锆石U-Pb定年 ppt课件

合集下载

锆石U-PB测年-PPT课件-PPT精品文档

锆石U-PB测年-PPT课件-PPT精品文档

图5 麻粒岩相变质锆石CL特征 (a)扇形分带, (b)面状分带, (c)冷杉状分带,
(d) 弱分带或无分带
榴辉岩相变质增生锆石一般为半自形、椭圆形 和它形等,内部分带特征主要有无分带(6(a))、弱 分带(6(b))、云雾状分带(图6(c))或片状分带(图6}d) 等。角闪岩相变质增生锆石通常具有规则的外形, 且以柱面发育为其主要特点,在CL图像中一般为 无分带或弱分带的特征(图7)。
但是锆石发生重结晶作用的区域不仅仅是发生过蜕晶化作用的区
域,在没有发生蜕晶化作用的晶质锆石区域同样可以发生重结晶作 用,只是发生重结晶作用需要较高的温度和、或较长的流体作用时 间。
由于变质重结晶过程中只是锆石晶格的重新调整,没有新的锆石
生成,因此重结晶锆石往往为自形到半自形,且外形与原岩岩浆锆 石环带形状相似,与原岩锆石之间没有明显的生长界限。同时,变 质重结晶锆石区域的CL强度比原岩锆石明显增强,内部结构一般为 无分带、弱分带、斑杂状分带或海绵状分带等,局部有岩浆环带的 残留, 见这些变质特征的锆石区域切割原岩锆石的振荡环带(图 12(a) 。在重结晶锆石与原岩锆石之间有时会出现弱CL强度的重结 晶前锋(图12(b)),而变质增生锆石则是指变质过程中发生成核和结 晶作用,有新的锆石从周围的介质中结晶出来。所以变质新生锆石 具有多晶面状-不规则状-规则外形,与原岩残留锆石之间界限清楚, 不同变质环境中增生的锆石有其特征的外形和内部结构,且受变质 锆石形成时的温度条件和寄主岩石的化学性质制约(图12(c), (d))。
岩浆锆石通常为半自形到自形,粒径20~ 250μm。产于金伯利岩及其相关岩石中的锆石常 为它形(少数情况下为半自形),较大的粒径(毫米级 到厘米级)。部分基性一超基性岩中的锆石同样具

锆石U-Pb定年2

锆石U-Pb定年2

208
等时线方程
理论上, 上述等时线也能象Rb-Sr和Sm-Nd体系一样 进行岩石定年。但是,U、Th、Pb的活动性相当大, 使得U-Pb等时线定年受到很大的限制。
锆石的优势
锆石中含有的U、Th却很少含Pb,如果假设锆石形 成时不含Pb,即测定的所有Pb为放射成因。
由上式可得: 206Pb / 238U = e238t -1 207Pb / 235U = e235t -1
如果测定的锆石在形成后对U-Pb同位素是封闭的, 则可以得到两个相同的年龄。 在 207Pb/235U为横坐标, 206Pb/238U为纵坐标的二 维图上,不同的年龄点构成了一条一致曲线。
高灵敏度高分辨率离子探针质谱计(SHRIMP)法
2. Laser ablation-inductively coupled plasma-mass spectrometry 激光剥蚀电感耦合等离子体质谱计(LAM ICPMS) 3. Isotope dilution thermal ionization mass spectrometry 同位素稀释热电离质谱仪(ID TIMS),也称溶液法或稀释 法。多颗粒,单颗粒,化学流程,离子交换柱分离 4. Single zircon evaporation, using thermal ion mass
SHRIMP样品
将锆石颗粒与标样置于同一环氧树脂样品柱中,磨 蚀抛光至锆石核心出露。镀金后置于SHRIMP分析 舱内,用于分析。
SHRIMP分析分析出206Pb/204Pb,206Pb/238U, 207Pb/235U, 207Pb/206Pb和208Pb/232Th比值。
SHRIMP成果
第一代SHRIMP I的工作主要是在八十年代,揭示了最老 的地壳物质是形成于4.1~4.2Ga,早于以前认为的3.8Ga。 后来在2001年这一年龄又提前到4.4Ga(Wilde et al, 2001)。 在我国华北,TIMS和蒸发法得到的是3.3~3.5 Ga, SHRIMP研究发现了≥3.8 Ga的地壳物质(Liu, 1992)。 我国工作者得到的最年轻的是青藏高原碱性玄武岩的加权 平均年龄是3.82±0.08 Ma (MSWD = 1.16),不一致曲线与 谐和线的交点是3.80±0.11 Ma (MSWD = 1.15)(万渝生等, 2004)。 世界上获得的最年轻的是美国Oregon州的一个晚更新世的 花岗闪长岩(112 ±24 Ka, Bacon et al, 2000)

SIMS锆石U-Pb定年方法-中国科学院地质与地球物理研究所

SIMS锆石U-Pb定年方法-中国科学院地质与地球物理研究所

SIMS锆石U-Pb定年方法用于U-Pb年龄测定的样品(号码)用常规的重选和磁选技术分选出锆石。

将锆石样品颗粒和锆石标样Plésovice (Sláma et al., 2008) (或TEMORA, Black et al., 2004)和Qinghu (Li et al., 2009)粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。

对锆石进行透射光和反射光显微照相以及阴极发光图象分析,以检查锆石的内部结构、帮助选择适宜的测试点位。

样品靶在真空下镀金以备分析。

U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Li et al. (2009)。

锆石标样与锆石样品以1:3比例交替测定。

U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Sláma et al., 2008(或TEMORA (417Ma, Black et al., 2004))校正获得,U含量采用标准锆石91500 (81 ppm, Wiedenbeck et al., 1995) 校正获得,以长期监测标准样品获得的标准偏差(1SD = 1.5%, Li et al., 2010)和单点测试内部精度共同传递得到样品单点误差,以标准样品Qinghu (159.5 Ma, Li et al., 2009) 作为未知样监测数据的精确度。

普通Pb校正采用实测204Pb值。

由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。

同位素比值及年龄误差均为1σ。

数据结果处理采用ISOPLOT软件(文献)。

参考文献Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbel, I.H., Korsch, R.J., Williams, I.S., Foudoulis, Chris., 2004.Improved 206Pb/238U microprobe geochronology by the monitoring of atrace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS andoxygen isotope documentation for a series of zircon standards. Chem. Geol.,205: 115-140.Jiří Sláma, Jan Košler, Daniel J. Condon, James L. Crowley, Axel Gerdes, John M.Hanchar, Matthew S.A. Horstwood, George A. Morris, Lutz Nasdala, Nicholas Norberg, Urs Schaltegger, Blair Schoene, Michael N. Tubrett , Martin J.Whitehouse, 2008. Plešovice z ircon —A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35Li, Q.L., Li, X.H., Liu, Y., Tang, G.Q., Yang, J.H., Zhu, W.G., 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen floodingtechnique. Journal of Analytical Atomic Spectrometry 25, 1107-1113.Li, X.-H., Y. Liu, Q.-L. Li, C.-H. Guo, and K. R. Chamberlain (2009), Precise determination of Phanerozoic zircon Pb/Pb ageby multicollector SIMS without external standardization, Geochem. Geophys. Geosyst., 10, Q04010,doi:10.1029/2009GC002400.Ludwig, K.R., 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication. No. 1a, 56 pp.Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26, 207-221.Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., V onquadt, A., Roddick, J.C., Speigel, W., 1995. Three natural zircon standards for U-Th-Pb,Lu-Hf, trace-element and REE analyses. Geostand. Newsl. 19: 1-23.SIMS U-Pb dating methodsSamples XXX for U-Pb analysis were processed by conventional magnetic and density techniques to concentrate non-magnetic, heavy fractions. Zircon grains, together with zircon standard 91500 were mounted in epoxy mounts which were then polished to section the crystals in half for analysis. All zircons were documented with transmitted and reflected light micrographs as well as cathodoluminescence (CL) images to reveal their internal structures, and the mount was vacuum-coated with high-purity gold prior to secondary ion mass spectrometry (SIMS) analysis.Measurements of U, Th and Pb were conducted using the Cameca IMS-1280 SIMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences in Beijing. U-Th-Pb ratios and absolute abundances were determined relative to the standard zircon 91500 (Wiedenbeck et al., 1995), analyses of which were interspersed with those of unknown grains, using operating and data processing procedures similar to those described by Li et al. (2009). A long-term uncertainty of 1.5% (1 RSD) for 206Pb/238U measurements of the standard zircons was propagated to the unknowns (Li et al., 2010), despite that the measured 206Pb/238U error in a specific session is generally around 1% (1 RSD) or less. Measured compositions were corrected for common Pb using non-radiogenic 204Pb. Corrections are sufficiently small to be insensitive to the choice of common Pb composition, and an average of present-day crustal composition (Stacey and Kramers, 1975) is used for the common Pb assuming that the common Pb is largely surface contamination introduced during sample preparation. Uncertainties on individual analyses in data tables are reported at a 1 level; mean ages for pooled U/Pb (and Pb/Pb) analyses are quoted with 95% confidence interval. Data reduction was carried out using the Isoplot/Ex v. 2.49 program (Ludwig, 2001).。

锆石U-Pb同位素年代学测试技术概论及定年方法(PPT)

锆石U-Pb同位素年代学测试技术概论及定年方法(PPT)

4
6
8
207Pb/235U
10
12
Tera-Wasserburg图解对于含普通Pb锆石的年龄计算非常合适(Jackson et al., 2004, CG)
超镁铁岩
不适合
锆石U-Pb定年 不是形成年龄,反应交代作用时间
基性侵入岩 玄武岩 闪长岩-花岗岩 安山岩-流纹岩
可以
必须正确区分岩浆结晶锆石和捕获锆石
700 680 660 640 620 600 580 560 540 520
Mean = 601.9±5.7 [0.95%] 95% conf. Wtd by data-pt errs only, 0 of 33 rej. MSWD = 0.50, probability = 0.992 (error bars are 2s)
20
207P b/235U 238U/232T h
206P b/238U Int egral
40 T ims 60
80
207P b/235U
206P b/238U
238U/232T h
Int egral
40 T ims 60
80
207P b/235U
206P b/238U
238U/232T h
Int egral
TIMS SIMS MC-ICP-MS
离子计数器
Q-ICP-MS
Krogh (1982b)
气磨锆石 无磁性锆石 弱磁性锆石
气磨、无磁性、弱磁性锆石
束斑直径: 通常10-30μm
Yang et al. (2012, JAAS)
束斑直径 1280: 5-- μm
NanoSIMS: Pb-Pb <2 μm U-Pb <5 μm

锆石U-Pb定年new

锆石U-Pb定年new

一致曲线ConcordiaFra bibliotek谐和图
锆石的优势
而且具有非常强的抗侵蚀能力,锆石中的U-Pb体系 封闭温度>750 oC, 形成后Pb的扩散封闭温度可以高 达900 oC,锆石形成广,所以锆石是目前测定岩浆结 晶和峰期变质作用年龄最理想的矿物。
锆石形成时有少量初始(普通)Pb的存在,在年龄计算 中需要扣除。但由于锆石中普通Pb很低,则只需测定 204Pb的含量,再根据地球Pb演化模式获得206Pb/204Pb、 207Pb/204Pb比值,估算出普通Pb并进行扣除即可获得放 射成因铅。
TIMS and SHRIMP
Glastonbury Complex, USA (Aleinikoff et al, 2002) 450.5 ± 1.6 Ma (MSWD = 1.11) TIMS 448.2 ± 2.7 Ma (MSWD = 1.3) SHRIMP 单个的分析点精度更高(Pidgeon et al, 1996),如 207/206年龄是2635~2691 ± 1~4 Ma; 平均值 2655 ± 3 Ma (6.8). SHRIMP 2644~2681 ± 4~16 Ma, 2654 ± 5 Ma 又如国内的数据:北秦岭德河黑云二长花岗片麻岩: 924.3~1030.6 ± 1.8~8.0 Ma, 平均值964.4 ± 5.2 Ma (TIMS); 207/206 905~999 ± 19~47 Ma,平均值943 ± 18 Ma (SHRIMP)
208
Pb 204 Pb i
208
等时线方程
理论上, 上述等时线也能象Rb-Sr和Sm-Nd体系一样 进行岩石定年。但是,U、Th、Pb的活动性相当大, 使得U-Pb等时线定年受到很大的限制。

锆石定年原理锆石U-Pb定年

锆石定年原理锆石U-Pb定年
12
蒸发法Pb丢失的判断
207Pb/206Pb表面年龄始终一致,表明没有Pb丢失, U-Pb体系是封闭的; 207Pb/206Pb表面年龄逐渐增大,显示外部Pb丢失明 显;如果在某一时刻后年龄不变了,说明内部是封 闭的。经高压气体磨蚀后可以提高谐和性。
目前(95以来), 此方法已很少被人们使用. 因为没有 突出的优点.
206 Pb*
e 238t
×
1
238U
238U
= 137.88
即为谐和线某年龄点(通 过原点)的斜率的倒数 10
三个年龄的关系
11
蒸发法
所以, 对于没有Pb丢失的样品, 此方法获得的年龄是 准确的; 又由于207Pb总比206Pb少, 所以对老年龄的锆石的定 年更加可靠; 由于老锆石常常会发生Pb丢失, 所以此方法得到的 年龄一般小于或等于锆石的结晶年龄。
15
表明年龄的取舍
206Pb/238U, 207Pb/235U, 207Pb/206Pb表面年龄。 对单个样品的分析,如果三个表明年龄不一致, 即不谐和年龄,一般取舍标准是: 年轻的锆石以206Pb/238U表面年龄为准, 老锆石则以207Pb/206Pb表面年龄作为形成时代。 但是,界线在哪里?
东部斑岩
分析 次数
15
SHRIMP 均方差 35.2±0.4 2.77
分析 LA-ICP-MS 均方差 次数
68 34.6±0.2 3.29
西部斑岩 10 34.0±0.3 1.00 73 33.5±0.2 1.96
中部斑岩 13 34.1±0.3 1.15 83 33.3±0.3 7.92
智利斑岩铜矿区的斑岩时代
13
么么么么方面
• Sds绝对是假的

《锆石UPb定年》课件

《锆石UPb定年》课件
《锆石UPb定年》PPT课 件
锆石UPb定年是一种重要的地质年代学方法,在矿床成矿和油气勘探等方面 有着广泛的应用。
定义锆石UPb定年
什么是锆石UPb定年?
基于锆石中的铀(U)与铅 (Pb)元素的放射性衰变 原理,通过测量其中含量 比例获得的锆石年龄。
为什么选择锆石?
锆石具有高温高压稳定, 容易形成和富集等特点, 非常适合用于地质年代学 研究。
1
放射性衰变原理
铀系元素中的铀(U)会衰变成稳定的铅(Pb),衰变过程中会释放出放射性粒 子。
2
锆石中的U和Pb
在锆石形成时,会吸收周围的铀元素并固化成晶体内结构,铀元素衰变形成的铅 元素也会被封闭在晶体内部。
3
计算年龄公式
根据锆石中的U和Pb含量比值,运用不同的计算公式得出锆石的年龄。
锆石UPb定年方法的流程
问题与展望
1 锆石UPb定年的局限性有哪些?
2 锆石UPb定年方法的未来发展?
如无法确定系统中的铅是否完全为晶体内 部锆石衰变生成,使用的公式和假定条件 是否准确等。
将锆石UPb定年与其他技术相结合应用, 以及开发新的采样、分离、测量精度的提 升等。
锆石UPb定年的优势?
测量精度高,可进行高精 度和高分辨率研究,为地 质学研究提供了有力支持。
锆石的基本知识
颜色
锆石的颜色因地质条件、元素含量不同而有所 差异,通常见于透明或半透明的晶体中。
形态
锆石呈典型的四面体形态,晶体形状规整。
大小
锆石晶体大小通常在10-200微米之间,大小差 异较大。
锆石UPb定年的原理
• I电CP离-M质S谱) (MC-ICPMS)
锆石年龄解释
• 根据实验得 到的数据, 计算锆石的

地球科学测试技术课件 第五章 锆石年代学

地球科学测试技术课件  第五章 锆石年代学
第五章 锆石U-Pb年代学 Zircon Geochronology
主要内容 一 概述 二 锆石的形成 三 锆石U-Pb定年原理 四 锆石U-Pb定年方法
一 概述
锆石(zircon)是一个极其常见的副矿物。 它的化学成分是ZrSiO4,在Zr位置会有Hf, U, Th, Y等置换,Si位置会有少量P的置换。
2. Secondary Ion Mass Spectroscopy二次离子探针法 Sensitive High Resolution Ion Microprobe高灵敏度高分辨率 二次离子探针质谱计法:SHRIMP、Cameca)法 3. Laser ablation-inductively coupled plasma-mass
2)组成相同的喷出岩、浅成岩和深成岩中, 岩浆锆石的形态和内部结构可相同,也可不同, 据此可为判断岩浆形成和演化提供依据;
3)通常,随着岩浆基性程度增大,岩浆锆 石的Th/U比值也增大;
4)一些岩浆锆石包裹有岩浆玻璃包体,它 们提供锆石结晶时的岩浆组成;
5)残余锆石和捕获锆石的有无可作为岩浆 是否遭受陆壳物质影响的判断依据。
Xu et al.,2012. Lithos
中国地质大学(武汉)LA-ICP-MS
Thank You!
Alteration zircon
三 锆石U-Pb定年原理
同位素定年的基础是放射性衰变定律,通过测定 母体及其衰变产生的子体同位素含量,就可以利用衰 变定律算出形成以来的时间(年龄)。
锆石定年是利用了其中的U和Th同位素衰变成Pb同 位素。
定年基础
235U→207Pb, 238U → 206Pb, 232Th → 208Pb, 因此,可将206Pb、207Pb、208Pb视为直接由238U、 235U、232Th形成:

锆石U-Pb定年2资料

锆石U-Pb定年2资料

2. ID TIMS方法
将一个或几颗锆石溶解于氢氟酸或/硝酸,加入208Pb-235U 混合稀释剂,蒸干,再用硅胶-磷酸溶液溶解,过离子 交换柱分离U, Pb,将溶液滴在单铼带丝上,在VG354型 热电离质谱仪上用高灵敏度Daly检测器进行U, Pb同位素 分析。
ID TIMS U-Pb定年分析可以给出206Pb/204Pb, 208Pb/206Pb, 以及普通铅校正过的206Pb/238U,207Pb/235U,207Pb/206Pb 比值。
206 204
Pb Pb
i
238
U (e238t 204 Pb
1)
207Pb 204Pb
207Pb 204Pb
i
235U 204Pb
(e235t
1)
208Pb 204Pb
208Pb 204Pb
i
232Th (e232t 204Pb
1)
等时线方程
理论上, 上述等时线也能象Rb-Sr和Sm-Nd体系一样 进行岩石定年。但是,U、Th、Pb的活动性相当大, 使得U-Pb等时线定年受到很大的限制。
深熔锆石
magmatic
Inherited overgrowth
Inherited overgrowth
Alteration zircon
定年原理
同位素定年的基础是放射性衰变定律,通过测定 母体及其衰变产生的子体同位素含量,就可以利用衰 变定律算出形成以来的时间(年龄)。
锆石定年是利用了其中的U和Th同位素衰变成Pb同位素
为了减少Pb丢失的影响和吸附的普通Pb, 通常在锆石溶 解前利用高压气体进行磨蚀或用酸浸滤处理.
2. Laser ablation-inductively coupled plasma-mass spectrometry 激光剥蚀电感耦合等离子体质谱计(LAM

锆石UPb同位素定年的原理 方法及应用

锆石UPb同位素定年的原理 方法及应用

总之,LAMCICPMS锆石微区原位UPb定年技术是一种非常重要的地质学技术, 它可以提供更多、更准确的地质年代和地质信息,有助于深入了解地球的历史和 演化过程。
参考内容三
引言
LAICPMS锆石UPb定年方法是一种高精度的铀铅测年方法,被广泛应用于地质 学、地球化学和考古学等领域。为了评估该方法的准确度和精密度,以及探讨不 同实验室之间的结果差异,我们组织了本次多实验室对比分析。本次演示旨在介 绍LAICPMS锆石UPb定年方法的基本原理和流程,分析各实验室的分析结果,讨论 结果差异的原因,并总结本次对比分析的结论。
4、实验室操作:实验室内操作的规范性和熟练程度可能影响分析结果的稳 定性。
谢谢观看
虽然锆石UPb同位素测年方法具有很高的精度和可靠性,但目前仍存在一些 问题需要进一步研究和解决。例如,UPb同位素测年过程中可能受到多种因素的 影响,如样品处理过程中造成的元素损失、不同成因锆石之间的差异等。此外, 对于不同成因的锆石,其UPb同位素组成特征可能存在较大差异,这也会对年龄 测定结果的准确性产生影响。
参考内容二
LAMCICPMS锆石微区原位UPb定年技术的主要优势在于其高精度和高灵敏度。 该技术可以在锆石微区尺度上进行分析,以获取更准确的地质年代信息。此外, 该技术还可以分析锆石中不同矿物的化学成分,从而推断出更多的地质信息。
在实践中,LAMCICPMS锆石微区原位UPb定年技术的应用范围非常广泛。它可 以应用于研究地壳演化历史、古气候变化、地磁反转和生物演化历史等领域。例 如,通过分析锆石中不同矿物的化学成分,可以推断出古代气候的特征,比如温 度、湿度和风等;通过分析锆石中不同矿物的UPb含量,可以确定地壳构造的演 化过程;通过分析地磁场的变化,可以推断出古生物演化历史;通过分析岩浆熔 融历史,可以推断出地壳运动历史等。

锆石定年原理锆石U-Pb定年327页PPT

锆石定年原理锆石U-Pb定年327页PPT
简称蒸发法,是由Kober(1986, 1987)提出,故又称Kober法。
锆石晶体在船形灯丝上加热到<1600K,此时锆石尚 未蒸发,但可以去掉杂质和吸附的普通Pb;然后升高 样品带温度,使锆石蒸发并沉积到沉积带上,30分钟 后将样品带电流降低,升温电离带对沉积物进行 207Pb/206Pb比值测定。测定完成,将沉积带升温至 1900K,挥发掉沉积物。再重复开始,蒸发逐渐往核 部发展,可以获得不同层的年龄。 用MAT261质谱仪分析
对分析结果的解释
1. 单一年龄且在谐和线上 加权平均值→结晶年龄 2. 一组年龄,谐和线附近,与不一致线相交的年龄 3. 一组年龄,等时线分布,上交点→结晶年龄 4. 一组年龄,等时线分布,谐和年龄→沉积年龄 6. 低于上述最年轻谐和年龄的→变质年龄
206Pb/238U? 207Pb/206Pb?
加权平均年龄
161.8±1.5 Ma (MSWD=1.4)
上交点年龄
上交点年龄
Jack Hills, Yilgarn Craton, W Aus (S.A. Wilde et al, 2019, Nature)
下交点年龄
安徽大龙山花岗岩
(Zhao ZF et al, 2019)
206Pb*
e23t8
×
1
238U
235U
= 137.88
238U
即为谐和线某年龄点(通 过原点)的斜率的倒数
三个年龄的关系
蒸发法
所以, 对于没有Pb丢失的样品, 此方法获得的年龄是 准确的; 又由于207Pb总比206Pb少, 所以对老年龄的锆石的定 年更加可靠; 由于老锆石常常会发生Pb丢失, 所以此方法得到的 年龄一般小于或等于锆石的结晶年龄。

锆石定年原理锆石U-Pb定年3

锆石定年原理锆石U-Pb定年3
又如国内的数据:北秦岭德河黑云二长花岗片麻岩: 924.3~1030.6 ± 1.8~8.0 Ma, 平均值964.4 ± 5.2 Ma (TIMS); 207/206 905~999 ± 19~47 Ma,平均值943 ± 18 Ma (SHRIMP)
TIMS的优缺点
优点: 分析精度高
不足: 需要高标准的超净实验室 繁琐的化学处理 无法微区分析, 存在不同期锆石混合的危险 时间长,价钱高
206Pb/238U? 207Pb/206Pb?
加权平均年龄
161.8±1.5 Ma (MSWD=1.4)
上交点年龄
Hale Waihona Puke 上交点年龄Jack Hills, Yilgarn Craton, W Aus (S.A. Wilde et al, 2001, Nature)
下交点年龄
安徽大龙山花岗岩
(Zhao ZF et al, 2004)
表明年龄的取舍
206Pb/238U, 207Pb/235U, 207Pb/206Pb表面年龄。 对单个样品的分析,如果三个表明年龄不一致, 即不谐和年龄,一般取舍标准是: 年轻的锆石以206Pb/238U表面年龄为准, 老锆石则以207Pb/206Pb表面年龄作为形成时代。 但是,界线在哪里?
1000 Ma? 540 Ma?
LA-ICP-MS设备
MC-ICP-MS Hf 同位素分析
GLITTER 4.4 program
GLITTER 4.4
GLITTER 4.4 program
LA-ICP-MS and SHRIMP
东部斑岩
分析 次数
15
SHRIMP 均方差 35.2±0.4 2.77
分析 LA-ICP-MS 均方差 次数

锆石定年原理锆石U-Pb定年3

锆石定年原理锆石U-Pb定年3

蒸发法Pb丢失的判断
207Pb/206Pb表面年龄始终一致,表明没有Pb丢失, U-Pb体系是封闭的; 207Pb/206Pb表面年龄逐渐增大,显示外部Pb丢失明 显;如果在某一时刻后年龄不变了,说明内部是封 闭的。经高压气体磨蚀后可以提高谐和性。
目前(95以来), 此方法已很少被人们使用. 因为没有 突出的优点.
表明年龄的取舍
206Pb/238U, 207Pb/235U, 207Pb/206Pb表面年龄。 对单个样品的分析,如果三个表明年龄不一致, 即不谐和年龄,一般取舍标准是: 年轻的锆石以206Pb/238U表面年龄为准, 老锆石则以207Pb/206Pb表面年龄作为形成时代。 但是,界线在哪里?
1000 Ma? 540 Ma?
对分析结果的解释
1. 单一年龄且在谐和线上 加权平均值→结晶年龄 2. 一组年龄,谐和线附近,与不一致线相交的年龄 3. 一组年龄,等时线分布,上交点→结晶年龄 4. 一组年龄,等时线分布,下交点→结晶年龄 5. 一组碎屑锆石年龄,碎屑锆石中最年轻谐和年龄→沉积年龄 6. 低于上述最年轻谐和年龄的→变质年龄
68 34.6±0.2 3.29 1.96
中部斑岩 13 34.1±0.3 1.15 83 33.3±0.3 7.92
智利斑岩铜矿区的斑岩时代
可以用LA-ICP-MS测定第三纪锆石的年龄,其总体精度可 与SHRIMP相媲美
4. 热离子质谱计逐级蒸发-沉积测定法
蒸发法的结果
此方法只能获得207Pb/206Pb, 208Pb/206Pb和 204Pb/206Pb 比值, 所以必须对上述年龄计算式进行换算:
原来年龄计算方程: 206Pb / 238U = e238t -1 207Pb / 235U = e235t -1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
锆石内部结构的观察
Smiling zircon 背散射电子图像(BSE imaging)
HF酸蚀刻法
阴极发光电子成相(CL imaging)
ppt课件
10
岩浆成因锆石
ppt课件
11
变质成因
岩浆结晶的
变质结晶的
岩浆结晶的
ppt课件
12
ቤተ መጻሕፍቲ ባይዱ
双层内部结构-两期
深熔锆石
magmatic
Inherited overgrowth
20
一致曲线Concordia
谐和图
ppt课件
21
锆石的优势
而且具有非常强的抗侵蚀能力,锆石中的U-Pb体系 封闭温度>750 oC, 形成后Pb的扩散封闭温度可以高 达900 oC,锆石形成广,所以锆石是目前测定岩浆结 晶和峰期变质作用年龄最理想的矿物。
锆石形成时有少量初始(普通)Pb的存在,在年龄计算 中需要扣除。但由于锆石中普通Pb很低,则只需测定 204Pb的含量,再根据地球Pb演化模式获得206Pb/204Pb、 207Pb/204Pb比值,估算出普通Pb并进行扣除即可获得放 射成因铅。
ppt课件
7
Zircon typological classification Pupin (1980)
ppt课件
8
锆石的形成
岩浆结晶形成:超基性-酸性,形成温度 很广,(锆石饱和温度计)。
变质作用: • 深熔锆石; • 变质重结晶; • 变质增生; • 热液沉淀锆石; • 热液蚀变锆石。
ppt课件
ppt课件
22
Pb loss and Discordia
ppt课件
23
上交点(upper intercept)年龄代表锆石结 晶年龄; 下交点(lower intercept) 年龄或者代表造 成铅丢失的一次热事件,或者没有任何地 质意义。
ppt课件
24
锆石U-Pb定年方法
1. Sensitive High Resolution Ion Microprobe 高灵敏度高分辨率离子探针质谱计(SHRIMP)法
2. Laser ablation-inductively coupled plasma-mass spectrometry 激光剥蚀电感耦合等离子体质谱计(LAM
ICPMS)
3. Isotope dilution thermal ionization mass spectrometry 同位素稀释热电离质谱仪(ID TIMS),也称溶液法或稀释 法。多颗粒,单颗粒,化学流程,离子交换柱分离
Inherited overgrowth
ppt课件
Alteration zircon
13
蜕晶化锆石 (metamict zircon)
ppt课件
14
定年原理
同位素定年的基础是放射性衰变定律,通过测定 母体及其衰变产生的子体同位素含量,就可以利用衰 变定律算出形成以来的时间(年龄)。
锆石定年是利用了其中的U和Th同位素衰变成Pb同位素
i

232Th 204Pb
(e232t
1)
ppt课件
17
等时线方程
理论上, 上述等时线也能象Rb-Sr和Sm-Nd体系一样 进行岩石定年。但是,U、Th、Pb的活动性相当大, 使得U-Pb等时线定年受到很大的限制。
ppt课件
18
锆石的优势
锆石中含有的U、Th却很少含Pb,如果假设锆石形 成时不含Pb,即测定的所有Pb为放射成因。
锆石一般无色透明,但常具浅棕,粉红,
有时深棕色。一般颜色深成因复杂,多为
老锆石或U、Th含量高的。其比重达 4.5-
4.6,无磁性,是分选的有利条件。
ppt课件
2
锆石的结构
锆石是四方晶系矿物
ppt课件
3
单偏光下
ppt课件
4
正交偏光下
ppt课件
5
常 呈 矿 物 包 裹 体
ppt课件
6
锆 石 的 晶 面
锆石年代学 Zircon Geochronology
ppt课件
1
锆石的组成
锆石(zircon)是一个极其常见的副矿物。 它的化学成分是ZrSiO4,在Zr位置会有Hf, U, Th, Y等置换,Si位置会有少量P的置换。
一般锆石中含ZrO2 = 65.9%, SiO2 = 32%, HfO2 =1.0 2.0%, Th, U, HREE, P微量。
它们的等时线方程:
206Pb = 206Pbi + 238U(eλ238t – 1) 207Pb = 207Pbi + 235U(eλ235t – 1) 208Pb = 208Pbi + 232Th(eλ232t – 1)
ppt课件
16
方程两边除于非放射成因的稳定同位素204Pb,得到:

206 204
4. Single zircon evaporation, using thermal ion mass
spectrometry 热离子质谱计逐级蒸发-沉积测定法
则前述方程 206Pb=206Pbi+238U(e238t -1); 207Pb=206Pbi+235U(e235t -1) 可简化为: 206Pb=238U(e238t -1); 207Pb=235U(e235t -1)
ppt课件
19
一致方程
206Pb=238U(e238t -1); 207Pb=235U(e235t -1)
锆石相对富含Th, U等放射性元素,而贫普通Pb,而 且其温度抗后期影响能力强,所以是定年的最佳样品
ppt课件
15
定年基础
235U→207Pb, 238U → 206Pb, 232Th → 208Pb,其中间 字体寿命短可以忽略,因此,可将206Pb、207Pb、 208Pb视为直接由238U、235U、232Th形成:
Pb Pb



206 204
Pb Pb

i

238
U (e238t 204 Pb
1)

207Pb 204Pb


207Pb 204Pb
i

235U 204Pb
(e235t
1)

208Pb 204Pb



208Pb 204Pb
由上式可得:
206Pb / 238U = e238t -1 207Pb / 235U = e235t -1
如果测定的锆石在形成后对U-Pb同位素是封闭的, 则可以得到两个相同的年龄。
在207Pb/235U为横坐标,206Pb/238U为纵坐标的二 维图上,不同的年龄点构成了一条一致曲线。
ppt课件
相关文档
最新文档