平方差公式

合集下载

平方和与平方差公式

平方和与平方差公式

平方和与平方差公式
平方和公式是(a+b)² = a² + 2ab + b²,其中a和b是任意实数。

平方差公式是(a-b)² = a² 2ab + b²,其中a和b是任意实数。

这两个公式在代数中非常常见,可以用来展开和简化多项式,或者用来证明数学定理。

它们也有许多应用,例如在求解方程、因式分解和几何问题中。

从代数的角度来看,这两个公式是多项式展开的基本工具,可以帮助我们进行多项式的运算和简化。

从几何的角度来看,这两个公式可以帮助我们理解平方的几何意义,例如(a+b)²表示一个边长为a的正方形和一个边长为b的正方形组成的总面积,而(a-b)²表示一个边长为a的正方形减去一个边长为b的正方形后的剩余面积。

总之,平方和与平方差公式在数学中具有重要的地位,它们不
仅是代数运算的基础,也能够帮助我们更好地理解几何概念。

希望这个回答能够满足你的要求。

完全平方公式与平方差公式

完全平方公式与平方差公式

完全平方公式与平方差公式
1. 完全平方公式:
完全平方公式是一个用于计算平方数的公式,它的形式为:
(a + b)²= a²+ 2ab + b²
其中,a和b是任意实数。

这个公式的意思是,如果你想求出一个由两个实数a和b相加的数的平方,那么你可以使用这个公式。

首先,将a²和b²分别计算出来,然后将它们相加。

接着,你需要计算2ab,这个2ab的意思是a和b的乘积的两倍。

最后,将这些结果相加就得到了(a + b)²的值。

2. 平方差公式:
平方差公式是一个用于计算两个实数之差的平方的公式,它的形式为:
(a - b)²= a²- 2ab + b²
其中,a和b是任意实数。

这个公式的意思是,如果你想求出两个实数a和b之间的差的平方,那么你可以使用这个公式。

首先,将a²和b²分别计算出来,然后将它们相减。

接着,你需要计算-2ab,这个-2ab的意思是a和b的乘积的两倍的相反数。

最后,将这些结果相加就得到了(a - b)²的值。

这两个公式在数学中非常有用,它们可以帮助我们在计算中快速求出平方数和差的平方。

了解它们的含义和用法可以帮助我们更好地理解数学的基本概念。

平方差公式

平方差公式

平方差公式(a+b)^2 = a^2 + b^2 + 2ab这个公式在代数中非常重要,不仅可以用于计算平方差,还可以推导出其他重要的数学公式。

现在我们来详细介绍一下这个公式。

首先,我们来看一下这个公式的由来。

首先,我们考虑两个数a和b的平方和,即a^2+b^2、我们可以将这个平方和展开,得到以下形式:a^2+b^2=a*a+b*b接下来,我们来考虑如何将这个平方和表示成平方差的形式。

我们可以利用二项式的展开来实现这个目标。

我们知道,任何一个二元一次多项式可以展开为(a+b)^2的形式,也可以展开为(a-b)^2的形式。

具体展开的方法是利用二项式定理,将(a+b)^2和(a-b)^2展开。

首先,我们来展开(a+b)^2这个二元一次多项式:(a+b)^2=(a+b)*(a+b)根据二项式定理,该式可以展开为:(a+b)^2 = a^2 + ab + ba + b^2再进行一次简化,得到:(a+b)^2 = a^2 + 2ab + b^2接下来,我们来展开(a-b)^2这个二元一次多项式:(a-b)^2=(a-b)*(a-b)根据二项式定理,该式可以展开为:(a-b)^2 = a^2 - ab - ba + b^2再进行一次简化,得到:(a-b)^2 = a^2 - 2ab + b^2通过比较展开后的式子,我们可以发现:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2可以看出,这两个展开式的形式非常相似,只是正负号不同。

这就表明,两个数的平方差可以表示为一个平方和与一个平方差的形式。

根据上述的推导结果,我们可以得出这样一个结论:a^2-b^2=(a+b)*(a-b)这个等式就是平方差公式的具体形式。

利用这个公式,我们可以快速计算任意两个数的平方差。

例如,我们要计算9^2-5^2的结果。

根据平方差公式,可以得到:9^2-5^2=(9+5)*(9-5)=14*4=56因此,9^2-5^2的结果为56除了计算平方差,平方差公式还可以推导出其他一些重要的数学公式。

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解平方差公式和完全平方公式是数学中常用的因式分解方法,它们在解题过程中起到了十分重要的作用。

本文将为大家详细介绍这两个公式,帮助大家理解其原理和应用。

首先,我们来了解一下平方差公式。

平方差公式的表达形式为a² - b² = (a + b)(a - b)。

简言之,它告诉我们两个平方数相减的结果可以因式分解为两个因数的乘积:一个因数是两个平方数的和,另一个因数是两个平方数的差。

这个公式可以极大地简化计算,特别是在解方程或因式分解的题目中,往往能起到事半功倍的效果。

那么,我们来看一个应用平方差公式的例子。

假设我们需要将x² - 4x + 4进行因式分解。

我们可以使用平方差公式进行分解,将x² - 4x + 4看作是(a - b)²的形式,其中a为x,b为2。

根据平方差公式,我们可以得到(x - 2)²,也就是x² - 4x + 4的因式分解形式。

通过应用平方差公式,我们可以将一个多项式快速分解为一对平方数的差的乘积。

接下来,我们将介绍完全平方公式。

完全平方公式的表达形式为a² + 2ab + b² = (a + b)²。

它告诉我们一个二次多项式可以因式分解为两个相同的因数的平方。

与平方差公式类似,完全平方公式也可以在解题过程中提供方便。

我们来看一个应用完全平方公式的例子。

假设我们需要将x² + 6x + 9进行因式分解。

根据完全平方公式,我们可以将x² + 6x + 9看作是(a + b)²的形式,其中a为x,b为3。

带入完全平方公式,我们可以得到(x + 3)²,也就是x² + 6x + 9的因式分解形式。

通过应用完全平方公式,我们可以迅速将二次多项式转化为平方的形式。

在实际应用中,平方差公式和完全平方公式可以帮助我们进行因式分解,并简化问题的求解过程。

初中数学公式:平方差公式

初中数学公式:平方差公式

初中数学公式:平方差公式表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。

常见错误平方差公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。

三角平方差公式三角函数公式中,有一组公式被称为三角平方差公式:(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。

注意事项1、公式的左边是个两项式的积,有一项是完全相同的。

2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。

3、公式中的a.b可以是具体的数,也可以是单项式或多项式。

例题一,利用公式计算(1)103×97解:(100+3)×(100-3)=(100)^2-(3)^2=100×100-3×3=10000-9=9991(2)(5+6x)(5-6x) 解:5^2-(6x)^2 =25-36x^2。

平方差公式与完全平方公式

平方差公式与完全平方公式

平方差公式与完全平方公式平方差公式:22))((b a b a b a -=-+说明:相乘的两个二项式中,a 表示的是完全相同的项,+b 和-b 表示的是互为相反数的两项。

所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。

熟悉公式:例:(3a+2b)(3a-2b)中 3a 是公式中的a , 2b 是公式中的b(a 2+b 2)(a 2-b 2)中 a 2 是公式中的a , b 2是公式中的b(2a+b-c)(2a+b+c)中 2a+b 是公式中的a , c 是公式中的b 把下列空补充完整:(5+6x)(5-6x)中 是公式中的a , 是公式中的b (5+6x)(-5+6x)中 是公式中的a , 是公式中的b (x-2y)(x+2y)中 是公式中的a , 是公式中的b (-m+n)(-m-n)中 是公式中的a , 是公式中的b(a+b+c )(a+b-c)中 是公式中的a , 是公式中的b (a-b+c )(a-b-c)中 是公式中的a , 是公式中的b 例1:计算下列各题(a+3)(a-3)=a 2-32=a 2-9 (2x+21)(2x-21)=(2x)2-(21)2=4x 2-161仿练:( 2a+3b)(2a-3b)= (1+2c)(1-2c)= (-x+2)(-x-2)= (a+2b)(a-2b)= 例2:计算下列各题:1998×2002 =(2000-2)(2000+2)=20002-22=4000000-4=3999996 仿练: 1.01×0.99 = (20-91)×(19-98)= 例3:计算下列各题(a+b)(a-b)(a 2+b 2)=(a 2-b 2)(a 2+b 2)=(a 2)2-(b 2)2=a 4-b 4仿练:(a+2)(a-2)(a 2+4)= (x-12)(x 2+ 14)(x+ 12)= 例4:计算下列各题(-2x-y )(2x-y)=(-y-2x)(-y+2x)=(-y)2-(2x)2=y 2-4x 2 (4a-1)(-4a-1)=(-1+4a)(-1-4a)=(-1)2-(4a)2=1-16a 2仿练:(y-x)(-x-y)= (-2x+y)(2x+y)= (b+2a)(2a-b)= (a+b)(-b+a)= 例5;计算下列各题(a+2b+c )(a+2b-c)=[(a+2b )+c][(a+2b)-c]=(a+2b)2-c 2=a 2+4ab+b 2-c 2仿练:(a+b-3)(a-b+3)= (m-n+p)(m-n-p)=练习:1、(1)(1)x x +-2、(21)(21)x x +-3、(5)(5)x y x y +-4、(32)(32)x x +-5、(2)(2)b a a b +-6、(2)(2)x y x y -+--7、()()a b b a +-+8、()()a b a b ---9、(32)(32)a b a b +-10、5252()()a b a b-+11、(25)(25)a a +-12、(1)(1)m m ---13、11()()22a b a b ---14、(2)(2)ab ab ---15、10298⨯16、97103⨯17、4753⨯18、22()()()a b a b a b +-+19、(32)(32)a b a b +-20、(711)(117)m n n m ---21、(2)(2)y x x y ---22、(4)(4)a a +-+23、(25)(25)a a -+24、(3)(3)a b a b +-25、(2)(2)x y x y +-完全平方公式完全平方公式:2222)(b ab a b a +±=± 注意不要漏掉2ab 项(a 为首,b 为尾)口诀:首平方,尾平方,首尾之积二倍加减放中央(4m+n )2中 4m 是公式中的a , n 是公式中的b(-a-b)2中 -a 是公式中的a , b 是公式中的b(a+b-c)2中 a 是公式中的a , b-c 是公式中的b 或者(a+b-c)2中 a+b 是公式中的a , c 是公式中的b 仿练: (y-21)2中 是公式中的a , 是公式中的b (b-a )2中 是公式中的a , 是公式中的b(2a-b+c)2中 是公式中的a , 是公式中的b 熟悉公式变形1、a 2+b 2=(a+b)2 -2ab =(a-b)2+2ab2、(a-b )2=(a+b)2 -4ab ; (a+b)2=(a-b)2+4ab3、(a+b)2 +(a-b )2= 2a 2+2b 24、(a+b)2 --(a-b )2= 4ab 例1:计算下列各题2)(y x +=x 2+2xy+y 2 2)23(y x - =(3x)2-2(3x)(2y)+(2y)2=9x 2-12xy+4y 2仿练:2)21(b a += 2)12(--t = 2)313(c ab +-=2)2332(y x += 2)121(-x = (0.02x+0.1y)2=例2:利用完全平方公式计算: 1022=(100+2)2=1002+2×100+221972=(200-3)2=2002-2×200×3+32仿练:982= 2032=练习:计算 1、2(1)p + 2、2(1)p - 3、2()a b - 4、2()a b + 5、2(2)m + 6、2(2)m -7、2(4)m n +8、21()2y -9、2(3)x y -10、2(2)a b --11、21()a a+12、2(52)x y --13、2(2)a b -14、21()2x y -15、2(23)a b +16、2(32)x y -17、2(2)m n --18、2(22)a c +19、2(23)a -+20、21(3)3x y +21、2(32)a b +22、222()a b -+23、22(23)x y --24、2(1)xy -25、222(1)x y -添括号法则如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号. 也是:遇“加”不变,遇“减”都变.例:)(c b a c b a ++=++ )(c b a c b a +-=--练习运用法则:(1)a+b-c=a+( ) (2)a-b+c=a-( ) (3)a-b-c=a-( ) (4)a+b+c=a-( ) 2.判断下列运算是否正确. (1)2a-b-2c =2a-(b-2c) (2)m-3n+2a-b=m+(3n+2a-b ) (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b )-(4c+5)在公式里运用法则例:计算:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x 2-(2y-3)2=x 2-(4y 2-12y+9)=x 2-4y 2+12y-9 (2)(a +b +c )2=[(a+b)+c]2=(a+b)2+2(a+b)c+c 2=a 2+2ab+b 2+2ac+2bc+c 2(3)(x +5)2-(x-2)(x-3)=x 2+10x+25-(x 2-5x+6)=x 2+10x+25-x 2+5x-6=15x+19练习:计算:(x +3)2-x 2 2)2(c b a +- 22)()(c b a c b a ---++。

平方差公式与完全平方差公式

平方差公式与完全平方差公式

平方差公式与完整平方公式平方差公式: (ab)(a b)a 2b 2说明:相乘的两个二项式中, a 表示的是完整同样的项, +b 和-b 表示的是互为相反数的两项。

因此说,两个二项式相乘能不可以用平方差公式,重点看能否存在两项完整相同的项,两项互为相反数的项。

熟习公式:(5+6x)(5-6x)中 是公式中的 a , 是公式中的 b(5+6x)(-5+6x)中 是公式中的 a , 是公式中的 b(x-2y)(x+2y)中 是公式中的 a , 是公式中的 b(-m+n)(-m-n)中是公式中的 a ,是公式中的 b(a+b+c )(a+b-c)中 是公式中的 a , 是公式中的 b(a-b+c )(a-b-c)中是公式中的 a ,是公式中的 b将以下各式转变成平方差形式(1) 36-x2(2)a 2- 1b 2(3) x 2-16y 2(4) x 2y 29-z2(5) (x+2)2-9(6)(x+a)2-(y+b)2(7) 25(a+b)2-4(a -b)2例 1:计算以下各题1.( a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (a+2b)(a-2b)6. (2x+1 )(2x-1 )22例 2:计算以下各题:1、 1998 × 20022、×3.(20- 1)×(19- 8)99例 3::计算以下各题2 221211 3、(x-)(x+ )1、(a+b )(a-b)(a +b )2、(a+2)(a-2)(a +4)2 )(x +42例 4:计算以下各题1、(-2x-y )(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y)4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)例 5;计算以下各题1.( a+2b+c )(a+2b-c)2.(a+b-3)(a-b+3)3.(m-n+p)(m-n-p)完整平方公式完整平方公式:(a b) 2a22ab b2熟习公式注意不要遗漏2ab 项1、a2+b2=(a+b)2=(a-b)22、(a-b)2=(a+b)2; (a+b)2=(a-b)23、(a+b)2 +(a-b)2=4、(a+b)2 --( a-b)2=5.将以下各式转变成完整平方式形式(1)a2-4a+4(2)a2-12ab+ 36b2(3)25x2+10xy+y2 (4)16a4+8a2+1(5) (m+n)2-4(m+n)+4(6)16a4-8a2+1(7)14x 1 49x2例 1:计算以下各题1、(x y)22、(3x 2 y)23、(1a b)24、( 2t 1)2 25、( 3ab 1 c)26、(2x3y)27、(1x 1)28、+23322例 2:利用完整平方公式计算:(1)1022(2)1972(3)982(4)2032例 3:(1)若x24x k ( x 2) 2,求k值。

第14讲平方差公式

第14讲平方差公式

第14讲 平方差公式【新知讲解】1.基本公式:平方差公式:(a+b)(a-b)=a 2—b 2平方差公式的结构特征:左边两个二项式的乘积,这两个二项式的两项中,有一项完全相同(绝对值相同,符号相同),而另一项互为相反数(绝对值相同,符号相反) 右边是这两个单项式中这两项的平方差。

这里a,b 可表示一个数、一个单项式或一个多项式。

2.平方差公式的推广:(1)()()2233a b a ab b a b -++=-(2)()()322344a b a a b ab b a b -+++=-(3)()()123221n n n n n n n a b a a b a b ab b a b ------+++++=-3.思想方法:① a 、b 可以是数,可以是某个式子;② 要有整体观念,即把某一个式子看成a 或b ,再用公式;③ 注意倒着用公式;④ 2a ≥0;⑤ 用公式的变形形式。

【探索新知】问题导入:()()22b a b a b a -=-+成立吗? 1.运算推导:2.图形理解:3.平方差公式:()()=-+b a b a A 组 基础知识【例题精讲】例1.利用平方差公式计算:(1)()()x x 6565-+ (2)()()y x y x 22+- (3)()()n m n m --+-例2.计算下列各题:(1)()()20012001-+ (2)()()3232x y x y -+(3)22112222x x ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭ (4)()()x y z x y z +-++(5)59.860.2⨯ (6)2200620052007-⨯例3.用平方差公式进行计算:(1)204×197 (2)108×112例4.化简求值: ()()1212-++-b a b a 其中598,987a b ==。

例5.计算下列各题:(顺用公式)(1)()()()()()224488a b a b a b a b a b -++++(2)3(22+1)(24+1)(28+1)(162+1)+1 (3)2999例6. 计算下列各题:(逆用公式)①1.2345²+0.7655²+2.469×0.7655 (希望杯)②已知 19221 可以被60至70之间的两个整数整除,这两个整数是多少?B 组 能力提升1.计算:(1)(-65x-0.7y)( 65x-0.7y) (2)(a+2)(a 4+16)(a 2+4)(a-2)(3)(3x m +2y n +4)(3x m +2y n -4) (4)(a+b-c)(a-b+c)-(a-b-c)(a+b+c)(5)(a+b-c-d)(a-b+c+d)2.用平方差公式进行计算:(1)804×796 (2)10007×99933.计算(顺用公式):6(7+1)(72+1)(74+1)(78+1)+1变式训练1:(2211-)(2311-)(2411-)…(2911-)(21011-):4.计算(逆用公式):(x 3+x 2+x+1)(x 3-x 2+x-1)-(x 3+x 2+x+2)(x 3-x 2+x-2)C 组 拓展训练1.1949²-1950²+1951²-1952²+……+1999²-2000²2.求证:1999×2000×2001×2002+1是一个整数的平方。

平方差的计算公式

平方差的计算公式

平方差的计算公式
【原创版】
目录
1.引言:介绍平方差
2.平方差公式:展示平方差公式
3.计算方法:解释如何使用平方差公式进行计算
4.应用实例:给出平方差公式的应用实例
5.结论:总结平方差公式的重要性
正文
【引言】
平方差是一个数学概念,它是指两个数的平方之差。

平方差在数学中有着广泛的应用,尤其在代数和统计学中。

为了更好地理解平方差,我们需要了解它的计算公式。

【平方差公式】
平方差公式是指两个数的平方之差的公式,用数学符号表示为:
(a+b)(a-b)=a^2-b^2。

其中,a 和 b 是两个数,a^2 表示 a 的平方,b^2 表示 b 的平方。

【计算方法】
使用平方差公式进行计算时,首先需要确定两个数,然后将这两个数代入公式中,进行计算。

例如,如果 a=5,b=3,那么 a^2=25,b^2=9,代入公式 (a+b)(a-b)=a^2-b^2,得到 (5+3)(5-3)=25-9,即 8*2=16。

所以,5 和 3 的平方差为 16。

【应用实例】
平方差公式在数学中有着广泛的应用,尤其在解决一些复杂的数学问
题时,它能够提供一种简便的解决方法。

例如,如果需要求解一个正方形的面积,可以先求出正方形的边长,然后使用平方差公式计算面积。

【结论】
平方差公式是数学中的一个重要公式,它能够帮助我们解决一些复杂的数学问题,提高我们的计算效率。

平方差完全平方公式

平方差完全平方公式

平方差完全平方公式平方差是数学中常见的一种特殊形式的差的运算形式。

平方差经常出现在代数中的各种公式中。

在本文中,我们将通过介绍平方差公式和完全平方公式来解释这两个概念。

首先,让我们来了解平方差公式。

平方差公式是一种用来计算两个数的平方差的公式,可以表述为(a+b)(a-b)=a²-b²。

这个公式可以展开成a²-b²的形式,其中a代表一个数,b代表另一个数。

平方差公式的重要性在于它允许我们在不展开式子的情况下直接计算出结果。

举例来说,我们可以通过使用平方差公式来计算36²-25²,这个计算可以简化为(36+25)(36-25)=61*11=671接下来,让我们来介绍完全平方公式。

完全平方公式是一种特殊的平方差公式,可以用来表示一个完全平方数的平方根。

一个完全平方数是一个整数的平方,例如4、9、16等。

完全平方公式的形式为(a + b)² = a² + 2ab + b²。

其中a和b代表任意两个数。

这个公式可以被展开成(a + b)(a + b)的形式,然后简化为a² + 2ab + b²的形式。

在使用完全平方公式时,我们可以将一个数分解成两个数的平方之和,从而找到这个数的平方根。

举一个例子来说明完全平方公式的应用。

我们可以使用完全平方公式来计算25的平方根。

我们将25分解成一个平方数和另一个数的形式,即25=5²。

然后我们将完全平方公式应用于这个分解形式,得到25=(5+b)²=5²+2*5*b+b²。

为了找到b的值,我们可以将等式中的其他项化简,并使其等于0,即25-5²=10b+b²。

这可以简化为0=b²+10b-25、我们可以通过求解这个二次方程来找到b的值,得到b=-5或b=5、因此,25的平方根可以是5或-5在本文的最后,让我们来总结一下平方差公式和完全平方公式的应用。

平方差公式与完全平方公式的组合运算(一)

平方差公式与完全平方公式的组合运算(一)

平方差公式与完全平方公式的组合运算(一)平方差公式与完全平方公式是初中阶段学习中十分重要的数学知识,而它们的组合运算也是十分常见的。

本文将介绍平方差公式与完全平方公式,探讨它们的组合运算,以及为什么能够达到预期效果。

一、平方差公式平方差公式是指:$(a+b)\times(a-b)=a^2-b^2$。

它的形式可能比较简单,但是应用起来却十分广泛。

例如,当我们需要求出两个数的平方和与平方差时,便可以通过平方差公式来解决。

如果要求$(a+b)^2+(a-b)^2$,那么我们可以先算出$(a+b)\times(a-b)=a^2-b^2$,再把这个结果带入到$(a+b)^2+(a-b)^2$中,得到$(a+b)^2+(a-b)^2=2a^2+2b^2$。

同理,如果要求$(a+b)^2-(a-b)^2$,我们可以先算出$(a+b)\times(a-b)=a^2-b^2$,再把这个结果带入到$(a+b)^2-(a-b)^2$中,得到 $(a+b)^2-(a-b)^2=4ab$。

二、完全平方公式完全平方公式是指:$a^2+2ab+b^2=(a+b)^2$。

这个公式相信大家都非常熟悉,因为在代数式的展开中,非常经常会用到这个公式。

例如,如果要展开$(x+3)^2$,那么我们就可以利用完全平方公式,得到$(x+3)^2=x^2+6x+9$。

三、平方差公式和完全平方公式的组合运算平方差公式和完全平方公式在实际运用中往往也会相互组合,来求解一些更加复杂的数学问题。

例如,如果我们要求$(a+b+c)^2$,那么我们就可以先算出$(a+b)^2$和$c^2$,再通过平方差公式来得到$$(a+b+c)^2=(a+b)^2+c^2+2(a+b)\timesc$$$$=a^2+2ab+b^2+c^2+2ac+2bc$$同样地,如果我们要求$(a-b)^2-(c-d)^2$,那么我们可以先用完全平方公式算出$(a-b)^2$和$(c-d)^2$,再用平方差公式来得到$$(a-b)^2-(c-d)^2=(a-b+c-d)\times(a-b-c+d)$$$$=(a+c-b-d)\times(a-b-c+d)$$$$=(a^2-2ab+b^2-c^2+2cd-d^2)$$综上所述,平方差公式与完全平方公式的组合运算非常灵活,而且可以帮助我们解决许多数学问题。

平方差公式的八种应用

平方差公式的八种应用

平方差公式(a+b)(a-b)=a²-b2是一个重要公式。

它的应用形式有许多种,下面列举这个公式的八种应用形式。

一、改变位置,应用公式例1.计算(5x²+2y)(-2y+5x²)解:原式=(5x²+2y)(5x²-2y)=(5x²)²-(2y)²= 25x4-4y²二、提出一个负号,应用公式例2.计算(-x2-y)(x2-y)解:原式= -(x2+y)(x2-y)= -(x4-y2)= -x4+y2三、括号将有些项组合在一起,应用公式例3.计算(5m-2n+3)(5m+2n-3)解:原式=〔5m-(2n-3)〕〔5m+(2n-3)〕=(5m)2-(2n-3)2= 25m2-(4n2-12n+9)= 25m2-4n2+12n-9四、改变系数,应用公式例4.计算(2x- )(x+ )解:原式= 2(x- )(x+ )= 2(x2- )= 2x2-五、改变数的形式,应用公式例5..计算1999×2001解:原式= (2000-1)(2000+1)= 20002-1= 4000000-1= 3999999六、通过凑项,逆向应用公式例6.计算9982解:原式= 9982-22+4= (998+2)(998-2)+4= 1000×996+4= 996004七、通过添项,连续应用公式例7.计算(2+1)(22+1)(24+1)(28+1)解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1八、逆用公式,解选择题例8.已知264-1可以被250到260之间的两个整数整除,它们是()A.251,253;B.253,255C.255,257D.257,259解:264-1=(232-1)(232+1)=(216-1)(216+1)(232+1)=(28-1)(28+1)(216+1)(232+1)=255×257(216+1)(232+1)故选C。

平方差公式几何证明6种

平方差公式几何证明6种

平方差公式几何证明6种a²-b²=(a+b)(a-b)下面将给出六种几何证明平方差公式的方法。

1.长方形法证明:考虑一个长方形,其中长为a+b,宽为a-b。

将这个长方形分割成两个正方形,一个边长为a,另一个边长为b。

则长方形的面积可以表示为(a+b)(a-b)。

另一方面,根据长方形的面积公式,面积也可以表示为a²-b²。

因此,我们得到了平方差公式。

2.根据勾股定理证明:考虑一个直角三角形,其中一条直角边的长度为a,另一条直角边的长度为b。

根据勾股定理,斜边的长度为√(a²+b²)。

另一方面,根据勾股定理的另一个形式,斜边的长度也可以表示为√((a+b)(a-b))。

因此,我们可以得到平方差公式。

3.齐次坐标法证明:考虑一个平面上的点P(a,a²)和Q(b,b²)。

连接P和Q,得到线段PQ。

根据两点间距离公式,PQ的长度为√((a-b)²+(a²-b²)²)。

另一方面,根据斜率公式,PQ的斜率为(a²-b²)/(a-b)=a+b。

因此,我们可以得到平方差公式。

4.几何平均法证明:考虑一个边长为a的正方形,以及一个边长为b的正方形。

边长分别为a和b的两个正方形的面积分别为a²和b²。

将这两个正方形共边放置在一起,形成一个边长为a+b,面积为(a+b)²的正方形。

然后,将边长为b的正方形从这个大正方形中去掉,留下一个边长为a,面积为(a+b)(a-b)的长方形。

另一方面,我们可以推导出,这个留下的长方形的面积也可以表示为a²-b²。

因此,我们得到了平方差公式。

5.抛物线法证明:考虑一个抛物线y=x²。

选择两个点P(a,a²)和Q(b,b²),其中a>b,并且Q在P的右侧。

连接P和Q,并延长到抛物线上的点R,使得PQ平行于x轴。

第四讲 平方差公式

第四讲   平方差公式

第四讲 平方差公式【新知讲解】1.基本公式:平方差公式:(a+b)(a-b)=a 2—b 2平方差公式的结构特征:左边两个二项式的乘积,这两个二项式的两项中,有一项完全相同(绝对值相同,符号相同),而另一项互为相反数(绝对值相同,符号相反) 右边是这两个单项式中这两项的平方差。

这里a,b 可表示一个数、一个单项式或一个多项式。

2.平方差公式的推广: (1)()()2233a b a ab b a b -++=-(2)()()322344a b a a b ab bab -+++=-(3)()()123221n n n n n n n a b aa b a b ab b a b ------+++++=-3.思想方法:① a 、b 可以是数,可以是某个式子;② 要有整体观念,即把某一个式子看成a 或b ,再用公式; ③ 注意倒着用公式; ④ 2a ≥0;⑤ 用公式的变形形式。

【探索新知】问题导入:()()22b a b a b a -=-+成立吗?1.运算推导:2.图形理解:3.平方差公式:()()=-+b a b aA 组 基础知识【例题精讲】例1.利用平方差公式计算:(1)()()x x 6565-+ (2)()()y x y x 22+- (3)()()n m n m --+-例2.计算下列各题:(1)()()20012001-+ (2)()()3232x y x y -+(3)22112222x x ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭(4)()()x y z x y z +-++(5)59.860.2⨯ (6)2200620052007-⨯例3.用平方差公式进行计算:(1)204×197 (2)108×112例4.化简求值: ()()1212-++-b a b a 其中598,987a b ==。

例5.计算下列各题:(顺用公式) (1)()()()()()224488a b a b a bab a b -++++(2)3(22+1)(24+1)(28+1)(162+1)+1 (3)2999例6. 计算下列各题:(逆用公式)①1.2345²+0.7655²+2.469×0.7655 (希望杯)②已知 19221 可以被60至70之间的两个整数整除,这两个整数是多少?B 组 能力提升1.计算: (1)(-65x-0.7y)( 65x-0.7y) (2)(a+2)(a 4+16)(a 2+4)(a-2)(3)(3x m +2y n +4)(3x m +2y n-4) (4)(a+b-c)(a-b+c)-(a-b-c)(a+b+c)(5)(a+b-c-d)(a-b+c+d)2.用平方差公式进行计算:(1)804×796 (2)10007×99933.计算(顺用公式):6(7+1)(72+1)(74+1)(78+1)+1变式训练1:(2211-)(2311-)(2411-)…(2911-)(21011-) :4.计算(逆用公式):(x 3+x 2+x+1)(x 3-x 2+x-1)-(x 3+x 2+x+2)(x 3-x 2+x-2)C 组 拓展训练1.1949²-1950²+1951²-1952²+……+1999²-2000²2.求证:1999×2000×2001×2002+1是一个整数的平方。

平方差公式的运用技巧与窍门

平方差公式的运用技巧与窍门

平方差公式的运用技巧与窍门平方差公式是数学中常用的一个公式,用于求解两个数的平方差。

在数学计算中,经常会遇到需要使用平方差公式的情况,因此掌握平方差公式的运用技巧和窍门是非常重要的。

一、平方差公式的表达形式平方差公式可以表示为:$$(a+b)(a-b)=a^2-b^2$$其中,$a$和$b$为任意的实数。

通过这个公式,我们可以得到两个数的平方差,进而简化数学计算过程。

二、平方差公式的运用技巧1. 利用平方差公式进行算式的简化在进行数学运算时,我们经常会遇到需要计算两个数的平方差的情况。

这时可以利用平方差公式,将$(a+b)(a-b)$化简为$a^2-b^2$,从而简化计算过程,提高效率。

例如,计算$(7+3)(7-3)$,可以直接利用平方差公式化简为$7^2-3^2=49-9=40$,省去了逐项相乘的步骤。

2. 解决代数式中的平方差在代数式中,经常会涉及到平方差的运算。

利用平方差公式,可以简化代数式的计算,快速得出结果。

例如,对于代数式$x^2-4$,我们可以将其看作是$(x+2)(x-2)$,然后利用平方差公式化简为$x^2-2^2=x^2-4$,从而得出简化后的代数式。

三、平方差公式的运用窍门1. 异差平方公式的应用异差平方公式是平方差公式的一个变形,用于求解两个数的平方和。

通过将平方差公式和异差平方公式结合运用,可以更灵活地解决数学问题。

2. 注意因子的选取在运用平方差公式时,需要注意选取合适的因子,使得公式的运用更加方便和高效。

合理选择因子可以简化计算过程,减少出错的可能性。

3. 练习多种类型的题目为了熟练掌握平方差公式的运用技巧,需要多做练习。

通过练习不同类型的题目,可以提高解题的速度和准确性,增强对平方差公式的理解和掌握。

四、总结平方差公式是数学中常用的一个公式,掌握其运用技巧和窍门可以帮助我们更快地解决数学问题。

通过合理运用平方差公式,简化计算过程,提高效率,是数学学习中的重要一环。

平方差公式的变形

平方差公式的变形

平方差公式的变形平方差公式是高中数学中常用的代数公式,它用于将一个含有两个平方项的二次多项式分解为两个平方差的形式。

平方差公式的一般形式是:a^2 - b^2 = (a + b)(a - b)其中,a和b是任意实数或复数。

这个公式可以通过展开和因式分解验证。

当我们将(a + b)(a - b)展开时,得到:(a + b)(a - b) = a^2 - ab + ab - b^2 = a^2 - b^2从中可以看出,平方差公式的右边等于左边,因此该公式成立。

根据平方差公式,可以找到一些常见的二次多项式的相关分解形式:1. a^2 - b^2:这是平方差公式的标准形式。

通过将a和b分别代入公式中,可以得到(a + b)(a - b)的分解形式。

2. (a + b)^2 - (a - b)^2:通过展开和合并同类项,可以将这个二次多项式分解成4ab的形式。

具体来说,展开后可以得到:(a + b)^2 - (a - b)^2 = a^2 + 2ab + b^2 - (a^2 - 2ab + b^2) = 4ab这个形式的平方差公式在一些代数运算中经常用到。

3. a^4 - b^4:这是平方差公式的进一步扩展。

通过多次应用平方差公式,可以将这个四次多项式分解为两个二次多项式的差的形式。

具体来说,我们可以首先将a^4分解为(a^2)^2,然后再将b^4分解为(b^2)^2。

得到:a^4 - b^4 = (a^2)^2 - (b^2)^2然后,将(a^2)^2 - (b^2)^2分解为两个平方差的形式,得到:(a^2)^2 - (b^2)^2 = (a^2 + b^2)(a^2 - b^2)这个形式的平方差公式在高阶代数多项式的因式分解中有重要的作用。

除了以上几种形式的平方差公式,还可以通过一些代数性质的变形来得到更多的变形公式。

例如,可以使用交换律和结合律将平方差公式进行简化或重新排列,从而得到不同的形式。

平方差标准差方差的计算公式

平方差标准差方差的计算公式

平方差标准差方差的计算公式嘿,咱们今天来好好聊聊平方差、标准差、方差的计算公式。

咱先从平方差说起哈。

平方差公式是$(a+b)(a-b)=a^2 - b^2$。

这公式看着简单,用处可大着呢!比如说,有一道题是计算$(5 + 3)(5 - 3)$,那咱直接套公式,就得到$5^2 - 3^2 = 25 - 9 = 16$。

是不是特方便?再来讲讲方差。

方差呢,是用来衡量一组数据离散程度的。

比如说,咱们班这次数学考试的成绩,有高有低,那方差就能告诉我们这成绩分布得有多散。

方差的计算公式是:$S^2 = \frac{1}{n}[(x_1 -\overline{x})^2 + (x_2 - \overline{x})^2 + \cdots + (x_n - \overline{x})^2]$。

这里面的$n$是数据的个数,$\overline{x}$是数据的平均数,$x_1, x_2, \cdots, x_n$就是每个数据啦。

给您举个例子感受一下。

假设咱们班 5 个同学的数学成绩分别是 80、85、90、95、100,那先算平均数:$\overline{x} = (80 + 85 + 90 + 95 + 100)÷ 5 = 90$。

然后算方差,$S^2 = \frac{1}{5}[(80 - 90)^2 + (85 -90)^2 + (90 - 90)^2 + (95 - 90)^2 + (100 - 90)^2]$ 。

$= \frac{1}{5}[(-10)^2 + (-5)^2 + 0^2 + 5^2 + 10^2]$$= \frac{1}{5}[100 + 25 + 0 + 25 + 100]$$= \frac{1}{5}× 250 = 50$这就说明咱们班这 5 个同学的成绩离散程度还不算太大。

那标准差又是啥呢?标准差其实就是方差的平方根。

所以,如果上面算出来的方差是 50,那标准差就是$\sqrt{50}$。

乘法公式之平方差公式

乘法公式之平方差公式

乘法公式之平方差公式平方差公式是数学中的乘法公式之一,它描述了两个数的平方之差可以分解为两个数相加乘以两个数之差的形式。

简单来说,平方差公式就是将两个数的平方相减得到一个差,再将差因式分解为两个因数之和乘以两个因数之差的形式。

平方差公式可以用于解决各种数学问题,特别是代数和几何中的问题。

在此文中,我们将探讨平方差公式的推导和应用,并提供一些例题供参考。

一、平方差公式的推导平方差公式可以从两个数的乘积的展开式推导得到。

假设有两个数a和b,它们的平方之差可以表示为:(a+b)*(a-b)=a^2-b^2在这个式子中,左边是两个数的乘积,右边是两个数的平方之差。

我们可以进行展开和简化来证明这个公式的正确性。

对(a+b)*(a-b)进行展开,得到:(a+b)*(a-b)=a*a-a*b+b*a-b*b= a^2 - ab + ba - b^2= a^2 - ab + ab - b^2=a^2-b^2从上述的推导过程可以看出,平方差公式成立。

这个公式的推导并不复杂,但是它在解决数学问题中的应用非常广泛。

二、平方差公式的应用平方差公式可以用于解决各种数学问题,包括代数和几何中的问题。

下面,我们将介绍两个具体的应用例题供参考。

例题1:已知两个数的和为8,平方之差为28,求这两个数。

解:设两个数为x和y,根据题目条件可以得到两个方程:x+y=8(1)x^2-y^2=28(2)从第一个方程中解出x,代入第二个方程可以得到:(8-y)^2-y^2=2864-16y+y^2-y^2=28-16y=-36y=2.25将y的值代入第一个方程可以解出x:x+2.25=8x=8-2.25x=5.75所以,这两个数分别为5.75和2.25例题2:已知正方形的面积为36平方米,求正方形边长的平方之差。

解:设正方形的边长为x,根据题目条件可以得到一个方程:x^2=36解方程可以得到正方形的边长:x=√36x=6根据平方差公式,正方形边长的平方之差为:(6+x)*(6-x)=6^2-x^2=36-36=0所以,正方形的边长的平方之差为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差公式
例1、利用平方差公式计算
位置变化:(1)()()x x 2525+-+
(2)()()ab x x ab -+
符号变化:(3)()()11--+-x x
(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-m n n m 321.01.032
系数变化:(5)()()n m n m 3232-+
(6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a 213213
指数变化:(7)()()222233x y y x ++- (8)()()22225252b a b a --+-
增项变化:(9)()()z y x z y x ++-+-
(10)()()z y x z y x -+++-
增因式变化:(11)()()()
1112+-+x x x (12)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x
例2. 用简便方法计算
(1)397403⨯ (2)2008200620072⨯-
例3. (1)22222222100999897969521-+-+-++-
(2)()()()()()
131313131316842+++++
例4.(1)如图(1),可以求出阴影部分的面积是_________.(写成两数平方差的形式)
(2).如图(2),若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是___________.(写成多项式乘法的形式)
(3).比较两个图阴影部分的面积,可以得到乘法公式__________.(用式子表达)
例5.已知02,622=-+=-y x y x ,求5--y x 的值.
例6.判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?
例7.观察下列各式:
根据前面的规律,你能求出
的值吗?
课后练习:
1.用平方差公式计算:
(1)()()
434322---x x (2)()()11-++-y x y x (3)123(2)()33a b a b -+ 2. 用简便方法计算(1)504496⨯ (2)2500049995001-⨯
3.已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

相关文档
最新文档