一轮二次函数代数综合题)

合集下载

2022年河南省中考数学一轮复习:二次函数综合训练

2022年河南省中考数学一轮复习:二次函数综合训练

2022年河南中考数学一轮复习:二次函数综合训练一、单选题1.如图,一次函数y 1=kx +b 与二次函数y 2=ax 2交于A (﹣1,1)和B (2,4)两点,则当y 1>y 2时x 的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <2D .x <﹣1或x >2 2.抛物线23y x =沿x 轴向右平移2个单位后的顶点坐标是( ). A .(0,2) B .(0,-2) C .(2,0) D .(-2,0) 3.如图,二次函数24y x x m =-+的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y kx b =+的图象经过该二次函数图象上点1,0A 及点B .则满足24kx b x x m +≥-+的x 的取值范围是( ).A .1x ≤或4x ≥B .14x ≤≤C .1x ≤或5x ≥D .15x ≤≤ 4.将抛物线2364y x x =---向右平移1个单位长度,向上平移2个单位,所得到的的抛物线的解析式为( )A .233y x =-+B .232y x =-+C .231y x =-+D .23y x =- 5.如图,已知二次函数y =ax 2+bx +c 给出下列结论:①abc <0,②4a +2b +c <0,③a +c >b ,④a +b ≤t (at +b )(t 是任意一个实数),⑤当x <-1时,y 随x 的增大而减少.其中结论正确的个数是( )A .2个B .3个C .4个D .5个 6.下列关于二次函数y =2x 2的说法正确的是( )A .它的图象经过点(-1,-2)B .它的图象的对称轴是直线x =2C .当x <0时,y 随x 的增大而增大D .当-1x ≤≤2时,y 有最大值为8,最小值为07.抛物线y =ax 2+bx +c 的图象如图所示,则下列结论:①abc <0;②b 2<4ac ;③b +2a =0;④3a +c =0;其中正确的是( )A .①③④B .②③④C .①②④D .①②③ 8.若二次函数2(0)y ax bx c a =++≠的图象与x 轴的交点坐标分别是(),0m 、(),0n ,且m n <,图象上有一点()M p q ,,且()()0a p m p n --<,对于以下说法:①240b ac ->;②x p =是方程20ax bx c q ++-=的解;③m p n <<;④M 点在x 轴下方,对于以上说法正确的是( )A .①②③④B .①②④C .③④D .①③ 9.如图,在平面直角坐标系中,抛物线y =﹣x 2+4x +m 的顶点为A ,它与x 轴分别交于B ,C 两点,与y 轴的交点为D ,过点D 作DE 平行于x 轴交于抛物线于点E ,BF ∥CE 交DE 于点F ,若3S △ABC =4S △FEC ,则m 的值为( )A.﹣127B.﹣712C.﹣12 D.1210.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①4a﹣2b+c<0;②抛物线与x轴的另一个交点坐标为(﹣1,0);③若点A(k2+1,y1),点B(k2+2,y2)在抛物线上,那么y1>y2;④若m,n(m<n)为方程a(x﹣3)(x+1)﹣2=0的两个根,则﹣1<m<n<3.正确的个数是()A.1个B.2个C.3个D.4个11.如图①,在正方形ABCD中,点E在AD边上,连接BE,以BE为边作等边△BEF,点F在BC的延长线上,动点M从点B出发,沿B→E→F向点F做匀速运动,过点M 作MP⊥AD于点P.设点M运动的距离为x,△PEM的面积为y,y与x的函数关系图象如图②所示,则DE的长为()12.已知二次函数2y ax bx c =++(0a ≠)图象的对称轴为直线1x =-,部分图象如图所示,下列结论中:①0abc >;②240b ac ->;③40a c +>;④若t 为任意实数,则有2a bt at b -≤+;⑤当图象经过点1,22⎛⎫ ⎪⎝⎭时,方程220ax bx c ++-=的两根为1x ,2x ()12x x <,则12322x x +=-,其中正确的结论有( )A .①②③B .②③⑤C .②③④⑤D .②③④二、填空题 13.若y =(m ﹣1)x |m |+1+8mx ﹣8是关于x 的二次函数,则其图象与x 轴的交点坐标为 _________.14.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b >0;②a ﹣b +c =0;③当x <﹣1或x >3时,y >0;④一元二次方程ax 2+bx +c +1=0(a ≠0)有两个不相等的实数根.上述结论中正确的是_____.(填上所有正确结论的序号)15.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x ≥0)与y 2=25x (x ≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB=_______________.16.如图,已知抛物线()20y ax bx c a =++<与x 轴交于()1,0A x ,()2,0B x 两点,且132x -<<-,122x x +=-,则下列结论:①240b ac ->;②若点17,2y ⎛⎫- ⎪⎝⎭,23,4y ⎛⎫ ⎪⎝⎭是该抛物线上的点,则12y y <;③2at a bt b -≤-(t 为任意数);④0a b c ++<.其中正确的有______.17.某水果店销售一批水果,平均每天可售出40kg ,每千克盈利4元,经调查发现,每千克降价0.5元,商店平均每天可多售出10kg 水果,则商店平均每天的最高利润为_____元.三、解答题18.如图,二次函数2y ax bx c =++的图像交x 轴与A (-1,0),B (2,0)两点;交y 轴于点C (0,-2),过点A ,C 画直线;(1)求抛物线的解析式和对称轴;(2)设点P 在x 轴正半轴上,且P A =PC ,求OP 的长.19.如图,若要建一个矩形场地,场地的一面靠墙,墙长10m,另三边用篱笆围成,篱笆总长20m,设垂直于墙的一边为x m,矩形场地的面积为S m2(1)S与x的函数关系式为S=,其中x的取值范围是;(2)若矩形场地的面积为42m2,求矩形场地的长与宽.(3)当矩形场地的面积最大时,求矩形场地的长与宽,并求出矩形场地面积的最大值.20.如图,抛物线y=﹣x2+3x+m与x轴的一个交点为A(4,0),另一交点为B,且与y 轴交于点C,连接AC.(1)求m的值及该抛物线的对称轴;(2)若点P在直线AC上,点Q是平面内一点,是否存在点Q,使以点A、点B、点P、点Q为顶点的四边形为正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.21.如图,抛物线y=mx2﹣4mx﹣5m(m>0)与x轴交于A、B两点,与y轴交于C点.(1)求抛物线顶点M的坐标(用含m的代数式表示),A,B两点的坐标;(2)是否存在使BCM为直角三角形的抛物线?若存在,请求出;若不存在,请说明理由.22.已知二次函数21=-+的图象与x轴仅有一个公共点A.y mx mx(1)求m的值;(2)过点(0,3)作直线l平行于x轴,在对称轴右侧的抛物线上任取一点P,过点P向直线l作垂线,垂足为E点,若在抛物线的对称轴上存在点D,使得△PDE是以D为直角顶点的等腰直角三角形.请求出点P的横坐标.23.如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.(1)则点A,B,C的坐标分别是A(,),B(,),C (,);(2)设经过A,B两点的抛物线的解析式为y=14(x﹣5)2+k,它的顶点为F,求证:直线F A与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形,如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案1.C2.C3.B4.C5.C6.D7.A8.B9.A10.D11.A12.C13.(﹣2,0)14.②③④15.5516.①②③④17.18018(1) 解:二次函数2y ax bx c =++的图象交x 轴于(1,0)A -、(2,0)B , ∴设该二次函数的解析式为:(2)(1)(0)y a x x a =-+≠.将0x =,2y =-代入,得2(02)(01)a -=-+,解得1a =,∴抛物线的解析式为(2)(1)y x x =-+,即2y x x 2=--;∴对称轴为直线122b x a =-=; (2) 解:如图.由(1)知,抛物线的解析式为2y x x 2=--,则(0,2)C -. 设OP x =,则1PA PC x ==+,在Rt POC △中,由勾股定理,得2222(1)x x +=+, 解得,32x =,即32OP =.19.(1)解:由题意得平行于墙的一边长为()202m x -,∴()2202=220S x x x x =--+,∵墙的长度为10m ,∴平行于墙的一边长不能超过10m ,∴220202100x x x <⎧⎪-≤⎨⎪>⎩,∴510x ≤<,故答案为:2220x x -+;510x ≤<;(2)解:∵矩形场地的面积为42m 2,∴222042x x -+=,即210210x x -+=, 解得7x =或3x =(舍去),∴2026x -=,∴矩形场地的长与宽分别为7m 、6m ;(3)解:∵()222202550S x x x =-+=--+,20-<, ∴当5x =时,S 有最大值50,∴当矩形场地的面积最大时,矩形场地的长与宽分别为10m,5m,此时矩形场地的最大面积为50m2.20.(1)解:把A(4,0)代入二次函数y=﹣x2+3x+m得:∴﹣16+12+m=0,解得:m=4,∴二次函数的解析式为:y=﹣x2+3x+4=﹣(x﹣32)2+254,∴二次函数对称轴为直线x=32;(2)解:存在,理由如下:令y=0,即y=﹣x2+3x+4,解得x=4或x=-1,∴点B的坐标为(-1,0)①当AB是正方形的边时,此时,对应的正方形为ABP′Q′,∵A(4,0),AB=5,∴点Q′的坐标为(4,5);②当AB是正方形的对角线时,此时,对应的矩形为APBQ,∵AB、PQ是正方形对角线,∴线段AB和线段PQ互相垂直平分,∴点Q在抛物线对称轴上,且到x轴的距离为52,∴点Q的坐标为(32,﹣52),故点Q的坐标为(4,5)或(32,﹣52).21.(1)解:(1)∵y=m(x﹣2)2﹣9m,∴抛物线顶点M的坐标为(2,﹣9m),∵抛物线与x轴交于A、B两点,∴当y=0时,mx2﹣4mx﹣5m=0,∵m>0,∴x2﹣4x﹣5=0,解得x1=﹣1,x2=5,∴A,B两点的坐标为(﹣1,0)、(5,0),(2)解:存在使△BCM为直角三角形的抛物线.过点C作CN⊥DM于点N,则△CMN为直角三角形,CN=OD=2,DN=OC=5m,∴MN=DM﹣DN=4m,∴CM2=CN2+MN2=4+16m2,在Rt△OBC中,BC2=OB2+OC2=25+25m2,在Rt△BDM中,BM2=BD2+DM2=9+81m2.①如果△BCM是直角三角形,且∠BMC=90°时,CM2+BM2=BC2,即4+16m2+9+81m2=25+25m2,解得6m=∵m>0,∴6m = ∴存在抛物线262656y =△BCM 是直角三角形; ②如果△BCM 是直角三角形,且∠BCM =90°时,BC 2+CM 2=BM 2.即25+25m 2+4+16m 2=9+81m 2,解得 2m = ∵m >0, ∴2m =. ∴存在抛物线22522y x =-使得△BCM 是Rt △; ③∵25+25m 2>4+16m 2,9+81m 2>4+16m 2,∴以∠CBM 为直角的直角三角形不存在,综上,存在抛物线262656y x x =22522y x =-使△BCM 是直角三角形. 22.(1) 解:二次函数21y mx mx =-+的图象与x 轴仅有一个公共点A ,0m ∴≠,且关于x 的一元二次方程210mx mx -+=只有一个实数根, ∴此方程根的判别式240m m ∆=-=,解得4m =或0m =(舍去),即m 的值为4.(2)解:设PE 的中点为点B ,连接BD ,由题意,画图如下:由(1)可知,2214414()2y x x x =-+=-, 则二次函数的对称轴为直线12x =, 所以点D 的横坐标为12, 设点P 的坐标为21(,441)()2P a a a a -+>, 则点E 的坐标为(,3)E a ,点B 的横坐标为a , 所以224413122122a a BE BP EP a a -+-====--, PDE 是以D 为直角顶点的等腰直角三角形,22,21a BD BE BD a EP --∴==⊥,l x 轴,EP 垂直直线l ,EP x ∴⊥轴,BD x ∴轴,12BD a ∴=-, 222112a a a --∴=-,即221221a a a --=-或222112a a a =-+--, 解得313a +=31312a -=<(舍去)或113a +=或11312a -=(舍去), 故点P 313+113+ 23(1)解:连接MC 、MA ,设过点M 与y 轴平行的直线交x 轴于D ,如图所示:∵⊙M 与y 轴相切于点C ,∴MC ⊥y 轴,∵M (5,4),∴MC =MA =5,OC =MD =4,∴C (0,4),∵MD ⊥AB ,∴DA =DB ,∠MDA =90°,∴AD 225-4,∴BD =3,∴OA =5-3=2,OB =5+3=8,∴A (2,0),B (8,0),故答案为2,0;8,0;0,4;(2)解:把A (2,0)代入21(5)4y x k =-+,解得94k =- ∴219(5)44y x =--, ∴F (5,94-) ∴MF =4+94=254,94DF =, ∴AF 22AD FD +154∴22262516FA AM MF +==∴MA ⊥AF∴F A 与⊙M 相切;(3)解:存在;点P 坐标为(5,555715,4);理由如下:由勾股定理得:BC 22224845OC OB +=+=分三种情况:①当PB=PC时,点P在BC的垂直平分线上,点P与M重合∴P(5,4);②当BP=BC52所示:∵PD222--BP BD80371∴P(571;③当PC=BC5MC,如图3所示:则∠PMC=90°,根据勾股定理得:PM222--80555PC MC∴PD55∴P(5,55;综上所述:存在点P,且点P在x轴的上方,使△PBC是等腰三角形,点P的坐标为(5,555715,4),.。

2023年中考苏科版数学一轮复习专题提优练习-一次函数和二次函数综合

2023年中考苏科版数学一轮复习专题提优练习-一次函数和二次函数综合

2023年中考数学一轮复习专题提优练习一次函数和二次函数综合一、选择题1.二次函数y 1=ax 2+bx +c 与一次函数y 2=mx +n 的图象如图所示,则满足ax 2+bx +c >mx +n 的x 的取值范围是( )A .﹣3<x <0B .x <﹣3或x >0C .x <﹣3D .0<x <3第1题 第2题2.如图,直线y =kx +b 与直线y =mx 相交于点A (﹣1,2),与x 轴相交于点B (﹣3,0),则关于x 的不等式组0<kx +b <mx 的解集为( )A .x >﹣3B .﹣3<x <﹣1C .﹣1<x <0D .﹣3<x <03.已知二次函数y=-(x -h)2(h 为常数),当自变量x 的值满足2≤x≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或64.用列表法画二次函数y=x 2+bx+c 的图象时先列一个表,当表中自变量x 的值以相等间隔增加时,函数y 所对应的值依次为:20, 56, 110, 182, 274, 380, 506, 650. 其中有一个值不正确,这个不正确的值是( )A .505B .380C .274D .1825.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫作“整点”. 例如:P (1,0),Q (2,-2)都是“整点”. 抛物线y=mx 2-4mx+4m -2(m>0)与x 轴的交点为A ,B ,若抛物线在点A ,B 之间的部分与线段AB 所围成的区域(包含边界)恰有7个“整点”,则m 的取值范围是( )A .121<≤m B .121≤<m C .1<m ≤2 D .1≤m<26.四位同学在研究函数y=x 2+bx+c (b, c 是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x 2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4. 已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁7.根据关于x 的一元二次方程x 2+px +q =0,可列表如下:则方程x 2+px +q =0的正数解满足( )x 0 0.5 1 1.1 1.2 1.3 x 2+px +q﹣15﹣8.75﹣2﹣0.590.842.29A .解的整数部分是0,十分位是5B .解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D .解的整数部分是1,十分位是28. 已知二次函数c bx x y ++=2中,函数y 与自变量x 之间的部分对应值如下表所示:X … 0 1 2 3 … y…5212…点A (x 1,y 1),B (x 2,y 2)在函数图象上,则当0<x 1<1,2<x 2<3时,y 1与y 2的大小关系正确性是( )A .y 1≥y 2B .y 1>y 2C .y 1<y 2D .y 1≤y 2二、填空题9.已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x 的方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2= .10.如图,在抛物线y 1=ax 2(a >0)和和y 2=mx 2+nx (m <0)中,抛物线y 2的顶点在抛物线y 1上,且与x 轴的交点分别为(0,0)(4,0),则不等式(a ﹣m )x 2﹣nx <0的解集是 .第9题 第10题 第11题 第12题11.如图,二次函数y 1=ax 2+bx +c 与一次函数y 2=kx 的图象交于点A 和原点O ,点A 的横坐标为﹣4,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,则满足0<y 1<y 2的x 的取值范围是 .12. 如图是抛物线y=c bx ax ++2(0≠a )的一部分,其对称轴为直线x=2,若其与x 轴的一个交点为B (5,0),则由图像可知,不等式02>++c bx ax 的解集是________. 13. 如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣2,4),B (1,1),则方程ax 2=bx +c 的解是__________________.第13题 第14题14.已知点A (﹣2,0),点P 是直线y =x 上的一个动点,当以A ,O ,P 为顶点的三角形面积是3时,点P 的坐标为 .15. 对于二次函数322-==mx x y ,有下列说法:①它的图像与x 轴有两个公共点;②如果当x≤1时,y 随x 的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3. 其中正确的说法是___________(把你认为正确说法的序号都填上). 三、解答题16.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,其中点A (﹣1,0),点C (0,5),点D (1,8)都在抛物线上,M 为抛物线的顶点.(1)求抛物线的函数解析式; (2)求△MCB 的面积;(3)根据图形直接写出使一次函数值大于二次函数值的x 的取值范围.17.如图①,将抛物线y =ax 2(﹣1<a <0)平移到顶点恰好落在直线y =x ﹣3上,并设此时抛物线顶点的横坐标为m .(1)求抛物线的解析式(用含a 、m 的代数式表示)(2)如图②,Rt △ABC 与抛物线交于A 、D 、C 三点,∠B =90°,AB ∥x 轴,AD =2,BD :BC =1:2.①求△ADC 的面积(用含a 的代数式表示)②若△ADC 的面积为1,当2m ﹣1≤x ≤2m +1时,y 的最大值为﹣3,求m 的值.18.如图1,平面直角坐标系xOy 中,已知抛物线y =ax 2+4x 与x 轴交于O 、A 两点.直线y =kx +m 经过抛物线的顶点B 及另一点D (D 与A 不重合),交y 轴于点C .(1)当OA =4,OC =3时.①分别求该抛物线与直线BC 相应的函数表达式;②连结AC ,分别求出tan ∠CAO 、tan ∠BAC 的值,并说明∠CAO 与∠BAC 的大小关系; (2)如图2,过点D 作DE ⊥x 轴于点E ,连接CE .当a 为任意负数时,试探究AB 与CE 的位置关系?19.如图,在平面直角坐标系xOy 中,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(2,3)和(﹣3,﹣12).(1)求此二次函数的表达式;(2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,若锐角∠PCO =∠ACO ,写出此时点P 的坐标;(3)若直线l :y =kx (k ≠0)与线段BC 交于点D (不与点B ,C 重合),则是否存在这样的直线l ,使得以B ,O ,D 为顶点的三角形与△BAC 相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由.20. 如图,抛物线y=ax ax 22(a<0)位于x 轴上方的图象记为F 1,它与x 轴交于P 1,O 两点,图象F 2与F 1关于原点O 对称,F 2与x 轴的另一个交点为P 2,将F 1与F 2同时沿x 轴向右平移P 1P 2的长度即可得F 5与F 6;……;按这样的方式一直平移下去即可得到一系列图象F 1,F 2,…,F n ,我们把这组图象称为“波浪抛物线”.(1)当a=-1时, ①求图象F 1的顶点坐标.②点H (2014,-3)________(填“在”或“不在”)该“波浪抛物线”上;若图象F n 的顶点T n 的横坐标为201,则图象F n 对应的解析式为__________,其自变量x 的取值范围为_________.(2)设图象F m ,F m+1的顶点分别为T m ,T m+1(m 为正整数),x 轴上一点Q 的坐标为(12,0).试探究:当a 为何值时,以O ,T m ,T m+1,Q 四点为顶点的四边形为矩形?并直接写出此时m 的值.21. 设二次函数)(2b a bx ax y +-+=(a ,b 是常数,a≠0).(1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过A (-1,4),B (0,-1),C (1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P (2,m )(m>0)在该二次函数图象上,求证:a>0.22. 如图所示,已知二次函数c bx x y ++-=2的图像经过点C (0,3),与x 轴分别交于点A.点B (3,0).点D (n, y 1).E (n+t ,y 2).F (n+4,y 3)都在这个二次函数的图像上,其中0<t<4,连接DE.DF.EF ,记ΔDEF 的面积为S.(1)求二次函数c bx x y ++-=2的表达式; (2)若n=0,求S 的最大值,并求此时t 的值;(3)若t=2,当n 取不同数值时,S 的值是否变化?如不变,求该定值;如变化,试用含n 的代数式表示S.23.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点).C.H.N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.。

2023年中考数学一轮综合培优测试卷:二次函数-动态几何问题【含答案】

2023年中考数学一轮综合培优测试卷:二次函数-动态几何问题【含答案】

2023年中考数学一轮综合培优测试卷:二次函数-动态几何问题一、综合题1.如图,已知抛物线y=ax 2+bx+c (a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.2.如图,抛物线y=ax 2+bx+c (a≠0)与x 轴相交于A (﹣1,0),B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)连接BC ,点P 为抛物线上第一象限内一动点,当△BCP 面积最大时,求点P 的坐标;(3)设点D 是抛物线的对称轴上的一点,在抛物线上是否存在点Q ,使以点B ,C ,D ,Q 为顶点的四边形为平行四边形?若存在,求出点Q 的坐标;若不存在,说明理由.3.如图,抛物线y=﹣x 2+6x 与x 轴交于点O ,A ,顶点为B ,动点E 在抛物线对称轴上,点F 在对称轴右侧抛物线上,点C 在x 轴正半轴上,且EF OC ,连接OE ,CF 得四边形OCFE .//=(1)求B 点坐标;(2)当tan ∠EOC= 时,显然满足条件的四边形有两个,求出相应的点F 的坐标;43(3)当0<tan ∠EOC <3时,对于每一个确定的tan ∠EOC 值,满足条件的四边形OCFE 有两个,当这两个四边形的面积之比为1:2时,求tan ∠EOC .4.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C 1:y 1=﹣2x 2+4x+2与C 2:y 2=﹣x 2+mx+n 为“友好抛物线”.(1)求抛物线C 2的解析式.(2)点A 是抛物线C 2上在第一象限的动点,过A 作AQ ⊥x 轴,Q 为垂足,求AQ+OQ 的最大值.(3)设抛物线C 2的顶点为C ,点B 的坐标为(﹣1,4),问在C 2的对称轴上是否存在点M ,使线段MB 绕点M 逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C 2上?若存在求出点M 的坐标,不存在说明理由.5.如图,已知抛物线 与直线AB 交于 、 两点,与y 轴交于y =−x 2+bx +c A(−1,0)B(2,3)点C ,顶点为D .(1)求抛物线的解析式;(2)求△ABD的面积;(3)在抛物线的对称轴上是否存在点P,使得△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(−1,0)OA=OC=4OB6.如图,在平面直角坐标系中,已知点B的坐标为,且,抛物线y=ax2+bx+c(a≠0)A,B,C图象经过三点.A,C(1)求两点的坐标;(2)求抛物线的解析式;P AC PD⊥AC D PD (3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大P PD时,求此时点的坐标及的最大值.7.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.8.已知,经过点A(-4,4)的抛物线y=ax2+bx与x轴相交于点B(-3,0).(1)求抛物线的解析式;(2)如图1,过点A作AH⊥x轴,垂足为H,平行于y轴的直线交线段AO于点Q,交抛物线于点P,当四边形AHPQ为平行四边形时,求∠AOP的度数;(3)如图2,试探究:在抛物线上是否存在点C,使∠CAO=∠BAO?若存在,请求出直线AC解析式;若不存在,请说明理由.9.如图,已知△ABC是边长为12的正三角形,AD是边BC上的高线,CF是外角ACE的平分线,点P是边BC B,C不重合),∠APQ=60°,射线PQ分别与边AC,射线CF交于点N,Q.(1)求证:△ABP∽△PCN;(2)不管点P运动到何处,在不添辅助线的情况下,除第(1)小题中的一对相似三角形外,请写出图中其它的所有相似三角形;(3)当点P从BD的中点运动到DC的中点时,点N都随着点P的运动而运动.在此过程中,试探究:能否求出点N运动的路径长?若能,请求出这个长度;若不能,请说明理由.10.已知二次函数y = -x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),与y轴交于点C (0,3),M 为它的顶点.(1)求抛物线的解析式以及顶点坐标;(2)连接MC 、BC 、BM ,画出图象并求出△MCB 的面积S △MCB .11.已知二次函数y =ax 2+2x+c 的图象经过点(1,4)和(0,3)两点,与x 轴交于A 、B 两点(A点在B 点的左侧).(1)求二次函数的表达式及对称轴;(2)若点P 在此抛物线上,且在x 轴上方,求△PAB 的最大面积.12.在平面直角坐标系xOy 中,已知二次函数y= 的图象经过点A (2,0)和点14x 2+mx +nB (1,﹣ ),直线l 经过抛物线的顶点且与y 轴垂直,垂足为Q .34(1)求该二次函数的表达式;(2)设抛物线上有一动点P 从点B 处出发沿抛物线向上运动,其纵坐标y 1随时间t (t≥0)的变化规律为y 1=﹣ +2t .现以线段OP 为直径作⊙C .34①当点P 在起始位置点B 处时,试判断直线l 与⊙C 的位置关系,并说明理由;在点P 运动的过程中,直线l 与⊙C 是否始终保持这种位置关系?请说明你的理由.②若在点P 开始运动的同时,直线l 也向上平行移动,且垂足Q 的纵坐标y 2随时间t 的变化规律为y 2=﹣1+3t ,则当t 在什么范围内变化时,直线l 与⊙C 相交?此时,若直线l 被⊙C 所截得的弦长为a ,试求a 2的最大值.13.如图,抛物线 与 轴交于 、 两点,与 轴交于点 .y =x 2+x−2x A B y CA B C(1)求点,点和点的坐标;P PB+PC P(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;M AC M ABCM (3)若点是直线下方抛物线上一动点,运动到何处时四边形面积最大,最大值面积是多少?14.如图,在平面直角坐标系中,直线y=﹣x+5与y轴交于点A,与x轴交于点B.抛物线y=﹣x2+bx+c过A、B两点.(1)点A,B的坐标分别是A ,B ;(2)求抛物线的解析式;(3)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一动点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.y=ax2+bx+c C(0,−5)x15.如图,已知抛物线与y轴交于点,与轴交于点A和点B,其(5,0)x=2中点B的坐标为抛物线对称轴为直线.(1)求抛物线的解析式;(2)当 时,y 的取值范围为  .0<x <5(3)点P 为该二次函数在第四象限内图像上的一动点,过点P 作 轴,交 于点Q ,PQ//y BC 设线段 长为l ,求l 的最大值,并写出此时点P 的坐标.PQ 16.如图,对称轴为直线x= 的抛物线经过点A (6,0)和B (0,4).72(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)解:将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线y=ax 2+bx+c 中,得:,{a−b +c =09a +3b +c =0c =−3解得: {a =1b =−2c =−3故抛物线的解析式:y=x 2﹣2x﹣3(2)解:当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=﹣ =1,b2a 故P (1,0)(3)解:如图所示:抛物线的对称轴为:x=﹣ =1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:b2a MA 2=m 2+4,MC 2=(3+m )2+1=m 2+6m+10,AC 2=10;①若MA=MC ,则MA 2=MC 2,得:m 2+4=m 2+6m+10,解得:m=﹣1,②若MA=AC ,则MA 2=AC 2,得:m 2+4=10,得:m=± ;6③若MC=AC ,则MC 2=AC 2,得:m 2+6m+10=10,得:m 1=0,m 2=﹣6;当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1, )(1,﹣ )(1,﹣1)(1,0).662.【答案】(1)解:设抛物线解析式为y=a (x+1)(x﹣3),把C (0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x 2+2x+3(2)解:设直线BC 的解析式为y=kx+m ,把B (3,0),C (0,3)代入得,解得 ,{3k +m =0m =3{k =−1m =3所以直线BC 的解析式为y=﹣x+3,作PM ∥y 轴交BC 于M ,如图1,设P (x ,﹣x 2+2x+3),(0<x <3),则M (x ,﹣x+3),∴PM=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x ,∴S △PCB = •3•PM=﹣ x 2+ =﹣ (x﹣ )2+ ,1232923232278当x= 时,△BCP 的面积最大,此时P 点坐标为( , )3232154(3)解:如图2,抛物线的对称轴为直线x=1,当四边形BCDQ 为平行四边形,设D (1,a ),则Q (4,a﹣3),把Q (4,a﹣3)代入y=﹣x 2+2x+3得a﹣3=﹣16+8+3,解得a=﹣2,∴Q (4,﹣5);当四边形BCQD 为平行四边形时,设D (1,a ),则Q (﹣2,3+a ),把Q (﹣2,3+a )代入y=﹣x 2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8,∴Q (﹣2,﹣5);当四边形BQCD 为平行四边形时,设D (1,a ),则Q (2,3﹣a ),把Q (2,3﹣a )代入y=﹣x 2+2x+3得3﹣a=﹣4+4+3,解得a=0,∴Q (2,3),综上所述,满足条件的Q 点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).3.【答案】(1)解:∵y=﹣x 2+6x=﹣(x﹣3)2+9,∴B (3,9)(2)解:抛物线的对称轴为直线x=3,直线x=3交x 轴于H ,如图,∵tan ∠EOC= ,即tan ∠EOH= ,4343∴ = ,EH OH 43∴EH=4,∴E 点坐标为(3,4)或(3,﹣4),当y=4时,﹣(x﹣3)2+9=4,解得x 1=3﹣ (舍去),x 2=3+ ,55当y=﹣4时,﹣(x﹣3)2+9=﹣4,解得x 1=3﹣ (舍去),x 2=3+ ,1313∴F 点坐标为(3+ )或(3+ ,﹣4)513(3)解:如图,∵平行四边形和平行四边形OE′F′C′等高,∴这两个四边形的面积之比为1:2时,OC′=2OC ,设OC=t ,则OC′=2t ,∴F 点的横坐标为3+t ,F′点的横坐标为3+2t ,而点F 和F′的纵坐标互为相反数,∴﹣(3+t﹣3)2+9+[﹣(3+2t﹣3)2+9]=0,解得t 1= ,t 2=﹣ (舍去),31053105∴F 点坐标为(3+ , ),3105275∴E (3, ),275∴tan ∠EOC= = .2753954.【答案】(1)解:∵y 1=﹣2x 2+4x+2=﹣2(x﹣1)2+4,∴抛物线C 1的顶点坐标为(1,4).∵抛物线C 1与C 2顶点相同,∴ =1,﹣1+m+n=4.−m−1×2解得:m=2,n=3.∴抛物线C 2的解析式为y 2=﹣x 2+2x+3(2)解:如图1所示:设点A 的坐标为(a ,﹣a 2+2a+3).∵AQ=﹣a 2+2a+3,OQ=a ,∴AQ+OQ=﹣a 2+2a+3+a=﹣a 2+3a+3=﹣(a﹣ )2+ .32214∴当a= 时,AQ+OQ 有最大值,最大值为 32214(3)解:如图2所示;连接BC ,过点B′作B′D ⊥CM ,垂足为D .∵B (﹣1,4),C (1,4),抛物线的对称轴为x=1,∴BC ⊥CM ,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D ⊥MC ,∴∠MB′D+∠B′MD=90°.∴∠MB′D=∠BMC .在△BCM 和△MDB′中,,{∠MB'D =∠BMC∠BCM =∠MDB'BM =MB'∴△BCM ≌△MDB′.∴BC=MD ,CM=B′D .设点M 的坐标为(1,a ).则B′D=CM=4﹣a ,MD=CB=2.∴点B′的坐标为(a﹣3,a﹣2).∴﹣(a﹣3)2+2(a﹣3)+3=a﹣2.整理得:a 2﹣7a+10=0.解得a=2,或a=5.当a=2时,M 的坐标为(1,2),当a=5时,M 的坐标为(1,5).综上所述当点M 的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C 2上5.【答案】(1)解:把 、 两点代入 得,A(−1,0)B(2,3)y =−x 2+bx +c ,{−1−b +c =0−4+2b +c =3解得: ,{b =2c =3∴抛物线的解析式为: y =−x 2+2x +3(2)解:∵ ,y =−x 2+2x +3=−(x−1)2+4∴D 点坐标为: ,D(1,4)设直线AB 的解析式为: ,代入A 、B 两点可得:y =kx +d ,{−k +d =02k +d =3解得: ,{k =1d =1∴直线AB 的解析式为: ,y =x +1设直线AB 与抛物线对称轴交于点E ,则 ,E(1,2)∴ ;S △ABD =12×(4−2)×3=3(3)解:假设存在,设点 ,由解析式可知C 点坐标为(0,3)P(1,m)∴ , , ,AC 2=12+32=10CP 2=12+(m−3)2=m 2−6m +10AP 2=m 2+4△ACP ①当 时, ,即 ,∠APC =90°AP 2+CP 2=AC 2m 2+4+m 2−6m +10=10解得: , ,m 1=1m 2=2此时点P 的坐标为(1,1)或(1,2);②当 时, ,即 ,∠ACP =90°AC 2+CP 2=AP 210+m 2−6m +10=m 2+4解得:,m =83此时点P 的坐标为;(1,83)③当 时, ,即 ,∠PAC =90°AP 2+AC 2=PC 2m 2+4+10=m 2−6m +10解得:,m =−23此时点P 的坐标为;(1,−23)综上所述,满足条件的P 点的坐标为(1,1)或(1,2)或或 .(1,83)(1,−23)6.【答案】(1)解:OA =OC =4OB =4,故点A 、C 的坐标分别为(4,0)、(0,﹣4)(2)解:抛物线的表达式为: ,y =a (x +1)(x−4)=a(x 2﹣3x﹣4)即﹣4a =﹣4,解得:a =1,故抛物线的表达式为: y =x 2−3x−4(3)解:直线CA 过点C ,设其函数表达式为: , y =kx−4将点A 坐标代入上式并解得:k =1,故直线CA 的表达式为:y =x﹣4,过点P 作y 轴的平行线交AC 于点H ,∵OA =OC =4,,∴∠OAC =∠OCA =45°∵PH//y 轴,,∴∠PHD =∠OCA =45°设点 ,则点H (x ,x﹣4),P (x ,x 2−3x−4)PD =22(x−4−x 2+3x +4)=−22x 2+22x∵ <0,∴PD 有最大值,当x =2时,其最大值为 ,−222此时点P (2,﹣6).7.【答案】(1)解:在Rt △ABC 中,∠A=30°,AB=4,∴AC=2 ,3∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t× = t ,323∴CD=AC﹣AD=2 ﹣ t (0<t <2)33(2)解:在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD+DQ=AC ,∴2× t=2 ,33∴t=1(3)解:当0<t≤1时,S=S △PDQ = DQ×DP= × t×t=t 2,当1<t <2时,如图2,1212332CQ=AQ﹣AC=2AD﹣AC=2 t﹣2 =2 (t﹣1),333在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠CQE=2 (t﹣1)× =2(t﹣1),333∴S=S △PDQ ﹣S △ECQ = × t×t﹣ ×2 (t﹣1)×2(t﹣1)=﹣ t 2+4 t﹣2 ,12312333233∴S={32t 2(0<t ≤1)−33t 2+43t−23(0<t <2)(4)解:当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=12PQ= AP=t ,AF= AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,1212∴AP+PF=2t+2t=2,∴t= ;12当PQ 的垂直平分线过AC 的中点M 时,如图4,∴∠QMN=90°,AN= AC= ,QM= PQ= AP=t ,1231212在Rt △NMQ 中,NQ= ,MQ cos30°=233t ∵AN+NQ=AQ ,∴ + =2 t ,3233t3∴t= ,34当PQ 的垂直平分线过BC 的中点时,如图5,∴BF= BC=1,PE= PQ=t ,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H ,1212∴BH=BF=1,在Rt △PEH 中,PH=2PE=2t ,∴AH=AP+PH=AB+BH ,∴2t+2t=5,∴t= ,即:当线段PQ 的垂直平分线经过△ABC 一边中点时,t 的值为 秒或 秒或 秒541234548.【答案】(1)解:抛物线的解析式为 y =x 2+3x(2)解:设点P 坐标为 ,其中 (m ,m 2+3m)−4<m <0∵点A (-4,4),∴直线OA 的解析式为 ,y =−x 从而点Q 的坐标为 ,∴ = (m ,−m)PQ =−m−(m 2+3m)−m 2−4m当四边形AHPQ 为平行四边形时,PQ=AH=4,即 ,解得 ,此时点P 坐标为 −m 2−4m =4m =−2(−2,−2)∴∠AOP=∠AOH+∠POH=45o +45o =90o .(3)解:设AC 交y 轴于点D ,由点A (-4,4)得, , ∠AOB =∠AOD =45o∵∠CAO =∠BAO , ,∴ ≌ AO =AO ΔAOD ΔAOB ∴ ,点D 坐标为(0,3)OD =OB =3设直线AC 解析式为 ,则y =px +q {−4p +q =4q =3解得, ,∴直线AC 解析式为 .p =−14q =3y =−14x +39.【答案】(1)证明:在正三角形ABC 中,∠ABP =∠PCN =60°, ∴∠BAP+∠BPA =120°,又∵∠APQ =60°,∴∠CPN+∠BPA =120°,∴∠BAP =∠CPN ,∴△ABP ∽△PCN(2)解:△ABD ≌△ACD ;△APN ∽△ACP ;△APN ∽△QCN ;△ACP ∽△QCN ;理由:∵△ABC 是正三角形,AD ⊥BC ,由三线合一可证△ABD ≌△ACD ;∵∠APN=∠ACP=60°,∠PAN=∠CAP ,∴△APN ∽△ACP ;∵∠APN=∠NCQ=60°,∠PNA=∠CNQ,∴△APN ∽△QCN ;∵△APN ∽△ACP ,△APN ∽△QCN ,∴△ACP ∽△QCN(3)解:能,设PB =x ,CN =y ,由第(1)题可得: , y x=12−x12∴,又3≤x≤9,利用函数图象可知:y =−112x 2+x 当x =3或9时,y = ,当x =6时,y 最大=3;94∴点N 运动的路径长为:(3- )×2=1.59410.【答案】(1)解:∵抛物线与y 轴交于点C (0,3),∴c=3,∴抛物线解析式为:y = -x 2,将(﹣1,0)代入上述解析式,得:-1-b+3=0,解得:b=2,∴抛物线的解析式为:y = -x 2+2x+3,整理为顶点式为:y = -(x-1)2+4,∴顶点M 坐标为(1,4)(2)解:∵抛物线对称轴为直线x=1,A 、B 关于对称轴对称, ∴点B 的坐标为(3,0),作图如图所示,过M 点作MN ∥y 轴,交BC 于N 点,设直线BC 的解析式为:y=kx+b ,将B (3,0)和C (0,3)代入解得k=-1,b=3,∴直线BC 的解析式为:y=-x+3,∵MN ∥y 轴,∴M 、N 两点横坐标相同,由(1)知M 点横坐标为1,∴N 点横坐标为1,∴代入直线BC 解析式可得N 点纵坐标为2,∴MN=4-2=2,∴S △MBC = MN (x B -x C )= ×2×(3-0)=3,1212∴△MCB 的面积为3.11.【答案】(1)解:把(1,4),(0,3)代入二次函数y =ax 2+2x+c 得:,{a +2+c =4c =3解得:a =-1,c =3∴y =-x 2+2x +3对称轴为:直线x =-=1.b2a (2)解:令y =0得:x 2-2x-3=0,(x+1)(x-3)=0,x 1=-1,x 2=3,∵A 点在B 点的左侧,∴A (-1,0),B (3,0),∴AB =3-(-1)=4,当P 点为抛物线的顶点时,△PAB 的面积最大,把x =1代入y =-x 2+2x+3得:y =4,∴ P 点的坐标为(1,4),∴S △PAB =×4×4=8,12即△PAB 的最大面积为8.12.【答案】(1)解:将点A (2,0)和点B (1,﹣ )分别代入y= x 2+mx+n 中,得:3414 ,{14×4+2m +n =014+m +n =−34解得: ,{m =0n =−1∴抛物线的解析式:y= x 2﹣114(2)解:①将P 点纵坐标代入(1)的解析式,得:x 2﹣1=﹣ +2t ,x= ,14348t +1∴P ( ,﹣ +2t ),8t +134∴圆心C ( ,﹣ +t ),8t +1238∴点C 到直线l 的距离:﹣ +t﹣(﹣1)=t+ ;3858而OP 2=8t+1+(﹣ +2t )2,得OP=2t+ ,半径OC=t+ ;345458∴直线l 与⊙C 始终保持相切.②Ⅰ、由①可知,若直线l 与⊙C 相切,则:2t﹣ =t+ ,t= ;585854∴当0<t < 时,直线l 与⊙C 相交;54Ⅱ、∵0<t < 时,圆心C 到直线l 的距离为d=|2t﹣ |,又半径为r=t+ ,545858∴a 2=4(r 2﹣d 2)=4[(t+ )2﹣|2t﹣ |2]=﹣12t 2+15t ,5858∴t= 时,a 的平方取得最大值为 58751613.【答案】(1)由y=0,得x 2+x﹣2=0 解得 x 1=﹣2,x 2=l ,∴A (﹣2,0),B (l ,0),由x=0,得y=﹣2,∴C (0,﹣2).(2)连接AC 与对称轴的交点即为点P.设直线AC 为y=kx+b ,则 ,{﹣2k +b =0b =﹣2得 k=﹣l ,∴y=﹣x﹣2.对称轴为x= ,当 x= 时,y=-( )﹣2= ,−12−12−12−32∴P ( , ).−12−32(3)过点M 作MN 丄x 轴与点N ,设点M (x ,x 2+x﹣2),则OA=2,ON=﹣x ,OB=1,OC=2,MN=﹣(x 2+x﹣2)=﹣x 2﹣x+2,S 四边形ABCM =S △AOM +S △OCM +S △BOC= ×2×(﹣x 2﹣x+2)+ ×2(﹣x )+ ×1×2121212=﹣x 2﹣2x+3=﹣(x+1)2+4.∵a=﹣1<0,∴当x=﹣1时,S 四边形ABCM 的最大值为4.∴点M 坐标为(﹣1,﹣2)时,S 四边形ABCM 的最大值为4.14.【答案】(1)(0,5);(5,0)(2)解:将点A 、B 的坐标代入二次函数表达式得: , {−25+5b +c =0c =5解得: ,{b =4c =5即抛物线的表达式为:y =﹣x 2+4x+5;(3)解:抛物线的对称轴为x =﹣ =2,则点C 的坐标为(4,5), b 2a 设点P 的坐标为(x ,﹣x 2+4x+5),则点D 坐标为(x ,﹣x+5)∵AC ⊥PD ,∴S 四边形APCD = ×AC×PD =2(﹣x 2+4x+5+x﹣5)=﹣2x 2+10x ,12∵a =﹣2<0,∴S 四边形APCD 有最大值,当x = 时,其最大值为: ,此时点P 的坐标( , ).522525225215.【答案】(1)解:∵点B 的坐标为(5,0),抛物线对称轴为直线 , x =2∴点A 的坐标为(-1,0),设抛物线的解析式为 ,y =a(x +1)(x−5)把点C(0,-5)代入得: ,−5=a(0+1)(0−5)解得: ,a =1∴抛物线的解析式为 ,y =(x +1)(x−5)=x 2−4x−5(2)−9≤y <0(3)解:设直线BC 的解析式为 ,y =kx−5把点B 的坐标(5,0)代入得: ,0=5k−5解得: ,k =1∴直线BC 的解析式为 ,y =x−5设P 点的坐标为(x , ),则点Q 的坐标为(x , ),x 2−4x−5x−5∴ ( )l =PQ =x−5−x 2−4x−5= −x 2+5x=,−(x−52)2+254当 时, ,x =52l 最大=254此时,P 点的坐标为( , ),52−35416.【答案】(1)解:因为抛物线的对称轴是x= ,72设解析式为y=a (x﹣ )2+k .72把A ,B 两点坐标代入上式,得 ,{a(6−72)2+k =0a(0−72)2+k =4解得a= ,k=﹣ .23256故抛物线解析式为y= (x﹣ )2﹣ ,顶点为( ,﹣ )237225672256(2)解:∵点E (x ,y )在抛物线上,位于第四象限,且坐标适合y= (x﹣ )2﹣ ,2372256∴y <0,即﹣y >0,﹣y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线,∴S=2S △OAE =2× ×OA•|y|=﹣6y=﹣4(x﹣ )2+25.1272因为抛物线与x 轴的两个交点是(1,0)和(6,0),所以自变量x 的取值范围是1<x <6.① 根据题意,当S=24时,即﹣4(x﹣ )2+25=24.72化简,得(x﹣ )2= .7214解得x 1=3,x 2=4.故所求的点E 有两个,分别为E 1(3,﹣4),E 2(4,﹣4),点E 1(3,﹣4)满足OE=AE ,所以平行四边形OEAF 是菱形;点E 2(4,﹣4)不满足OE=AE ,所以平行四边形OEAF 不是菱形;②当OA ⊥EF ,且OA=EF 时,平行四边形OEAF 是正方形,此时点E 的坐标只能是(3,﹣3),而坐标为(3,﹣3)的点不在抛物线上,故不存在这样的点E ,使平行四边形OEAF 为正方形。

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析

二次函数代数推理综合问题解析二次函数是一种常见的二次曲线,其一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

在代数推理的综合问题中,有一些与二次函数相关的问题需要解析。

下面将介绍几个常见的二次函数代数推理综合问题,并给出解析。

问题一:已知二次函数y = ax^2 + bx + c的顶点坐标为(2,3),且过点(-1,0),求该函数的表达式。

解析:由题可知,二次函数的顶点坐标为(2,3),则顶点坐标中的x坐标为2,代入函数表达式可以得到:3=a*2^2+b*2+c另外,已知过点(-1,0),把该点的坐标代入函数表达式可以得到:0=a*(-1)^2+b*(-1)+c将上述两个方程组成一个方程组:4a+2b+c=3----(1)a-b+c=0----(2)解决方程组(1)和(2),可以采用消元法或代入法:将公式(2)的c解出来得到c=-a+b,代入公式(1)可以得到:4a+2b+(-a+b)=3,整理得到3a+3b=3,整理为a+b=1由公式a+b=1可以得到a=1-b,代入公式(2)可以得到(1-b)-b+c=0,整理得到c=2b-1综上所述,函数表达式为:y = (1 - b)x^2 + bx + (2b - 1)。

问题二:已知二次函数y = ax^2 + bx + c的两个零点为-2和5,求该函数的表达式。

解析:已知二次函数的两个零点为-2和5,可得到两个方程:a*(-2)^2+b*(-2)+c=0a*5^2+b*5+c=0整理得到:4a-2b+c=0----(3)25a+5b+c=0----(4)解决方程组(3)和(4),可以采用消元法或代入法:将公式(3)的c解出来得到c=2b-4a,代入公式(4)可以得到:25a+5b+(2b-4a)=0,整理得到-21a+7b=0,整理为-3a+b=0。

由公式-3a+b=0可以得到b=3a,代入公式(3)可以得到4a-2(3a)+c=0,整理得到c=2a。

一元二次方程与二次函数综合测试题及参考答案

一元二次方程与二次函数综合测试题及参考答案

A.B.C.D.2、下列命题:①若,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④3、若一次函数的图象过第一、三、四象限,则函数()A.有最大值B.有最大值-C.有最小值D.有最小值-4、已知二次函数y=a x2+b x+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②a b c<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个5、关于的一元二次方程的两个实数根分别是,且,则的值是()A.1B.12C.13D.256、设、是方程的两根,则代数式=。

7、已知关于一元二次方程有一根是,则。

三、计算题8、已知:关于的方程(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是,求另一个根及值.9、解方程:四、综合题10、已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.11、如图:抛物线与轴交于A、B两点,点A的坐标是(1,0),与轴交于点C.(1)求抛物线的对称轴和点B的坐标;(2)过点C作C P⊥对称轴于点P,连接B C交对称轴于点D,连接A C、B P,且∠B P D=∠B C P,求抛物线的解析式。

12、已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.(1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数.(2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且+=5,与y轴的交点为C,它的顶点为M,求直线C M的解析式.13、如图,已知点,直线交轴于点,交轴于点(1)求对称轴平行于轴,且过三点的抛物线解析式;(2)若直线平分∠A B C,求直线的解析式;(3)若直线产(>0)交(1)中抛物线于两点,问:为何值时,以为边的正方形的面积为9?14、如图,抛物线交轴于点、,交轴于点,连结,是线段上一动点,以为一边向右侧作正方形,连结,交于点.(1)试判断的形状,并说明理由;(2)求证:;(3)连结,记的面积为,的面积为,若,试探究的最小值.15、如图,抛物线y=-x22+b x+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形O C E F为矩形,且O F=2,E F=3.(1)求抛物线所对应的函数解析式;(2)求△A B D的面积;(3)将△A O C绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.五、简答题16、已知的两边,的长是关于的一元二次方程的两个实数根,第三边的长是.(1)为何值时,是以为斜边的直角三角形;(2)为何值时,是等腰三角形,并求的周长17、已知关于的一元二次方程:.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为(其中).若是关于的函数,且,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,.18、已知抛物线y = a x 2-x + c 经过点Q (-2, ),且它的顶点P 的横坐标为-1.设抛物线与x 轴相交于A A 、、B B 两两点点,,如如图图..(1)求抛物线的解析式; (2)求A 、B 两点的坐标;(3)设P B 于y 轴交于C 点,求△A B C 的面积.19、如图,已知抛物线的顶点为A (1,4)、抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点.点P 是x 轴上的一个动点. (1)求此抛物线的解析式.(2)当P A +P B 的值最小时,求点P 的坐标.20、已知二次函数的部分图象如图7所示,抛物线与轴的一个交点坐标为,对称轴为直线.(1)若,求的值;(2)若实数,比较与的大小,并说明理由.参考答案一、选择题1、C2、B3、B4、考点:二次函数图象与系数的关系。

备考2023年中考数学一轮复习-函数_二次函数_二次函数的最值-综合题专训及答案

备考2023年中考数学一轮复习-函数_二次函数_二次函数的最值-综合题专训及答案

备考2023年中考数学一轮复习-函数_二次函数_二次函数的最值-综合题专训及答案二次函数的最值综合题专训1、(2018徐州.中考真卷) 如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q(1)【探究一】在旋转过程中,①如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.②如图3,当时E P与EQ满足怎样的数量关系?,并说明理由.③根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为,其中的取值范围是(直接写出结论,不必证明)(2)【探究二】若且AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:①S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.②随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.2、(2017南京.中考真卷) 已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.3、(2017满洲里.中考模拟) 如图(1),抛物线 y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式及点D的坐标;(2)直接写出阴影部分的面积 S;阴影(3)如图(2),直线AB与y轴相交于点P,点M为线段OA上一动点(点M 不与点A,O重合),∠PMN为直角,MN与AP相交于点N,设OM=t,试探究:t 为何值时,△MAN为等腰三角形?4、(2018无锡.中考模拟) 九(1)班数学兴趣小组经过市场调查,整理出某种商品时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.5、(2018惠山.中考模拟) 重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y= x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=- x+ (x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)50 52 54 56 58 …x(年) 1 2 3 4 5 …(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:,,)6、(2018宁波.中考真卷) 如图1,直线l:与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<),以点A为圆心,AC 长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.7、(2017菏泽.中考真卷) 如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.8、(2017平顶山.中考模拟) 如图,已知ED为⊙O的直径且ED=4,点A(不与E、D 重合)为⊙O上一个动点,线段AB经过点E,且EA=EB,F为⊙O上一点,∠FEB=90°,BF的延长线交AD的延长线交于点C.(1)求证:△EFB≌△ADE;(2)当点A在⊙O上移动时,直接回答四边形FCDE的最大面积为多少.9、(2017重庆.中考真卷) 如图,在平面直角坐标系中,抛物线y= x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y= x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.10、(2017四川.中考真卷) 某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?11、(2018遵义.中考模拟) 如图,在平面直角坐标系xOy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=-x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD 的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.12、(2020合肥.中考模拟) 某市政府为了扶贫,鼓励当地农民养殖小龙虾,如图:张叔叔顺着圩梗AN、AM(AN=3 m,AM=10m,∠MAN=45°),用8m长的渔网搭建了一个养殖水域(即四边形ABCD),圩梗边不需要渔网,AB∥CD,∠C=90°.设BC=xm,四边形ABCD面积为S(m2).(1)求出S关于x的函数表达式及x的取值范围;(2)x为何值时,围成的养殖水域面积最大?最大面积是多少?13、(2020东城.中考模拟) 在平面直角坐标系中,点A的坐标为,点B 的坐标为,抛物线的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式的x的最大值为3,直接写出实数a的值.14、已知二次函数的图象经过点,且对称轴为直线.(1)求的值;(2)当时,求的最大值;(3)平移抛物线,使其顶点始终在二次函数上,求平移后所得抛物线与轴交点纵坐标的最小值.15、如图,已知二次函数的图象与轴交于点、,与轴交于点.(1)求二次函数的解析式;(2)若点为抛物线上的一点,点为对称轴上的一点,且以点、、、为顶点的四边形为平行四边形,求点的坐标;(3)点是二次函数第四象限图象上一点,过点作轴的垂线,交直线于点,求四边形面积的最大值及此时点的坐标.二次函数的最值综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

专题:二次函数与代数综合题(解析版)

专题:二次函数与代数综合题(解析版)

专题:二次函数与代数综合题【典例1】(2019•自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=17 4的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【点拨】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,c=3,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×=,M(,);(3)存在点F,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,当y=0时,x1=﹣1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,设F(1,a),连接BF,CF,则BF=BN=﹣3=,CF=CH=,由题意可列:,解得,a=,∴F(1,).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.【精练1】(2019•贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.【点拨】(1)先根据题意得出点B 的坐标,再利用待定系数法求解可得;(2)分点P 在点C 上方和下方两种情况,先求出∠OBP 的度数,再利用三角函数求出OP 的长,从而得出答案;(3)分对称轴x =1在a 到a +1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得. 【解答】解:(1)∵点A (﹣1,0)与点B 关于直线x =1对称, ∴点B 的坐标为(3,0), 代入y =x 2+bx +c ,得: {1−b +c =09+3b +c =0, 解得{b =−2c =−3,所以二次函数的表达式为y =x 2﹣2x ﹣3;(2)如图所示:由抛物线解析式知C (0,﹣3), 则OB =OC =3, ∴∠OBC =45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3×√33=√3,∴CP=3−√3;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=3×√3=3√3,∴CP=3√3−3;综上,CP的长为3−√3或3√3−3;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1−√5(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2+√7(负值舍去);综上,a的值为1−√5或2+√7.【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.【精练2】(2019•长春)已知函数y={−x2+nx+n,(x≥n),−12x2+n2x+n2,(x<n)(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.【点拨】(1)①将P (4,b )代入y =−12x 2+52x +52;②当x ≥5时,当x =5时有最大值为5;当x <5时,当x =52时有最大值为458;故函数的最大值为458;(2)将点(4,2)代入y =﹣x 2+nx +n 中,得到n =185,所以185<n <4时,图象与线段AB 只有一个交点;将点(2,2)代入y =﹣x 2+nx +n 和y =−12x 2+n2x +n2中,得到n =2,n =83,所以2≤n <83时图象与线段AB 只有一个交点;(3)利用数形结合的思想,分别画出图象解决问题即可:n >0时,n >n2,①如图1中,当点A 的纵坐标为4时,构建方程解决问题即可.②如图2中,观察图象可知,当n ≥8时,恰好有四个点满足条件,分别是图中A ,B ,C ,D . ③如图3中,当点A 的纵坐标为4时,恰好有四个点满足条件,分别是图中A ,B ,C ,D .构建方程即可解决问题.④如图4中,当n ≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A ,B ,C ,D . 【解答】解:(1)当n =5时, y ={−x 2+5x +5(x ≥5)−12x 2+52x +52(x <5), ①将P (4,b )代入y =−12x 2+52x +52, ∴b =92;②当x ≥5时,当x =5时有最大值为5; 当x <5时,当x =52时有最大值为458;∴函数的最大值为458;(2)将点(4,2)代入y =﹣x 2+nx +n 中, ∴n =185, ∴185<n <4时,图象与线段AB 只有一个交点;将点(2,2)代入y =﹣x 2+nx +n 中, ∴n =2,将点(2,2)代入y =−12x 2+n 2x +n 2中, ∴n =83,∴2≤n <83时图象与线段AB 只有一个交点; 综上所述:185<n <4,2≤n <83时,图象与线段AB 只有一个交点;(3)n >0时,n >n2,函数图象如图实线所示. ①如图1中,当点A 的纵坐标为4时,则有−n 28+n 24+n 2=n 28+n2=4时,解得n =4或n =﹣8(舍去), 观察图象可知:n =4时,满足条件的点恰好有四个,分别是A ,B ,C ,D .②如图2中,观察图象可知,当n ≥8时,恰好有四个点满足条件,分别是图中A ,B ,C ,D .n<0时,n<n2,函数图象如图中实线.③如图3中,当点A的纵坐标为4时,恰好有四个点满足条件,分别是图中A,B,C,D.则有:−n24+n22+n=4时,解得n=﹣2﹣2√5或n=﹣2+2√5(舍弃)④如图4中,当n≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A,B,C,D.综上所述,函数图象上有4个点到x轴的距离等于4时,n≤﹣8或n=﹣2﹣2√5或n=4或n≥8.【点睛】本题属于二次函数综合题,考查二次函数的图象及性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,学会用分类讨论的思想思考问题,学会正确画出函数图象,利用图象法解决问题,属于中考压轴题.【精练3】(2019•绥化)已知抛物线y=ax2+bx+3的对称轴为直线x=12,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣n(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.【点拨】(1)将点A(﹣2,0)代入解析式,对称轴为x=−b2a=12,联立即可求a与b的值;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,联立y=﹣mx+5,y=−12x2+12x+3根据韦达定理可得x1+x2=2m+1,x1x2=4,由面积之间的关系:S△CPQ=S△CHP﹣S△CHQ,可求m的值;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,联立有:﹣mx+3m=−12x2+12x+3,解得x=3或x=2m﹣2;由条件可得P(3,0),Q(2m﹣2,﹣2m2+5m),K(0,5﹣2m),所以有HK=|5m﹣5|=5|m﹣1|;①当0<m<1时,HK=5﹣5m,S△PQK=S△PHK+S△QHK=12×HK(x P﹣x Q)=12×(5﹣5m)(5﹣2m)=5m2−352m+252,②当1<m<52时,HK=5m﹣5,S△PQK=﹣5m2+352m−252,③当2m﹣2>3时,如图③,有m>52,S△PQK=12×KQ|y P|=32(2m2﹣5m)=3m2−152m,【解答】解:(1)将点A(﹣2,0)代入解析式,得4a﹣2b+3=0,∵x=−b2a=12,∴a=−12,b=12;∴y=−12x2+12x+3;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,把n=﹣5代入y=﹣mx﹣n,∴y=﹣mx+5,联立y =﹣mx +5,y =−12x 2+12x +3得:﹣mx +5=−12x 2+12x +3,∴x 2﹣(2m +1)x +4=0,∴x 1+x 2=2m +1,x 1x 2=4,∵△CPQ 的面积为3;∴S △CPQ =S △CHP ﹣S △CHQ ,即12HC (x 2﹣x 1)=3, ∴x 2﹣x 1=3,∴(x 1+x 2)2−4x 1x 2=9,∴(2m +1)2=25,∴m =2或m =﹣3,∵m >0,∴m =2;(3)当n =﹣3m 时,PQ 解析式为y =﹣mx +3m ,∴H (0,3m ),∵y =﹣mx +3m 与y =−12x 2+12x +3相交于点P 与Q ,∴﹣mx +3m =−12x 2+12x +3,∴x =3或x =2m ﹣2,当2m ﹣2<3时,有0<m <52,∵点P 在点Q 的右边,∴P (3,0),Q (2m ﹣2,﹣2m 2+5m ),∴AQ 的直线解析式为y =5−2m 2x +5﹣2m , ∴K (0,5﹣2m ),∴HK =|5m ﹣5|=5|m ﹣1|,①当0<m <1时,如图①,HK =5﹣5m ,∴S △PQK =S △PHK +S △QHK =12×HK (x P ﹣x Q )=12×(5﹣5m )(5﹣2m )=5m 2−352m +252,②当1<m <52时,如图②,HK =5m ﹣5,∴S △PQK =﹣5m 2+352m −252, ③当2m ﹣2>3时,如图③,有m >52,∴P (2m ﹣2,﹣2m 2+5m ),Q (3,0),K (0,0),∴S △PQK =12×KQ |y P |=32(2m 2﹣5m )=3m 2−152m , 综上所述,S ={ 5m 2−352m +252(0<m <1)−5m 2+352m −252(1<m <52)3m 2−152m(m >52);【点睛】本题是二次函数的综合题;熟练掌握二次函数的图象及性质,数形结合,分类讨论是解题的主要思想.【精练4】(2019•大庆)如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x的取值范围.【点拨】(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴{−b2=21−b+c=0,即可求解;(2)翻折后得到的部分函数解析式为:y =﹣(x ﹣2)2+9=﹣x 2+4x +5,(﹣1<x <5),新图象与直线y=t 恒有四个交点,则0<t <9,由{y =t y =−x 2+4x +5解得:x =2±√9−t ,即可求解; (3)分m 、n 在函数对称轴左侧、m 、n 在对称轴两侧、m 、n 在对称轴右侧时,三种情况分别求解即可.【解答】解:(1)抛物线的对称轴是x =2,且过点A (﹣1,0)点,∴{−b 2=21−b +c =0,解得:{b =−4c =−5, ∴抛物线的函数表达式为:y =x 2﹣4x ﹣5;(2)y =x 2﹣4x ﹣5=(x ﹣2)2﹣9,则x 轴下方图象翻折后得到的部分函数解析式为:y =﹣(x ﹣2)2+9=﹣x 2+4x +5,(﹣1<x <5),其顶点为(2,9).∵新图象与直线y =t 恒有四个交点,∴0<t <9,设E (x 1,y 1),F (x 2,y 2).由{y =t y =−x 2+4x +5解得:x =2±√9−t , ∵以EF 为直径的圆过点Q (2,1),∴EF =2|t ﹣1|=x 2﹣x 1,即2√9−t =2|t ﹣1|,解得t =1±√332, 又∵0<t <9,∴t 的值为1+√332;(3)①当m 、n 在函数对称轴左侧时,m ≤n ≤2,由题意得:x =m 时,y =7,x =n 时,y =m ,即:m 2﹣4m ﹣5=7,解得m =﹣2或m =6(舍),n 2﹣4n ﹣5=m ,解得n =2−√7或m =2+√7(舍),解得:﹣2≤x ≤2−√7;②当m 、n 在对称轴两侧时,x =2时,y 的最小值为﹣9,不合题意;③当m 、n 在对称轴右侧时,同理可得:5+3√52≤x ≤6; 故x 的取值范围是:﹣2≤x ≤2−√7或5+3√52≤x ≤6. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本性质性质、图形的翻折等,其中(3),要注意分类求解,避免遗漏.【精练5】(2019•玉林)已知二次函数:y =ax 2+(2a +1)x +2(a <0).(1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,B (A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P 使∠PCA =75°?如果存在,求出点P 的坐标;如果不存在,请说明理由.【点拨】(1)将解析式右边因式分解得抛物线与x 轴的交点为(﹣2,0)、(−1a ,0),结合a <0即可得证;(2)结合(1)中一个交点坐标(−1a ,0)及横坐标均为整数,且a 为负整数可得a 的值,从而得出抛物线解析式,继而求出点C 、D 坐标,从而画出函数图象;(3)分点P在AC上方和下方两种情况,结合∠ACO=45°得出直线PC与x轴所夹锐角度数,从而求出直线PC解析式,继而联立方程组,解之可得答案.【解答】解:(1)∵y=ax2+(2a+1)x+2=(x+2)(ax+1),且a<0,∴抛物线与x轴的交点为(﹣2,0)、(−1a,0),则二次函数的图象与x轴有两个交点;(2)∵两个交点的横坐标均为整数,且a为负整数,∴a=﹣1,则抛物线与x轴的交点A的坐标为(﹣2,0)、B的坐标为(1,0),∴抛物线解析式为y=(x+2)(﹣x+1)=﹣x2﹣x+2=﹣(x+12)2+94,当x=0时,y=2,即C(0,2),函数图象如图1所示:(3)存在这样的点P,∵OA=OC=2,∴∠ACO=45°,如图2,当点P在直线AC上方时,记直线PC与x轴的交点为E,∵∠PCA =75°,∴∠PCO =120°,∠OCB =60°,则∠OEC =30°,∴OE =OC tan∠OEC =33=2√3, 则E (2√3,0),求得直线CE 解析式为y =−√33x +2, 联立{y =−√33x +2y =−x 2−x +2,解得{x =0y =2或{x =√3−33y =√3+53, ∴P (√3−33,√3+53); 如图3,当点P 在直线AC 下方时,记直线PC 与x 轴的交点为F ,∵∠ACP =75°,∠ACO =45°,∴∠OCF =30°,则OF =OC tan ∠OCF =2×√33=2√33, ∴F (2√33,0), 求得直线PC 解析式为y =−√3x +2,联立{y =−√3x +2y =−x 2−x +2, 解得:{x =0y =2或{x =√3−1y =√3−1, ∴P (√3−1,√3−1),综上,点P 的坐标为(√3−33,√3+53)或(√3−1,√3−1). 【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的图象和性质、直线与抛物线相交的问题等.【精练6】(2019•河北)如图,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x ﹣b 与y 轴交于点B ;抛物线L :y =﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b =2019.5时“美点”的个数.【点拨】(1)当x =0时,y =x ﹣b =﹣b ,所以B (0,﹣b ),而AB =8,而A (0,b ),则b ﹣(﹣b )=8,b =4.所以L :y =﹣x 2+4x ,对称轴x =2,当x =2吋,y =x ﹣4=﹣2,于是L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x −b 2)2+b 24,顶点C (b 2,b 24)因为点C 在l 下方,则C 与l 的距离b −b 24=−14(b ﹣2)2+1≤1,所以点C 与1距离的最大值为1;(3)由題意得y 3=y 1+y 22,即y 1+y 2=2y 3,得b +x 0﹣b =2(﹣x 02+bx 0)解得x 0=0或x 0=b −12.但x 0≠0,取x 0=b −12,对于L ,当y =0吋,0=﹣x 2+bx ,即0=﹣x (x ﹣b ),解得x 1=0,x 2=b ,右交点D(b ,0).因此点(x 0,0)与点D 间的距离b ﹣(b −12)=12(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x 直线解析式a :y =x ﹣2019,美点”总计4040个点,②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,“美点”共有1010个.【解答】解:(1)当x =0时,y =x ﹣b =﹣b ,∴B (0,﹣b ),∵AB =8,而A (0,b ),∴b ﹣(﹣b )=8,∴b =4.∴L :y =﹣x 2+4x ,∴L 的对称轴x =2,当x =2吋,y =x ﹣4=﹣2,∴L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x −b 2)2+b 24, ∴L 的顶点C (b 2,b 24)∵点C 在l 下方,∴C 与l 的距离b −b 24=−14(b ﹣2)2+1≤1, ∴点C 与1距离的最大值为1;(3)由题意得y 3=y 1+y 22,即y 1+y 2=2y 3, 得b +x 0﹣b =2(﹣x 02+bx 0)解得x 0=0或x 0=b −12.但x 0≠0,取x 0=b −12,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b−12)=12(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.。

中考压轴题二次函数与代数综合题

中考压轴题二次函数与代数综合题

二次函数与代数综合题【典例1】(2019•自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=17 4的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【点拨】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,c=3,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×=,M(,);(3)存在点F,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,当y=0时,x1=﹣1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,设F(1,a),连接BF,CF,则BF=BN=﹣3=,CF=CH=,由题意可列:,解得,a=,∴F(1,).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.【精练1】(2019•贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.【点拨】(1)先根据题意得出点B 的坐标,再利用待定系数法求解可得;(2)分点P 在点C 上方和下方两种情况,先求出∠OBP 的度数,再利用三角函数求出OP 的长,从而得出答案;(3)分对称轴x =1在a 到a +1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得. 【解答】解:(1)∵点A (﹣1,0)与点B 关于直线x =1对称, ∴点B 的坐标为(3,0), 代入y =x 2+bx +c ,得: {1−b +c =09+3b +c =0, 解得{b =−2c =−3,所以二次函数的表达式为y =x 2﹣2x ﹣3;(2)如图所示:由抛物线解析式知C (0,﹣3), 则OB =OC =3, ∴∠OBC =45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3×√33=√3,∴CP=3−√3;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=3×√3=3√3,∴CP=3√3−3;综上,CP的长为3−√3或3√3−3;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1−√5(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2+√7(负值舍去);综上,a的值为1−√5或2+√7.【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.【精练2】(2019•长春)已知函数y={−x2+nx+n,(x≥n),−12x2+n2x+n2,(x<n)(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.【点拨】(1)①将P (4,b )代入y =−12x 2+52x +52;②当x ≥5时,当x =5时有最大值为5;当x <5时,当x =52时有最大值为458;故函数的最大值为458;(2)将点(4,2)代入y =﹣x 2+nx +n 中,得到n =185,所以185<n <4时,图象与线段AB 只有一个交点;将点(2,2)代入y =﹣x 2+nx +n 和y =−12x 2+n2x +n2中,得到n =2,n =83,所以2≤n <83时图象与线段AB 只有一个交点;(3)利用数形结合的思想,分别画出图象解决问题即可:n >0时,n >n2,①如图1中,当点A 的纵坐标为4时,构建方程解决问题即可.②如图2中,观察图象可知,当n ≥8时,恰好有四个点满足条件,分别是图中A ,B ,C ,D . ③如图3中,当点A 的纵坐标为4时,恰好有四个点满足条件,分别是图中A ,B ,C ,D .构建方程即可解决问题.④如图4中,当n ≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A ,B ,C ,D . 【解答】解:(1)当n =5时, y ={−x 2+5x +5(x ≥5)−12x 2+52x +52(x <5), ①将P (4,b )代入y =−12x 2+52x +52, ∴b =92;②当x ≥5时,当x =5时有最大值为5; 当x <5时,当x =52时有最大值为458;∴函数的最大值为458;(2)将点(4,2)代入y =﹣x 2+nx +n 中, ∴n =185, ∴185<n <4时,图象与线段AB 只有一个交点;将点(2,2)代入y =﹣x 2+nx +n 中, ∴n =2,将点(2,2)代入y =−12x 2+n 2x +n 2中, ∴n =83,∴2≤n <83时图象与线段AB 只有一个交点; 综上所述:185<n <4,2≤n <83时,图象与线段AB 只有一个交点;(3)n >0时,n >n2,函数图象如图实线所示. ①如图1中,当点A 的纵坐标为4时,则有−n 28+n 24+n 2=n 28+n2=4时,解得n =4或n =﹣8(舍去), 观察图象可知:n =4时,满足条件的点恰好有四个,分别是A ,B ,C ,D .②如图2中,观察图象可知,当n ≥8时,恰好有四个点满足条件,分别是图中A ,B ,C ,D .n<0时,n<n2,函数图象如图中实线.③如图3中,当点A的纵坐标为4时,恰好有四个点满足条件,分别是图中A,B,C,D.则有:−n24+n22+n=4时,解得n=﹣2﹣2√5或n=﹣2+2√5(舍弃)④如图4中,当n≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A,B,C,D.综上所述,函数图象上有4个点到x轴的距离等于4时,n≤﹣8或n=﹣2﹣2√5或n=4或n≥8.【点睛】本题属于二次函数综合题,考查二次函数的图象及性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,学会用分类讨论的思想思考问题,学会正确画出函数图象,利用图象法解决问题,属于中考压轴题.【精练3】(2019•绥化)已知抛物线y=ax2+bx+3的对称轴为直线x=12,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣n(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.【点拨】(1)将点A(﹣2,0)代入解析式,对称轴为x=−b2a=12,联立即可求a与b的值;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,联立y=﹣mx+5,y=−12x2+12x+3根据韦达定理可得x1+x2=2m+1,x1x2=4,由面积之间的关系:S△CPQ=S△CHP﹣S△CHQ,可求m的值;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,联立有:﹣mx+3m=−12x2+12x+3,解得x=3或x=2m﹣2;由条件可得P(3,0),Q(2m﹣2,﹣2m2+5m),K(0,5﹣2m),所以有HK=|5m﹣5|=5|m﹣1|;①当0<m<1时,HK=5﹣5m,S△PQK=S△PHK+S△QHK=12×HK(x P﹣x Q)=12×(5﹣5m)(5﹣2m)=5m2−352m+252,②当1<m<52时,HK=5m﹣5,S△PQK=﹣5m2+352m−252,③当2m﹣2>3时,如图③,有m>52,S△PQK=12×KQ|y P|=32(2m2﹣5m)=3m2−152m,【解答】解:(1)将点A(﹣2,0)代入解析式,得4a﹣2b+3=0,∵x=−b2a=12,∴a=−12,b=12;∴y=−12x2+12x+3;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,把n=﹣5代入y=﹣mx﹣n,∴y=﹣mx+5,联立y =﹣mx +5,y =−12x 2+12x +3得:﹣mx +5=−12x 2+12x +3,∴x 2﹣(2m +1)x +4=0,∴x 1+x 2=2m +1,x 1x 2=4,∵△CPQ 的面积为3;∴S △CPQ =S △CHP ﹣S △CHQ ,即12HC (x 2﹣x 1)=3, ∴x 2﹣x 1=3,∴(x 1+x 2)2−4x 1x 2=9,∴(2m +1)2=25,∴m =2或m =﹣3,∵m >0,∴m =2;(3)当n =﹣3m 时,PQ 解析式为y =﹣mx +3m ,∴H (0,3m ),∵y =﹣mx +3m 与y =−12x 2+12x +3相交于点P 与Q ,∴﹣mx +3m =−12x 2+12x +3,∴x =3或x =2m ﹣2,当2m ﹣2<3时,有0<m <52,∵点P 在点Q 的右边,∴P (3,0),Q (2m ﹣2,﹣2m 2+5m ),∴AQ 的直线解析式为y =5−2m 2x +5﹣2m , ∴K (0,5﹣2m ),∴HK =|5m ﹣5|=5|m ﹣1|,①当0<m <1时,如图①,HK =5﹣5m ,∴S △PQK =S △PHK +S △QHK =12×HK (x P ﹣x Q )=12×(5﹣5m )(5﹣2m )=5m 2−352m +252,②当1<m <52时,如图②,HK =5m ﹣5,∴S △PQK =﹣5m 2+352m −252, ③当2m ﹣2>3时,如图③,有m >52,∴P (2m ﹣2,﹣2m 2+5m ),Q (3,0),K (0,0),∴S △PQK =12×KQ |y P |=32(2m 2﹣5m )=3m 2−152m , 综上所述,S ={ 5m 2−352m +252(0<m <1)−5m 2+352m −252(1<m <52)3m 2−152m(m >52);【点睛】本题是二次函数的综合题;熟练掌握二次函数的图象及性质,数形结合,分类讨论是解题的主要思想.【精练4】(2019•大庆)如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x的取值范围.【点拨】(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴{−b2=21−b+c=0,即可求解;(2)翻折后得到的部分函数解析式为:y =﹣(x ﹣2)2+9=﹣x 2+4x +5,(﹣1<x <5),新图象与直线y=t 恒有四个交点,则0<t <9,由{y =t y =−x 2+4x +5解得:x =2±√9−t ,即可求解; (3)分m 、n 在函数对称轴左侧、m 、n 在对称轴两侧、m 、n 在对称轴右侧时,三种情况分别求解即可.【解答】解:(1)抛物线的对称轴是x =2,且过点A (﹣1,0)点,∴{−b 2=21−b +c =0,解得:{b =−4c =−5, ∴抛物线的函数表达式为:y =x 2﹣4x ﹣5;(2)y =x 2﹣4x ﹣5=(x ﹣2)2﹣9,则x 轴下方图象翻折后得到的部分函数解析式为:y =﹣(x ﹣2)2+9=﹣x 2+4x +5,(﹣1<x <5),其顶点为(2,9).∵新图象与直线y =t 恒有四个交点,∴0<t <9,设E (x 1,y 1),F (x 2,y 2).由{y =t y =−x 2+4x +5解得:x =2±√9−t , ∵以EF 为直径的圆过点Q (2,1),∴EF =2|t ﹣1|=x 2﹣x 1,即2√9−t =2|t ﹣1|,解得t =1±√332, 又∵0<t <9,∴t 的值为1+√332;(3)①当m 、n 在函数对称轴左侧时,m ≤n ≤2,由题意得:x =m 时,y =7,x =n 时,y =m ,即:m 2﹣4m ﹣5=7,解得m =﹣2或m =6(舍),n 2﹣4n ﹣5=m ,解得n =2−√7或m =2+√7(舍),解得:﹣2≤x ≤2−√7;②当m 、n 在对称轴两侧时,x =2时,y 的最小值为﹣9,不合题意;③当m 、n 在对称轴右侧时,同理可得:5+3√52≤x ≤6; 故x 的取值范围是:﹣2≤x ≤2−√7或5+3√52≤x ≤6. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本性质性质、图形的翻折等,其中(3),要注意分类求解,避免遗漏.【精练5】(2019•玉林)已知二次函数:y =ax 2+(2a +1)x +2(a <0).(1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,B (A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P 使∠PCA =75°?如果存在,求出点P 的坐标;如果不存在,请说明理由.【点拨】(1)将解析式右边因式分解得抛物线与x 轴的交点为(﹣2,0)、(−1a ,0),结合a <0即可得证;(2)结合(1)中一个交点坐标(−1a ,0)及横坐标均为整数,且a 为负整数可得a 的值,从而得出抛物线解析式,继而求出点C 、D 坐标,从而画出函数图象;(3)分点P在AC上方和下方两种情况,结合∠ACO=45°得出直线PC与x轴所夹锐角度数,从而求出直线PC解析式,继而联立方程组,解之可得答案.【解答】解:(1)∵y=ax2+(2a+1)x+2=(x+2)(ax+1),且a<0,∴抛物线与x轴的交点为(﹣2,0)、(−1a,0),则二次函数的图象与x轴有两个交点;(2)∵两个交点的横坐标均为整数,且a为负整数,∴a=﹣1,则抛物线与x轴的交点A的坐标为(﹣2,0)、B的坐标为(1,0),∴抛物线解析式为y=(x+2)(﹣x+1)=﹣x2﹣x+2=﹣(x+12)2+94,当x=0时,y=2,即C(0,2),函数图象如图1所示:(3)存在这样的点P,∵OA=OC=2,∴∠ACO=45°,如图2,当点P在直线AC上方时,记直线PC与x轴的交点为E,∵∠PCA =75°,∴∠PCO =120°,∠OCB =60°,则∠OEC =30°,∴OE =OC tan∠OEC =33=2√3, 则E (2√3,0),求得直线CE 解析式为y =−√33x +2, 联立{y =−√33x +2y =−x 2−x +2,解得{x =0y =2或{x =√3−33y =√3+53, ∴P (√3−33,√3+53); 如图3,当点P 在直线AC 下方时,记直线PC 与x 轴的交点为F ,∵∠ACP =75°,∠ACO =45°,∴∠OCF =30°,则OF =OC tan ∠OCF =2×√33=2√33, ∴F (2√33,0), 求得直线PC 解析式为y =−√3x +2,联立{y =−√3x +2y =−x 2−x +2, 解得:{x =0y =2或{x =√3−1y =√3−1, ∴P (√3−1,√3−1),综上,点P 的坐标为(√3−33,√3+53)或(√3−1,√3−1). 【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的图象和性质、直线与抛物线相交的问题等.【精练6】(2019•河北)如图,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x ﹣b 与y 轴交于点B ;抛物线L :y =﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b =2019.5时“美点”的个数.【点拨】(1)当x =0时,y =x ﹣b =﹣b ,所以B (0,﹣b ),而AB =8,而A (0,b ),则b ﹣(﹣b )=8,b =4.所以L :y =﹣x 2+4x ,对称轴x =2,当x =2吋,y =x ﹣4=﹣2,于是L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x −b 2)2+b 24,顶点C (b 2,b 24)因为点C 在l 下方,则C 与l 的距离b −b 24=−14(b ﹣2)2+1≤1,所以点C 与1距离的最大值为1;(3)由題意得y 3=y 1+y 22,即y 1+y 2=2y 3,得b +x 0﹣b =2(﹣x 02+bx 0)解得x 0=0或x 0=b −12.但x 0≠0,取x 0=b −12,对于L ,当y =0吋,0=﹣x 2+bx ,即0=﹣x (x ﹣b ),解得x 1=0,x 2=b ,右交点D(b ,0).因此点(x 0,0)与点D 间的距离b ﹣(b −12)=12(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x 直线解析式a :y =x ﹣2019,美点”总计4040个点,②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,“美点”共有1010个.【解答】解:(1)当x =0时,y =x ﹣b =﹣b ,∴B (0,﹣b ),∵AB =8,而A (0,b ),∴b ﹣(﹣b )=8,∴b =4.∴L :y =﹣x 2+4x ,∴L 的对称轴x =2,当x =2吋,y =x ﹣4=﹣2,∴L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x −b 2)2+b 24, ∴L 的顶点C (b 2,b 24)∵点C 在l 下方,∴C 与l 的距离b −b 24=−14(b ﹣2)2+1≤1, ∴点C 与1距离的最大值为1;(3)由题意得y 3=y 1+y 22,即y 1+y 2=2y 3, 得b +x 0﹣b =2(﹣x 02+bx 0)解得x 0=0或x 0=b −12.但x 0≠0,取x 0=b −12,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b−12)=12(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.。

二次函数代数综合题

二次函数代数综合题

二次函数代数综合题1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的解析式;(2) 结合函数图象,求不等式m x c bx x +>++2的解集(直接写出答案).2.如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标.3.已知抛物线2442y ax ax a=-+-,其中a是常数.(1)求抛物线的顶点坐标;(2)若25a>,且抛物线与x轴交于整数点(坐标为整数的点),求此抛物线的解析式.4.在平面直角坐标系xOy中,抛物线2y mx n=++经过P,A(0,2)两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条件下,求到直线OB、OC、BC距离相等的点的坐标.5.一次函数y=2x+3与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大.(4)当x为何值时,一次函数值大于二次函数值?6.已知二次函数y=x2-(2m+4)x+m2-4(x为自变量)的图象与y轴的交点在原点下方,与x轴交于A,B两点,点A在点B的左边,且A,B两点到原点的距离AO、OB•满足3(•OB-AO)=2AO·OB,直线y=kx+k与这个二次函数图象的一个交点为P,且锐角∠POB•的正切值4.(1)求m的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.7.已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次 函数2241y x x k =++-的图象向下平移8个单位,求平移 后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1(2y x b b k =+<)与此图象有两个公共点时,b 的取值范围.8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>. (1)求证:此二次函数的图象与x 轴有两个交点;(2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.9.已知二次函数y=x2-x+c.(1)若点A(-1,n)、B(2,2n-1)在二次函数y=x2-x+c的图象上,求此二次函数的最小值;(2)若点D(x1,y1)、E(x2,y2)、P(m,m)(m>n)在二次函数y=x2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当22≤OP≤2+2时,试求直线DE的解析式,并判断直线DE与抛物线y=x2-x+c+38的交点个数,并说明理由.10.已知抛物线y=x²—4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.(1)求平移后的抛物线解析式;=,即为过点(m,0)平行于y (2)由抛物线对称轴知识我们已经知道:直线x m轴的直线,类似地,直线y m=,即为过点(0,m)平行于x轴的直线.请结合图象回答:当直线y=m与这两条抛物线有且只有四个交点,实数m的取值范围;(3)若将已知的抛物线解析式改为y=x²+bx+c(b<0),并将此抛物线沿x轴向左平移-b个单位长度,试回答(2)中的问题.11.已知关于x 的一元二次方程022=++x ax(1)求证:当0<a 时,方程022=++x ax 一定有两个不等的实数根; (2)若代数式22++-x x 的值为正整数,且x 为整数时,求x 的值;(3)当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(m M ;当2a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(n N ;若点M 在点N 的左边,试比较1a 与2a 的大小.12.已知:关于x 的一元二次方程063)2(22=-+-+m x m x . (1)求证:x 无论为任何实数,方程总有实数根;(2)抛物线m x m x y 63)2(22-+-+=与x 轴交于A 、B 两点,A 在原点左侧,B 在原点右侧,且OA =3OB ,请确定抛物线的解析式;(3)将(2)中的抛物线沿x 轴方向向右平移2个单位长度,得到一个新的抛物线,请结合函数图象回答:当直线y =m 与这两条抛物线有且只有四个交点时,实数m 的取值范围.13.阅读:对于二次函数2y ax bx c=++,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:222y x x=++).回答问题:(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式:.(2)请探索:是否存在二次项系数的绝对值小于12的整点抛物线?若存在,请写出其中一条抛物线的解析式;若不存在,请说明理由.14.已知抛物线c bx ax y ++=232,(1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知抛物线C1:22=-的图象如图所示,把C1的图象沿y轴翻折,得y x x到抛物线C2的图象,抛物线C1与抛物线C2 Array C3.(1)求抛物线C1的顶点A坐标,并画出抛物线C2图象;(2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值;(3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.16.已知关于x 的方程032)1(32=-+--m x m mx .(1)求证:无论m 取任何实数时,方程总有实数根;(2)若关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称.①求这个二次函数的解析式;②已知一次函数222-=x y ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 1≥y 2均成立;(3)在(2)的条件下,若二次函数y 3=ax 2+bx +c 的图象经过点(-5,0),且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值y 1≥y 3≥y 2均成立.求二次函数y 3=ax 2+bx +c 的解析式.17.已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.18.已知直线y =kx -3与x 轴交于点A (4,0),与y 轴交于点C ,抛物线234y x mx n =-++经过点A 和点C ,动点P 在x 轴上以每秒1个长度单位的速度由抛物线与x 轴的另一个交点B 向点A 运动,点Q 由点C 沿线段CA 向点A 运动且速度是点P 运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P 和点Q 同时出发,运动时间为t (秒),试问当t 为何值时,△PQA 是直角三角形;(3)在直线CA 上方的抛物线上是否存在一点D ,使得△ACD 的面积最大,若 存在,求出点D 坐标;若不存在,请说明理由.。

2020中考数学一轮专项复习《二次函数》压轴题综合提升卷(含详细解答)

2020中考数学一轮专项复习《二次函数》压轴题综合提升卷(含详细解答)

2020中考数学一轮专项复习《二次函数》压轴题综合提升卷1.(10分)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.2.(10分)如图,在平面直角坐标系中,直线y=﹣x+n与x轴,y轴分别交于点B,点C,抛物线y=ax2+bx+(a≠0)过B,C两点,且交x轴于另一点A(﹣2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.3.(10分)已知抛物线y=ax2﹣2ax+3与x轴交于点A、B(A左B右),且AB=4,与y轴交于C点.(1)求抛物线的解析式;(2)如图,证明:对于任意给定的一点P(0,b)(b>3),存在过点P的一条直线交抛物线于M、N两点,使得PM=MN成立;(3)将该抛物线在0≤x≤4间的部分记为图象G,将图象G在直线y=t上方的部分沿y=t翻折,其余部分保持不变,得到一个新的函数的图象,记这个函数的最大值为m,最小值为n,若m﹣n≤6,求t的取值范围.4.(10分)如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)当四边形MNCB是平行四边形时,求点Q的坐标.5.(10分)如图,抛物线y =ax 2+bx +3与x 轴交于A (﹣3,0),B (l ,0)两点,与y 轴交于点C . (1)求抛物线的解析式;(2)点P 是抛物线上的动点,且满足S △P AO =2S △PCO ,求出P 点的坐标;(3)连接BC ,点E 是x 轴一动点,点F 是抛物线上一动点,若以B 、C 、E 、F 为顶点的四边形是平行四边形时,请直接写出点F 的坐标.6.(10分)如图(1)已知矩形AOCD 在平面直角坐标系xOy 中,∠CAO =60°,OA =2,B 点的坐标为(2,0),动点M 以每秒2个单位长度的速度沿A →C →B 运动(M 点不与点A 、点B 重合),设运动时间为t 秒. (1)求经过B 、C 、D 三点的抛物线解析式;(2)点P 在(1)中的抛物线上,当M 为AC 中点时,若△P AM ≌△PDM ,求点P 的坐标;(3)当点M 在CB 上运动时,如图(2)过点M 作ME ⊥AD ,MF ⊥x 轴,垂足分别为E 、F ,设矩形AEMF 与△ABC 重叠部分面积为S ,求S 与t 的函数关系式,并求出S 的最大值;(4)如图(3)点P 在(1)中的抛物线上,Q 是CA 延长线上的一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,△QPB 的面积为2d ,求点P 的坐标.7.(10分)如图,已知直线l:y=﹣1和抛物线L:y=ax2+bx+c(a≠0),抛物线L的顶点为原点,且经过点,直线y=kx+1与y轴交于点F,与抛物线L交于点B(x1,y1),C(x2,y2),且x1<x2.(1)求抛物线L的解析式;(2)点P是抛物线L上一动点.①以点P为圆心,PF为半径作⊙P,试判断⊙P与直线l的位置关系,并说明理由;②若点Q(2,3),当|PQ﹣PF|的值最小时,求点P的坐标;(3)求证:无论k为何值,直线l总是与以BC为直径的圆相切.8.(10分)如图,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C 坐标为(8,0),连接AB、AC.(1)求出二次函数表达式;(2)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请求出此时点N的坐标.9.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求此抛物线的函数表达式;(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;(3)△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO1C1.当旋转后的△BO1C1有一边在直线BD上时,求△BO1C1不在BD上的顶点的坐标.10.(10分)如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线l:y=﹣x﹣1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.11.(10分)如图,在平面直角坐标系内,抛物线y =﹣x 2+2x +3与x 轴交于点A ,C (点A 在点C 的左侧),与y 轴交于点B ,顶点为D .点Q 为线段BC 的三等分点(靠近点C ).(1)点M 为抛物线对称轴上一点,点E 为对称轴右侧抛物线上的点且位于第一象限,当△MQC 的周长最小时,求△CME 面积的最大值;(2)在(1)的条件下,当△CME 的面积最大时,过点E 作EN ⊥x 轴,垂足为N ,将线段CN 绕点C 顺时针旋转90得到点N ’,再将点N ′向上平移个单位长度得到点P ,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H ,使点D ,P ,G ,H 构成菱形.若存在,请直接写出点H 的坐标;若不存在,请说明理由.12.(10分)已知二次函数y =a (x ﹣1)2+k 的图象与x 轴交于A ,B 两点,AB =4,与y 轴交于C 点,E 为抛物线的顶点,∠ECO =135°. (1)求二次函数的解析式;(2)若P 在第四象限的抛物线上,连接AE 交y 轴于点M ,连接PE 交x 轴于点N ,连接MN ,且S △EAP =3S △EMN ,求点P 的坐标;(3)过直线BC 上两点P ,Q (P 在Q 的左边)作y 轴的平行线,分别交抛物线于N ,M ,若四边形PQMN 为菱形,求直线MN 的解析式.13.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于点A(2,0),B(﹣3,0),交y 轴于点C,且经过点D(﹣6,﹣6),连接AD,BD.(1)求该抛物线的函数关系式;(2)若点M为X轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;(3)若点P是直线AD上方的抛物线上一动点(不与A,D重合),过点P作PQ∥y轴交直线AD于点Q,以PQ为直径作⊙E,则⊙E在直线AD上所截得的线段长度的最大值等于.(直接写出答案)14.(10分)如图,在平面直角坐标系中,抛物线y=x2+x+c交x轴于点A、点B,交y轴于点C,直线DE的解析式为y=x﹣2,BD=OA=DO;(1)求抛物线的解析式;(2)点F在第四象限的抛物线上,FG∥x轴,交直线DE于点G,若点F的横坐标为t,线段FG的长度为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,FG经过点C,连接DF,点H在第四象限直线DF右侧的抛物线上,连接HA,点M在线段DF上,DM=2MF,DK⊥AH,MK∥AH,直线DK、直线MK相交于点K,连接GK,当∠GKD=135°时,求线段HA的长.15.(10分)如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于C点,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于F.(1)试求该抛物线表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),连接AC.求证:△ACD是直角三角形.参考答案1.解:(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,故a+4=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;将点A、E的坐标代入一次函数表达式并解得:直线AE的表达式为:y=2x+6;同理可得:直线AC的表达式为:y=x+3;(2)点A、C、E的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),则AC2=18,CE2=2,AE2=20,故AC2+CE2=AE2,则△ACE为直角三角形;(3)①设点D、G、H的坐标分别为:(x,﹣x2﹣2x+3)、(x,2x+6)、(x,x+3),DG=﹣x2﹣2x+3﹣2x﹣6=﹣x2﹣4x﹣3;HK=x+3;GH=2x+6﹣x﹣3=x+3;当DG=HK时,﹣x2﹣4x﹣3=x+3,解得:x=﹣2或﹣3(舍去﹣3),故x=﹣2,当x=﹣2时,DG=HK=GH=1,故DG、GH、HK这三条线段相等时,点D的坐标为:(﹣2,3);②CG==;AE==2,故AE=2CG.2.解:(1)点C(0,),则直线y=﹣x+n=﹣x+,则点B(3,0),则抛物线的表达式为:y=a(x﹣3)(x+2)=a(x2﹣x﹣6),故﹣6a=,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,设点P(m,﹣m2+m+),则点G(m,﹣m+),则PH=PG cosα=(﹣m2+m++m﹣)=﹣m2+m;(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(1,);②当点Q在x轴下方时,(Ⅰ)当∠BAQ=∠CAB时,△QAB∽△BAC,则=,由勾股定理得:AC=5,AQ===10,过点Q作QH⊥x轴于点H,由△HAQ∽△OAC得:==,∵OC=,AQ=10,∴QH=6,则AH=8,OH=18﹣2=6,∴Q(6,﹣6);根据点的对称性,当点Q在第三象限时,符合条件的点Q(﹣5,﹣6);故点Q的坐标为:(6,﹣6)或(﹣5,﹣6);(Ⅱ)当∠BAQ=∠CBA时,则直线AQ∥BC,直线BC表达式中的k为:﹣,则直线AQ的表达式为:y=﹣x﹣2…②,联立①②并解得:x=5或﹣2(舍去﹣2),故点Q(5,﹣),=,而=,故≠,即Q,A,B为顶点的三角形与△ABC不相似,即点Q的为:(﹣4,﹣)、(5,﹣)均不符合题意,都舍去;综上,点Q的坐标为:(1,)或(6,﹣6)或(﹣5,﹣6).3.解:(1)抛物线y=ax2﹣2ax+3的对称轴为x=1,又AB=4,由对称性得A(﹣1,0)、B(3,0).把A(﹣1,0)代入y=ax2﹣2ax+3,得a+2a+3=0,∴a=﹣1.∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,过M作GH⊥x轴,PG∥x轴,NH∥x轴,由PM=MN,则△PMG≌△NMH(AAS),∴PG=NH,MG=MH.设M(m,﹣m2+2m+3),则N(2m,﹣4m2+4m+3),∵P(0,b),GM=MH,∴y G+y H=2y M,即b+(﹣4m2+4m+3)=2(﹣m2+2m+3),∴2m2=b﹣3,∵b>3,∴关于m的方程总有两个不相等的实数根,此即说明了点M、N存在,并使得PM=MN.证毕;(3)图象翻折前后如右图所示,其顶点分别为D(1,4)、D′(1,2t﹣4).①当D′在点H(4,﹣5)上方时,2t﹣4≥﹣5,∴t≥﹣,此时,m=t,n=﹣5,∵m﹣n≤6,∴t+5≤6,∴t≤1,∴﹣≤t≤1;②当点D′在点H(4,﹣5)下方时,同理可得:t<﹣,m=t,n=2t﹣4,由m﹣n≤6,得t﹣(2t﹣4)≤6,∴t≥﹣2,∴﹣2≤t<﹣.综上所述,t的取值范围为:﹣2≤t≤1.4.解:(1)令x=0,则y=﹣1,即A(0,﹣1).∵B为抛物线上的一点,BC⊥x轴,C(9,0),∴B点的横坐标为9,纵坐标为,即B(9,2).设直线AB的函数解析式为y=kx+b,将A(0,﹣1),B(9,2)代入上式并解得:直线AB的函数解析式为;(2)设线段MN的长为L,由抛物线和直线AB的解析式,得:==.故线段MN长度的最大值为;(3)若四边形MNCB是平行四边形,则需要MN=BC,由点B、C的坐标可知BC=2,∴,解得:x=1或x=8.故当点Q的坐标为(1,0)或(8,0)时,四边形MNCB是平行四边形.5.解:(1)∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C,∴点C(0,3)∴OA=OC=3,设点P (x ,﹣x 2﹣2x +3)∵S △P AO =2S △PCO ,∴×3×|﹣x 2﹣2x +3|=2××3×|x |,∴x =±或x =﹣2±,∴点P (,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2); (3)若BC 为边,且四边形BCFE 是平行四边形,∴CF ∥BE ,∴点F 与点C 纵坐标相等,∴3=﹣x 2﹣2x +3,∴x 1=﹣2,x 2=0,∴点F (﹣2,3)若BC 为边,且四边形BCEF 是平行四边形,∴BE 与CF 互相平分,∵BE 中点纵坐标为0,且点C 纵坐标为3,∴点F 的纵坐标为﹣3,∴﹣3=﹣x 2﹣2x +3∴x =﹣1±,∴点F (﹣1+,﹣3)或(﹣1﹣,﹣3);若BC 为对角线,则四边形BECF 是平行四边形,∴BC 与EF 互相平分,∵BC 中点纵坐标为,且点E 的纵坐标为0,∴点F 的纵坐标为3,∴点F (﹣2,3),综上所述,点F 坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).6.解:(1)∵四边形ABCD 是矩形,∴CD =AO =2,∠AOC =90°,且∠CAO =60°,OA =2,∴OC =2,∴点C (0,2),点D (﹣2,2),设抛物线解析式为y =a (x +1)2+c ,代B (2,0),C (0,2)∴解得:∴抛物线解析式为y=﹣(x+1)2+=,(2)∵M为AC中点,∴MA=MD,∵△P AM≌△PDM,∴P A=PD,∴点P在AD的垂直平分线上∴点P纵坐标为,∴∴x1=﹣1+,x2=﹣1﹣∴点P(﹣1+,)或(﹣1﹣,)(3)如图2,∵AO=BO=2,CO⊥AB,∴AC=BC=4,∠CAO=60°,∴△ACB是等边三角形,由题意可得:CM=2t﹣4,BF=(8﹣2t)=4﹣t,MF=4﹣t,AF=t.∵四边形AEMF是矩形,∴AE=MF,EM=AF,EM∥AB,∴∠CMH=∠CBA=60°,∠CHM=∠CAO=60°,∴△CMH是等边三角形,∴CM=MH=2t﹣4,∵S=(2t﹣4+t)(4﹣t)=﹣(t﹣)2+当t=时,S最大=,(4)∵S△ABP=4×d=2d,又S△BPQ=2d∴S△ABP =S△BPQ,∴AQ∥BP设直线AC解析式为y=kx+b,把A(﹣2,0),C(0,2)代入其中,得∴∴直线AC解析式为:y=x+2,设直线BP的解析式为y=x+n,把B(2,0)代入其中,得0=2+n,∴b=﹣2∴直线BP解析式为:y=x﹣2,∴=x﹣2,∴x1=2(舍去),x2=﹣8,∴P(﹣8,).7.解:(1)抛物线的表达式为:y=ax2,将点A坐标代入上式得:=a(2)2,解得:a=,故抛物线的表达式为:y=x2…①;(2)①点F(0,1),设:点P(m,m2),则PF==m2+1,而点P到直线l的距离为:m2+1,则⊙P与直线l的位置关系为相切;②当点P、Q、F三点共线时,|PQ﹣PF|最小,将点FQ的坐标代入一次函数表达式:y=kx+b并解得:直线FQ的函数表达式为:y=x+1…②,联立①②并解得:x=2,故点P的坐标为:(2,3);(3)将抛物线的表达式与直线y=kx+1联立并整理得:x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,则y1+y2=k(x1+x2)+2=4k2+2,则x2﹣x1==4,设直线BC的倾斜角为α,则tanα=k,则cosα=,则BC==4(k2+1),则BC=2k2+2,设BC的中点为M(2k,2k2+1),则点M到直线l的距离为:2k2+2,故直线l总是与以BC为直径的圆相切.8.解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0).又∵A(0,4),C(8,0),∴AB==2,B C=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).(3)由(2)知,AC=4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线交AC于P,交x轴于N,∴△AOC∽△NPC.∴=,即=.∴CN=5.∴此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).9.解:(1)把A(﹣1,0),B(3,0)两点代入y=﹣x2+bx+c,得:,解得b=2,c=3,∴抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,(2)过点P作PH⊥x轴于H,PG⊥y轴于G,连接PB,设P(m,﹣m2+2m+3),易知C(0,3),∵OC=OB,∴∠OCB=∠OBC=45°,∵PC=PB,∴∠PBC=∠PCB,∴∠PCG=∠PBC,又∵P C=PB,∴Rt△PCG≌Rt△PBH(AAS),∴PG=PH,∴m=﹣m2+2m+3,解得:m=.∴P为()或();(3)如图2,当BC1在直线BD上时,过点O1作O1M⊥OB,由y=﹣x2+2x+3可得D(1,4).∴DC=,BC=3,DB=2,∴DC2+BC2=BD2,∴△BCD为直角三角形,且∠BCD=90°,∵∠DBC+∠CBO1=∠CBO1+∠ABO1=45°,∴∠ABO1=∠DBC,∴△MBO1∽△CBD,∴,即,∴BM=,,∴点O1的坐标为(3﹣),如图3,当BO1与BD重合时,过点B作x轴的垂线BN,过点C1作C1N⊥BN于点N,易证△NBC1∽△CBD,∴,∴,∴BN=,NC1=,则C1的坐标为(3+).10.解:(1)∵抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),∴.解得.抛物线的表达式为:y=x2﹣4x+3;(2)如图1,当CD为平行四边形的对角线时,设点E的坐标为(x,x2﹣4x+3),则CD中点的坐标为(1,1),该点也为EF的中点.即:x2﹣4x+3=2×1,解得:x=2±,E的坐标为(2+,2)或(2﹣,2);如图2,当CD为平行四边形的一条边时,设点F坐标为(m,0),点D向左平移2个单位、向上平移4个单位,得到点C,同样点F向左平移2个单位、向上平移4个单位,得到点E(m﹣2,4),将点E坐标代入二次函数表达式并解得:m=4±,则点E(2+,4)或(2﹣,4);故点E的坐标为(2+,2)或(2﹣,2)或(2+,4)或(2﹣,4);(3)抛物线沿着过点(0,2)且垂直与y轴的直线翻折后,顶点坐标为(2,5),则新抛物线的表达式为:y=﹣(x﹣2)2+5=﹣x2+4x+1.设点E的坐标为(x,﹣x2+4x+1),则点F(x,﹣x﹣1),EF=﹣x2+4x+1﹣(﹣x﹣1)=﹣x2+x+2.设直线y=﹣x﹣1与x轴交于点Q.MN=EF•cos∠QFG=(﹣x2+x+2)=﹣(x﹣)2+.由二次函数性质可知,MN的最大值为.11.解:(1)令y=0,得﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),C(3,0),令x=0,得y=3,∴B(0,3),如图1,过Q作QF⊥x轴于F,∵QF ∥OB ,∴△CQF ∽△CBO ,∴∵点Q 为线段BC 的三等分点(靠近点C ),∴∴,∴QF =CF =1,∴Q (2,1),∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴D (1,4),抛物线对称轴x =1连接AQ 交抛物线对称轴于M ,则M (1,),此时△MQC 周长最小.设直线CM 解析式为y =kx +b ,则,解得:;∴y =﹣x +1,设E (t ,﹣t 2+2t +3)为抛物线对称轴右侧且位于第一象限内的点,过E 作EN ⊥x 轴于N ,EN 交CM 于S ,则,S (t ,﹣t +1),∴ES =﹣t 2+2t +3﹣(﹣t +1)=﹣t 2+t +2,∴=﹣t 2+t +2=﹣(t ﹣)2+, ∵﹣1<0,∴当t =时,S △CME 最大值=,(2)存在.如图2,由(1)知CN =OC ﹣ON =3﹣=,由旋转得CN ′=CN =,CN ′⊥x 轴, 由题意得CP ⊥x 轴,CP =CN ′+N ′P =2,∴P (3,2)∴DP =,∵四边形DPHG 是菱形,∴DG =PH =DP =2,PH ∥DG ,∴H (3,2﹣2), 如图3,∵四边形DPHG 是菱形,∴DG =PH =DP =2,PH ∥DG ,∴H(3,2+2).如图4,四边形DPGH是菱形,P与H关于抛物线对称轴对称,∴H(﹣1,2).如图5,过点P作PG⊥直线x=1于G,作DH⊥直线x=1,过P作PH⊥DH于H,∵PH=DG=DH=PG=2,∠PGD=90°∴四边形DPGH是菱形,∴H(3,4)综上所述,点H的坐标为(3,2﹣2)或(3,2+2)或(﹣1,2)或(3,4).12.解:(1)过点E作ED⊥y轴于点D,如图1∴∠CDE=90°∵二次函数y=a(x﹣1)2+k的图象对称轴为直线x=1∴x E=1,y E=k,即DE=1,OD=k∵点A、B关于直线x=1对称,AB=4∴A(﹣1,0),B(3,0)∵∠ECO=135°∴∠DCE=45°∴CD=DE=1∴OC=OD﹣CD=k﹣1,即y C=k﹣1把点A(﹣1,0),C(0,k﹣1)代入二次函数解析式得:解得:∴二次函数的解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3(2)过P作PF⊥x轴于点F,如图2∵A(﹣1,0),E(1,4)∴OA=DE=1,OD=4在△AOM与△EDM中,∴△AOM≌△EDM(AAS)∴AM=EM,OM=DM=OD=2∴S△AMN =S△EMN∵S△EAP =3S△EMN∴S△NAP =S△EAP﹣S△AMN﹣S△EMN=3S△EMN﹣2S△EMN=S△EMN=S△AMN∴PG=OM=2∵点P在第四象限∴y P=﹣(x﹣1)2+4=﹣2解得:x1=1+,x2=1﹣(舍去)∴点P坐标为(1+,﹣2)(3)∵四边形PQMN为菱形∴PQ∥MN,PN=PQ=MQ=MN∴点M、N必须同时在直线BC的上方或下方过点P作PH⊥QM于点H,如图3∵B(3,0),C(0,3)∴直线BC解析式为y=﹣x+3,y随x的增大而减小∴PQ不可能在y轴左侧设P(p,﹣p+3),Q(p+t,﹣p﹣t+3)(p>0,t>0)∴PH=t,HQ=﹣p+3﹣(﹣p﹣t+3)=t∴PQ=t∵点M、N在二次函数y=﹣x2+2x+3图象上∴N(p,﹣p2+2p+3),M(p+t,﹣(p+t)2+2(p+t)+3)∴PN=|﹣p2+2p+3﹣(﹣p+3)|=|﹣p2+3p|,MQ=|﹣(p+t)2+2(p+t)+3)﹣(﹣p﹣t+3)|=|﹣p2﹣2pt﹣t2+3p+3t|且两绝对值号里的式子同正同负∴﹣p2+3p=﹣p2﹣2pt﹣t2+3p+3t=|t|解得:,(舍去)(舍去)(舍去)∴﹣p+3=∴点P坐标为(,)13.解:(1)用交点式函数表达式得:y=a(x﹣2)(x+3),将点D坐标代入上式并解得:a=﹣,故函数的表达式为:y=﹣x2﹣x+…①,则点C(0,);(2)由题意得:AB=5,AD=10,BD=3,①△ABD∽△AMN,∠BAD=∠MAN,直线AD所在直线的k值为,则直线AM表达式中的k值为﹣,则直线AM的表达式为:y=﹣(x﹣2),故点M(0,),又∵,即AN==5,故点N(﹣3,0);②当△ABD∽△NMA时,∠BAD=MNA∠,∠BAD=∠MAN,∴AD∥MN,在△ABD中,AD=10,AB=5,BD=3,cos∠BDA==,则tan∠BAD==tan∠MAN,∵,故AM=,AN=5,故点M(﹣3,0)、点N(﹣3,0);综上,故点M(0,)、点N(﹣3,0)或M(﹣3,0)、点N(﹣3,0);(3)如图所示,连接PH,由题意得:tan∠PQH=,则cos∠PQH=,则直线AD的表达式为:y=x﹣,设点P(x,﹣x2﹣x+),则点H(x,x﹣),则QH=PH cos∠PQH=PQ=(﹣x2﹣x+﹣x+)=﹣x2﹣x+,∵﹣<0,故QH有最大值,当x=﹣2时,其最大值为.14.解:(1)y=x﹣2与x轴交点D(2,0),∴OD=2,∵BD=OA=DO,∴A(﹣1,0),B(3,0),∴x2+x+c=0时,﹣1+3=﹣,∴a=﹣1,∴y=x2﹣2x+c;将点A(﹣1,0)代入,c=﹣3,∴y=x2﹣2x﹣3;(2)F(t,t2﹣2t﹣3),∵FG∥x轴,∴G(t2﹣2t﹣1,t2﹣2t﹣3),∵点F在第四象限的抛物线上,∴FG=t﹣(t2﹣2t﹣1)=﹣t2+3t+1=d,∴d=﹣t2+3t+1,0<t<3;(3)FG经过点C,∴F(2,﹣3),∵D(2,0),∴DF=3,∵DM=2MF,∴M(2,﹣2),(3)连接AG,以A为圆心AD为半径做圆,∵∠GKD=135°,∴∠GAD=90°,由(2)知,点F(2,﹣3),G(﹣1,﹣3),∵DM=2MF,∴M(2,﹣2),∴AG=AD=3,∴点G在圆A上,∴AN垂直平分DK,∵AN∥KM,∴∠DKM=90°,∴以N为圆心DN为半径作圆,K,M在圆N上,∴N是DM中点,∴N(2,﹣1),设AN所在直线解析式为y=kx+b,∴,∴,∴y=﹣x﹣,直线AN与抛物线的交点为:x2﹣2x﹣3=﹣x﹣,∴x=或x=,∴H(,﹣)或H(,﹣)∵点H在第四象限直线DF右侧的抛物线上,∴H(,﹣),∴AH=;15.解:(1)依题意,抛物线经过A(2,0),C(0,﹣4),则c=﹣4将点A代入得0=4a+×2﹣4,解得a=抛物线的解析式是y=x2+x﹣4(2)设P点的坐标是(x,x2+x﹣4),则F(x,﹣x﹣4)∴PF=(﹣x﹣4)﹣(x2+x﹣4)=﹣x2﹣x∵四边形OCPF是平行四边形∴OC=FP,OC∥PF∴﹣x2﹣x=4即2x2+21x+40=0解得x1=﹣8 x2=﹣2.5∴P点的坐标为(﹣8,﹣4),(﹣2.5,﹣)(3)当y=0时,﹣x﹣4=0,得x=﹣8,即D(﹣8,0)当x=0时,0﹣4=y,即C(0,﹣4)当y=0时,x2+x﹣4=0解得x1=﹣10 x2=2,即B(﹣10,0),A(2,0)∴AD=10∵AC2=22+42=20CD2=82+42=80∴AD2=AC2+CD2∴∠ACD=90°△ACD是直角三角形。

2023年九年级中考数学一轮复习:二次函数(含解析)

2023年九年级中考数学一轮复习:二次函数(含解析)

2023年九年级中考数学一轮复习:二次函数一、单选题1.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( )A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-2.若抛物线y=x 2﹣2x+m 与x 轴有两个交点,则m 的取值范围是( )A .m <﹣1B .m <1C .m >﹣1D .m >13.已知下列命题:①抛物线y =3x 2+5x ﹣1与两坐标轴交点的个数为2个;②相等的圆心角所对的弦相等;③任何正多边形都有且只有一个外接圆;④三角形的外心到三角形各顶点的距离相等;⑤圆内接四边形对角相等;真命题的个数有( )A .1个B .2个C .3个D .4个二、填空题4.当﹣7≤x≤a 时,二次函数y =﹣ 12(x+3)2+5恰好有最大值3,则a = . 5.若函数y=a (x ﹣h )2+k 的图象经过原点,最大值为8,且形状与抛物线y=2x 2﹣2x+3相同,则此函数关系式 .6.函数y=x 2+2x+1,当y=0时,x= ;当1<x <2时,y 随x 的增大而 (填写“增大”或“减小”).三、综合题7.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销量的相关信息如下表:(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.8.如图,①为抛物线形拱桥,在正常水位下测得主拱宽 24m ,最高点离水面 8m ,以水平线 AB 为x 轴, AB 的中点为原点建立直角坐标系(如图②).(1)求抛物线的解析式;(2)桥边有一浮在水面部分高 4m ,最宽处为 18m 的何鱼餐船,试探索此船在正常水位时能否开到桥下,并说明理由.9.已知二次函数 223y x bx b =+- .(1)当该二次函数的图象经过点 ()10A , 时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x 轴的另一个交点为点B ,与y 轴的交点为点C ,点P 从点A 出发在线段AB 上以每秒2个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,直到其中一点到达终点时,两点停止运动,求△BPQ 面积的最大值;(3)若对满足 1x ≥ 的任意实数x ,都使得 0y ≥ 成立,求实数b 的取值范围.10.已知:如图,二次函数 2y ax bx c =++ 的图象与x 轴交于A 、B 两点,其中A 点坐标为 ()1,0- ,点 ()C 0,5 ,另抛物线经过点 ()1,8 ,M 为它的顶点.(1)求抛物线的解析式;(2)求 MCB 的面积 MCB S .11.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后价格调为8.1元/斤,并且两次降价的百分率相同.(2)从第一次降价的第1天算起,第 x 天( x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示;已知该种水果的进价为4.1元/斤,设销售该水果第 x 天的利润为 y 元,求 y 与(115)x x ≤< 之间的函数关系式,并求出第几天时销售利润最大?12.如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长;(2)求矩形菜园ABCD 面积的最大值.13.已知二次函数y=﹣(a+b )x 2﹣2cx+a ﹣b ,a ,b ,c 是△ABC 的三边.(1)当抛物线与x 轴只有一个交点时,判断△ABC 的形状并说明理由;(2)当x=﹣ 12 时,该函数有最大值 2a ,判断△ABC 的形状并说明理由. 14.某水产养殖户进行小龙虾养殖. 已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量 ()y kg 与时间第 t 天之间的函数关系式为 2100y t =+ ( 180t ≤≤ , t 为整数),销售单价 p (元/ kg )与时间第 t 天之间满足一次函数关系如下表:(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?15.如图,某小区决定要在一块一边靠墙(墙长10米)的空地上用栅栏围成一个矩形绿化带ABCD ,绿化带的一边靠墙,中间用栅栏隔成两个小矩形,所用栅栏总长为36米,设AB 的长为x 米,矩形绿化带的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出x 的取值范围;(2)求围成矩形绿化带ABCD 面积S 的最大值.16.已知 y 关于 x 的二次函数 ()220.y ax bx a =--≠(1)当 24a b ==, 时,求该函数图象的顶点坐标.(2)在(1)条件下, ()P m t , 为该函数图象上的一点,若 p 关于原点的对称点 p ' 也落在该函数图象上,求 m 的值(3)当函数的图象经过点(1,0)时,若 1211322A y B y a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,, 是该函数图象上的两点,试比较 1y 与 2y 的大小.17.抛物线 245y x x =-++ 与 x 轴交于点 A , B 两点( A 在 B 的左侧),直线 334y x =-+ 与 y 轴交于点 C ,与 x 轴交于点 D .点 P 是 x 轴上方的抛物线上一动点,过点 P 作 PF x ⊥ 轴于点 F ,交直线 CD 于点 E .. (1)求抛物线与x 轴的交点坐标;(2)设点 P 的横坐标为 m ,若 5PE EF = ,求 m 的值;18.已知m,n 是方程x 2-6x+5=0的两个实数根,且m<n ,抛物线y=-x 2+bx+c 的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH△x 轴,与抛物线交于H 点,若直线BC 把△PCH分成面积之比为2:3的两部分,请求出P 点的坐标.19.如图,对称轴为直线x=-1的抛物线y=a(x-h) 2-4(a≠0)与x 轴相交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0).(1)求该抛物线的解析式;(2)若点P 在抛物线上,且S △POC =4S △BOC .求点P 的坐标;(3)设点Q 是线段AC 上的动点,作QD△x 轴交抛物线于点D ,求线段QD 长度的最大值.20.如图,已知抛物线 2y x bx c =++ 与x 轴交于点A ,B ,AB=2,与y 轴交于点C ,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P 为对称轴上一动点,求△APC 周长的最小值;(3)设D 为抛物线上一点,E 为对称轴上一点,若以点A ,B ,D ,E 为顶点的四边形是菱形,则点D 的坐标为 .21.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线 -2y x = 交于B ,C 两点.(1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN△x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.22.在平面直角坐标系中,函数221y x ax =-- ( a 为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此函数图象经过点()1,2 时,求此函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围.(3)当0x ≤ 时,若函数 221y x ax =-- (a 为常数)的图象的最低点到直线 2y a = 的距离为2,求a 的值.(4)设0a < , Rt EFG 三个顶点的坐标分别为 ()1,1E -- 、 ()1,1F a -- 、 ()0,1G a - .当函数 221y x ax =-- ( a 为常数)的图象与 EFG 的直角边有交点时,交点记为点P .过点P 作y 轴的垂线,与此函数图象的另一个交点为 P ' ( P ' 与P 不重合),过点A 作y 轴的垂线,与此函数图象的另一个交点为 A ' .若 2AA PP '=' ,直接写出a 的值.23.已知,抛物线y =mx 2+ 94x ﹣4m 与x 轴交于点A (﹣4,0)和点B ,与y 轴交于点C .点D (n ,0)为x 轴上一动点,且有﹣4<n <0,过点D 作直线1△x 轴,且与直线AC 交于点M ,与抛物线交于点N ,过点N 作NP △AC 于点P .点E 在第三象限内,且有OE =OD .(1)求m 的值和直线AC 的解析式.(2)若点D 在运动过程中, 12AD +CD 取得最小值时,求此时n 的值. (3)若点△ADM 的周长与△MNP 的周长的比为5△6时,求AE +23CE 的最小值. 24.如图,在平面直角坐标系中,抛物线 223y x x =+- 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .对称轴为直线 l ,点 ()4,D n - 在抛物线上.(1)求直线 CD 的解析式;(2)E 为直线 CD 下方抛物线上的一点,连接 EC 、 ED .当 ECD ∆ 的面积最大时,在直线 l 上取一点 M ,过 M 作 y 轴的垂线,垂足为点 N ,连接 EM 、 BN .若 EM BN = 时,求 EM MN BN ++ 的值;(3)将抛物线 223y x x =+- 沿 x 轴正方向平移得到新抛物线 y ' , y ' 经过原点 O . y ' 与 x 轴的另一个交点为 F .设 P 是抛物线 y ' 上任意一点,点 Q 在直线 l 上, PFQ ∆ 能否成为以点 P 为直角顶点的等腰直角三角形?若能,直接写出点 P 的坐标.若不能,请说明理由.25.如图,已知抛物线 y = 2ax bx c ++ 与 x 轴交于 A -() , B () 两点,与 y 轴交于点 C 0,3() .(1)求抛物线的解析式及顶点 M 坐标;(2)在抛物线的对称轴上找到点 P ,使得 PAC 的周长最小,并求出点 P 的坐标;(3)在(2)的条件下,若点 D 是线段 OC 上的一个动点(不与点 O 、 C 重合).过点 D 作 DE //PC 交 x 轴于点 E .设 CD 的长为 m ,问当 m 取何值时, PDE ABMC 1S S 9 四边形 .答案解析部分1.【答案】C【解析】【解答】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【分析】根据增加的面积=新的正方形的面积-原正方形的面积,可列出y与x之间的函数解析式.2.【答案】B【解析】【解答】解:∵抛物线y=x2﹣2x+m与x轴有两个交点,∴b2﹣4ac=4﹣4m>0,解得:m<1.故选:B.【分析】直接利用抛物线与x轴交点个数与△的关系求出即可.3.【答案】B【解析】【解答】解:①抛物线y=3x2+5x﹣1与两坐标轴交点的个数为2个,错误,为假命题;②相等的圆心角所对的弦相等,错误,为假命题;③任何正多边形都有且只有一个外接圆,正确,为真命题;④三角形的外心到三角形各顶点的距离相等,正确,为真命题;⑤圆内接四边形对角相等,错误,为假命题;故答案为:B.【分析】根据抛物线与x轴的交点,弧、弦、圆心角的关系,正多边形与圆,三角形外心的性质,圆内接四边形的性质逐一判断即可. 4.【答案】-5【解析】【解答】解:∵抛物线的开口向下,对称轴x=-3,∵x<-3时,y随x的增大而增大,∴当a<-3时,x=a时有最大值,∴y= ﹣12(a+3)2+5=3,解得a=-5,当a>-3时,x=-3时有最大值5,不符合题意,故答案为:-5.【分析】根据抛物线解析式得到顶点坐标(-3,5);然后由抛物线的增减性进行解答.5.【答案】y=﹣2(x﹣2)2+8或y=﹣2(x+2)2+8【解析】【解答】解:∵函数y=a(x﹣h)2+k的图象经过原点,把(0,0)代入解析式,得:ah2+k=0,∵最大值为8,即函数的开口向下,a<0,顶点的纵坐标k=8,又∵形状与抛物线y=﹣2x2﹣2x+3相同,∴二次项系数a=﹣2,把a=﹣2,k=8代入ah2+k=0中,得h=±2,∴函数解析式是:y=﹣2(x﹣2)2+8或y=﹣2(x+2)2+8,故答案为:y=﹣2(x﹣2)2+8或y=﹣2(x+2)2+8.【分析】根据函数y=a(x﹣h)2+k的图象经过原点,把(0,0)代入解析式,得到ah2+k=0,由最大值为8,即函数的开口向下,a<0,得到顶点的纵坐标k=8,由形状与抛物线y=﹣2x2﹣2x+3相同,得到二次项系数a=﹣2,把a=﹣2,k=8代入ah2+k=0中,得到h=±2,得到函数解析式.6.【答案】-1;增大【解析】【解答】解:把y=0代入y=x2+2x+1,得x2+2x+1=0,解得x=﹣1,当x>﹣1时,y随x的增大而增大,∴当1<x<2时,y随x的增大而增大;故答案为﹣1,增大.【分析】将y=0代入y=x2+2x+1,求得x的值即可,根据函数开口向上,当x>﹣1时,y随x的增大而增大.7.【答案】(1)解:当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=()() 221802000150120120005090x xx x⎧-++≤≤⎪⎨-+≤≤⎪⎩(2)解:当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元(3)解:当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x <50,共30天; 当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60, 因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案. 8.【答案】(1)解:∵AB=24,OC=8∴A (-12,0),B (12,0),C (0,8)设抛物线解析式为 ()()1212y a x x =+-代入C 点坐标,得 ()()8012012a =+- ,解得 118a =- ∴抛物线解析式为 21818y x =-+ ; (2)解:当x=9时,得 2198 3.518y =-⨯+= ∵3.5<4∴不能开到桥下.【解析】【分析】(1)设抛物线解析式为()()1212y a x x =+-,再将点C 代入计算即可;(2)求出当x=9时,y 的值,判断其是否大于4即可。

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。

2024成都中考数学第一轮专题复习之第三章 微专题 二次函数综合题 知识精练(含答案)

2024成都中考数学第一轮专题复习之第三章 微专题 二次函数综合题 知识精练(含答案)

2024成都中考数学第一轮专题复习之第三章微专题二次函数综合题知识精练类型一线段问题1.(2023重庆A卷节选)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(-1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标.第1题图2.(2023济宁节选)如图,直线y=-x+4交x轴于点B,交y轴于点C,对称轴为x=32的抛物线经过B,C两点,交x轴负半轴于点A.P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若m<32,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.第2题图类型二面积问题3.(2023安徽)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(ⅰ)当0<t<2时,求△OBD与△ACE的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为32若存在,请求出点B的横坐标t的值;若不存在,请说明理由.类型三等腰三角形存在性问题4.(2023青海省卷节选)如图,二次函数y=-x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由.第4题图类型四直角三角形存在性问题5.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴,y轴分别交于点A(4,0),B(0,-4),对称轴是直线x=1,点P为平面内一点.(1)求抛物线的函数表达式;(2)若点P为y轴右侧抛物线上一点,其横坐标为t,过点P分别作AB和y轴的垂线,垂足分别为点E,F,PF交AB于点G,当△PEG≌△BFG时,求t的值;(3)若P是抛物线对称轴上的点,将抛物线y=ax2+bx+c先向左平移4个单位,再向上平移3个单位,得到新的抛物线y1,抛物线y1与y轴交于点M,点N为抛物线y1的顶点,当△PMN 为直角三角形时,直接写出所有符合条件的点P的纵坐标.第5题图备用图类型五特殊四边形存在性问题6.(2023邵阳节选)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(-2,0)和点B(4,0),且与直线l:y=-x-1交于D,E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式;(2)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B,C,M,R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.第6题图类型六相似三角形问题7.(2023随州节选)如图,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(-1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出....抛物线和直线BC的解析式;(2)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出....点P和点Q的坐标;若不存在,请说明理由.第7题图类型七角度问题x2+bx+c经过点A(-4,0),B(2,0),与y轴8.如图,在平面直角坐标系中,抛物线y=12交于点C,作直线A C.(1)求抛物线的函数表达式;(2)点M是直线AC下方抛物线上的一个动点,连接MA,MC,BC,求四边形ABCM面积的最大值及此时点M的坐标;(3)若点D是抛物线的顶点,点P是抛物线上的一个动点,是否存在点P,使得∠ACP=∠CAD,若存在,请直接写出点P的坐标;若不存在,请说明理由.第8题图参考答案与解析1.解:(1)将点(1,3),(-1,0)代入抛物线y=ax2+bx+2,+b+2=3,-b+2=0,=-12,=32,∴该抛物线的表达式为y=-12x2+32x+2;(2)∵当x=0时,y=2,∴C(0,2).∵当y=0时,x=-1或x=4,∴B(4,0),∴OC=2,OB=4,BC=25.∵直线BC过点B(4,0),C(0,2),∴直线BC的函数表达式为y=-12x+2.∵PD⊥BC,PE∥y轴,∴∠PDE=∠BOC=90°,∠PED=∠BCO,∴△PDE∽△BOC,∴DEOC=PEBC=PDBO,∴DE2=PE25=PD4,∴DE=55PE,PD=255PE.设P(m,-12m2+32m+2),则E(m,-12m+2)(0<m<4).∴PE=-12m2+32m+2-(-12m+2)=-12(m-2)2+2.∵-12<0,∴当m=2时,PE有最大值,最大值为2,∴△PDE 周长的最大值为DE +PD +PE =55PE +255PE +PE =655+2.此时点P 的坐标为(2,3).2.解:(1)在直线y =-x +4中,当x =0时,y =4,当y =0时,x =4,∴B (4,0),C (0,4).由题可设抛物线的解析式为y =a (x -32)2+k (a ≠0),把B (4,0),C (0,4)(4-32)2+k =0,(0-32)2+k =4,=-1,=254,∴抛物线的解析式为y =-(x -32)2+254=-x 2+3x +4;(2)存在,理由如下:∵点A 是抛物线y =-x 2+3x +4与x 轴的另一个交点,∴点A (-1,0).①当-1<m <32时,点P 在x 轴的上方,∵MN =2ME ,∴点E 为线段MN 的中点,∴点E 的横坐标为x E =3-m +m 2=32,纵坐标y E =y M +y N 2=-m 2+3m +42∴点E 的坐标为(32,-m 2+3m +42).又∵点E 在直线BC :y =-x +4上,代入得m 2-3m +1=0,解得m 1=3+52(舍去),m 2=3-52.②当m =-1时,P 点即A 点,此时点E 与点M 重合,不合题意.③当m <-1时,点P 在x 轴下方,点E 在射线NM 上.设线段MN 的中点是点F (32,-m 2+3m +42).∵MN =2ME ,∴M 为EF 的中点,∴点M 的横坐标为x m =3-m =x E +x F 2=x E +322.纵坐标为y m =-m 2+3m +4=y E +y F 2=y E +-m 2+3m +422.∴点E 的坐标为(92-2m ,-3m 2+9m +122).又∵点E 在y =-x +4上,∴代入得-3m 2+9m +122=2m -12,即3m 2-5m -13=0,解得m 1=5+1816(舍去),m 2=5-1816.综上,存在m 使MN =2ME ,m =3-52或m =5-1816. 3.解:(1)-b 2a=2,a +3b =3,=-1=4;(2)(i)如解图①,延长BD 与x 轴交于点M ,延长CE 与x 轴交于点N ,过点A 作AF ⊥CE 于点F ,第3题解图①由(1)知抛物线的解析式为y =-x 2+4x ,由题意知直线OA 的解析式为y =x ,∴B (t ,-t 2+4t ),C (t +1,-(t +1)2+4(t +1)),D (t ,t ),E (t +1,t +1),∴OM =t ,BD =-t 2+3t ,CE =-(t +1)2+3(t +1),AF =-t +2,∵0<t <2,∴1<t +1<3,∴S △OBD +S △ACE=12OM ·BD +12CE ·AF=12t ·(-t 2+3t )+12[-(t +1)2+3(t +1)]·(-t +2)=2.(ii)存在.如解图②,当点B 在点D 上方,即2<t <3时,过点D 作DQ ⊥EC 于点Q ,第3题解图②∵BD ∥EC ,∴四边形DBEC 为梯形,则S 四边形DBEC =12(BD +EC )·DQ =12(-t 2+3t +t 2-t -2)·1=t -1,当S 四边形DBEC =32时,可得t -1=32,解得t =52;当点D 在点B 上方,即t >3时,如解图③,过点D 作DQ ⊥EC 于点Q ,第3题解图③此时S 四边形DBCE =12(BD +EC )·DQ =12(t 2-3t +t 2-t -2)·1=t 2-2t -1,令t 2-2t -1=32,解得t 1=142+1<3,t 2=-142+1<3,均舍去.综上所述,t 的值为52.4.解:(1)∵点C (1,0)和点B (0,3)是二次函数y =-x 2+bx +c 图象上的两点,把点C (1,0)和点B (0,3)1+b +c =0,=3,=-2,=3,∴二次函数的解析式为y =-x 2-2x +3;(2)存在.如解图,连接AB ,作线段AB 的垂直平分线交对称轴于点M ,连接AM ,BM ,过点M 作MG ⊥y 轴于点G .设点M (-1,y ),对称轴与x 轴交于点Q ,则QM =y ,BG =3-y .∵△AMB 是等腰三角形,∴AM =BM ,则AM 2=BM 2,∴在Rt △AQM 中,AM 2=AQ 2+MQ 2=22+y 2.在Rt △BMG 中,BM 2=MG 2+BG 2=12+(3-y )2∴22+y 2=12+(3-y )2,解得y =1,∴点M 的坐标为(-1,1).第4题解图5.解:(1)∵抛物线过点B (0,-4),∴c =-4,即抛物线的函数表达式为y =ax 2+bx -4.将点A (4,0)代入y =ax 2+bx -4中,得16a +4b -4=0.∵抛物线的对称轴是直线x =1,∴-b 2a=1,a +4b -4=0,-b 2a=1,=12,=-1,∴抛物线的函数表达式为y =12x 2-x -4;(2)∵PE ⊥AB ,PF ⊥y 轴,∴∠PEG =∠BFG =90°.∵∠PGE =∠BGF ,∴△PEG ∽△BFG .∵A (4,0),B (0,-4),∴OA =OB =4,∴△OAB 是等腰直角三角形,∴∠OBA =45°.∵PF ⊥y 轴,∴△BFG 是等腰直角三角形,∴∠BGF =45°,∴∠PGE =45°∵PE ⊥AB ,∴△PEG 是等腰直角三角形,∴PG =2EG .当△PEG ≌△BFG 时,∴EG =FG ,∴PG =2FG .由A (4,0),B (0,-4)可知直线AB 的函数表达式为y =x -4,∴P (t ,12t 2-t -4),G (12t 2-t ,12t 2-t -4),∴PG =t -(12t 2-t )=-12t 2+2t ,FG =12t 2-t ,∴-12t 2+2t =2(12t 2-t ),解得t =0(舍去)或t =22;第5题解图(3)当△PMN 为直角三角形时,所有符合条件的点P 的纵坐标为-256或73或3+174或3-174.【解法提示】∵y =12x 2-x -4=12(x -1)2-92,∴y 1=12(x -1+4)2-92+3=12(x +3)2-32=12x 2+3x +3,∴N (-3,-32).令x =0,则y 1=3,∴M (0,3).∵抛物线y 的对称轴为直线x =1,点P 在抛物线对称轴上,∴设P (1,m ),∴PN 2=(1+3)2+(m +32)2,MN 2=1174,PM 2=12+(m -3)2.∵△PMN 为直角三角形,∴需要分以下三种情况:①当∠MNP =90°时,MN 2+PN 2=PM 2,1174+(1+3)2+(m +32)2=12+(m -3)2,解得m =-256;②当∠PMN =90°时,PM 2+MN 2=PN 2,12+(m -3)2+1174=(1+3)2+(m +32)2,解得m =73;③当∠MPN =90°时,PM 2+PN 2=MN 2,12+(m -3)2+(1+3)2+(m +32)2=1174,解得m =3+174或m =3-174.综上所述,当△PMN 为直角三角形时,所有符合条件的点P 的纵坐标为-256或73或3+174或3-174.6.解:(1)∵抛物线y =ax 2+x +c 经过A ,B 两点,a -2+c =0a +4+c =0,=-12,=4,∴抛物线的解析式为y =-12x 2+x +4;(2)∵抛物线与y 轴交于点C ,∴当x =0时,y =4,即C (0,4).∵B (4,0),M (t ,-t -1),∴BC =42+42=42,BM 2=(t -4)2+(-t -1)2=2t 2-6t +17,CM 2=t 2+(t +5)2=2t 2+10t +25,①如解图①,当BC 为对角线时,MB =CM ,∴2t 2-6t +17=2t 2+10t +25,解得t =-12,∴M (-12,-12).R -12=4+0,R -12=4+0,R =92,R =92,∴R (92,92);②当CM 为对角线时,如解图②,∵四边形BMRC 为菱形,∴BM =BC ,∴2t 2-6t +17=(42)2,解得t =3-392或t =3+392,∴-t -1=-3-392-1=-5+392或-t -1=-3+392-1=-5-392,∴M (3-392,-5+392)或M (3+392,-39-52).由菱形的性质可得,R +4=3-392+0,R +0=-5+392+4,或R +4=3+392+0,R +0=-5-392+4,解得R =-5-392,R =3+392,或R =-5+392,R =3-392,∴R (-5-392,3+392)或R (-5+392,3-392);③当BM 为对角线时,如解图③,即四边形CMRB 是菱形,点R 的坐标即为四边形BMRC 为菱形时,点M 的坐标,∴R (3-392,-5+392)或R (3+392,-39-52).综上所述,点R 的坐标为(3-392,-5+392)或(3+392,-39-52)或(-5-392,3+392)或(-5+392,3-392)或(92,92).图①图②图③第6题解图7.解:(1)抛物线的解析式为y =-x 2+x +2,直线BC 的解析式为y =-x +2;【解法提示】(1)∵抛物线过点A (-1,0),B (2,0),∴抛物线的解析式为y =a (x +1)·(x -2),将点C (0,2)的坐标代入上式,得2=-2a ,∴a =-1.∴抛物线的解析式为y =-(x +1)(x -2),即y =-x 2+x +2.设直线BC 的解析式为y =kx +t ,将点B (2,0),C (0,2)的坐标代入上0=2k +t2=t k =-1t 2.∴直线BC 的解析式为y =-x +2;(2)存在.P (2,2),Q (0,2-1)或P (13+13,7+139),Q (0,4-2139)或P (1+3,-1-3),Q (0,1)或P (1+5,-3-5),Q (0,-2).【解法提示】∵点P 与点C 相对应,∴△POQ ∽△CBN 或△POQ ∽△CNB .①若点P 在点B 左侧,则∠CBN =45°,BN =2-m ,CB =22.当△POQ ∽△CBN ,即∠POQ =45°时,直线OP 的解析式为y =x ,∴-m 2+m +2=m ,解得m =2或m =-2(舍去).∴OP 2=(2)2+(2)2=4,即OP =2.∴OP BC =OQ BN ,即222=OQ 2-2,解得OQ =2-1.∴P (2,2),Q (0,2-1).当△POQ ∽△CNB ,即∠PQO =45°时,当点Q 在点P 上方时,PQ =2m ,OQ =-m 2+m +2+m =-m 2+2m +2,∴PQ CB =OQ NB ,即2m 22=-m 2+2m +22-m,解得m =1+5(舍去)或m =1-5(舍去).当点Q 在点P 下方时,PQ =2m ,直线QP 的解析式为y =x -m 2+2.∴OQ =m 2-2,∴PQ CB =OQ NB,即2m 22=m 2-22-m,解得m =13+13或m =1-133(舍去),∴OQ =-4+2139,∴P (13+13,7+139),Q (0,4-2139).②若点P 在点B 右侧,则∠CBN =135°,BN =m -2.当△POQ ∽△CBN ,即∠POQ =135°时,直线OP 的解析式为y =-x ,∴-m 2+m +2=-m ,解得m =1+3或m =1-3(舍去),∴OP =2m =2+6,∴OP BC =OQ BN ,即2+622=OQ 3-1,解得OQ =1.∴P (1+3,-1-3),Q (0,1).当△POQ ∽△CNB ,即∠PQO =135°时,PQ =2m ,OQ =|-m 2+m +2+m |=m 2-2m -2.∴PQ CB =OQ NB ,即2m 22=m 2-2m -2m -2,解得m =1+5或m =1-5(舍去).∴P (1+5,-3-5),Q (0,-2).综上所述,P (2,2),Q (0,2-1)或P (13+13,7+139),Q (0,4-2139)或P (1+3,-1-3),Q(0,1)或P(1+5,-3-5),Q(0,-2).8.解:(1)∵抛物线y=12x2+bx+c经过点A(-4,0),B(2,0),-4b+c=0,2b+c=0,=1,=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)在y=12x2+x-4中,令x=0,得y=-4,∴点C(0,-4).设直线AC的函数表达式为y=kx+c,将A(-4,0),C(0,-4)代入,=-4k+c,4=c,=-1,=-4,∴直线AC的函数表达式为y=-x-4.如解图①,过点M作ME⊥x轴于点E,交AC于点F,设点M的坐标为(d,12d2+d-4),则点F的坐标为(d,-d-4),∴MF=(-d-4)-(12d2+d-4)=-12d2-2d.∵A(-4,0),B(2,0),C(0,-4),∴OA=4,AB=6,OC=4,∴S△ABC=12AB·OC=12×6×4=12,S△ACM=12MF·OA=12×(-12d2-2d)×4=-d2-4d=-(d+2)2+4.当d=-2时,S△ACM取得最大值,为4.∴四边形ABCM面积的最大值=12+4=16,此时点M的坐标为(-2,-4);第8题解图①(3)存在点P,点P的坐标为(-5,72)或(-103,-169).【解法提示】如解图②,过点D 作DG ⊥x 轴于点G ,过点P 作PH ⊥y 轴于点H ,则∠DGA =∠CHP =90°.由题意得点D (-1,-92),设P (m ,12m 2+m -4),∴DG =92,AG =3,CH =12m 2+m -4-(-4)=12m 2+m ,PH =-m ,分两种情况讨论:①当点P 在直线AC 上方时,记为P 1,设过点P 1作P 1H ⊥y 轴的点H 为H 1,∵∠ACP 1=∠CAD ,∴P 1C ∥AD ,易得∠DAG =∠CP 1H 1.又∵∠DGA =∠CH 1P 1=90°,∴△DAG ∽△CP 1H 1,∴DG CH 1=AG P 1H 1,即9212m 2+m =3-m ,解得m =0(舍去)或m =-5,∴点P 1(-5,72);②当点P 在直线AC 下方时,记为P 2,设过点P 2作P 2H ⊥y 轴的点H 为H 2,∵OA =OC =4,∴∠OAC =∠OCA .∵∠ACP 2=∠CAD ,∴∠OAC +∠CAD =∠OCA +∠ACP 2,即∠DAG =∠P 2CH 2.又∵∠DGA =∠P 2H 2C =90°,∴△DAG ∽△P 2CH 2,∴DG P 2H 2=AG CH 2,即92-m =312m 2+m ,解得m =0(舍去)或m =-103,∴点P 2(-103,-169).综上所述,存在点P,点P的坐标为(-5,72)或(-103,-169).第8题解图②。

2023年中考数学一轮综合培优测试卷:二次函数的最值【含答案】

2023年中考数学一轮综合培优测试卷:二次函数的最值【含答案】

2023年中考数学一轮综合培优测试卷:二次函数的最值一、综合题1.居民小区要在一块一边靠墙(墙长 )的空地上修建一个矩形花园 ,花园的一边靠15m ABCD 墙,另三边用总长为 的栅栏围成.如图,若设花园的一边为 ,花园的面积为 40m AB =x(m) .y(m 2)(1)求y 与x 之间的数关系式,写出自变量x 的取值范围;(2)满足条件的花园面积能达到200 吗?如果能,求出此时的x 的值;若不能,请说明理由;m 2(3)请结合题意判断:当x 取何值时,花园的面积最大?最大面积为多少?2.用长为20cm 的铁丝,折成一个矩形,设它的一边长为xcm ,面积为ycm 2.(1)求出y 与x 的函数关系式.(不写自变量的取值范围)(2)当边长x 为多少时,矩形的面积最大,最大面积是多少?3.某种商品每天的销售利润y (元)与销售单价x (元)之间满足关系:y=ax 2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元? (2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?4.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x 表示科技馆从8:30开门后经过的时间(分钟),纵坐标y 表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.{ax 2,0≤x ≤30b(x−90)2+n,30<x ≤90(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?5.已知二次函数 ( 为常数).y =−x 2+mx−m−3m (1)当 时,求二次函数的最值;m =4(2)当抛物线的顶点恰好落在 轴上时,求抛物线的顶点坐标;x (3)当 时,与其对应的函数值 的最大值为2,求二次函数的解析式.−1 ≤ x ≤ 5y 6.已知二次函数y =ax 2+bx -3(a≠0).(1)若函数图象的对称轴为直线x =1,且顶点在x 轴上,求a 的值;(2)若a =1,b =2,点(m ,n )为该二次函数图象在第三象限内的点,请分别求出m ,n 的取值范围;(3)若点P (a ,a -3)始终是函数图象上的点,求证:.a 2+b 2≥347.已知二次函数y =ax 2+bx+c x =3时,y 有最小值﹣4,且图象经过点(﹣1,12).(1)求此二次函数的解析式;(2)该抛物线交x 轴于点A ,B(点A 在点B 的左侧),交y 轴于点C ,在抛物线对称轴上有一动点P ,求PA+PC 的最小值,并求当PA+PC 取最小值时点P 的坐标.8.小佳同学在学习乘法公式(a+b )2=a 2±2ab+b 2的多种运用后,发现可以运用所学知识上数学课时,求代数式x 2+4x+5的最小值?他的解答方法如下: 解:x 2+4x+5=x 2+4x+4+1=(x+2)2+1∵(x+2)2≥0,∴当x=﹣2时,(x+2)2的值最小,最小值是0,∴(x+2)2+1≥1∴当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,∴x 2+4x+5的最小值是1.请你根据上述方法,解答下列各题(1)知识再现:当x= 时,代数式x 2﹣6x+12的最小值是 ;(2)知识运用:若y=﹣x 2+2x﹣3,当x=取何值时,y 取得最大值?9.一块三角形材料如图所示,∠A=30°,∠C=90°,AB=12,用这块材料剪出一个矩形CDEF ,其中D 、E 、F 分别在BC 、AB 、AC 上.(1)若设AE=x ,则AF= ;(用含x 的代数式表示)(2)要使剪出的矩形CDEF 的面积最大,点E 应选在何处?10.如图,一次函数y =﹣x+b 与反比例函数(x >0)的图象交于点A (m ,3)和B (3,1).y =kx(1)填空:一次函数的解析式为 ,反比例函数的解析式为  ;(2)请直接写出不等式组 ≤﹣x+b 的解集是  ;kx (3)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的最大值和最小值.11.已知抛物线y=ax 2 +bx+ l 经过点(1,-2), (-2,13).(1)求a ,b 的值;(2)若(5,y 1),(n ,y 2)是抛物线上不同的两点,且y 2=12-y 1,求n 的值;(3)将此抛物线沿x 轴平移m (m>0)个单位长度,当自变量x 的值满足-1≤x≤3时,与其对应的函数值y 的最小值为6,求m 的值.12.已知二次函数(b 为常数).y =x 2+bx +2b (1)若图象过,求函数的表达式.(2,8)(2)在(1)的条件下,当时,求函数的最大值和最小值.−2≤x ≤2(3)若函数图象不经过第三象限,求b 的取值范围13.如图,抛物线y=ax 2+bx+c 经过A (﹣3,0)、C (0,4),点B 在抛物线上,CB ∥x 轴,且AB 平分∠CAO .(1)求抛物线的解析式;(2)线段AB 上有一动点P ,过点P 作y 轴的平行线,交抛物线于点Q ,求线段PQ 的最大值; (3)抛物线的对称轴上是否存在点M ,使△ABM 是以AB 为直角边的直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由.14.重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y (单位:百万平方米),与时间x 的关系是y= x+5,(x16单位:年,1≤x≤6且x 为整数);后4年,每年竣工投入使用的公租房面积y (单位:百万平方米),与时间x 的关系是y=- x+ (x 单位:年,7≤x≤10且x 为整数).假设每年的公租房全部出租18194x 年投入使用的公租房的租金z (单位:元/m 2)与时间x (单位:年,1≤x≤10且x 为整数)满足一次函数关系如下表:z (元/m 2)5052545658…x (年)12345…(1)求出z 与x 的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a 的值.(参考数据: , , )315≈17.7319≈17.8321≈17.915.如图,斜靠在墙上的一根竹竿AB 长为13m ,端点B 离墙角的水平距离BC 长为5m .(1)若A端沿垂直于地面的方向AC下移1m,则B端将沿CB方向移动多少米?(2)若A端下移的距离等于B端沿CB方向移动的距离,则B端将沿CB方向移动多少米?(3)在竹竿滑动的过程中,当A端下移多少距离时,△ABC面积最大?简述理由,并求出最大值.16.某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件;第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.(1)求y与x之间的函数表达式;(2)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?答案解析部分1.【答案】(1)解:根据题意得:BC=40-2x ,y =x (40-2x),∴y= ,−2x 2+40x ∵墙长15m ,∴0<40-2x≤15,∴自变量x 的取值范围是 ;252≤x <20(2)解:当y =200时,即200= ,−2x 2+40x 解得: ,x 1=x 2=10∵ ,252≤x <20∴此花园的面积不能达到200m 2;(3)解:y = 的图象是开口向下的抛物线,对称轴为x =10.−2x 2+40x ∴当 时,y 随x 的增大而减小,252≤x <20∴当x = 时,y 有最大值,此时y = .252−2×(252)2+40×252=187.5即当时,花园面积最大,最大面积为187.5m 2.x =2522.【答案】(1)解:已知一边长为xcm ,则另一边长为(10-x ).则y=x (10-x )化简可得y=10x-x 2;(2)解:y=10x-x 2 = -(x 2-10x )= -(x-5)2+25, 所以当x=5时,矩形的面积最大,最大为25cm 2.3.【答案】(1)解;y=ax 2+bx﹣75图象过点(5,0)、(7,16),∴ ,{25a +5b−75=049a +7b−75=16解得,{a =−1b =20y=﹣x 2+20x﹣75的顶点坐标是(10,25)当x=10时,y 最大=25,答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(2)解;∵函数y=﹣x 2+20x﹣75图象的对称轴为直线x=10, 可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=﹣x 2+20x﹣75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.4.【答案】(1)解: 由图象可知,300=a×302,解得a= ,13n=700,b×(30﹣90)2+700=300,解得b=﹣ ,19∴y ={13x 2(0≤x ≤30)−19(x−90)2+700(30≤x ≤90)(2)解: 由题意﹣ (x﹣90)2+700=684,19解得x=78,∴ =15,∴15+30+(90﹣78)=57分钟684−6244所以,馆外游客最多等待57分钟.5.【答案】(1)当 时,二次函数的解析式为,m =4∴当x=2时,二次函数取得最大值,最大值为.(2)当抛物线的顶点恰好落在 轴上,x 那么 ,Δ=m 2−4×(−1)×(−m−3)=0即, 解得.当m=6时,二次函数的解析式为,此时抛物线的顶点坐标为.当m=时,二次函数的解析式为,此时抛物线的顶点坐标为.∴抛物线的顶点坐标为或.(3)二次函数图象的对称轴为直线,x =m2①当 时,即 时,m2<−1m <−2在自变量 的值满足 的情况下, 随 的增大而减小,x y x∴当x= 时,y= 为最大值,∴ ,解得,此时二次函数的解析式为y=.②当时,即 时,−1≤m2≤5−2≤m ≤10当 时,二次函数的最大值为=2,x =m2∴,配方得,,解得∵ ,∴应舍去,取 ,−2≤m ≤10此时二次函数的解析式为.③当 时,即m>10时,m 2>5在自变量 的值满足 的情况下, 随 的增大而增大,x y x ∴当x=5时,y=取得最大值,∴ ,解得 ,∵m>10,∴ 舍去.综上所述:此时二次函数的解析式为y=或.6.【答案】(1)解:由题意可知,抛物线的顶点坐标为(1,0), ∴,b 2+12a =0,−b2a =1∴4a 2+12a =0,∴a =-3,(2)解:把a =1,b =2代入,得:,y =x 2+2x−3=(x +1)2−4∴其顶点坐标(,),−1−4令y =0,即,解得x 1=1,x 2=,x 2+2x−3=0−3与x 轴的交点坐标为(1,0),(,0),−3与y 轴的交点坐标为(0,),−3∴<m<0,≤n<0,−3−4(3)证明:∵P(a,a-3)始终是函数y=ax2+bx-3(a≠0)图象上的点,∴即a3+ab−3=a−3a3+ab−a=0∵a≠0,∴,a2+b−1=0∴a2=1−b∴a2+b2=b2+1−b=(b−12)2+34由得a2=1−b>0b<1∴(b−12)2≥0∴a2+b2≥347.【答案】(1)∵当x=3时,y有最小值-4,∴设二次函数解析式为y=a(x-3)2-4.∵二次函数图象经过点(-1,12),∴12=16a-4,∴a=1,∴二次函数的解析式为y=(x-32-4=x2-6x+5.(2)当y=0时,有x2-6x+5=0,解得:x1=1,x2=5,∴点A的坐标为(1,0),点B的坐标为(5,0);当x=0时,y=x2-6x+5=5,∴点C的坐标为(0,5).连接BC交抛物线对称轴于点P,此时PA+PC取最小值,最小值为BC,如图所示.设直线BC的解析式为y=mx+n(m≠0),将B (5,0)、C (0,5)代入y=mx+n ,得: ,解得: ,{5m +n =0n =5{m =−1n =5∴直线BC 的解析式为y=-x+5.∵B (5,0)、C (0,5),∴BC=5 .2∵当x=3时,y=-x+5=2,∴当点P 的坐标为(3,2)时,PA+PC 取最小值,最小值为5 .28.【答案】(1)3;3(2)解:y=﹣x 2+2x﹣3=﹣(x﹣1)2﹣2, 则当x=1时,y 取得最大值是﹣29.【答案】(1) x3(2)解:∵四边形CDEF 是矩形, ∴∠AFE=90°,∵∠A=30°,∴EF= AE= x ,1212在Rt △ABC 中,∠C=90°,AB=12,∴BC= AB=6,12根据勾股定理得:AC= =6 ,122−623∴CF=AC﹣AF=6 ﹣ x ,332∴S 矩形CDEF =CF•EF= x (6 ﹣ x )=﹣ (x﹣6)2+9 ,12333343∴当x=6时,矩形CDEF 的面积最大,即当点E 为AB 的中点时,矩形CDEF 的面积最大.10.【答案】(1)y =﹣x+4;y =3x(2)1≤x≤3(3)解:∵点P 是线段AB 上一点,设P (n ,﹣n+4), ∴1≤n≤3,∴S = OD•PD = •n (﹣n+4)=﹣ (n 2﹣4n )=﹣ (n﹣2)2+2,12121212∵﹣ <0,且1≤n≤3,12∴当n =2时,S 有最大值,且最大值是2,∴当n =1或n =3时,S 有最小值,且最小值是 .3211.【答案】(1)解:把点(1,-2),(-2,13)代入y=ax 2+bx+1得,,{−2=a +b +113=4a−2b +1解得:;{a =1b =−4(2)解:由(1)得函数解析式为y=x 2-4x+1,把x=5代入y=x 2-4x+1得,y 1=6,∴y 2=12- y 1=6= y 1,∵(5,y 1),(n ,y 2)是抛物线上不同的两点,∴(5,y 1)与(n ,y 2)关于对称轴对称,∵对称轴为直线x=2, ∴n=4-5=-1.(3)解:由(1,y =x 2−4x +1=(x−2)2−3∵此抛物线沿x 轴平移m (m>0)个单位长度,∴①当向右平移时,平移后的解析式为,y =(x−2−m )2−3∴对称轴为,x =2+m >2当时,顶点处取最小值,此时最小值为-3,不合题意;−1≤2+m ≤3当即时,对称轴-1≤x≤3的右边,2+m ≥3m ≥1此时当-1≤x≤3时y 随x 的增大而减小,∴当时,有最小值6,即,x =36=(3−2−m )2−3解得,(舍去);m =4m =−2②当向左平移时,平移后的解析式为,y =(x−2+m )2−3∴对称轴为,x =2−m 当时,顶点处取最小值,此时最小值为-3,不合题意;−1≤2−m ≤3当,时,当-1≤x≤3时y 随x 的增大而增大,2−m ≤−1m ≥3∴当时,有最小值6,即,x =−16=(−1−2+m )2−3解得,(舍去),m =6m =0综上所述,m 的值为4或6.12.【答案】(1)解:∵图象经过点,(2,8)∴,8=4+2b +2b 解得.b =1∴此函数解析式为.y =x 2+x +2(2)解:.y =x 2+x +2=(x +12)2+74∵抛物线的开口向上,∴当,y 随x 的增大而减小,−2≤x ≤−12∴当时,y 的最小值为,x =−1274当时,y 随x 的增大而增大,−12≤x ≤2∴当时y 的最大值为,x =2(2+12)2+74=8答:最小值,最大值8.74(3)解:∵图象不经过第三象限,且开口向上,∴,即,2b ≥0b ≥0∴对称轴直线,在y 轴左侧,x =−b 2≤0∴图象必在x 轴上方(包括x 轴),∴,△=b 2−8b ≤0∴.0≤b ≤813.【答案】(1)解:如图1,∵A (﹣3,0),C (0,4),∴OA=3,OC=4.∵∠AOC=90°,∴AC=5.∵BC ∥AO ,AB 平分∠CAO ,∴∠CBA=∠BAO=∠CAB .∴BC=AC .∴BC=5.∵BC ∥AO ,BC=5,OC=4,∴点B 的坐标为(5,4).∵A (﹣3,0)、C (0,4)、B (5,4)在抛物线y=ax 2+bx+c 上,∴{9a−3b +c =0c =425a +5b +c =4解得:{a =−16b =56c =4∴抛物线的解析式为y=﹣ x 2+ x+41656(2)解:如图2,设直线AB 的解析式为y=mx+n ,∵A (﹣3,0)、B (5,4)在直线AB 上,∴{−3m +n =05m +n =4解得:{m =12n =32∴直线AB 的解析式为y= x+ .1232设点P 的横坐标为t (﹣3≤t≤5),则点Q 的横坐标也为t .∴y P = t+ ,y Q =﹣ t 2+ t+4.12321656∴PQ=y Q ﹣y P =﹣ t 2+ t+4﹣( t+ )16561232=﹣ t 2+ t+4﹣ t﹣ 16561232=﹣ t 2+ + 16t 352=﹣ (t 2﹣2t﹣15)16=﹣ [(t﹣1)2﹣16]16=﹣ (t﹣1)2+ .1683∵﹣ <0,﹣3≤t≤5,16∴当t=1时,PQ 取到最大值,最大值为 .83∴线段PQ 的最大值为 .83(3)解:①当∠BAM=90°时,如图3所示.抛物线的对称轴为x=﹣ =﹣ = .b 2a 562×(−16)52∴x H =x G =x M = .52∴y G = × + = .125232114∴GH= .114∵∠GHA=∠GAM=90°,∴∠MAH=90°﹣∠GAH=∠AGM .∵∠AHG=∠MHA=90°,∠MAH=∠AGM ,∴△AHG ∽△MHA .∴ .GH AH =AHMH ∴ =.11452−(−3)52−(−3)MH 解得:MH=11.∴点M 的坐标为( ,﹣11).52②当∠ABM=90°时,如图4所示.∵∠BDG=90°,BD=5﹣ = ,DG=4﹣ = ,525211454∴BG= BD 2+DG2= (52)2+(54)2= .554同理:AG= .115∵∠AGH=∠MGB ,∠AHG=∠MBG=90°,∴△AGH ∽△MGB .∴.AG MG =GHGB ∴ = .115MG 114554解得:MG= .254∴MH=MG+GH= + 254114=9.∴点M 的坐标为( ,9).52综上所述:符合要求的点M 的坐标为( ,9)和( ,﹣11).525214.【答案】(1)解:由题意,z 与x 成一次函数关系,设z=kx+b (k≠0).把(1,50).(2,52)代入,得 ∴z=2x+48.{k +b =502k +b =52⇒{k =2b =48(2)解:当1≤x≤6时,设收取的租金为W 1百万元,则W 1=(- x+5)•(2x+48)=- 1613x 2+2x+240,∵对称轴x=- ≠=3,而1≤x≤6,∴当x=3时,W 1最大=243(百万元).b2a 当7≤x≤10时,设收取的租金为W2百万元,则W 2=(- x+ )·(2x+48)18194=- x 2+ x+228.∵对称轴x=- =7,而7≤x≤10,∴当x=7时,W 2最大= (百万元).1472b 2a 9614∵243> ,9614∴第3年收取的租金最多,最多为243百万元.(3)解:当x=6时,y=- ×6+5=4百万平方米=400万平方米;当x=10时,16y=- ×10+ =3.5百万平方米=350万平方.18194∵第6年可解决20万人住房问题,∴人均住房为400÷20=20平方米.由题意20×(1-1.35a %)×20×(1+a %)=350.设a %=m ,化简为54m 2+14m-5=0,Δ=142-4×54×(-5)=1276,∴m= −14±1276=−7±319∵ ≈17.8,∴m 1=0.2,m 2=- (不符题意,舍去).31962135∴a %=0.2,∴a=20.答:a 的值为20.15.【答案】(1)解:根据题意得:∠ACB=90°, , ,AB =A 1B 1=13m BC =5m ∴ ,AC =AB 2−BC 2=132−52=12m ∵ ,A 1C =12−1=11m ∴ ,B 1C =A 1B 12−A 1C 2=132−112=43m ∴,BB 1=B 1C−BC =(43−5)m 即B 端将沿CB 方向移动 ;(43−5)m (2)解:根据题意可设,则 ,AA 1=BB 1=ym A 1C =(12−y)m ,CB 1=(5+y)m 在 中,由勾股定理得:,Rt △A 1CB 1A 1C 2+CB 12=A 1B 12即 ,(12−y)2+(5+y)2=132解得: ,y =7即B 端将沿CB 方向移动7米;(3)解:设A 端下移的距离为 ,则 ,则 ,xm A 1C =(12−x)m B 1C =132−(12−x)2m ∴,S △ABC =S △A1B 1C =12(12−x)132−(12−x)2设 ,则,a =12−x S △ABC =12a 169−a 2∴,(2S △ABC )2=a 2(169−a 2)=169a 2−a 4=−(a 2−1692)2+16924∴当,即 时, 最大,即最大,a 2=1692a =132(2S △ABC )2S △ABC 此时当时,,12−x =132(2S △ABC )2=16924∴当时,,x =12−1322S △ABC =1694∴当A 端下移,△ABC 面积最大,最大为 .(12−1322)m1694m 216.【答案】(1)解:设y 与x 之间的函数表达式为y =kx +b ,将点(30,400)、(35,300)代入y =kx +b 中得 ,解得 ,{400=30k +b 300=35k +b {k =−20b =1000∴y 与x 之间的函数表达式为y =-20x +1000(2)解:设第二个月的利润为w 元,由已知得w =(x -20)y =(x -20)(-20x +1000)=-20x 2+1400x -20000=-20(x -35)2+4500,∵-20<0,∴当x =35时,w 取最大值,最大值为4500.故第二个月的销售单价定为35元时,可获得最大利润,最大利润是4500元。

代数综合问题(含答案)

代数综合问题(含答案)

代数综合问题1、二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.2、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3、如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C (0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE 面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.4、如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交B,与二次函数的图象交另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx 经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.7、如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.8、如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?参考答案1、方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).2、解:(1)依题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).3、解:(1)∵B(1,0),C(0,3),∴OB=1,OC=3.∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.∴OA=OC=3,∴A(﹣3,0),∵点A,B,C在抛物线上,∴,∴,∴二次函数的解析式为y=﹣x2﹣2x+3,(2)设点P(x,0),则PB=1﹣x,∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,3),∴OC=3,∴S△ABC=AB×OC=6,∵PE∥AC,∴△BPE∽△BAC,∴,∴S△PBE=(1﹣x)2,∴S△PCE=S△PBC﹣S△PBE=PB×OC﹣(1﹣x)2=(1﹣x)×3﹣(1﹣x)2=﹣(x+1)2+,当x=﹣1时,S△PCE的最大值为.(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标(﹣1,4),∵△OMQ为等腰三角形,OM为底,∴MQ=OQ,∴=,∴8x2+18x=7=0,∴x=,∴y=或y=,∴Q(,),或(,).4、方法一:解:(1)如图,过点C作CM∥OA交y轴于M.∵AC:BC=3:1,∴=.∵CM∥OA,∴△BCM∽△BAO,∴===,∴OA=4CM=4,∴点A的坐标为(﹣4,0);(2)∵二次函数y=ax2+bx(a<0)的图象过A点(﹣4,0),∴16a﹣4b=0,∴b=4a,∴y=ax2+4ax,对称轴为直线x=﹣2,∴F点坐标为(﹣2,﹣4a).设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,得﹣4k+n=0,∴n=4k,∴直线AB的解析式为y=kx+4k,∴B点坐标为(0,4k),D点坐标为(﹣2,2k),C点坐标为(﹣1,3k).∵C(﹣1,3k)在抛物线y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.∵△AED中,∠AED=90°,∴若△FCD与△AED相似,则△FCD是直角三角形,∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°,∴△FCD∽△AED.∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2,∴FC=CD,∴△FCD是等腰直角三角形,∴△AED是等腰直角三角形,∴∠DAE=45°,∴∠OBA=45°,∴OB=OA=4,∴4k=4,∴k=1,∴a=﹣1,∴此二次函数的关系式为y=﹣x2﹣4x.方法二:(1)略.(2)∵A(﹣4,0),x=﹣=﹣2,∴b=4a,∴抛物线:y=ax2+4ax,∴C(﹣1,﹣3a),F(﹣2,﹣4a),∵△FCD∽△AED,∠AED=90°,∴AC⊥FC,则K AC×K FC=﹣1,∵A(﹣4,0),C(﹣1,﹣3a),F(﹣2,﹣4a),∴=﹣1,∴a2=1,∴a1=1(舍),a2=﹣1,∴此时抛物线的解析式为:y=﹣x2﹣4x.5、解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点P(a,﹣2a2+6a),则OG=a,PG=﹣2a2+6a.∵S梯形DOGP=(OD+PG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGP=AG•PG=﹣a3+4a2﹣3a,∴S△PDA=S梯形DOGP﹣S△ODA﹣S△AGP=﹣a2+a﹣.∴当a=时,S△PDA的最大值为.∴点P的坐标为(,).6、解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).7、解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=.将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3.(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,∴y A﹣y P=3y B﹣y P,又∵点P为x轴上的点,点A(2,3),∴y B=1.当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1).将点A(2,3)、B(﹣2,1)代入y=kx+b中,,解得:;将点A(2,3)、B(4,1)代入y=kx+b中,,解得:.∴一次函数的解析式y=x+2或y=﹣x+5.(3)假设存在,设点C的坐标为(1,r).∵k>0,∴直线AP的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,).令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF.在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10.故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).8、解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,同理,当点P在原点左侧,OP=17.∴P1(19,0),P2(﹣17,0).9、解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅰ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.。

二次函数综合题(10道)(1)

二次函数综合题(10道)(1)

题型四二次函数综合题类型一与图形规律有关的探究问题1. 先阅读,再解决问题.平面直角坐标系下,一组有规律的点:A1(0,1)、A2(1,0)、A3(2,1)、A4(3,0)、A5(4,1)、A6(5,0),…,注:当n为奇数时,A n(n-1,1),n为偶数时A n(n-1,0).抛物线C1经过A1,A2,A3三点,抛物线C2经过A2,A3,A4三点,抛物线C3经过A3,A4,A5三点,抛物线C4经过A4,A5,A6三点,…,此抛1物线C n经过A n,A n+1,A n+2.(1)直接写出抛物线C1,C4的解析式;(2)若点E(e,f1),F(e,f2)分别在抛物线C27,C28上,当e=29时,求证△A28EF是直角三角形;(3)若直线x=m分别交x轴、抛物线C2015,C2016于点P、M、N,作直线A2016M,A2016N,当∠P A2016M=45°时,求sin∠P A2016N的值.解:(1)由顶点式求出C1的解析式为:y1=(x-1)2,C4的解析式为:y4=-(x-4)2+1;【解法提示】由题意可知抛物线C12过A1,A2,A3三点,抛物线C4过A4,A5,A6三点,将这些点代入顶点式可求出C1和C4的解析式分别为y1=(x-1)2,y4=-(x-4)2+1.(2)证明:由特殊出发,可以发现这组抛物线解析式的特点:y1=(x-1)2,y2=-(x-2)2+1,y3=(x-3)2,y4=-(x-4)2+1,…∴抛物线C27、C28的解析式为:y27=(x-27)2,y28=-(x-28)2+1.34如解图①,此时点E (e ,f 1)、F (e ,f 2)分别为点E (29,4),F (29,0);而点A 28的坐标是(27,0).第1题解图①显然△A 28EF 是直角三角形;(3)由(2)中发现的规律可知,抛物线C 2015,C 2016解析式为:y 2015=(x -2015)2,y 2016=-(x -2016)2+1, 顺便指出,由(2)的规律发现,可以退回简单的抛物线C 3,C 4的情况来5研究,分以下两种情况,如解图②, 当m =2014时,M (2014,1)此时有∠P A 2014M =45°,N (2014,-3),相应的sin ∠P A 2016N 的值为31010;如解图③,在A (2015,0)点右侧,当m =2016时,M (2016,1),此时有∠P A 2016M =45°,N (2016,1),相应的sin ∠P A 2016N的值为22.6第1题解图2. 已知,如图,直线l :y =13x +b ,经过点M (0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…,B n (n ,y n )(n 为正整数)依次在直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…,A n +1(x n +1,0),设x 1=d (0<d <1).(1)求b 的值;(2)求经过点A 1、B 1、A 2的抛物线的解析式(用含d 的代数式表示);7(3)当d (0<d <1)的大小变化时,是否存在顶点与x 轴的两个交点所构成的三角形是直角三角形的抛物线?若存在,请你求出相应的d 的值,若不存在,请说明理由.第2题图解:(1)∵M (0,14)在直线y =13x +b 上,∴14=13×0+b ,8∴b =14;(2)由(1)得:y =13x +14,∵B 1(1,y 1)在l 上,∴当x =1时,y 1=13×1+14=712,∴B 1(1,712).∴设抛物线的表达式为y =a (x -1)2+712(a ≠0),又∵x 1=d ,∴A 1(d ,0),∴0=a (d -1)2+712,9∴a =-712(d -1)2, ∴经过点A 1,B 1,A 2的抛物线的解析式为:y =-712(d -1)2(x -1)2+712; 【一题多解】∵x 1=d ,∴A 1(d ,0),A 2(2-d ,0),∴设抛物线的解析式为y =a (x -d )·(x -2+d )(a ≠0),把B 1(1,712)代入得712=a (1-d )·(1-2+d ),得a =-712(d -1)2,∴抛物线的解析式为y=-712(d-1)2(x-d)·(x-2+d).(3)存在.由抛物线的对称性可知,所构成的三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵0<d<1,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于1.1011∵当x =1时,y 1=13×1+14=712<1,当x =2时,y 2=13×2+14=1112<1,当x =3时,y 3=13×3+14=114>1,∴该抛物线的顶点只有B 1,B 2,①若B 1为顶点,由B 1(1,712),则d =1-712=512;②若B 2为顶点,由B 2(2,1112),则d =1-[(2-1112)-1]=1112,综上所述,d 的值为512或1112时,存在满足条件的抛物线.3. 如图①,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x-b1),C1与x轴的正半轴交于点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图②,抛物线C1:y1=a1x(x-b1)经过变换可得到抛物线C2:y2=a2x(x-b2),C2与x轴的正半轴交与点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图③,12可得抛物线C3:y3=a3x(x-b3)与正方形OB3A3D3.请探究以下问题:(1)填空:a1=________;b1=________;(2)求出C2与C3的解析式;(3)按上述类似方法,可得到抛物线C n:y n=a n(x-b n)与正方形OB n A nD n(n≥1).①请用含n的代数式直接表示出C n 的解析式;②当x取任意不为0的实数时,试比较y2016与y2017的函数值的大小并说明理由.1314第3题图解:(1)1;2;【解法提示】由抛物线C 经过变换得到抛物线C 1,则a 1=1,代入C 1得:y 1=x (x -b 1).y 1=0时,x (x -b 1)=0,x 1=0,x 2=b 1,∴A 1(b 1,0), 由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1,∴B 1(b 12,b 12),∵B 1在抛物线C上,则b 12=(b 12)2,b 1(b 1-2)=0,b115=0(不符合题意),b 1=2.(2)由a 2=a 1=1得,y 2=x (x -b 2), y 2=0得,x (x -b 2)=0,x 1=0,x 2=b 2.∴A 2(b 0,0).由正方形OB 2A 2D 2得:OA 2=B 2D 2=b 2,∴B 2(b 22,b 22),∵B 2在抛物线C 1上,则b 22=(b 22)2-2×b 22,b 2(b 2-6)=0,b 2=0(不合题意), ∴b 2=6,16∴C 2的解析式:y 2=x (x -6)=x 2-6x , 由a 3=a 2=1得,y 3=x (x -b 3), y 3=0时,x (x -b 3)=0,x 1=0,x 2=b 3,∴A 3(b 3,0),由正方形OB 3A 3D 3得:OA 3=B 3D 3=b 3∴B 3(b 32,b 32),∵B 3在抛物线C 2上,则b 32=(b 32)2-6×b 32,b 3(b 3-14)=0,b 3=0(不合题意),b 3=14,∴C3的解析式:y3=x(x-14)=x2-14x;(3)①C n的解析式为:y n=x2-(2n+1-2)x(n≥1);②由①得抛物线C2016的解析式为:y2016=x2-(22016+1-2)x=x2-(22017-2)x,抛物线C2017的解析式为:y2017=x2-(22017+1-2)x=x2-(22018-2)x,∴两抛物线的交点为(0,0).∴当x<0时,y2016<y2017;当x>0时,y2016>y2017.类型二与图形变换有关的探究17问题4. 已知抛物线y=x2-2ax+a2(a为常数,a>0),G为该抛物线的顶点.(1)如图①,当a=2时,抛物线与y 轴交于点M,求△GOM的面积;(2)如图②,将抛物线绕顶点G逆时针旋转90°后,所得新图象与y轴交于A、B两点(点A在点B的上方),D为x轴的正半轴上一点,以OD为一对角线作平行四边形OQDE,其中Q点在第一象限,QE交OD于点C,若QO平分∠AQC,AQ=2QC.求证:△AQO≌△EQO;18(3)在(2)的条件下,若QD=OG,试求a的值.第4题图解:(1)当a=2时,令x=0,则y=a2=4,∴点M(0,4),∵y=x2-2ax+a2=(x-a)2,∴当a=2时,顶点G(2,0),∴OM=4,OG=2,1920 S △GOM =12OM ·OG =12×4×2=4;(2)证明:∵四边形OQDE 为平行四边形,∴QC =CE =12QE ,又∵AQ =2QC ,∴AQ =EQ ,∵QO 平分∠AQC ,∴∠AQO =∠EQO ,∵在△AQO 和△EQO 中, ⎩⎪⎨⎪⎧AQ =EQ∠AQO =∠EQO ,QO =QO∴△AQO ≌△EQO (SAS);(3)∵由题意知G(a,0),∴OG=a,∵QD=OG,∴QD=a,∵四边形OQDE为平行四边形,∴OE=QD=a,即A(0,a),由旋转知,旋转前抛物线点A的坐标为(2a,a),把(2a,a)代入y=x2-2ax+a2得,4a2-2a·2a+a2=a,即a2=a,解得a=1或0.21∵a为常数,a>0,∴a=0不合题意,舍去,∴a=1.5. 如图,已知二次函数y1=ax2+bx 过(-2,4),(-4,4)两点.(1)求二次函数y1的解析式;(2)将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,直线y=m(m>0)交y2于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,y1、y2交于A、B 两点,如果直线y=m与y1、y2的图象形成的封闭曲线交于C、D两点(C2223在左侧),直线y =-m 与y 1、y 2的图象形成的封闭曲线交于E 、F 两点(E 在左侧),求证:四边形CEFD 是平行四边形.第5题图解:(1)将点(-2,4),(-4,4)代入y 1=ax 2+bx ,得⎩⎪⎨⎪⎧4a -2b =416a -4b =4,解得⎩⎨⎧a =-12b =-3,24∴y 1=-12x 2-3x ;(2)将y 1配方,得y 1=-12(x +3)2+92,∴顶点坐标是(-3,92).此顶点沿x 轴翻折(-3,-92),再向右平移2个单位后的点是(-1,-92).翻折后抛物线的方向改变,但开口大小不变,∴翻折后抛物线解析式的二次项系数是12.∴y 2=12(x +1)2-92,即y 2=12x 2+x -4.25令y 2=m ,得12x 2+x -4=m ,即x 2+2x -2(4+m )=0.设此方程的两根为x 1,x 2,则x 1+x 2=-2,x 1x 2=-2(4+m ). ∵x 1,x 2是点M ,N 的横坐标, ∴MN =|x 1-x 2| =(x 1+x 2)2-4x 1x 2 =4+8(4+m )=29+2m ;(3)设点A 的纵坐标为y 0.①当y 0≤m <92时,如题图.对于直线y =m 和函数y 1=-12x 2-3x ,由第(2)问的方法求得CD =26 29-2m .对于直线y =-m 和函数y 2=12x 2+x-4,由第(2)问的方法可知EF =29-2m .∴CD =EF .又CD ∥EF ,∴四边形CEFD 是平行四边形. ②当0<m <y 0时,如解图,此时直线y =m 与y 1的右交点为D ,与y 1的左交点为C ,直线y =-m 与y 2的右交点为F ,与y 2的左交点为E .27第5题解图由方程组⎩⎨⎧y =m ,y =-12x 2-3x消去y ,得-12x 2-3x =m ,即x 2+6x+2m =0.解此方程,得x =-3±9-2m . 点D 的横坐标为x D =-3+9-2m .由方程组⎩⎨⎧y =m ,y =12x 2+x -4,消去y ,得12+x-4=m,即x2+2x-2(4+m) 2x=0.解此方程,得x=-1±9+2m.点C的横坐标为x C=-1-9+2m.∴EF=x D-x C=9-2m+9+2m-2.同理,x F=-3+9+2m,x E=-1-9-2m.∴CD=x F-x E=9-2m+9+2m-2.∴CD=EF.∴四边形CEFD是平行四边形.综上所述,当m>0时,所构成的四2829边形CEFD 是平行四边形.6. 如图①,已知抛物线L :y =ax 2+bx -32(a >0)与x 轴交于点A (-1,0)和点B ,顶点为M ,对称轴为直线l :x =1.(1)直接写出点B 的坐标及一元二次方程ax 2+bx -32=0的解;(2)如图②,设点P 是抛物线L 上的一个动点,将抛物线L 平移,使它的顶点移至点P ,得到新抛物线L ′,L ′与直线l 相交于点N .设点P 的横坐标为m .①当m=5时,PM与PN有怎样的数量关系?请说明理由.②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?③是否存在这样的点P,使△PMN 为等边三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.第6题图解:(1)如解图①,∵y=ax2+bx-323031(a >0)与x 轴交于点A (-1,0)和点B ,对称轴为直线l :x =1,∴点A 和点B 关于直线l :x =1对称, ∴点B 的坐标为(3,0),∴一元二次方程ax 2+bx -32=0的解为x 1=-1,x 2=3;(2)如解图②,过点P 作PC ⊥l 于点C ,32第6题解图①∵y =12(x -1)2-2,∴当m =5, 即x =5, y =6, ∴P (5,6),∴此时L ′的解析式为y =12(x -5)2+6,点C 的坐标是(1,6).∵当x =1时,y =14,∴点N 的坐标是(1,14),33∵CM =6-(-2)=8,CN =14-6=8,∴CM =CN ,∴PC 垂直平分线段MN , ∴PM =PN ;②PM =PN 仍然成立,由题意有点P 的坐标为(m ,12m 2-m-32).∵L ′的解析式为y =12(x -m )2+12m 2-m -32,∴点C 的坐标是(1,12m 2-m -32),34∴CM =12m 2-m -32+2=12m 2-m +12,∵在L ′的解析式y =12(x -m )2+12m 2-m -32中,∴当x =1时,y =m 2-2m -1, ∴点N 的坐标是(1,m 2-2m -1),∴CN =(m 2-2m -1)-(12m 2-m -32)=12m 2-m +12,∴CM =CN ,∴PC 垂直平分线段MN ,35∴PM =PN ;③存在这样的点P ,使△PMN 为等边三角形.若CN PC =tan30°,则12m 2-m +12=33(m -1),解得m =23+33或m =1(不合题意,舍去)∴点P 的坐标为(23+33,-43).类型三 二次函数性质的探究问题7. 已知二次函数y =ax 2+bx +c (a ≠0)的图象经过A (0,3),B (4,0)两点.(1)用仅含字母a的式子表达这个二次函数的解析式;(2)该二次函数的对称轴不可能是( ),并对你的选择进行证明.A. x=0B. x=1C. x=2D. x=3(3)以-a代替(1)中二次函数y的解析式中的a,得到二次函数y′的解析式.①二次函数y′的图象是否也经过A,B两点?请说明理由;②当x=t(0≤t≤4)时,求|y-y′|的最大值(用仅含字母a的式子表示).3637解:(1)将A (0,3),B (4,0)两点坐标分别代入二次函数y =ax 2+bx +c (a ≠0)得⎩⎪⎨⎪⎧c =316a +4b +c =0, 解得⎩⎨⎧b =-4a -34c =3, ∴该二次函数的解析式为y =ax 2-(4a +34)x +3;(2)C ;【解法提示】对称轴为x =--(4a +34)2a =2+38a ≠2,故选C.(3)①二次函数y ′图象经过A 、B 两点,38理由如下:y ′=-ax 2+bx +c ,由(1)可得y ′=-ax 2-(-4a +34)x +3, 将x =0代入解析式得,y ′=3,故点A (0,3)在抛物线上;将x =4代入解析式得,y ′=-16a +16a -3+3=0,故点B (4,0)在抛物线上;②|y -y ′|=|ax 2-(4a +34)x +3-[-ax 2-(-4a +34)x +3]|=|2ax 2-8ax |=|2a (x 2-4x +4-4)|=|2a (x -2)2-8a |,即|y-y′|=|2a(x-2)2-8a|,当x=t(0≤t≤4)时,|y-y′|的最大值为|-8a|,故|y-y′|的最大值为|-8a|.8. 已知函数关系式是L1:y=kx2+(k -2)x-2.(1)①当k=1时,其顶点坐标为________;②当k=2时,二次函数的图象的对称轴为________.(2)求证:无论k为何值时,函数图象与x轴总有交点;(3)已知二次函数L1的图象与x轴相3940 交于点A ,B ,顶点为P .①若k >0,且△ABP 为等边三角形,求k 的值;②若抛物线L 2与抛物线L 1关于原点成中心对称,且抛物线L 2与x 轴交于点C ,D ,是否存在实数k ,使以A ,B ,C ,D 四点中的其中两点成为另外两点之间的线段的三等分点?若存在,求出实数k 的值;若不存在,请说明理由.(1)解:①(12,-94);②y 轴;【解法提示】①当k =1时,y =x 241-x -2=(x -12)2-94,此时顶点坐标为(12,-94);②当k =2时,y =2x 2-2,则抛物线的对称轴为y 轴.(2)证明:当k =0时,一次函数y =-2x -2与x 轴有一个交点(-1,0); 当k ≠0时,b 2-4ac =(k -2)2-4k ·(-2)=(k +2)2≥0,此二次函数图象与x 轴有交点,∴无论k 为何值时,函数图象与x 轴总有交点;(3)∵k ≠0,42∴当y =0时,kx 2+(k -2)x -2=0,解得x 1=-1,x 2=2k ,设A (2k ,0),B (-1,0),则顶点P 的坐标为(2-k 2k ,-(k +2)24k), ①当k >0时,AB =2k +1,如解图,作PE ⊥x 轴于点E ,第8题解图43∵△ABP 为等边三角形,∴PE =32AB ,∴(k +2)24k =32(2k +1), 即(k +2)2=23(k +2),解得k 1=-2(舍去),k 2=23-2, ∴k 的值为23-2;②存在实数k ,使以A ,B ,C ,D 四点中的其中两点成为另外两点之间的线段的三等分点.∵抛物线L 2与抛物线L 1关于原点成中心对称,∴点A 和点B 关于原点的对称点分44别为点C 、D ,∴C (-2k ,0),D (1,0),∴点B (-1,0),D (1,0)为定点,点A (2k ,0),C (-2k ,0)为动点,A ,B ,C ,D 四点中的其中两点成为另外两点之间的线段的三等分点, 当k >0时,当点B 、D 为线段AC 的三等分点时,AC =3BD ,即2k -(-2k )=3×2,解得k =23; 当点A 、C 点为线段BD 的三等分点45时,AC =13BD ,即2k -(-2k )=13×2,解得k =6;当k <0时,同理可得k =-23或k =-6,综上所述,k 的值为±23,±6. 类型四 与新定义有关的探究问题9. 如图①,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两条抛物线L 1、L 2互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)在图①中,抛物线L1:y=-x2+4x-3与L2:y=a(x-4)2-3互为“伴随抛物线”,则点A的坐标为________,a的值为________;(2)在图②中,已知抛物线L3:y=2x2-8x+4,它的“伴随抛物线”为L4,若L3与y轴交于点C,点C关于L3的对称轴对称点为D,请求出以点D 为顶点的L4的解析式;(3)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的解析式为y =a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.46第9题图解:(2,1),1;【解法提示】(1)∵抛物线L1:y=-x2+4x-3,∴此抛物线的顶点坐标A(2,1),∵抛物线L2过点A(2,1),∴1=a(2-4)2-3,∴a=1.(2)由L3:y=2x2-8x+4化成顶点式,得y=2(x-2)2-4,∴C(0,4),对称轴为x=2,顶点坐标(2,-4),47∴点C关于对称轴x=2的对称点D(4,4),设L4:y=a(x-h)2+k将顶点D(4,4)代入得,y=a(x-4)2+4再将点(2,-4)代入得,-4=4a +4,解得:a=-2,L3的伴随抛物线L4的解析式为:y =-2(x-4)2+4;(3)a1=-a2.理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B在抛物线L1上,设A(m,k),B(h,n),∴可以列出两个方程4849()()⎪⎩⎪⎨⎧++=+-=②①n m h a k k h m a n 2122, ①+②得:(a 1+a 2)(m -h )2=0, ∵伴随抛物线的顶点不重合,∴a 1=-a 2.10. 在平面直角坐标系中,将抛物线L 1:y =12x 2,沿x 轴向右平移m (m >0)个单位长度,得抛物线L 2,顶点为P ,交L 1于点Q .(1)直接写出抛物线L 2的表达式(用字母m 表示);(2)连接OQ 、PQ ,当∠OQP =60°时,点Q 的坐标为________;(3)若将抛物线L1与L2其中任意一条沿着x轴方向水平向左(或向右)平移得到另一条,记抛物线L1的顶点为O,抛物线L2的顶点为P,抛物线L1与L2的交点为点Q,连接OQ、PQ,当∠OQP=90°时,我们称这样的两条抛物线是“共轭抛物线”.①当L1和L2是“共轭抛物线”时,求m的值;②请你根据上述“共轭抛物线”的概念,求出抛物线y=-x2-2x+3的“共轭抛物线”.50。

二次函数综合题练习

二次函数综合题练习

一.解答题(共30小题)1.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c 的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B (3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.3.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6交x轴于A(﹣4,0)、B(2,0),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)点D是第二象限内的抛物线上一动点.若tan∠AED=,求此时点D坐标;(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A时,判断动点Q的轨迹并求动点Q所经过的路径长.4.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的解析式,并写出它的对称轴;(2)点D为抛物线对称轴上一点,连接CD、BD,若∠DCB=∠CBD,求点D的坐标;(3)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.(4)若点P为坐标系中的一点,OP=4,则2PC+PB的最小值为.6.如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.7.如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)交x轴于A(﹣1,0),B(4,0),交y轴于点C.(1)求该抛物线解析式;(2)点P为第四象限内抛物线上一点,连接PB,过C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣2(a≠0)向右平移经过点Q,得到新抛物线y=a1x2+b1x+c1(a1≠0),点E在新抛物线的对称轴上,是否存在平面内一点F,使得A,P,E,F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.9.已知抛物线y=ax2+bx+4经过点A(2,0),B(﹣4,0)与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第二象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.10.在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD=2S△APQ时,求点P的坐标.(3)如图2,点G是线段OC上一个动点,连结DG,求DG+CG的最小值.11.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为.(2)如图1,是否存在点P,使四边形BOCP的面积为9?若存在,请求出点P的坐标;若不存在,请说明理由.(3)如图2,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请直接写出点D的坐标.(4)如图3,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标.12.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.13.如图1,抛物线y=﹣+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点C在y轴上,点B的纵坐标为﹣.(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+P A的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠P AB=∠CAC1,求点P的横坐标.15.如图1,在平面直角坐标系中,一次函数y=x﹣2的图象与x轴交于点B,与y轴交于点C,二次函数y=+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的表达式.(2)如图2,连接AC,点M为线段BC上的一点,设点M的横坐标为t,过点M作y 轴的平行线,过点C作x轴的平行线,两者交于点N,将△MCN沿MC翻折得到△MCN'.①当点N'落在线段AB上,求此时t的值;②求△MCN′与△ACB重叠的面积S与t的函数关系式.(3)如图3,点D在直线BC下方的二次函数图象上,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.16.抛物线y=x2﹣bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,其顶点为D,直线BD与y轴交于点E.(1)求顶点D的坐标;(2)如图,设点P为线段BD上一动点(点P不与点B、D重合),过点P作x轴的垂线与抛物线交于点F,求△BDF的面积最大值;(3)点Q在线段BD上,当∠BDC=∠QCE时,求点Q的坐标(直接写出结果,不必写解答过程).17.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.18.已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠EDC=n°.(1)当n=60时,①如图1,当点D在AC上时,请直接写出BE与AD的数量关系:;②如图2,当点D不在AC上时,判断线段BE与AD的数量关系,并说明理由;(2)当n=90时,①如图3,探究线段BE与AD的数量关系,并说明理由;②当BE∥AC,AB=3,AD=1时,请直接写出DC的长.19.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,等腰Rt△ABC的顶点A在△BDC内,∠ADB=45°,BD=6,将线段AD绕点A逆时针旋转90°至AE,点D、E、B恰好共线,直接写出△BDC的面积.20.如图,在等边三角形ABC中,E是边AC上一定点,D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图①,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图②,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系,并直接写出这三条线段之间的数量关系.21.【知识再现】学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称“HL”定理)”是判定直角三角形全等的特有方法.【简单应用】(1)如图1,在△ABC和△DCB中,∠A=∠D=90°,AC=DB,AC和DB交于点E,则线段AE和线段DE的数量关系是;(2)如图2,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在边AC、AB上,且CE=BD.求证:AE=AD;【拓展延伸】(3)如图3,在△ABC中,∠BAC为钝角,AB=AC,点D、E分别在边AC、AB上,且CE=BD,则线段AE与线段AD相等吗?如果相等,请给出证明;如果不相等,请说明理由.22.如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A 为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,证明:NE=ND.23.如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,作CF∥AD交线段AE于点F,连接BF.(1)求证:△ABF≌△EAD;(2)如图2.若AB=9,CD=5,∠ECF=∠AED,求BE的长;(3)如图3,若BF的延长线经过AD的中点M,求的值.24.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F 分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE 绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.25.旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM =cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC 于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.26.如图,△ABC中,∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q在线段CA上时,①求证:△BPE∽△CEQ;②线段BE,BP,CQ之间存在怎样的数量关系?请说明理由;(2)当△APQ为等腰三角形时,求的值.27.【基础巩固】(1)如图1,在△ABC中,∠ACB=90°,直线l过点C,分别过A、B两点作AE⊥l,BD⊥l,垂足分别为E、D.求证:△BDC∽△CEA.【尝试应用】(2)如图2,在△ABC中,∠ACB=90°,D是BC上一点,过D作AD的垂线交AB 于点E.若BE=DE,,AC=20,求BD的长.【拓展提高】(3)如图3,在平行四边形ABCD中,在BC上取点E,使得∠AED=90°,若AE=AB,,CD=,求平行四边形ABCD的面积.28.“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则=;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.29.已知等边△ABC,D为边BC中点,M为边AC上一点(不与A,C重合),连接DM.(1)如图1,点E是边AC的中点,当M在线段AE上(不与A,E重合)时,将DM 绕点D逆时针旋转120°得到线段DF,连接BF.①依题意补全图1;②此时EM与BF的数量关系为:,∠DBF=°.(2)如图2,若DM=2MC,在边AB上有一点N,使得∠NDM=120°.直接用等式表示线段BN,ND,CD之间的数量关系,并证明.30.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ 的面积等于,求线段AP的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数代数综合题
1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2).
(1)求m 的值和抛物线的解析式;
(2) 结合函数图象,求不等式m x c bx x +>++2
的解集.
2.如图,二次函数的图象经过点D (0,39
7),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标.
3.已知抛物线2442y ax ax a =-+-,其中a 是常数.
(1)求抛物线的顶点坐标;
(2)若25
a >,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式.
4.在平面直角坐标系xOy 中,抛物线2y mx n =++经过P ,A (0,2)两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛
物线的对称轴交于C 点,求直线l 的解析式;
(3)在(2)的条件下,求到直线OB 、OC 、BC 距离相等的点的坐标.
5.已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.
(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.
(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与
y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.
6.已知抛物线223
4
y x kx k =+-(k 为常数,且k >0).
(1)证明:此抛物线与x 轴总有两个交点;
(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ON OM -=,求k 的值.
7. 已知二次函数y =x 2-(2m +4)x +m 2-4(x 为自变量)的图象与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO 、OB •满足3(•OB -AO )=2AO ·OB ,直线y =kx +k 与这个二次函数图象的一个交点为P ,且锐角∠POB •的正切值4.
(1)求m 的取值范围;(2)求这个二次函数的解析式;(3)确定直线y =kx +k 的解析式.
8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>.
(1)求证:此二次函数的图象与x 轴有两个交点;
(2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.
9、关于x 的方程x 2-2ax +9=0的两个实数根分别为α、β,则(α-1)2+(β-1)2的最小值是 _______________
(4)已知函数y =x 2-4ax +2a +30的图象与x 轴无交点,求关于x 的方程
3
+a x =|a -1|+1的根的范围.
(5)若关于x 的二次方程7x 2-(p +13)x +p 2-p -2=0的两根α、β满足0<α<1<β<2,求实数p 的取值范围.
10. 设a ,b 为实常数,k 取任意实数时,函数y =(k 2+k +1)x 2-2(a +k)2x +(k 2+3ak +b)的图象与x 轴都交于点A(1,0).
① 求a 、b 的值;
② 若函数与x 轴的另一个交点为B ,当k 变化时,求|AB|的最大值
17.已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.
(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出
它的实数根;若没有,请说明理由;
(3)将抛物线2
21y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.
18.已知:关于x 的一元二次方程063)2(22=-+-+m x m x .
(1)求证:x 无论为任何实数,方程总有实数根;
(2)抛物线m x m x y 63)2(22-+-+=与x 轴交于A 、B 两点,A 在原点左侧,B 在原点右侧,且OA =3OB ,请确定抛物线的解析式;
19.已知二次函数y =x 2-x +c .
(1)若点A (-1,n )、B (2,2n -1)在二次函数y =x 2-x +c 的图象上,求此二 次函数的最小值;
20.已知关于x 的方程032)1(32=-+--m x m mx .
(1)求证:无论m 取任何实数时,方程总有实数根;
(2)若关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称.
①求这个二次函数的解析式;
②已知一次函数222-=x y ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 1≥y 2均成立;。

相关文档
最新文档