨定理,$匹J z 2 + 2z + 4/. £1+,(x 2+ iy)dz = (1 + /)£ * (1 + ilx)dx = (14-彳+ 设/(z)在单连通域〃内处处解析,C 为B 内任何一条正向简单闭曲线。
《复变函数》第四版习题解答第3章
-1-
∫ ∫
C
Re[ f (z )]dz = Im[ f (z )]dz =
∫ ∫
2π
0 2π
Re e iθ de iθ = cos θ (− sin θ + i cos θ )dθ = π i ≠ 0
[ ]
∫
2π
0
C
0
Im e iθ deiθ = sin θ (− sin θ + i cos θ )dθ = −π ≠ 0
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问
∫
解
C
Re[ f (z )]dz =
∫
C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i
解
(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
=0
(8)由 Cauchy 积分公式, (9)由高阶求导公式, ∫
v ∫
C
sin zdz = 2π i sin z |z =0 = 0 z
2
sin z
C
π⎞ ⎛ ⎜z − ⎟ 2⎠ ⎝
dz = 2π i(sin z )'
复变函数答案 钟玉泉 第三章习题全解
即 Φ′(x) = 0, Φ( x) = C ,故
f (z) = e x (x cos y − y sin y) + i( xex sin y + e x y cos y + C)
又因 f (0) = 0, 故 f (0) = iC = 0 ⇒ C = 0 ,所以
f (z) = ex ( x cos y − y sin y) + i(xex sin y + e x y cos y)
′(
x)
= 0.
所以ϕ( x) = C ,故
x
y
f (z) = − x2 + y2 + C + i x2 + y2
又因为 f (2) = 0 ,所以 C = 1 ,故 2
x1
y
f (z) = − x2 + y2 + 2 + i x2 + y2
17.证明:设 f (z ) = u + iv ⇒ 4 f ′( z) 2 = 4(ux2 + vy2 )
∫ 2z 2 − z +1dz = 2πi(2z 2 − z +1) = 4πi
z ≤2 z −1
z =1
(2)可令 f (z) = 2z 2 − z +1,则由导数的积分表达式得
∫ 2z 2 − z +1dz = 2πif ′(z) = 6πi
z =2 (z − 1) 2
z =1
sin π zdz
∫ v = (xex cos y − e x y sin y + e x coy)dy
∫ = xex sin y + e x sin y − e x y sin ydy
复变函数习题三
复变函数习题三第三章复变函数的积分一、判断题(1)微积分中的求导公式、洛必达法则、中值定理等均可推广到复变函数。
()(2)在整个复平面上有界的解析函数必为常数。
()(3)积分zar1dz的值与半径r(r0)的大小无关。
()za(4)若在区域D内有f(z)g(z),则在D内g(z)存在且解析。
()(5)若f(z)在0z1内解析,且沿任何圆周c:zr(0r1)的积分等于零,则f(z)在z0处解析。
()(6)设v1,v2在区域D内均为u的共轭调和函数,则必有v1v2。
()(7)解析函数的实部是虚部的共轭调和函数。
()(8)以调和函数为实部与虚部的函数是解析函数。
()二、选择题:1.设C为从原点沿0至12i的有向线段,则Rezdz()C(A)1111i(B)i(C)i(D)i22222.设C为不经过点0,1与i的正向简单闭曲线,则C1dz为()z(z1)2(zi)(A)ii(B)(C)0(D)(A)(B)(C)都有可能223.设C为从1沿某y1至i的直线段,则C(某2y2)d某2某ydy()(A)i(B)i(C)1(D)1ez4.设C为正向圆周z2,则dz()2c(1z)(A)2i(B)2ei(C)2ei(D)2i15.设C为正向圆周z1,则C2(z2)3in1z2dz()2z6z10(A)2i(3co1in1)(B)0(C)6ico1(D)2iin1ed,其中z4,则f(i)6.设f(z)()3(z)4(A)i(B)1(C)i(D)1in(z)224dz()7.设C为正向圆周某y2某0,则2Cz1(A)22i(B)2i(C)0(D)i22228.设C为椭圆某4y1,则积分1Czdz=()(A)2i(B)(C)0(D)2i229.设c为任意实常数,那么由调和函数u某y确定的解析函数f(z)uiv是()(A)izc(B)izic(C)zc(D)zic10.设v(某,y)在区域D内为u(某,y)的共轭调和函数,则下列函数中为D内解析函数的是()(A)v(某,y)iu(某,y)(B)v(某,y)iu(某,y)2222(C)u(某,y)iv(某,y)(D)三、填空题uvi某某1.设C为负向圆周|z|2,则zdzC25z22z12.设C为正向圆周zi2,则dz3C(zi)某2y2221正向,则f(1)3.设f(z)d,其中曲线C为椭圆49zCf(2i)f(i)4.设C为正向圆周z1,则Cdzz5.解析函数在圆心处的值等于它在圆周上的6.设C是从到i的直线段,则积分ecozdzCz7.设C为过点23i的正向简单闭曲线,则当z从曲线C内部趋向23i时,elimd,当z从曲线C外部趋向23i时,z23izccodz23izclim8.调和函数(某,y)某y某y的共轭调和函数为9.若函数u(某,y)某a某y为某一解析函数的虚部,则常数a10.设u(某,y)的共轭调和函数为v(某,y),那么v(某,y)的共轭调和函数为四、计算积分1.2.32|z|1|z1||dz|=86zdz,其中R0,R1且R2。
复变函数与积分变换第三章习题解答
fc Re[f (z)}Lz= s:·T Re[产�/0 = J�os0(- sin0+icos0}10= 冗 i-:t:O
、
f clm[J(z)}lz=
1 单位圆上 z=- 的性质 , 及柯西积分公式说明 4. 利用
s::r
il) i(J lm[e �e = fo�in0(-sin0+icos0}10 =- -:t:O
宣
(4) (5) ( 6)由柯西基本定理知 : 其结果均为0
1 正气衣 =f 一 (z+iXz +4) 如fz+il: lz 气 z +j z- J 3
2
I
1
=2冗i
(8)由
Cauchy 积分公式,
(9)由 高阶求导公式, (10)由高阶求导公式
fc ,'�"�『心 �2 i(sin,)
兀
f sinzdz =2
I。
: z 由=JJ3r +i t)\3+i肋
+I 2
(2)
I:
打
/dz = �··(. 止+f c, z油+f C2/dz•
2
l。
1 I 26. I =...:.(3+i)3 t3 1 =-(3+i)1=6+—I 3 3 3 0
=(3 + i)3
I
t d,
2
C3
{
x = 3, y =t,
(Ost 釭); c, 之参数方程为{ y = t,
-4 -
故 Re [
共部分为 B 。 如果 f伈)在B1 -B 与B2 -B内解析 , 在 证明
1 3. 设 cl 与 C 2为相交干 M、N两点的简单闭曲线
最新复变函数习题答案第3章习题详解
第三章习题详解1. 沿下列路线计算积分⎰+idz z 302。
1) 自原点至i +3的直线段;解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3()()()⎰⎰+=⎥⎦⎤⎢⎣⎡+=+=+131033233023313313i t i dt t i dz z i2) 自原点沿实轴至3,再由3铅直向上至i +3;解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz =3303323233131=⎥⎦⎤⎢⎣⎡==⎰⎰t dt t dz z连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz =()()()331031023323313313313-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+i it idt it dz z i()()()333310230230233133********i i idt it dt t dz z i+=-++=++=∴⎰⎰⎰+ 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。
解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz =()()310312023131i it idt it dz z i=⎥⎦⎤⎢⎣⎡==⎰⎰连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz =()()()33103102323113131i i i t dt i t dz z ii-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+()()333332023021313113131i i i i dz z dz z dz z iiii+=-++=+=∴⎰⎰⎰++ 2. 分别沿x y =与2x y =算出积分()⎰++idz iy x102的值。
解:x y = ix x iy x +=+∴22()dx i dz +=∴1 ()()()()()⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴⎰⎰+i i x i x i dx ix x i dz iy x i213112131111023102102 2x y = ()22221x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴()()()()()⎰⎰⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴+1104321022131142311211i i x i x i dx x i x i dz iy xi而()i i i i i 65612121313121311+-=-++=⎪⎭⎫⎝⎛++3. 设()z f 在单连通域B 内处处解析,C 为B 内任何一条正向简单闭曲线。
复变函数习题三
第三章 复变函数的积分一、 判断题(1) 微积分中的求导公式、洛必达法则、中值定理等均可推广到复变函数。
( ) (2) 有界整函数必为常数。
( ) (3) 积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关。
( ) (4) 若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析。
( )(5) 若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析。
( )(6) 设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =。
( ) (7) 解析函数的实部是虚部的共轭调和函数。
( ) (8) 以调和函数为实部与虚部的函数是解析函数。
( ) 二、选择题:1.设C 为从原点沿0至i 21+的有向线段,则=⎰Cz z d Re ( )(A )i -21 (B )i +-21 (C )i +21(D )i --212.设C 为不经过点1,0与i -的正向简单闭曲线,则z i z z z Cd )()1(12⎰+-为( )(A )2i π (B )2i π- (C )0 (D )(A)(B)(C)都有可能 3.设C 为从1沿1=+y x 至i 的直线段,则=-+⎰y xy x y x Cd 2d )(22( )(A )i - (B )i (C )1 (D )1-4.设C 为正向圆周2=z ,则=+⎰-z z e c zd )1(2( ) (A )i π2- (B )i e π2- (C )i e π2 (D )12i π5.设C 为正向圆周21=z ,则=+---⎰z z z z z C d 10621sin)2(23 ( ) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=43)()(,其中4≠z ,则=')i f π(( ) (A )i π- (B )1- (C )i π (D )17.设C 为正向圆周0222=-+x y x ,则=-⎰z z z C d 1)4sin(2π( ) (A )i π22 (B )i π2 (C )0 (D )i π22- 8.设C 为椭圆1422=+y x ,则积分⎰C z z d 1= ( )(A )i π2 (B )π (C )0 (D )i π2-9.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +210.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂三、填空题1.设C 为负向圆周2||=z ,则=⎰C z z d2.设C 为正向圆周2=-i z ,则=-++⎰C z i z z z d )(12532 3.设,2)(2⎰-+-=Cd z z f ξξξξ其中曲线C 为椭圆19422=+y x 正向,则=)1(f =+')2(i f =-'')(i f4.设C 为正向圆周1=z ,则⎰Czzd 5.解析函数在圆心处的值等于它在圆周上的6.设C 是从π到i 的直线段,则积分=⎰Czz z e d cos7.设C 为过点i 32+的正向简单闭曲线,则当z 从曲线C 内部趋向i 32+时,=-⎰+→ξξξd ze c i z 32lim ,当z 从曲线C 外部趋向i 32+时,=-⎰+→ξξξd z c i z cos lim32 。
复变函数第三章习题参考答案
工程数学(复变函数) 第三章复习题参考答案
湖南大学数学与计量经济学院
一、判断题(每题2分,5题共10分)
1、 f ( z ) 为定义在区域 D 内的解析函数,则其导函数 f ( z ) 也是解析函数. ( 若 2、 f ( z ) 在区域 D 内解析, 若 则对 D 内任一简单闭曲线 C 都有 f ( z )dz 0 ( .
t t z
1
(1 i)e (1 i)e it (cos t i sin t sin t i cos t ) (e ieit ) 2 2 0 0
t t
1
1
e
(1i ) t 1 0
e1i e0 e1i 1 .
7、解: (1) c 的方程为 z x ,代入,得
1
c2
e
ei (cos y i sin y )dy e 1 ei (sin y i cos y ) 0
0
e 1 ei (sin1 i cos1 i) e(cos1 i sin1) 1 e1i 1;
2)从 0 到1 i 的直线段的方程为 z x iy t ti , t : 0 1 , 代入积分表达式中,得
n 2
2、证明: u x2 y2 xy ux 2x y, uy 2 y x
2u 2u 2 2 2 2 0 u 是调和函数. x y
v( x, y)
( x, y )
(0,0)
复变函数课后习题答案(全)
精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-132i-(((2(((2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+....3. 求下列各式的值: (1)5)i -(2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)z i +=由此25k i z i ei π=-=-,(0,1,2,3,4)k =(2)z==精心整理页脚内容11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;(=(1n a z -++证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,()n z ,10n a z -+++=为实系数代数方程的一个根,则也是。
复变函数习题解答(第3章)
复变函数习题解答(第3章)p141第三章习题(一)[ 5, 7, 13, 14, 15, 17, 18 ]5. 由积分?C1/(z + 2) dz之值证明?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = 0,其中C取单位圆周| z | = 1.【解】因为1/(z + 2)在圆| z | < 3/2内解析,故?C1/(z + 2) dz = 0.设C : z(θ)= e iθ,θ∈[0, 2π].则?C1/(z + 2) dz = ?C1/(z + 2) dz = ?[0, 2π] i e iθ/(e iθ + 2) dθ= ?[0, 2π] i (cosθ + i sinθ)/(cosθ + i sinθ + 2) dθ= ?[0, 2π] (- 2 sinθ + i (1 + 2cosθ ))/(5 + 4cosθ) dθ= ?[0, 2π] (- 2 sinθ)/(5 + 4cosθ) dθ+ i ?[0, 2π] (1 +2cosθ )/(5 + 4cosθ) dθ.所以?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.因(1 + 2cosθ ))/(5 + 4cosθ)以2π为周期,故?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0;因(1 + 2cosθ ))/(5 + 4cosθ)为偶函数,故[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = (1/2) ?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.7. (分部积分法)设函数f(z), g(z)在单连通区域D内解析,α, β是D内两点,试证[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz.【解】因f(z), g(z)区域D内解析,故f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’的积分都与路径无关.[α, β] f(z)g’(z)dz +?[α, β] g(z) f’(z)dz = ?[α, β] ( f(z)g’(z)dz + g(z) f’(z))dz= ?[α, β] ( f(z)g(z))’dz.而f(z)g(z)是( f(z)g(z))’在单连通区域D内的一个原函数,所以[α, β] ( f(z)g(z))’dz = f(β)g(β) -f(α)g(α) = ( f(z)g(z))|[α, β].因此有?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ( f(z)g(z))|[α,β],即?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz.13. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D 内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,求证Γ亦为光滑曲线.【解】分两种情况讨论.(1) 当z(α) ≠z(β)时,C不是闭曲线.此时z(t)是[α, β]到D内的单射,z(t)∈C1[α, β],且在[α, β]上,| z’(t) |≠ 0.因Γ是曲线C在映射f下的象,所以Γ可表示为w = f(z(t)) (α≤t≤β).t∈[α, β],z(t)∈D.因f于区域D内解析,故f在z(t)处解析,因此f(z(t))在t处可导,且导数为f’(z(t))z’(t).显然,f’(z(t))z’(t)在[α, β]上是连续的,所以f(z(t))∈C1[α, β].因为f(z)于区域D内是单叶的,即f(z)是区域D到的单射,而z(t)是[α, β]到D内的单射,故f(z(t))是[α, β]到内的单射.因在D内有f’(z) ≠ 0,故在[α, β]上,| f’(z(t))z’(t) |= | f’(z(t)) | · |z’(t) |≠ 0.所以,Γ是光滑曲线.(2) 当z(α) = z(β)时,C是闭曲线.此时z(t)∈C1[α, β];在[α, β]上,有| z’(t) |≠ 0;z’(α) = z’(β);?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2).与(1)完全相同的做法,可以证明f(z(t))∈C1[α, β],且| f’(z(t))z’(t) |≠ 0.由z(α) = z(β)和z’(α)= z’(β),可知f’(z(α))z’(α) = f’(z(β))z’(β).因为?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2),由f(z)于区域D内单叶,因此我们有f(z(t1)) ≠f(z(t2)).所以Γ是光滑的闭曲线.14. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,证明积分换元公式ΓΦ(w) dw = ?CΦ( f(z)) f’(z) dz.其中Φ(w)沿曲线Γ连续.【解】由13题知曲线Γ也是光滑曲线,其方程为w(t) = f(z(t)) (α≤t≤β).故?ΓΦ(w) dw = ?[α, β] Φ(w(t)) ·w’(t) dt = ?[α, β] Φ( f(z(t))) · ( f’(z(t)) z’(t)) dt.而?CΦ( f(z)) f’(z) dz = ?[α, β] ( Φ( f(z(t))) f’(z(t))) ·z’(t) dt.所以?ΓΦ(w) dw = ?CΦ( f(z)) f’(z) dz.15. 设函数f(z)在z平面上解析,且| f(z) |恒大于一个正的常数,试证f(z)必为常数.【解】因| f(z) |恒大于一个正的常数,设此常数为M.则?z∈ ,| f(z) | ≥M,因此| f(z) | ≠ 0,即f(z) ≠ 0.所以函数1/f(z)在上解析,且| 1/f(z) | ≤ 1/M.由Liuville定理,1/f(z)为常数,因此f(z)也为常数.17. 设函数f(z)在区域D内解析,试证(?2/?x2 + ?2/?y2) | f(z) |2 = 4 | f’(z) |2.【解】设f(z) = u + i v,w = | f(z) |2,则w = ln ( u 2 + v 2 ).w x = 2(u x u+ v x v),w y = 2(u y u+ v y v);w xx = 2(u xx u+ u x2 + v xx v+ v x2 ),w yy = 2(u yy u+ u y2 + v yy v+ v y2 );因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,故w xx + w yy = 2 (u x2 + v x2 + u y2 + v y2) = 4 (u x2 + v x2) = 4 | f(z) |2;即(?2/?x2 + ?2/?y2) | f(z) |2 = 4 | f’(z) |2.18. 设函数f(z)在区域D内解析,且f’(z) ≠ 0.试证ln | f’(z) |为区域D内的调和函数.【解】?a∈D,因区域D是开集,故存在r1 > 0,使得K(a, r1) = { z∈ | | z -a | < r1 } ?D.因f’(a) ≠ 0,而解析函数f’(z)是连续的,故存在r2 > 0,使得K(a, r2) ?K(a, r1),且| f’(z) -f’(a)| < | f’(a) |.用三角不等式,此时有| f’(z)| > | f’(a) | - | f’(z) -f’(a)| > 0.记U = { z∈ | | z -f’(a)| < | f’(a) |},则U是一个不包含原点的单连通区域.在沿射线L = {z∈ | z = - f’(a) t,t≥ 0 }割开的复平面上,多值函数g(z) = ln z可分出多个连续单值分支,每个单值连续分支g(z)k在\L上都是解析的.t≥ 0,| - f’(a) t -f’(a) | = (t + 1) | f’(a) | ≥ | f’(a) |,故- f’(a) t ?U.所以U ? \L,即每个单值连续分支g(z)k在U上都是解析的.因为当z∈K(a, r2)时,f’(z)∈U,故复合函数g( f’(z))k在上解析.而Re(g( f’(z))k) = ln | f’(z) |,所以ln | f’(z) |在K(a, r2)上是调和的.由a∈D的任意性,知ln | f’(z) |在D上是调和的.【解2】用Caucht-Riemann方程直接验证.因为f’(z)也在区域D内解析,设f’(z) = u + i v,则u, v也满足Cauchy-Riemann方程.记w = ln | f’(z) |,则w = (1/2) ln ( u 2 + v 2 ),w x = (u x u+ v x v) /( u 2 + v 2 ),w y = (u y u+ v y v) /( u 2 + v 2 );w xx = ((u xx u+ u x2 + v xx v+ v x2 )( u 2 + v 2 ) - 2(u x u+ v x v)2)/( u 2 + v 2 )2;w yy = ((u yy u+ u y2 + v yy v+ v y2 )( u 2 + v 2 ) - 2(u y u+v y v)2)/( u 2 + v 2 )2;因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,u x v x + u y v y = 0,因此(u x u+ v x v)2 + (u y u+ v y v)2= u x2u 2+ v x 2v 2 + 2 u x u v x v+ u y2u 2+ v y 2v 2 + 2 u y u v y v= (u x2 + v x2 )( u 2 + v 2 );故w xx + w yy = (2(u x2 + v x2 )( u 2 + v 2 ) - 2(u x2 + v x2 )( u 2 + v 2 ))/( u 2 + v 2 )2 = 0.所以w为区域D内的调和函数.[初看此题,就是要验证这个函数满足Laplace方程.因为解析函数的导数还是解析的,所以问题相当于证明ln | f(z) |是调和的,正如【解2】所做.于是开始打字,打了两行之后,注意到ln | f’(z) |是Ln f’(z)的实部.但Ln z不是单值函数,它也没有在整个上的单值连续分支,【解1】前面的处理就是要解决这个问题.]p141第三章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]1. 设函数f(z)在0 < | z | < 1内解析,且沿任何圆周C : | z | = r, 0 < r < 1的积分值为零.问f(z)是否必须在z = 0处解析?试举例说明之.【解】不必.例如f(z) = 1/z2就满足题目条件,但在z = 0处未定义.[事实上可以任意选择一个在| z | < 1内解析的函数g(z),然后修改它在原点处的函数值得到新的函数f(z),那么新的函数f(z)在原点不连续,因此肯定是解析.但在0 < | z | < 1内f(z) = g(z),而g(z)作为在| z | < 1内解析的函数,必然沿任何圆周C : | z | = r的积分值都是零.因此f(z)沿任何圆周C : | z | = r的积分值也都是零.若进一步加强题目条件,我们可以考虑,在极限lim z→0 f(z)存在的条件下,补充定义f(0) = lim z→0 f(z),是否f(z)就一定在z = 0处解析?假若加强条件后的结论是成立,我们还可以考虑,是否存在满足题目条件的函数,使得极限lim z→0 f(z)不存在,也不是∞?]2. 沿从1到-1的如下路径求?C1/√z dz.(1) 上半单位圆周;(2) 下半单位圆周,其中√z取主值支.【解】(1) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[0, π].C1/√z dz = ?[0, π] i e iθ/e iθ/2dθ = ?[0, π] i e iθ/2dθ = 2e iθ/2|[0, π] = 2(- 1 + i).(2) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[-π, 0].C1/√z dz = -?[-π, 0] i e iθ/e iθ/2dθ = -?[-π, 0] i e iθ/2dθ = - 2e iθ/2|[-π, 0] = 2(- 1 -i).[这个题目中看起来有些问题:我们取主值支,通常在是考虑割去原点及负实轴的z平面上定义的单值连续分支.因此,无论(1)还是(2),曲线C上的点-1总不在区域中(在区域的边界点上).因此曲线C也不在区域中.所以,题目应该按下面的方式来理解:考虑单位圆周上的点ζ,以及沿C从1到ζ的积分的极限,当ζ分别在区域y > 0和区域y < 0中趋向于-1时,分别对应(1)和(2)的情形,简单说就是上岸和下岸的极限情形.那么按照上述方式理解时,仍然可以象我们所做的那样,用把积分曲线参数化的办法来计算,这是由积分对积分区域的连续性,即绝对连续性来保证的.以后我们遇到类似的情形,都以这种方式来理解.]3. 试证| ?C(z + 1)/(z - 1) dz | ≤ 8π,其中C为圆周| z - 1 | = 2.【解】若z∈C,| z + 1 | ≤ | z - 1 | + 2 = 4,故| (z + 1)/(z - 1) | ≤ 2.因此| ?C(z + 1)/(z - 1) dz | ≤?C| (z + 1)/(z - 1) | ds≤ 2 · Length(C) = 8π.4. 设a, b为实数,s = σ+ i t (σ > 0)时,试证:| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.【解】因为f(z) = e sz在上解析,故f(z)的积分与路径无关.设C是从a到b的直线段,因为e sz/s是f(z)的一个原函数,所以| ?C e sz dz | = | e sz/s |[a, b] | = | e bs–e as|/| s |.而| ?C e sz dz | ≤?C | e sz|ds = ?C | e(σ+ i t)z|ds = ?C | eσ z+ i tz|ds= ?C | eσ z|ds ≤?C e max{a, b} ·σ ds = | b–a | e max{a, b} ·σ.所以| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.5. 设在区域D = { z∈ : | arg z | < π/2 }内的单位圆周上任取一点z,用D内曲线C 连接0与z,试证:Re(?C1/(1 + z2) dz ) = π/4.【解】1/(1 + z2)在单连通区域D内解析,故积分与路径无关.设z = x + i y,z∈D,i z∈{ z∈ : 0 < arg z < π } = { z∈ : Im z > 0 },-i z∈{ z∈ : -π < arg z < 0 } = { z∈ : Im z < 0 },故1 + i z∈{ z∈ : Im z > 0 }, 1 -i z∈{ z∈ : Im z < 0 }.设ln(z)是Ln(z)的主值分支,则在区域D内( ln(1 + i z) - ln(1 -i z) )/(2i)是解析的,且(( ln(1 + i z) - ln(1 -i z) )/(2i))’ = (i/(1 + i z) + i/(1 -i z))(2i) = 1/(1 + z2);即( ln(1 + i z) - ln(1 -i z) )/(2i)是1/(1 + z2)的一个原函数.C1/(1 + z2) dz = ( ln(1 + i z) - ln(1 -i z) )/2 |[0, z]= (ln(1 + i z) - ln(1 -i z))/(2i) = ln((1 + i z)/(1 -i z))/(2i)= (ln |(1 + i z)/(1 -i z)| + i arg ((1 + i z)/(1 -i z)))/(2i)= -i (1/2) ln |(1 + i z)/(1 -i z)| + arg ((1 + i z)/(1 -i z))/2,故Re(?C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2.设z = cosθ + i sinθ,则cosθ> 0,故(1 + i z)/(1 -i z) = (1 + i (cosθ + i sinθ))/(1 -i (cosθ + i sinθ)) = i cosθ/(1 + sinθ),因此Re(?C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2= arg (i cosθ/(1 + sinθ))/2 = (π/2)/2 = π/4.[求1/(1 + z2) = 1/(1 + i z) + 1/(1 -i z) )/2的在区域D上的原函数,容易得到函数( ln(1 + i z) - ln(1 -i z) )/(2i),实际它上就是arctan z.但目前我们对arctan z的性质尚未学到,所以才采用这种间接的做法.另外,注意到点z在单位圆周上,从几何意义上更容易直接地看出等式arg ((1 + i z)/(1 -i z))/2 = π/4成立.最后,还要指出,因曲线C的端点0不在区域D中,因此C不是区域D中的曲线.参考我们在第2题后面的注释.]6. 试计算积分?C( | z | - e z sin z ) dz之值,其中C为圆周| z | =a > 0.【解】在C上,函数| z | - e z sin z与函数a- e z sin z的相同,故其积分值相同,即?C( | z | - e z sin z ) dz = ?C( a- e z sin z ) dz.而函数a- e z sin z在上解析,由Cauchy-Goursat定理,?C( a-e z sin z ) dz = 0.因此?C( | z | - e z sin z ) dz = 0.7. 设(1) f(z)在| z | ≤ 1上连续;(2) 对任意的r (0 < r < 1),?| z | = r f(z) dz = 0.试证?| zf(z) dz = 0.| = 1【解】设D(r) = { z∈ | | z | ≤r },K(r) = { z∈ | | z | = r },0 < r≤ 1.因f在D(1)上连续,故在D(1)上是一致连续的.再设M = max z∈D(1) { | f(z) | }.?ε > 0,?δ1> 0,使得?z, w∈D(1), 当| z-w | < δ1时,| f(z) -f(w)| < ε/(12π).设正整数n≥ 3,z k= e 2kπi/n ( k = 0, 1, ..., n- 1)是所有的n次单位根.这些点z0, z1, ..., z n– 1将K(1)分成n个弧段σ(1), σ(2), ..., σ(n).其中σ(k) (k = 1, ..., n- 1)是点z k– 1到z k的弧段,σ(n)是z n–1到z0的弧段.记p(k) (k = 1, ..., n- 1)是点z k– 1到z k的直线段,p(n)是z n–1到z0的直线段.当n充分大时,ma x j {Length(σ( j))} = 2π/n < δ1.设P是顺次连接z0, z1, ..., z n–1所得到的简单闭折线.记ρ =ρ(P, 0).注意到常数f(z j)的积分与路径无关,?σ( j)f(z j) dz =?p( j)f(z j) dz;那么,| ?K(1)f(z) dz -?P f(z) dz |= | ∑j?σ( j)f(z) dz -∑j?p( j)f(z) dz |= | ∑j (?σ( j)f(z) dz -?p( j)f(z) dz ) |≤∑j | ?σ( j)f(z) dz -?p( j)f(z) dz |≤∑j ( | ?σ( j)f(z) dz -?σ( j)f(z j) dz | + | ?p( j)f(z j) dz -?p( j)f(z) dz | )= ∑j ( | ?σ( j) ( f(z)-f(z j)) dz | + | ?p( j) ( f(z)-f(z j)) dz | )= ∑j ( ?σ( j)ε/(12π) ds + ?p( j)ε/(12π) ds )= (ε/(12π))·∑j ( Length(σ( j)) + Length(p( j)) )≤ (ε/(12π))·∑j ( Length(σ( j)) + Length(σ( j)) )= (ε/(12π))· (2 Length(K(1)))= (ε/(12π))· 4π = ε/3.当ρ< r < 1时,P中每条线段p(k)都与K(r)交于两点,设交点顺次为w k, 1, w k, 2.设Q是顺次连接w1, 1, w1, 2, w2, 1, w2, 2, ..., w n, 1, w n, 2所得到的简单闭折线.与前面同样的论证,可知| ?K(r)f(z) dz -?Q f(z) dz |≤ε/3.因此,| ?K(1)f(z) dz | = | ?K(1)f(z) dz -?K(r)f(z) dz |≤ | ?K(1)f(z) dz -?P f(z) dz | + | ?K(r)f(z) dz -?Q f(z) dz | + | ?P f(z) dz-?Q f(z) dz |≤ε/3 + ε/3 + | ?P f(z) dz-?Q f(z) dz |.记连接w k, 2到w k +1, 1的直线段为l(k),连接w k, 2到z k +1的直线段为r(k),连接z k +1到w k +1, 1的直线段为s(k),则| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz |≤M ( Length(l(k)) + Length(r(k)) + Length(s(k)) ) ≤ 3 M · Length(l(k)).因为当r → 1-时,有Length(l(k)) → 0,故存在r∈(ρ, 1)使得| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz | < ε/(3n).对这个r,我们有| ?P f(z) dz-?Q f(z) dz | = | ∑k (?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz ) |≤∑k (| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz |) ≤∑k ε/(3n) = ε/3.故| ?K(1)f(z) dz | ≤ε.因此?K(1)f(z) dz = 0.8. 设(1) f(z)当| z–z0 | > r0 > 0时是连续的;(2) M(r)表| f(z) |在K r : | z–z0 | = r > r0上的最大值;(3) lim r → +∞r M(r) = 0.试证:lim r → +∞?K(r) f(z) dz = 0.【解】当r > r0时,我们有| ?K(r) f(z) dz | ≤?K(r) | f(z) | ds≤?K(r) M(r) ds = 2πr M(r) → 0 (当r → +∞时),所以lim r → +∞?K(r) f(z) dz = 0.9. (1) 若函数f(z)在点z = a的邻域内连续,则lim r → 0 ?| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 若函数f(z)在原点z = 0的邻域内连续,则lim r → 0 ?[0, 2π] f(r e iθ ) dθ = 2π f(0).【解】(1) 当r充分小时,用M(r)表| f(z) |在K r : | z–a | = r上的最大值;| ?| z–a | = r f(z)/(z–a) dz–2πi f(a) |= | ?| z–a | = r f(z)/(z–a) dz–f(a)?| z–a | = r1/(z–a) dz |= | ?| z–a | = r( f(z) –f(a))/(z–a) dz | ≤?| z–a | = r| f(z) –f(a) |/| z–a| ds≤M(r) ?| z–a | = r1/| z–a| ds = 2πr M(r).当r → 0时,由f(z)的连续性,知M(r) → | f(a) |.故| ?| z–a | = r f(z)/(z–a) dz–2πi f(a) | → 0.因此,lim r → 0 ?| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 根据(1),lim r → 0 ?| z | = r f(z)/z dz = 2πi f(0).而当r充分小时,我们有| z | = r f(z)/z dz = ?[0, 2π] f(r e iθ )/(r e iθ )· (r e iθi ) dθ = i ?[0, 2π] f(r e iθ ) dθ.所以,lim r → 0 (i ?[0, 2π] f(r e iθ ) dθ)= 2πi f(0).故lim r → 0 ?[0, 2π] f(r e iθ ) dθ = 2π f(0).10. 设函数f(z)在| z | < 1内解析,在闭圆| z | ≤ 1上连续,且f(0) = 1.求积分(1/(2πi))?| z | = 1 (2 ± (z + 1/z)) f(z)/z dz之值.【解】(1/(2πi))?| z | = 1 (2 ± (z + 1/z)) f(z)/z dz= ?| z | = 1 (2f(z)/z± (zf(z)/z + (1/z)f(z)/z) dz= (1/(2πi)) ·( ?| z | = 1 2f(z)/z dz ± (?| z | = 1 f(z) dz +?| z | = 1 f(z)/z 2dz) )= (1/(2πi)) ·( 2(2πi) f(0)± (0+ (2πi/1!)f’(0)) )= 2 f(0)±f’(0) = 2 ±f’(0).11. 若函数f(z)在区域D内解析,C为D内以a, b为端点的直线段,试证:存在数λ,| λ| ≤ 1,与ξ∈C,使得f(b) -f(a) = λ(b -a) f’(ξ).【解】设C的参数方程为z(t) = (1 –t ) a + t b,其中t∈[0, 1].在区域D内,因f(z)是f’(z)的原函数,故f(b) -f(a) = ?C f’(z) dz = ?[0, 1] f’((1 –t ) a + t b) (b -a) dt = = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt.(1) 若?[0, 1]| f’((1 –t ) a + t b) | dt = 0,因| f’((1 –t ) a + t b) |是[0, 1]上的连续函数,故| f’((1 –t ) a + t b) |在[0, 1]上恒为零.即f’(x)在C上恒为零.此时取λ= 0,任意取ξ∈C,则有f(b) -f(a) = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt = 0 = λ(b -a) f’(ξ).(2) 若?[0, 1]| f’((1 –t ) a + t b) | dt > 0,因| f’((1 –t ) a + t b) |是[0, 1]上的实变量连续函数,由积分中值定理,存在t0∈[0, 1],使得?[0, 1]| f’((1 –t ) a + t b) | dt = | f’((1 –t0) a + t0b) |.取ξ = (1 –t0) a + t0b,则f’(ξ) = f’((1 –t0) a + t0b) ≠ 0,令λ= (?[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ).因为| ?[0, 1] f’((1 –t ) a + t b) dt | ≤?[0, 1]| f’((1 –t ) a + t b) | dt = | f’(ξ) |.所以| λ| = | (?[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ) |= | ?[0, 1] f’((1 –t ) a + t b) dt |/| f’(ξ) | ≤ 1.且f(b) -f(a) = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt = λ(b -a) f’(ξ).12. 如果在| z | < 1内函数f(z)解析,且| f(z) | ≤ 1/(1 - | z |).试证:| f(n)(0) | ≤ (n + 1)!(1 + 1/n)n < e (n + 1)!,n =1, 2, ....【解】设K(r) = { z∈ | | z | = r },0 < r≤ 1.由Cauchy积分公式和高阶导数公式,有| f(n)(0) | = (n!/(2π)) | ?K(r) f(z)/z n + 1dz | ≤ (n!/(2π)) ?K(r) | f(z) |/| z |n + 1ds≤ (n!/(2π)) ?K(r) 1/((1 - | z |)| z |n + 1) ds = (n!/(2π))/((1 -r ) r n + 1) 2πr= n!/((1 -r ) r n).为得到| f(n)(0) |的最好估计,我们希望选取适当的r∈(0, 1),使得n!/((1 -r ) r n)最小,即要使(1 -r ) r n最大.当n≥ 1时,根据均值不等式,(1 -r ) r n = (1 -r ) (r/n)n ·n n≤ (((1 -r ) + (r/n) + ... + (r/n))/(n + 1))n + 1 ·n n = n n/(n + 1)n + 1.当1 -r = r/n,即r = n/(n + 1)时,(1 -r ) r n达到最大值n n/(n + 1)n + 1.因此,我们取r = n/(n + 1),此时有| f(n)(0) | ≤n!/((1 -r ) r n) = n!/(n n/(n + 1)n + 1) = (n + 1)!(1 + 1/n)n < e (n + 1)!.[也可以用数学分析中的办法研究函数g(r) = (1 -r ) r n在(0, 1)内的上确界,也会得到同样的结果.]13. 设在| z | ≤ 1上函数f(z)解析,且| f(z) | ≤ 1.试证:| f’(0) | ≤ 1.【解】设D = { z∈ | | z | ≤ 1 }.由高阶导数公式,| f’(0) | = (1/(2π))| ??D f(z)/z 2dz | ≤ (1/(2π)) ??D1/| z |2 ds = 1.14. 设f(z)为非常数的整函数,又设R, M为任意正数,试证:满足| z | > R且| f(z) | > M的z必存在.【解】若不然,当| z | > R时,| f(z) | ≤M.而f(z)为整函数,故必连续,因此f(z)在| z | ≤R上有界.所以f(z)在上有界.由Liouville定理,f(z)必为常数,这与题目条件相矛盾.15. 已知u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),试确定解析函数f(z) = u + i v.【解】由于u x + v x = 3(x2 + 2xy–y2) – 2,u y + v y = 3(x2– 2xy–y2) – 2,两式相加,再利用Cauchy-Riemann方程,有u x = 3(x2–y2) –2.两式相减,再利用Cauchy-Riemann方程,有v x = 6xy.所以f’(z) = u x + i v x = 3(x2–y2) – 2 + 6xy i = 3(x + y i)2– 1 = 3 z2– 2.因此,f(z) = z3–2z + α,其中α为常数.将z = 0代入,f(z) = z3–2z + α,得α = f(0).把(x, y) = (0, 0)带入u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),得u(0, 0) + v(0, 0) = 0.设u(0, 0) = c∈ ,则v(0, 0) = -c.因此α = f(0) = u(0, 0) + v(0, 0) i = (1 -i )c.所以,f(z) = z3– 2z + (1 -i )c,其中c为任意实数.[书上答案有误.设f(z) = z3– 2z + (a + b i),则f(z) = (x + y i)3– 2(x + y i) + (a + b i) = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)i.因此,u + v = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)= (x–y)(x2 + 4xy + y2) – 2(x + y) + (a + b),所以,当a + b≠ 0时,不满足题目所给条件.]16. 设(1) 区域D是有界区域,其边界是周线或复周线C;(2) 函数f1(z)及f2(z)在D内解析,在闭域cl(D) = D + C上连续;(3) 沿C,f1(z) = f2(z).试证:在整个闭域cl(D),有f1(z) = f2(z).【解】设f(z) = f1(z) -f2(z).用Cauchy积分公式,?z∈D有f(z) = (1/(2πi))?C f(ζ)/(ζ–z) dζ = 0.所以?z∈cl(D)有f(z) = 0,即f1(z) = f2(z).-?±≠≥·?≤≡⊕??αβχδεφγηι?κλμνοπθρστυ?ωξψζ∞∏∑?⊥∠ √§ψ∈∠?????§ #?→←↑↓?∨∧??????∑ΓΦΛΩ?m∈ +,?m∈ +,★?α1, α2, ..., αn?lim n→∞,+n→∞?ε > 0,∑u n,∑n≥ 1u n,m∈ ,?ε > 0,?δ> 0,【解】?[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
复变函数习题解答-3
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i
解
(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
iη θ ie θ 1 1 1 π 2i cosη d dx d dη . (分子分母同乘以 1 + e −2iη ) ζ = + η = + , 关。则 ∫ ∫0 1 + x 2 ∫0 1 + e2iη ∫ 0 1+ ζ 2 0 4 2 + 2 cos 2η
3π i 2z
=0
−π i
2)
∫π ch 3zdz = 3 sh 3z |π
6 i
0
1
0 i/6
= −i/3
3) 4) 5) 6)
∫ π sin
- i
1
πi
2
zdz = ∫
1 − cos 2 z z sin 2 z π i 1 dz = ( − ) |-π i = (π − sh 2π )i -π i 2 2 4 2
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问
∫
解
C
Re[ f (z )]dz =
∫
C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[,].
因为f(z)于区域D内是单叶的,即f(z)是区域D到的单射,而z(t)是[,]到D内的单射,故f(z(t))是[,]到内的单射.
因在D内有f’(z)0,故在[,]上,|f’(z(t))z’(t) |= |f’(z(t)) | ·|z’(t) |
x2
=v
y2
,v
x2
=u
y2,故w
xx+w
yy= 2 (u
x2
+v
x2
+u
y2
+v
y2
) = 4 (u
x2
+v
x2
) = 4 |f(z) |2;即(2
/x2
+2
/y2
) |f(z) |2
= 4 |f’(z) |2.
18.设函数f(z)在区域D内解析,且f’(z)
0.试证ln |f’(z) |为区域D内的调和函数.
xx+v
yy)v= 0;
由于u,v满足Cauchy-Riemann方程,故u
x2
=v
y2
,v
x2
=u
y2
,u
xv
x+u
yv
y= 0,因此(u
xu+v
xv)2
+ (u
yu+v
yv)2
=u
x2
u2
+v
x2
v2
+ 2u
xuv
xv+u
y2
u2
+v
y2
v2
+ 2u
yuv
yv= (u
x2
+v
x2
)(u2
+v2
);故w
所以
(w)dw=
C(f(z))f’(z)dz.
15.设函数f(z)在z平面上解析,且|f(z) |恒大于一个正的常数,试证f(z)必为常数.
【解】因|f(z) |恒大于一个正的常数,设此常数为M.
则z,|f(z) |M,因此解析,且| 1/f(z) |1/M.
则
C1/(z+ 2)dz=
C1/(z+ 2)dz=
[0, 2]iei
/(ei
+ 2)d
=
[0, 2]i(cos+isin)/(cos+isin+ 2)d
=
[0, 2](2 sin+i(1 + 2cos))/(5 + 4cos)d
=
[0, 2](2 sin)/(5 + 4cos)d+i
[0, 2](1 + 2cos)/(5 + 4cos)d.
[,]g(z)f’(z)dz=
[,](f(z)g’(z)dz+g(z)f’(z))dz
=
[,](f(z)g(z))’dz.
而f(z)g(z)是(f(z)g(z))’在单连通区域D内的一个原函数,所以[,](f(z)g(z))’dz=f()g()f()g() = (f(z)g(z))|
[,].
因此有
[,]f(z)g’(z)dz+
0.所以,是光滑曲线.
(2)当z() =z()时,C是闭曲线.此时z(t)C1
[,];在[,]上,有|z’(t) |0;z’() =z’();t
1[,],t
2(,),若t
1t
2,则z(t
1)z(t
2).与
(1)完全相同的做法,可以证明f(z(t))C1
[,],且|f’(z(t))z’(t) |
0.由z() =z()和z’() =z’(),可知f’(z())z’() =f’(z())z’().
因为t
1[,],t
2(,),若t
1t
2,则z(t
1)z(t
2),
由f(z)于区域D内单叶,因此我们有f(z(t
1))f(z(t
2)).
所以是光滑的闭曲线.
14.设C:
z=z(t) (t)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z)0,w=f(z)将曲线C映成曲线,证明积分换元公式(w)dw=
【解】aD,因区域D是开集,故存在r
1> 0,使得
K(a,r
1) = {z| |za| <r
1}
D.
因f’(a)0,而解析函数f’(z)是连续的,故存在r
2> 0,使得
K(a,r
2)K(a,r
1),且|f’(z)f’(a)| < |f’(a) |.
用三角不等式,此时有|f’(z)| > |f’(a) ||f’(z)f’(a)| >
所以
[0, 2](1 + 2cos)/(5 + 4cos)d=
0.
因(1 + 2cos))/(5 + 4cos)以2为周期,故
[,](1 + 2cos)/(5 + 4cos)d= 0;因(1 + 2cos))/(5 + 4cos)为偶函数,故[0,](1 + 2 cos)/(5 + 4cos)d
[,](1 + 2cos)/(5 + 4cos)d=
由Liuville定理,1/f(z)为常数,因此f(z)也为常数.
17.设函数f(z)在区域D内解析,试证(2
/x2
+2
/y2
) |f(z) |2
= 4 |f’(z) |2.【解】设f(z) =u+iv,w= |f(z) |2
,则w= ln (u2
+v2
).wx= 2(u
xu+v
xv),w
y= 2(u
p141
(一)[ 5, 7, 13, 14, 15, 17, 18 ]
5.由积分
C1/(z+ 2)dz之值证明
[0,](1 + 2 cos)/(5 + 4cos)d= 0,其中C取单位圆周|z| =
1.
【解】因为1/(z+ 2)在圆|z内解析,故
C1/(z+ 2)dz=
0.
设C:
z()= ei
,[0, 2].
【解2】用Caucht-Riemann方程直接验证.因为f’(z)也在区域D内解析,设f’(z) =u+iv,则u,v也满足Cauchy-Riemann方程.记w= ln |f’(z) |,则wu2
+v2
),wx= (u
xu+v
xv) /(u2
+v2
),w
y= (u
yu+v
yv) /(u2
+v2
);wxx= ((u
xxu+u
x2
+v
xxv+v
x2
)(u2
+v2
)2(u
xu+v
xv)2
)/(u2
+v2
)2;w
yy= ((u
yyu+u
y2
+v
yyv+v
y2
)(u2
+v2
)2(u
yu+v
yv)2
)/(u2
+v2
)2;因为u,v都是调和函数,所以uxxu+u
yyu= (u
xx+u
yy)u= 0,v
xxv+v
yyv= (v
(1)当z()z()时,C不是闭曲线.此时z(t)是[,]到D内的单射,z(t)C1
[,],且在[,]上,|z’(t) |
0.
因是曲线C在映射f下的象,所以可表示为w=f(z(t)) (t).t[,],z(t)
D.因f于区域D内解析,故f在z(t)处解析,
因此f(z(t))在t处可导,且导数为f’(z(t))z’(t).
(2)√z= eiargz/2
,设C:
z()= ei
,[, 0].C1/√zdz=
[, 0]iei
/ei/2
d=
[, 0]iei/2
d=2ei/2|[, 0]= 2(1i).[这个题目中看起来有些问题:
我们取主值支,通常在是考虑割去原点及负实轴的z平面上定义的单值连续分支.因此,无论
(1)还是
(2),曲线C上的点1总不在区域中(在区域的边界点上).因此曲线C也不在区域中.
z0f(z)不存在,也不是?]
2.沿从1到1的如下路径求
C1/√zdz.
(1)上半单位圆周;
(2)下半单位圆周,其中√z取主值支.
【解】
(1)√z= eiargz/2
,设C:
z()= ei
,[0,].
C1/√zdz=
[0,]iei
/ei/2
d=
[0,]iei/2
d= 2ei/2|[0,]= 2(1 +i).
0.
记U= {z| |zf’(a)| < |f’(a) |},则U是一个不包含原点的单连通区域.在沿射线L= {z|z=f’(a)t,t0 }割开的复平面上,多值函数g(z) = lnz可分出多个连续单值分支,每个单值连续分支g(z)
k在\L上都是解析的.t0,|f’(a)tf’(a) | = (t+ 1) |f’(a) ||f’(a) |,故f’(a)tU.
yu+v
yv);wxx= 2(u
xxu+u
x2
+v
xxv+v
x2
),w
yy= 2(u
yyu+u
y2