二阶电路的仿真与实验

合集下载

信号与系统-实验3-二阶网络状态轨迹的显示

信号与系统-实验3-二阶网络状态轨迹的显示

实验报告课程名称:信号与系统实验实验名称:二阶网络状态轨迹的显示班级学号姓名指导教师2020 年6月7 日教务处印制一、实验预习(准备)报告1、实验目的1.观察 R-L-C 网络在不同阻尼比ξ值时的状态轨迹。

2.熟悉状态轨迹与相应瞬态响应性能间的关系。

3.掌握同时观察两个无公共接地端电信号的方法。

4.用仿真法实现电路的设计与仿真。

2、实验相关原理及内容实验相关原理:1.任何变化的物理过程在每一时刻所处的“状态”,都可以概括地用若干个被称为“状态变量”的物理量来描述。

对于电路或控制系统,同样可以用状态变量来表征。

如图 3-1 所示的R-L-C 电路。

图 3-1 R-L-C 电路基于电路中有二个储能元件,因此该电路独立的状态变量有二个,如选 uc 和 iL 为状态变量,则根据该电路的下列回路方程求得相应的状态方程为当已知电路的激励电压u i和初始条件i L(t0)、u c(t0),就可以唯一地确定t≥t0时,该电路的电流和电容两端的电压u c。

2、不同阻尼比ξ时,二阶网络的相轨迹。

LCd u n n将i L =cdu cdt代入式(3-1)中,得d 2u du d 2u R du 11(3-3)LCc+RCc +u c =u ic +c +u =udt 2dt dt 2Ldt LC cLC i二阶网络标准化形成的微分方程为2c dt 2+2ξw n du cdt +w 2u =w 2u (3-4)比较式(3-3)和式(3-4),得w n =1,ξ=(3-5)R C LLc i由式(3-5)可知,改变 R 、L 和 C ,使电路分别处于ξ=0、0<ξ<1 和ξ>1 三种状态。

根据式(3-2),可直接解得 u c (t)和 i L (t)。

如果以 t 为参变量,求出 i L =f(u c )的关系,并把这个关系,画在 u c -i L 平面上。

显然,后者同样能描述电路的运动情况。

图 3-2、图 3-3 和 图 3-4 分别画出了过阻尼、欠阻尼和无阻尼三种情况下,i L (t)、u c (t)与 t 的曲线以及 u c 与 i L 的状态轨迹。

仿真实验二二阶电路响应

仿真实验二二阶电路响应

二、二阶电路响应的三种状态的仿真一、电路课程设计目的:1、测试二阶动态电路的零状态响应和零输入响应,了解电路元件参数对响应的影响;2、观察、分析二阶电路响应的三种(欠阻尼、过阻尼及临界阻尼)状态轨迹及其特点,以加深对二阶电路响应的认识与理解。

二、仿真电路设计原理:RLC 串联电路,无论是零输入响应,或是零状态响应,电路过渡过程的性质 ,完全由特征方程决定,其特征根:d o LCL R L R p ωαωαα±-=-±-=-±-=22222,1)1()2(2 其中: L R 2=α称为衰减系数,LC10=ω称为谐振频率,220αωω-=d 称为衰减振荡频率 CL R 2>电路过渡过程的性质为过阻尼的非振荡过程。

CL R 2=电路过渡过程的性质为临界阻尼的非振荡过程。

C L R 2=电路过渡过程的性质为欠阻尼的振荡过程。

0=R 等幅振荡实例分析:求开关切换后即t>0时,该电路中R 为多少时,二阶电路处于临界状态。

解:t>0后,电路的微分方程为R1R2R3Ai i V u u u dtdu C R dt u d LC c c c c c 5)0()0(25)0()0(0'22=-=+=-=+=++ Ate e e te A e A e A C t i Ve t e t A A u A A p p p C L R LC L R L R Cp R LCp t t t t t t t t c )5.5006975.35405.3535(10)()()5.354020()(5.35402542.141,42.14121)(2p 0142.14142.14142.141422142.14142.141212121'2''2,1'2-----------=-+--=+=+=∴==-===Ω==∴-±-==++δδδδδ,为两个相等的实根。

电路计算机仿真实验报告

电路计算机仿真实验报告

电路计算机仿真分析实验报告实验一直流电路工作点分析和直流扫描分析一、实验目的1、学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。

2、学习使用Pspice进行直流工作点分析和直流扫描分析的操作步骤。

二、原理与说明对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。

PSPICE软件是采用节点电压法对电路进行分析的。

使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE的元件符号库绘制电路图并进行编辑、存盘。

然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。

需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电压方程的,因此,在绘制电路图时,一定要有参考节点(即接地点)。

此外,一个元件为一条“支路”(branch),要注意支路(也就是元件)的参考方向。

对于二端元件的参考方向定义为正端子指向负端子。

三、示例实验应用PSPICE求解图1-1所示电路个节点电压和各支路电流。

图1-1 直流电路分析电路图R2图1-2 仿真结果四、选做实验1、实验电路图(1)直流工作点分析,即求各节点电压和各元件电压和电流。

(2)直流扫描分析,即当电压源Us1的电压在0-12V之间变化时,求负载电阻R L中电流I RL随电压源Us1的变化曲线。

IPRINT图1-3 选做实验电路图2、仿真结果Is21Adc1.000AVs35Vdc3.200A R431.200A23.20VVs47Vdc1.200A 0VR142.800AIs32Adc 2.000A12Vdc2.800AIIPRINT3.200A10.60V 12.00V Is11Adc 1.000A18.80V 28.80V15.60V3.600VR222.800ARL13.200A18.80VVs210Vdc2.800A Is53Adc3.000AI42Adc图1-4 选做实验仿真结果3、直流扫描分析的输出波形图1-5 选做实验直流扫描分析的输出波形4、数据输出V_Vs1 I(V_PRINT2)0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+009.000E+00 2.300E+001.000E+012.400E+001.100E+012.500E+001.200E+012.600E+00从图1-3可以得到IRL与USI的函数关系为:I RL=1.4+(1.2/12)U S1=1.4+0.1U S1 (公式1-1)五、思考题与讨论:1、根据图1-1、1-3及所得仿真结果验证基尔霍夫定律。

邓 仿真实验2二阶电路响应的三种

邓 仿真实验2二阶电路响应的三种

四、对比分析与结论
1、分析实验: 本实验这要是观察三种阻态下的波形, 由于引入了可变电阻使电路的转换非常方便。 在 进行波形分析时,由于测的是电感的电压和电流,所以主要从电路的电流变化来看,我们很 容易就能理解电感的充放电过程。 2、实验总结: 通过本次实验的学习, 我熟悉了二阶电路微分方程的列写及求解过程, 了解了 RLC 二阶 电路的响应及电路的过阻尼、 临界阻尼和欠阻尼状态, 更熟练地利用仿真软件分析电路的动 态变化。 在实验中我先是用的并联电路但由于公示用错改用了串联电路, 终于得到正确的波 形,在这个实验上也花费了很多的时间。由此也学会,具体题目具体分析,不要一味的套用 公式。
用二阶线性常微分方程描述的电路称为二阶电路, 二阶电路中至少含有两个不同类型的 储能元件。 二阶电路微分方程式一共含有两个二次微分的方程。 分析二阶电路的方法是建立 二阶微分方程,并利用初始条件求解得到电路的响应。在解二阶方程式时,我们通常是先解 齐次方程。 齐次方程的通解一般分为三种情况: (RLC 串联时) 1、S1 ≠ S2 为两个不等的实根: f = A 1 eS 1 t + A 2 eS 2 t 此时,R > 2
L C
=2
10 −3 1000×10 −12
= 2kΩ
1)欠阻尼状态(R=400Ω ,C=1000pF,L=1mH) 如图所示,为欠阻尼状态时的二阶电路图,以及其在方波激励下的波形。 本次实验的测量值为:电感点电流(蓝色)以及电感电压(红色) 。
单个波形放大为:
由波形图可知在欠阻尼的情况下 (方波激励) , 电感两端电压和电流都是振荡的减小的。
二、二阶电路响应的三种(欠阻尼、过阻尼及临界阻尼)状
态轨迹及其特点
一、仿真实验目的

二阶动态电路设计 实验报告(含数据处理)

二阶动态电路设计 实验报告(含数据处理)

实验二十一 二阶动态电路设计
一、实验内容
已知RLC 串联电路, 输入为单位阶跃信号, 设计元件参数, 要求电容负载输出电压的超调量约为20%, 调节时间0.003秒。

先进行理论设计和仿真分析, 连接好电路后, 再通过示波器观察实际输入和输出曲线。

二、实验原理图和理论分析
)()()()()(22t t u t u dt t du RC dt
t u d LC S C C C ε==++ 二阶电路的阶跃响应为)sin(1)(0βωωωδ++
=-t e t u t C 超调量为21%ζζπ
σ--==e
M P 调节时间为n s t ζω3=
(5%稳态范围)
,
, C
L n ⋅=21ω L R n ⋅⋅=ωζ2 选用电容C=4.7
F, 由以上推导得L=44.2mH, R=88.4
三、实验设备
函数信号发生器
KTDG-4可调式电感箱0~100mH
可调式电阻箱0~99999.9Ω
交流电压表, 交流电流表
双踪示波器
四、仿真实验
利用EWB 软件, 仿真模型图如下
运行结果如下
电容电阻电感在实验台上连接好电
路, 测量结果如下。

电压有效值
电流有效值
利用示波器观测输入电压和输出电容上电压曲线:
六、数据处理和实验结论
略。

压控电压源型二阶有源低通滤波电路

压控电压源型二阶有源低通滤波电路

摘要:设计一种压控电压源型二阶有源低通滤波电路,并利用Multisim仿真软件对电路的频率特性、特征参量等进行了仿真分析,仿真结果与理论设计一致,为有源滤波器的电路设计提供了EDA手段和依据。

关键词二阶有源低通滤波器;电路设计自动化;仿真分析;一:实验内容及要求:设计一个压控电压源型二阶有源低通滤波电路,要求通带截止频率fo=100 kHz,等效品质因数Q=1,试确定电路中有关元件的参数值。

二:实验器材软件:Multisim仿真软件。

器材:正弦波信号源(f=200KHz 幅度:1v),电容两个,电阻四个,集成运放3554AM一个。

三:实验电路对于信号的频率具有选择性的电路称为滤波电路,它的功能是使特定频率范围内的信号通过,而阻止其他频率信号通过。

理论计算 根据实际选择的元件参数重新计算滤波电路的特征参量。

式(2)中,令s=jω,得到二阶低通滤波电路的频率特性为Ao=1+6RfR =1+1=2 通带截止频率fo 与3 dB 截止频率fc 计算如下所以,fc=1.272fo=126.53KHz四 Multisim 分析4.1 瞬态分析从图可以看出,输出信号的频率与输入信号一致,输出信号与输入信号同频不同相,说明二阶低通滤波电路不会改变信号的频率。

电压放大倍数Auf=2。

4.2交流分析从图中可以看出, 3 dB截止频率约为127 kHz。

与理论计算值值基本符合。

4.3参数扫描分析从图可以看出,曲线从下至上对应的电阻RF由100 Ω至1000 Ω幅频特性纵截止频率约为125 kHz。

并且,RF越大,Auf越大,Q越大,幅频特性曲线越尖锐。

在同样的设计截止频率下,Q值的不同对实际截止频率有较大的影响。

4.4傅理叶分析由图可知,输出电压的谐波失真率很小,为 4.61229%,符合实验设计要求。

4.5传递函数分析由图可知,输入电阻Ri=239.44900G,输出电阻Ro=400.3851放大倍数Au=1.99971,符合设计要求.压控电压源二阶低通滤波电路的设计与仿真分析学院:电子信息工程学院年级:2008级专业:自动化学号:00824032姓名:魏文龙完成日期:2012年5月14日参考文献:1黄智伟,《基于Multisim的电子电路计算机仿真设计与分析》,电子工业出版社,2008年1月2童诗白华成英《模拟电子技术基础》,高等教育出版社,2006年1月3。

二阶电路响应的仿真实验报告

二阶电路响应的仿真实验报告

二阶电路响应的仿真实验报告一、实验目的本次实验旨在通过仿真实验的方式,探究二阶电路响应的特性,并且了解其在不同频率下的响应情况。

二、实验原理1. 二阶电路的基本概念二阶电路是指带有两个存储元件(电容或电感)的电路,其具有更加复杂的响应特性。

其中,常见的二阶电路包括二阶低通滤波器、二阶高通滤波器以及二阶带通滤波器等。

2. 二阶低通滤波器的特性在二阶低通滤波器中,当输入信号频率很低时,输出信号基本上不会受到影响;而当输入信号频率逐渐升高时,输出信号将会逐渐减小。

当输入信号频率等于截止频率时,输出信号将会下降3dB;而当输入信号频率继续升高时,输出信号将会更加明显地下降。

3. 仿真实验步骤(1)构建一个RC电路,并且设置初始条件和参数值;(2)绘制RC电路的幅度-频率响应曲线;(3)绘制RC电路的相位-频率响应曲线;(4)分析幅度-频率响应曲线和相位-频率响应曲线的特点。

三、实验步骤1. 构建RC电路在Multisim软件中,选择“模拟”选项卡,然后选择“Passive”选项卡,接着选择“R”和“C”元件,并且将它们连接起来。

最终得到的电路图如下所示:2. 设置初始条件和参数值在Multisim软件中,点击“仿真设置”按钮,在弹出的对话框中,将仿真类型设置为“AC Analysis”,并且设置频率范围为1Hz~10MHz。

接着,设置电容C1的值为0.01μF,电阻R1的值为10kΩ。

3. 绘制RC电路的幅度-频率响应曲线在Multisim软件中,点击“仪表”选项卡,并且选择“AC Analysis”仪表。

接着,在弹出的对话框中,将X轴设置为“Frequency”,将Y轴设置为“Magnitude(dB)”,并且勾选上“Decibel Scale”。

最终得到的幅度-频率响应曲线如下图所示:4. 绘制RC电路的相位-频率响应曲线在Multisim软件中,点击“仪表”选项卡,并且选择“AC Analysis”仪表。

电路仿真实验报告

电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。

二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。

2.使用电路仿真软件进行简单电路的仿真设计。

3.基于仿真结果,根据实验内容进行电路设计和分析。

四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。

2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。

3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。

4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。

5.运行仿真,观察电路的响应曲线和频率特性。

6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。

7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。

8.根据实验要求,记录仿真结果并撰写实验报告。

五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。

根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。

通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。

根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。

我们还可以通过改变电路参数来观察电路的变化。

例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。

而增大电阻值则可以增加滤波器的阻带特性。

通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。

六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。

通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。

通过本次实验,我还发现了电路设计和分析的一些问题和挑战。

自动控制原理实验——二阶系统的动态过程分析

自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。

二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。

2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。

图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。

图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。

图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。

比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。

其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。

二阶电路响应的研究实验报告

二阶电路响应的研究实验报告

二阶电路响应的研究实验报告摘要:本实验通过对二阶电路的响应进行研究,以深入了解二阶电路的工作原理和性质。

实验中通过利用示波器观察RC电路和RLC电路的频率响应曲线、计算共振频率和带宽等参数。

数据结果表明,当电路达到共振频率时,电路在谐振时的电压幅度最大,而带宽与电路的阻抗相关。

本次实验结论将有助于加深学生对于二阶电路的认识和理解,进一步提高本专业同学对于微电子学科的综合素质。

关键词:二阶电路;共振频率;带宽;频率响应曲线Introduction:二阶电路是指电路中包含了两个存储元件的线性电路。

存储元件可以是电容、电感或共同组成的电容电感(LC)元件,具有强烈的共振特性。

二阶电路在电子工程学科中具有重要意义,可以广泛应用于无线电、通信和信号处理等各种领域。

深入了解二阶电路的工作原理和性质是非常重要的。

本实验旨在通过研究二阶电路的响应,通过实验数据结果对二阶电路进行深入的分析,包括共振频率、带宽等参数。

实验结果将有助于加深学生对于二阶电路的认识和理解。

Experimental content:在实验中,我们分别通过示波器对RC电路和RLC电路进行了测量,计算了两个电路的共振频率和带宽。

在RC电路中,我们通过更改电阻和电容的数值,观察了频率响应曲线的变化。

在RLC电路中,我们将电路带入谐振状态并观测该状态下的电压幅度。

详细实验步骤如下:1. RC电路的实验:步骤1.1:所需器材:函数发生器、示波器、电阻器、电容器。

步骤1.2:根据电路图连cct,将电路接上函数发生器和示波器,以观察RC电路的响应曲线,并进行录像记录。

步骤1.3:逐渐调整函数发生器的频率,观测并记录RC电路的响应曲线,包括电压和相位。

记录下不同电容值对响应曲线的影响。

步骤1.4:通过观察响应曲线,计算出RC电路的共振频率和带宽。

步骤2.4:通过观察响应曲线,将RLC电路带入谐振状态,并记录下谐振状态下电压幅度的大小。

Results and analysis:实验结果表明,在RC电路中,随着电容值的不断增大,电路的共振频率也随之而增大。

【实验报告】一、二阶系统的电子模拟及时域响应测试

【实验报告】一、二阶系统的电子模拟及时域响应测试

实验名称:一二阶系统的电子模拟及时域响应测试课程名称:自动控制原理实验目录(一)实验目的 (3)(二)实验内容 (3)(三)实验设备 (3)(四)实验原理 (3)(五)一阶系统实验结果 (3)(六)一阶系统实验数据记录及分析 (7)(七)二阶系统实验结果记录 (8)(八)二阶系统实验数据记录及分析 (11)(九)实验总结及感想............................................................................错误!未定义书签。

图片目录图片1 一阶模拟运算电路 (3)图片2 二阶模拟运算电路 (3)图片3 T=0.25仿真图形 (4)图片4 T=0.25测试图形 (4)图片5 T=0.5仿真图形 (5)图片6 T=0.5测试图形 (5)图片7 T=1仿真图形 (6)图片8 T=1测试图形 (6)图片9 ζ=0.25s仿真图形 (8)图片10 ζ=0.25s测试图形 (8)图片11 ζ=0.5s仿真图形 (9)图片12 ζ=0.5s测试图形 (9)图片13 ζ=0.8s仿真图形 (10)图片14 ζ=0.8s测试图形 (10)图片15 ζ=1s仿真图形 (11)图片16 ζ=1s测试图形 (11)表格目录表格1 一阶系统实验结果 (7)表格2 二阶系统实验结果 (11)一二阶系统的电子模拟及时域响应测试(一)实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

(二)实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

(三)实验设备HHMN电子模拟机,实验用电脑,数字万用表(四)实验原理一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。

电路实验(仿真).doc-重庆邮电大学主页

电路实验(仿真).doc-重庆邮电大学主页

实验一RLC电路的阶跃响应一.实验目的1.观察并分析RLC二阶串联电路对阶跃信号的响应波形。

2.了解电路参数RLC数值的改变会产生过阻尼、临界阻尼和欠阻尼3种响应情况。

3.从欠阻尼情况的响应波形,读取振荡周期和幅值衰减系数。

二.原理及说明1.跟一阶RC电路实验相同,我们仍用占空率为1/2的周期性矩形脉冲波输入图1-1的RLC串联电路。

当这脉冲的持续时间和间隔时间很长的时候,就可认为脉冲上升沿是一个上升阶跃,而下降沿是一个下降阶跃。

由于阶跃是周期性重复现的,所以在示波器上能观察到清晰、稳定的响应波形。

图1-1 RLC串联电路2.三种阻尼状态的上升阶跃的响应和下降阶跃的响应如下表:表1-11.从表1-1中可见,电路在欠阻尼态时,电容电压对上升阶跃的响应公式是)]sin(1[0φωωωα+-=-t e A u tc , 对下降阶跃的响应公式是 )sin(0φωωωα+=-t e A u t c 。

所以我们可知阶跃响应的波形大致如图1-2所示。

为了判别这种幅值衰减振荡的衰减速度,我们看两个相邻的同向的振幅之比 值,它等于 T T tt e Ke Ke ααα=+--)(/ (1-1)这比率称为幅值衰减率,对其取对数,有T e Tαα=ln (1-2)ln 1ln 1Te T T ==αα(相邻幅值之比) (1-3)这里α称为幅值衰减系数。

图1-2 衰减的正弦振荡曲线三.实验设备安装有Multisim 软件的电脑一台四.实验内容及步骤1.运行Multisim 软件2.计算元件参数,其中R为5KΏ的可调电阻,添加电子元件、脉冲信号源以及接地符号。

3.修改脉冲信号源占空比50%,频率为10KHz,幅高A=2V。

3.连接电路并加入虚拟双通道示波器,虚拟双通道示波器分别接输入信号和输出信号Uc ,修改输出信号线颜色。

4. 调整可调电阻 R>2CL,让电路处于过阻尼状态,进行仿真,通过示波器观察电容上电压Uc 的阶跃响应波形,并记录上、下阶跃的响应曲线。

电路仿真模拟实验报告

电路仿真模拟实验报告

综合设计设计1:设计二极管整流电路。

条件:输入正弦电压,有效值 220v ,频率50Hz ;要求:输出直流电压 20V+/-2V 电路图:结果:通过电路,将 220V 的交流电转化成了大约 20V 的直流电。

先用变压器将220V 的交流电转化为20V 的交流电,再用二极管将20V 交流 电的负值滤掉,电容充当电源放电而且电压保持不变,因为一直有来自二极管的电流充电,而且周期为0.02秒,即电容两端电压能维持不变的放电到输 出端。

将电容的C 调的小一点可以使充放电的速度加快,就可以使得输出电压变化幅度很小。

设计2:设计风扇无损调速器。

波形图如下:结论分析:条件:风扇转速与风扇电机的端电压成正比;风扇电机的电感线圈的内阻为200欧姆,线圈的电感系为500mH风扇工作电源为市电,即有效值220V,频率50Hz的交流电。

要求:无损调速器,将风扇转速由最高至停止分为4档,即0,1,2,3档,其中0档停止,3档最高。

电路图:(开关从下至上依次为0,1,2,3档)开关置0档,风扇停止,其两端电压波形如下图:开关置1档,风扇转速最慢,其两端电压波形如下图:开关置2档,风扇转速适中,其两端电压波形如下图:开关置3档,风扇转速最快,其两端电压波形如下图:结果:由图可知,当开关分别置0, 1, 2,3时,风扇两端的电压依次增大,其中当风扇置0档时,电压为零,满足风扇转速与风扇电机的端电压成正比的条件。

结论分析:设计3 :设计1阶RC 滤波器。

条件:一数字电路的工作时钟为5MHz 工作电压5V 。

但是该数字电路的+5v 电源上存在一个 100MHz 的高频干扰。

要求:设计一个简单的 RC 电路,将高频干扰滤除。

电路图:结果:由图知,滤过的波形的频率与 5MHz 基本一致,将高频 100MHz 滤去,符合题意要求。

结论分析:通过简单的 RC 电路,用低通函数 H (jw )=HWc/(jw+Wc),计 算出了电路中所需的电阻大小及电容大小。

电路仿真实验报告

电路仿真实验报告
= 同理推导出
Y11= Y21= Y12= Y22=
T= 称为传输参数矩阵。 = 同理推导出
A= C= B= D=
以Z参数为例:
如图,求双口网络的Z参数。
解:
= 4 + 2( + )+1
=2 +(2+3+2)
可得:Z11=7Ω,Z12=2Ω,Z21=2Ω,Z22=7Ω
三、仿真实验测试
1、验证Z11是否为10Ω:
具体步骤:
利用仿真电路观察微分和积分电路的波形,微分仿真电路如图2-8所示。
图2-8微分仿真电路图
通过示波器观察微分电路的图形如图2-9所示
图2-9微分电路波形图
积分仿真电路图如图2-10所示,
图2-10积分仿真电路图
通过用示波器观察积分电路的波形,如图2-11所示。
图2-11积分电路波形
通过观察波形图我们很容易发现微分电路与积分电路的特性。
四、结论
理论计算结果与仿真测量结果有一定的误差。主要原因是:
理论计算是理想状态的分析结果,仿真电路比较接近实际测量情况。比如,电压表和电流表都有内阻存在,会对测量产生一定的影响。通过开关观察电流值是由于开关的打开或者闭合中存在一定的时间因此误差在所难免。只要我们只要认证准备仿真试验,调整好电压电流表的内阻尽力去减小各种因素的影响,就可以得到较好的仿真结果。
p1,2 = -
uc= A1e + A2e uc(0+)=A1+A2 iL(0+)=-C(A1p1+A2p2)求出A1和A2
(2)p1和p2为相等的负实根(R=2 ,临界阻尼)
p1,2 = -
uc=(A1+A2t)e uc(0+)=A1 iL(0+)=-C(A1p+A2)求出A1和A2

基于Simulink建模仿真的二阶电路研究

基于Simulink建模仿真的二阶电路研究

参考文献
[1] 王琦,等.Matlab 基础与应用实例集粹[M].北京:人民邮电出版社,2007. [2]严晓兰.基于 Simulink 的信号与系统仿真实验研究[C].//中国电工技术学会武汉 (南方九省)电工理论学会第十九届电工理论学术年会论文汇 编.2007:286-289. [3] 王珣 ,李升 .MATLAB 在动态电路分析中的应用 [J]. 电脑知识与技术(学术交 流),2007,1(3):786-787. [4] 荀丽 , 龙英 . 基于 MATLAB/SIMULINK 的仿真应用研究 [J]. 科学技术与工 程,2005,5(14):1018-1020. [5]陈晓平.MATLAB 及其在电路与控制理论中的应用[M].合肥:中国科技大学出 版社,2004. [6] 张文生 , 刘耀年 , 张光烈等 .Matlab 语言在电路暂态分析中的应用 [J]. 继电 器,2000,28(12):16-19. [7] 蔺 红 , 樊 艳 芳 . 二 阶 电 路 的 Matlab 仿 真 [J]. 新 疆 大 学 学 报 ( 自 然 科 学 版),2004,21(1):65-68. [8]谢祖荣,车勇,黄之初等.基于 Matlab 的 RLC 二阶电路零输入响应的研究[J].武汉 理工大学学报,2002,24(1):46-49. [9] 冯 巧 红 , 郑 微 . 二 阶 电 路 的 动 态 响 应 分 析 与 仿 真 [J]. 滁 州 学 院 学 报,2012,14(2):42-44. [10]胡勇.MATLAB 在二阶电路中的应用[J].产业与科技论坛,2011,(9):88-89.
UC
, ,
t + 6UC t + 25UC (t)=25U(t)

(3.2)

仿真实验报告

仿真实验报告

上海电力学院本科课程设计电路计算机辅助设计院系:电力工程学院专业年级(班级):电力工程与管理2011192班学生姓名:学号:201129指导教师:杨尔滨、杨欢红成绩:2013年07 月06 日目录仿真实验一节点电压法分析直流稳态电路 (1)仿真实验二戴维宁定理的仿真设计 (5)仿真实验三叠加定理的验证 (8)仿真实验四正弦交流电路——谐振电路的仿真 (11)仿真实验五两表法测量三相电路的功率 (14)仿真实验六含受控源的RL电路响应的研究 (18)仿真实验七含有耦合互感的电路的仿真实验 (21)仿真实验八二阶电路零输入响应的三种状态轨迹 (27)仿真实验九二端口电路的设计与分析 (32)实验一 节点电压法分析电路一、电路课程设计目的(1)通过较简易的电路设计初步接触熟悉。

(2)学会用获取某电路元件的某个参数。

(3)通过仿真实验加深对节点分析法的理解及应用。

二、实验原理及实例节点分析法是在电路中任意选择一个节点为非独立节点,称此节点为参考点。

其它独立节点与参考点之间的电压,称为该节点的节点电压。

节点分析法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n – 1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。

然后进一步求出各待求量。

下图所示是具有三个节点的电路,下面以该图为例说明用节点分析法进行的电路分析方法和求解步骤,导出节点电压方程式的一般形式。

图1—1首先选择节点③为参考节点,则u3 = 0。

设节点①的电压为u1、节点②的电压为u2,各支路电流及参考方向见图中的标示。

应用基尔霍夫电流定律,对节点①、节点②分别列出节点电流方程:节点①021S S =++--i i i i 21 节点② 0S =+--3232i i i i S用节点电压表示支路电流:)(G RG R 212221211111u u u u i u u i -=-===23323G R u u i ==代入节点①、节点②电流方程,得到:0R R 2211S2S1=-++--u u u i i 1 0R R 32221S =+---u u u i i S 32整理后可得:S2S122121R 1)R 1R 1(i i u u +=-+2S i i u u -=++-S323212)R 1R 1(R 1分析上述节点方程,可知:节点①方程中的(G1 + G2)是与节点①相连接的各支路的电导之和,称为节点①的自电导,用G11表示。

二阶网络函数模拟实验报告

二阶网络函数模拟实验报告
x y
+a0y = x
图6-1一阶系统的模拟
x y
+a1 +
或写作:
则有


因而
X Xs-1
Xs-2Xs-n
F(s)Y(s)
图6-3网络函数的模拟
根据上式,可画出图6-3所示的模拟方框图,图中S-1表示积分器
VhVbVl
V1X Xs-2
-Xs-1
2、若用TKSS—C型信号与系统实验箱,则在本实验装置中的自由布线区,设计图6-5的电路。
3、将正弦波信号接入电路的输入端,调节R3、R4、Vi,用示波器观察各测试点的波形并记录之。
五、软件仿真
按以下各种情况分别仿真,得到其波形,并比较
1.当R3=R4=40K,Vi=100HZ,1V正弦波时:Vh的波形,Vb的波形,Vo的波形
2.当R3=R4=40K,Vi=100HZ,2V正弦波时:Vh的波形,Vb的波形,Vo的波形
3.当R3=R4=40K,Vi=500HZ,1V正弦波时:Vh的波形,Vb的波形,Vo的波形
1.a当R3=R4=40K,Vi=100HZ,1V正弦波时:Vh的波形
2.a当R3=R4=40K, Vi=100HZ,2V正弦波时:Vh的波形
二阶网络函数模拟
实验报告
一、实验目的
1、了解二阶网络函数的电路模型。
2、研究系统参数变化对响应的影响。
3、用基本运算器模拟系统的微分方程和传递函数。
二、实验仪器
1、信号与系统实验箱TKSS—C型。
2、双踪示波器。
三、实验原理
1、微分方程的一般形式为:
其中x为激励,y为响应。模拟系统微分方程的规则是将微分方程输出函数的最高阶导数保留在等式左边。把其余各项一起移到等式右边,这个最高阶导数作为第一积分器输入,以后每经过一个积分器,输出函数的导数就降低一阶,直到输出y为止、各个阶数降低了的导数及输出函数分别通过各自的比例运算器再送至第一个积分器前面的求和器与输入函数x相加,则该模拟装置的输入和输出所表征的方程与被模拟的实际微分方程完全相同。图6-1与图6-2分别为一阶微分方程的模拟框图和二阶微分方程的模拟框图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
实验内容:
观察并纪录RLC串联电路,、的零输入响应、零
状态响应 。实验线路原理图如图11-8所示。
CH1 观察us波形
仿真: 选取f =5kHz 左右, C=2200PF, 5600PF, 0.01uF , L=10mH, R=10K
L
CH2
us
周期方波 发生器
+
R
C
+ uc -
观察uc波形
Td t2 t1
2 d Td
-U2m
t1
t2 t
由于: u c Ae t sin( t ) -U1m 而峰值时 sin( t ) 1
U 1m e (t2 t1 ) 得 U 2m
t1 t 2 U Ae U Ae 故: , 1m 2m
阻尼时us (t). uc (t) 波形。如图10-4所示。 方法:打开开关,按“暂停”按钮。
6
仿真示例
减小R到64%左右,调节示波器参数,观察临
界阻尼时us (t). uc (t) 波形。如图10-5所示。 方法:打开开关,按“暂停”按钮。
7
仿真示例
减小R到16%左右,调节示波器参数,观察欠
2、计算 及
d
,以仿真示例中欠阻尼为例
2 2 3.14 d T d 215.4 10 6 2.9110 4 raU1m=4.45V, U2m=0.98V;
1 U1m ln Td U 2 m 1 4.45 ln 6 215.4 10 0.98 7024
R 1600 8000 2 L 2 0.1
1 1 O LC 0.1 0.0110 6 3.16 10 4 rad / s
如图:理论计算:
d o2 2 (3.16 104 ) 2 80002 3.06 104 rad / s
15
实验步骤与方法
称为谐振频率
d 0 2 2 称为衰减振荡频率
R2 R2 L C L C
电路过渡过程的性质为过阻尼的非振荡过程。 电路过渡过程的性质为临界阻尼的非振荡过程。 电路过渡过程的性质为欠阻尼的振荡过程。
R2
L C
R0
等幅振荡
2
2、衰减系数 和 d 衰减振荡频率的测量
uc 如图零输入响应 :
4
10mH
5
10mH
12
实验步骤与方法 :
方波信号发生器产生5kHz的信号电压。电压幅值5V, 直流电平(偏移量offset)5V。示波器设置为DC耦合。 改变R的数值,使电路分别处于过阻尼、临界阻尼、欠 uc (t ) 阻尼,观察并描绘出 和 u s (t )的波形。 在欠阻尼情况下继续改变R,观察 uc (t )波形中R对衰减 系数 的影响。 在欠阻尼情况下改变C,观察 uc (t 波形中 C对衰减振荡 ) 频率的影响。 d 按记录表中要求R分别为: R=R//4, R=R//4, R=R//5, R=R//5, R=R//7左 右。 观察波形,并作记录。
阻尼时us (t). uc (t) 波形。如图10-6所示。 方法:打开开关,按“暂停”按钮。
8
仿真示例
改变R设置,如图:调节示波器参数,观察无
阻尼时us (t). uc (t) 波形。如图10-7所示。
9
仿真示例
测量欠阻尼时Td及α:回到欠阻尼时电路,改
变示波器时间轴,移动示波器上的游标。红色 游标对准图中第一个负峰值,蓝色游标图中第 二个负峰。可得: Td =t2-t1=215.4us; U1m=4.45V, U2m=0.98V;再由公式计算α

13
实验步骤与方法
1、R的取值 例: L=10mH,C= 5600PF,取R=R//5
3 L 10 10 3 R/ 2 2 2 . 67 10 2.67 K 12 C 5600 10
R R 0.53K 5
14
实验步骤与方法
2、计算
及 d ,以仿真示例中欠阻尼过程为例
1 U 1m ln 所以 : Td U 2 m
3
仿真示例
观察RLC串联电路,、的零输入响应、零状态响应。
创建如图11-2所示的仿真实验电路。信号发
生器设置为方波如图11-3。
4
仿真示例
电阻设置如图:
按R键可按1%减小电阻,按shift+R键可按1%增加电阻
5
仿真示例
增加R到84%左右,调节示波器参数,观察过
电 路 参 数 实 验 次 数 1 元件参数
uC 测量值
Td (us )
uC 理论值
R
(k)
L R 2 C
L
C
U1m (v)
U2m (v)

d rad/s

d rad /s
o rad/s
10mH
0.01u F 5600P F 5600P F 2200P F 2200P F
2
10mH
3
10mH
1、 RLC串联电路,无论是零输入响应,或是零状态响应, 电路过渡过程的性质 ,完全由特征方程决定,其特征根:
p1, 2 R R 1 2 2 ( )2 ( ) 2 o d 2L 2L LC
0
其中: 2R 称为衰减系数, L

1 LC
18
实验: 选取f =1kHz 左右, 主要是 为了很好地 观察波形。 C=2200PF, 5600PF, 0.01uF , L=10mH, R=10K
11
实验内容:
注:1、R取R//4以下,因电阻越小振荡越强烈,用示波器越 在欠阻尼情况下,选取R,改变L或C的值观察的 u c (t ) 容易观察记录。 变化趋势。如衰减快慢、振荡幅度、振荡频率等。记 下参数和波形图。 2、本表只用于仿真电路。
16
实验步骤与方法
仿照仿真示例的方法,对实验内容进行仿真。
保存仿真电路和仿真结果。 按仿真的电路和参数进行实验,在示波器上观 察实验内容的波形。并得出定性结论(不计算 衰减系数及衰减振荡频率 )
17
实验报告要求



画出实验电路,说明实验步骤。 绘出仿真和实验的波形,并加以比较。 根据实验观测结果,归纳、总结电路元件参 数对响应的影响。 误差分析 。 心得体会及其他。
d
实验目的
进一步学习创建、编辑EWB电路。 观察、分析二阶电路响应的三种过渡过程曲线及
其特点,以加深对二阶电路响应的认识和理解。 观测二阶动态电路的零状态响应和零输入响应, 了解电路元件参数对响应的影响。 学习衰减振荡频率和衰减系数的测量 进一步熟悉使用信号发生器、示波器。
1
实验原理与说明
相关文档
最新文档