确定隶属函数的几种主要方法

合集下载

模糊综合评价法隶属度确定

模糊综合评价法隶属度确定

模糊综合评价法隶属度确定模糊综合评价法是一种多指标决策方法,通过定义隶属度函数对问题进行模糊化处理,将各指标的隶属度进行综合评价,得出最终的评价结果。

本文将对模糊综合评价法中的隶属度确定进行探讨。

隶属度函数是模糊综合评价法的重要组成部分,它用来描述指标值与评价等级之间的隶属关系。

在实际问题中,往往存在多个指标,每个指标都有不同的评价等级,因此需要为每个指标确定相应的隶属度函数。

确定隶属度函数的过程通常包括两个步骤:构造隶属度函数和确定隶属度的取值范围。

构造隶属度函数是指根据指标的实际情况和评价等级的要求,选择合适的隶属度函数形式。

常用的隶属度函数有三角形函数、梯形函数、高斯函数等。

不同的函数形式可以描述不同的隶属关系,因此在选择时需要根据实际情况进行合理的选择。

确定隶属度的取值范围是指为每个评价等级确定对应的隶属度取值范围。

一般来说,隶属度的取值范围为[0,1],表示指标值与评价等级的程度关系。

隶属度为0表示指标值与评价等级之间不存在隶属关系,隶属度为1表示指标值完全属于评价等级。

在确定隶属度函数和取值范围后,可以根据指标的实际值计算出每个指标对应的隶属度。

然后,根据综合评价的要求,可以采用加权平均法、加权最大法等方法对各指标的隶属度进行综合,得到最终的评价结果。

模糊综合评价法的优点是能够充分考虑多指标之间的相互关系,能够处理不确定性和模糊性的问题。

但是在实际应用中,也存在一些问题和挑战。

首先,确定隶属度函数需要根据实际情况进行合理选择,这需要对问题有一定的理解和经验。

其次,确定权重的过程也比较困难,需要考虑指标的重要性和相互关系。

最后,模糊综合评价法的计算过程相对复杂,需要进行大量的计算和数据处理。

模糊综合评价法是一种多指标决策方法,通过定义隶属度函数对问题进行模糊化处理,综合各指标的隶属度得出最终的评价结果。

在实际应用中,需要合理选择隶属度函数和确定权重,同时还需要注意计算过程的复杂性。

模糊综合评价法在工程管理、环境评价等领域有着广泛的应用前景,可以为决策者提供有价值的参考和决策支持。

第4章_隶属函数的确定方法

第4章_隶属函数的确定方法

第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。

对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。

因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。

然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。

其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。

但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。

本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。

4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。

因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。

例如,模糊集A = “高个子”的隶属函数。

如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。

(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。

第七讲 隶属函数的确定方法

第七讲 隶属函数的确定方法
−1
中间型隶属函数
1.矩形 2.尖型 3.正态型 4.柯西型 5.梯形
µA1 ( x) =
ɶ
1, a − b < x ≤ a + b 0, 其他 exp[ k (x − a)] , x ≤ a (k > 0) exp[ −k ( x − a)] , x > a
−1
µA2 ( x) =
参数法是指利用已知形状的隶属函数作为样板, 通过确定函数参数的方式来给出隶属函数的方 法。 常用隶属函数
偏小型 偏大型 中间型
偏小型隶属函数
x≤a 1, µ A ( x) = ɶ f ( x), x > a
1.降半矩阵型 2.降半伽马型 3.降半正态型 4.降半柯西型 5.降梯形 6.降岭形 7.k次抛物线
隶属函数的确定方法
模糊统计法 参数法
模糊统计法
通过模糊统计实验来确定隶属函数的方法 四要素
① 论域X ② 试验所要处理的论域X的固定元素x0 ③ 论域X的可变动的子集A*,它作为模糊集 A 的有可塑性 ɶ 边界的反映,可由它得到每次试验中x0是否符合模糊集A ɶ 所刻划的模糊概念的一个判决 ④ 条件集C,它限制着A*的变化
ɶ ɶ
µA3 ( x) = exp −k ( x − a)2 , (k > 0) µA4 ( x) = 1+ α ( x − a)β (α > 0, β是非负偶数)
(a2 + x − a) /(a2 − a1), a − a2 < x ≤ a − a1 1, a − a1 < x ≤ a + a1 µA5 ( x) = ɶ (a2 − x + a) /(a2 − a1), a + a1 < x ≤ a + a2 0, 其他 0.5 + 0.5sin [π /(b − a)( x + (b + a) / 2)] , −b < x ≤ −a 0.5 − 0.5sin [π /(b − a)( x − (b + a) / 2)] , a < x ≤ b µA6 ( x) = ɶ −a < x ≤ a 1, 0, 其他

确定隶属函数的方法

确定隶属函数的方法

7
其中mi是第i位专家的估计值,并请每个人标出各自对
所做估计值的信任度,记为 e1,e2, ,en, 这里ei表示第i
位专家对自己的估计的把握程度,并且规定 ei [0,1],第 有绝对把握时, ei=1;毫无把握时,取ei=0; 其
它情形,取 0 ei 1.
(6)计算
m
1 M
n
mi ,
iM
其中 M {iei;i1 ,2,...,n },
③中间型 A ( x ) 1, a x b
1
e
(
x
b
)
2
,x
b
a
编辑ppt
15
其它常见模糊分布还有 (3) 半梯形分布与梯形分布;
m21,m22, ,m2n
(4)重复2、3步,直至离差值小于或等于预先
给定的标准 0. 设重复k次后,有 d k , 这里 d k 为重复k次后的离差。
(5)将第k次得到的对
A (u 0 )的平均估计值
m
k
和d再交k给各位专家,请他们做最后的“判断”,给出估计

m1,m2, ,mn
编辑ppt
对于 m11,m12, ,m1n计算平均值 m 1 和离差 d 1 :
m1
1 n
n i 1
m1i ,
d1
1 n
n i1
m1i
m1
2
编辑ppt
6
(3)不记名将全部数据 m 11,m 12, ,m 1n,m 1,d 1送交 每位专家,同时附上进一步的补充资料,请每位
专家在阅读和思考之后,给出新的估计值:
可暂时使用m , 但要特别注意信息反馈,不断通过
“学习过程”,完 A(u0)m

智能控制技术复习题课后答案讲解

智能控制技术复习题课后答案讲解
10.智能控制的不确定性的模型包括两类:(1);
(2)。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、
和。知识库的设计推理机的设计人机接口的设计
13.专家系统的核心组成部分为和。知识库、推理机
一、填空题
1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制
2.传统控制包括和。2、经典反馈控制现代理论控制
3.一个理想的智能控制系统应具备的基本功能是、、和。
3、学习功能适应功能自组织功能优化能力
4.智能控制中的三元论指的是:、和。
•(6)具有获取知识的能力;
•(7)知识与推理机构相互独立。专家系统一般把推理机构与知识分开,使其独立,使系统具有良好的可扩充性和维护性。
2、简述专家系统设计的基本结构。
答:基本知识描述---系统体系结构---工具选择----知识表示方法----推理方式----对话模型.P20
4、什么是专家控制系统?专家控制系统分为哪几类?
46、二进制编码
47.遗传算法的3种基本遗传算子、和。
47、比例选择算子单点交叉算子变异算子
48.遗传算法中,适配度大的个体有被复制到下一代。更多机会
49.遗传算法中常用的3种遗传算子(基本操作)为、、和。
49、复制、交叉和变异
第一章
1
答:(1)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
(3)神经控制系统(1分)
神经网络具有某些智能和仿人控制功能。学习算法是神经网络的主要特征。
(4)遗传算法(2分)

确定隶属函数的几种主要方法

确定隶属函数的几种主要方法

区别: 区别:
若把概率统计比喻为“变动的点” 若把概率统计比喻为“变动的点”是否 落在“不动的圈” 落在“不动的圈”内, 则把模糊统计比喻为“变动的圈” 则把模糊统计比喻为“变动的圈”是否 盖住“不动的点” 盖住“不动的点”.
二相F统计 二相 统计: 设有二相集 P2 = { A, A } 统计
x
−∞
Pη ( x )dx
的概率密度, 其中Pξ ( x )和Pη ( x )分别是随机变量 ξ和η的概率密度,即
A2 ( x ) = 1 − A1 ( x ) − A3 ( x )
按概率方法计算,得 按概率方法计算,
x − a1 A1 ( x ) = 1 − Φ σ1 x − a2 A3 ( x ) = Φ σ2
A3 ( x )
0
a1
a2
x
数对(ξ ,η )确定映射
e(ξ ,η ) :

U → { A1 , A2 , A3 }
x≤ξ A1 ( x ) e(ξ ,η )( x ) = A2 ( x ) ξ < x ≤ η A ( x) x >η 3
概率P{ x ≤ ξ }是随机变量 ξ落在区间[ x , b )的可能大小.
次实验中覆盖27岁的年龄区间的次数为 若n次实验中覆盖 岁的年龄区间的次数为 , 次实验中覆盖 岁的年龄区间的次数为m, 则称m/n为27岁对于(青年人)的隶属频率。 为 岁对于 青年人)的隶属频率。 岁对于( 则称
岁对( 表2-1 27岁对(青年人)的隶属频率 岁对 青年人)
实验次数n 实验次数 隶属次数m 隶属次数 隶属频率 m/n 0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78 10 20 30 40 6 14 23 31 50 39 60 47 70 53 80 62 90 100 110 68 76 85 120 130 95 101

模糊数学教程第6章确定隶属函数的方法

模糊数学教程第6章确定隶属函数的方法
详细描述
主观经验法主要依赖于专家的专业知识和经验,通过专家对模糊概念的深入理 解和主观判断,来确定隶属函数的形状、参数和阈值等。这种方法简单易行, 但受限于专家知识和经验的局限性。
统计学习法
总结词
基于数据样本和统计学习理论来确定隶属函数的方法。
详细描述
统计学习法利用已知数据样本,通过统计学习理论和方法,如回归分析、决策树、支持向量机等,来拟合和优化 隶属函数。这种方法客观、科学,但需要足够的数据样本和计算资源。
VS
详细描述
连续性是指隶属函数在定义域内的任何一 点都存在明确的隶属度值,没有跳跃或中 断。连续的隶属函数能够更好地描述模糊 现象,因为模糊现象本身也是连续变化的 。
单调性
总结词
隶属函数应该是单调的,以反映模糊集合的 单调性质。
详细描述
单调性是指随着输入值的增大或减小,隶属 度值也相应增大或减小。单调递增的隶属函 数表示随着输入值的增加,隶属度也逐渐增 加;单调递减的隶属函数则表示随着输入值 的增加,隶属度逐渐减小。
经济效益评价
在经济效益评价中,隶属函数可以用于将各 评价指标的量纲统一,通过计算隶属度来评 价项目的经济效益。
在模糊聚类分析中的应用
模糊聚类算法
隶属函数在模糊聚类算法中起到关键作用,通过计算样本点对各个聚类的隶属度,实现样本点的软分 类。
聚类效果的评估
在模糊聚类分析中,隶属函数可以用于评估聚类效果,通过计算样本点对各个聚类的隶属度分布情况 ,判断聚类的质量和稳定性。
模糊数学教程第6章确定隶属函数 的方法
目 录
• 引言 • 确定隶属函数的方法 • 隶属函数的特性 • 隶属函数的优化 • 隶属函数的应用 • 总结与展望
01 引言

确定隶属函数的方法

确定隶属函数的方法

①偏小型
A(x)
1, ( xa )2
xa
e , x a
②偏大型
A(x)
0,
xa
( xa )2
1 e , x a
③中间型
( xa )2 e , x a A(x) 1,a x b
e(
xb
)2
,
x
b
1
a
1
a
1
a
其它常见模糊分布还有
(3) 半梯形分布与梯形分布;
(4) K次抛物线分布;
~
= A(x) 为模糊分布。常见的模糊分布有: ~
(1) 矩形分布或半矩形分布(适用确切概念):
① 偏小型 ② 偏大型 ③ 中间型
A(x)
1, x a 0, x a
A(x)
0, x a 1, x a
0, x a A(x) 1,a x b
0, x b
1
a
1
a
1
ab
(2) 正态分布(normal distribution ):
对于 m11,m12 , ,m1n 计算平均值 m1 和离差 d1 :
m1
1 n
n i 1
m1i ,
d1
1 n
n i 1
m1i
m1
2
(3)不记名将全部数据 m11,m12 , ,m1n ,m1,d1 送交 每位专家,同时附上进一步的补充资料,请每位
专家在阅读和思考之后,给出新的估计值:
m21, m22 , , m2n
Descartes乘积,即 U U1 Un , Ai (Ui )(i 1, ....,n)
A (U), A由A1,...,An复合而成.
(1)加权平均型(Method of weighted mean)

神经网络与模糊控制考试题及答案

神经网络与模糊控制考试题及答案

一、填空题1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 13、神经网络的学习方式有导师监督学习、无导师监督学习和灌输式学习4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。

7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。

8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。

9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。

10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。

11.控制论的三要素是:信息、反馈和控制。

12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。

知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。

知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。

判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为 推理、 和 推理。

15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为 和 。

隶属函数

隶属函数
矮个子,中等个子和高个子的区 间是随机区间 ,
从而和是随机变量 .它们服从正态分布 .
2 2 ~ N (a1 , 1 ), ~ N (a2 , 2 )
A1 ( x ) A2 ( x )
A3 ( x )
0
a1
a2
x
数对( , )确定映射
e( , ) : U { A1 , A2 , A3 }
xa a xb b x xa
1 1
0
a
b
x
a xb b x
0
a
b
x
(4)正态分布 ①偏小型
1 A( x ) x a 2 e
②偏大型
xa xa
1
0
a
x
0 xa 2 A( x ) x a 1 e xa
用随机区间的思想处理模糊性(模糊性的清晰化)
建立矮个子A1 ,中等个子A2 ,高个子A3的隶属函数
设 P3 { A1 , A2 , A3 }, U [0,3] (单位:m )
每次F试验确定U的一次划分, 每次划分确定 一对数( ,) .
: 矮个子与中等个子的分 界点 : 中等个子与高个子的分 界点
按概率方法计算,得
x a1 A1 ( x ) 1 1 x a2 A3 ( x ) 2
从而
x a1 x a2 A2 ( x ) 1 2
这里
x
( x )
§6
1.F统计方法
确定隶属函数的方法综述
一、确定隶属函数的几种主要方法
确定“青年人”的隶属函数.
以年龄为论域U , A是“青年人”在U上的F集. 选取u0 27岁, 用F统计实验确定 u0对A的隶属度.

隶属函数及确定方法

隶属函数及确定方法

隶属函数正确地确定隶属函数,是运用模糊集合理论解决实际问题的基础。

隶属函数是对模糊概念的定量描述。

我们遇到的模糊概念不胜枚举,然而准确地反映模糊概念的模糊集合的隶属函数,却无法找到统一的模式。

隶属函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属函数的确定又带有主观性。

一般是根据经验或统计进行确定,也可由专家、权威给出。

例如体操裁判的评分,尽管带有一定的主观性,但却是反映裁判员们大量丰富实际经验的综合结果。

对于同一个模糊概念,不同的人会建立不完全相同的隶属函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。

事实上,也不可能存在对任何问题对任何人都适用的确定隶属函数的统一方法,因为模糊集合实质上是依赖于主观来描述客观事物的概念外延的模糊性。

可以设想,如果有对每个人都适用的确定隶属函数的方法,那么所谓的“模糊性”也就根本不存在了。

2.5.1 隶属函数的几种确定方法这里仅介绍几种常用的方法,不同的方法结果会不同,但检验隶属函数建立是否合适的标准,看其是否符合实际及在实际应用中检验其效果。

1.模糊统计法在有些情况下,隶属函数可以通过模糊统计试验的方法来确定。

这里以张南组等人进行的模糊统计工作为例,简单地介绍这种方法。

图2-5-1 27岁对“青年”隶属频率的稳定性张南纶等人在武汉建材学院,选择129人作抽样试验,让他们独立认真思考了“青年人”的含义后,报出了他们认为最适宜的“青年人”的年龄界限。

由于每个被试者对于“青年人”这一模糊概念理解上的差异,因此区间不完全相同,其结果如表2-5-1所示。

现选取0u=27岁,对“青年人”的隶属频率为)调查人数()岁的区间数(隶属次数包含n 27=μ (2-5-1) 用μ作为27岁对“青年人”的隶属度的近似值,计算结果见表2-5-2。

78.027)=(青年人μ按这种方法计算出15~36岁对“青年人”的隶属频率,从中确定隶属度。

隶属度函数分类

隶属度函数分类

隶属度函数分类一、引言隶属度函数是模糊逻辑和模糊集合理论中的核心概念,用于描述一个元素属于某个模糊集合的程度。

通过隶属度函数,可以将经典的集合论扩展到模糊集合论,从而在处理不确定性和模糊性方面发挥重要作用。

本文将对隶属度函数的分类进行详细介绍,包括函数形式、参数调整、多分类问题、模糊逻辑与隶属度函数以及应用领域等方面。

二、函数形式根据不同的应用需求和场景,隶属度函数有多种形式。

其中最常见的是三角形、梯形和高斯型隶属度函数。

这些函数形式在形状、取值范围和特性上有所不同,可根据具体问题选择合适的函数形式。

三、参数调整在隶属度函数中,参数的调整对函数的形状和特性有很大的影响。

对于一些常见的隶属度函数,如三角形、梯形和高斯型隶属度函数,可以通过调整参数来改变函数的形状和取值范围,从而更好地适应实际问题。

参数调整的方法包括手动调整和自动调整两种方式,自动调整方法如遗传算法、粒子群优化等。

四、多分类问题在多分类问题中,每个样本可能属于多个类别。

为了解决多分类问题,可以采用扩展的隶属度函数方法。

该方法的基本思想是将多分类问题转化为多个二分类问题,并利用隶属度函数来描述样本属于某个类别的程度。

扩展的隶属度函数方法包括最大值型、最小值型和乘积型等多种形式。

五、模糊逻辑与隶属度函数模糊逻辑是一种处理不确定性和模糊性的逻辑,而隶属度函数是模糊逻辑中的重要概念。

通过引入隶属度函数,可以将不确定的推理转化为数学计算,从而实现模糊逻辑的应用。

隶属度函数在模糊逻辑中扮演着关键角色,可用于描述模糊命题和模糊规则等。

六、应用领域隶属度函数在许多领域都有广泛的应用,如模式识别、智能控制、数据挖掘、医疗诊断等。

在模式识别中,隶属度函数可以用于描述样本属于某个类别的程度,从而进行分类或聚类;在智能控制中,隶属度函数可用于实现模糊控制,提高系统的鲁棒性和自适应性;在数据挖掘中,隶属度函数可以用于处理不确定性和噪声数据,发现隐藏的模式和规律;在医疗诊断中,隶属度函数可用于描述症状与疾病之间的关系,辅助医生进行诊断和治疗。

隶属函数确定问题

隶属函数确定问题

隶属函数确定问题一、隶属函数的确定原则1、表示隶属度函数的模糊集合必须就是凸模糊集合;即:在一定范围内或者一定条件下,模糊概念的隶属度具有一定的稳定性;从最大的隶属度函点出发向两边延伸时,其隶属度就是单调递减的,而不许有波浪性,呈单峰;一般用三角形与梯形作为隶属度函数曲线。

2、变量所取隶属度函数通常就是对称与平衡的模糊变量的标值选择一般取3-9个为宜,通常取奇数(平衡),在“零”“适中”等集合的两边语言值通常取对称。

3、隶属度函数要避免不恰当的重复在相同的论域上使用的具有语意顺序的若干标称的模糊集合,应该合力排序。

4、论语中的每个点应该至少属于一个隶属度函数的区域,同时它一般应该属于之多不超过两个隶属度函数的区域。

5、对于同一输入,没有两个隶属度函数会同时有最大隶属度6、对两个隶属度函数重叠时,重叠部分对于两个隶属度函数的最大隶属度不应该有交叉。

二、隶属度函数确定的方法1、模糊统计法模糊统计法的基本思想就是对论域U上的一个确定元素v就是否属于论域上的一个可变的清晰集的判断。

(清晰集、模糊集)模糊统计法计算步骤:Step1 确定论域Step2形成调查表Step3统计成频数分布表Step4建立隶属函数Step5隶属度(由频数分布表或者隶属函数可得)所谓模糊统计实验包含以下四个要素:假设做n次模糊统计试验,则可计算出:实际上,当n不断增大时,隶属频率趋于稳定,其频率的稳定值称为0x 对A的隶属度,即2、例证法例证法由已知的有限个隶属度函数的值,来估计论域U上的模糊子集A的隶属函数。

3、专家经验法就是根据专家的实际经验给出模糊信息的处理算式或者相应的权系数值隶属函数的一种方法。

4、二元对比排序法5、群体决策法6、指派方法(待定来自算法大全第22章模糊数学模型)指派方法就是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法。

如果模糊集定义在实数域R上,则模糊集的隶属函数称为模糊分布。

隶属函数的确定方法

隶属函数的确定方法


1 2
t2 e 2 dt
用这种方法确定三相隶属函数的方法,叫做三分法.
2 2 ~ N (a1 , 1 ), ~ N (a2 , 2 )
A1 ( x ) A2 ( x )
A3 ( x )
0
a1
a2
x
3、F分布
实数R作为论域的情况 . 实数R上F集的隶属函数称为 F分布. 列出典型F分布, 根据问题性质选择适当 分布.
隶属频率
m/n 0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78
m A( 27) 0.78 n 将论域U分组, 每组以中值为代表,分 别计算各组 隶属频率.(见表2 2)
表2-2 分组计算隶属频率(实验次数129)
4.其他方法
①专家打分;②推理方法; ③二元对比排序法
二、确定隶属函数的注意事项
(1)带有主观色彩,但要符合实际。
(2)F统计实验确定
(3)借助概率统计确定
(4)推理的产物 (5)经F运算“并、交、余”
(6)先建立近似隶属函数,再逐步完善
(7)整体特性
b
x
(2)半梯形分布与梯形分布
①偏小型 1 b x A( x ) b a 0
②偏大型
xa a xb b x xa a xb b x
1
0
a b
x
0 x a A( x ) b a 1
1
0
a
b
x
(2)半梯形分布与梯形分布 ③中间型
在每次试验中, u0是确定的, F统计试验:
集合A 是随机变动的. 做n次试验

第三章 确定隶属函数方法

第三章 确定隶属函数方法
1 2 3 4
5
二、优先关系法 设U={u1,u2,u3,u4,u5},先将U中元素具有 A 的程度排序, ~ 再依次建立U中元素隶属于 A的程度,从而得到 A ~ ~ 的优先关系矩阵: 1、建立 A 的优先关系矩阵: 、 ~
C = ( cij ) n×n
其中:
cii =0, cij ∈[0,1], cij +cji =1
若按
A(uik ) = 1 − k − 1: ~
n
A = 1/ u1 + 0.75/ u2 +1/ u3 + 0.5/ u4 ~
三、相对比较法: 相对比较法: 通过二元相对比较来完成 1、建立比较关系矩阵 、
c = (cij ) n×n
其中,(1)ui与u j (i ≠ j ) 比较时,如果 u i 相对于 u j 具有 A 的程度为 ~
cij
(2) ii c
,则
u j 具有 A 的程度为 c ji ~
=1

2、建立相及矩阵 c 、

= (cij

)
n× n
cij cij = max (cij , c ji )
3、确定U中元素具有 A 的顺序 、确定 中元素具有
~
c ∗ 中每一行取最小值,得各行的α i ,α i 的大小顺序即为 u i 的顺序。 将
ui 排在第1 位, (未必唯一,可以并列),然后c中去除第一位已排的
1
那些对象所在行、列,对新矩阵重复上述做法,可选出第2、3、…… 直至全排完。
3、根据2中排的顺序确定 A 、根据 中排的顺序确定
~
A = ∑ A(u i ) / u i ~
A 式中, (ui ) 依赖于 u i 所排位置,位置越前,越优先,越接近于1。

神经网络与模糊控制考试题及答案

神经网络与模糊控制考试题及答案

神经网络与模糊控制考试题及答案work Information Technology Company.2020YEAR一、填空题1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成2、一个单神经元的输入是1.0 ,其权值是1.5,阀值是-2,则其激活函数的净输入是 -0.5 ,当激活函数是阶跃函数,则神经元的输出是 13、神经网络的学习方式有导师监督学习、无导师监督学习和灌输式学习4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。

7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。

8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。

9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。

10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。

11.控制论的三要素是:信息、反馈和控制。

12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。

知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为 和 。

知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为 、 、 和 。

判断性规则 控制性规则 数据15.专家系统的推理机可采用的3种推理方式为 推理、 和 推理。

正态云隶属度函数确定的fsm方法

正态云隶属度函数确定的fsm方法

正态云隶属度函数确定的fsm方法
最近,正态云隶属度函数-加权最小二乘(FSM)方法已成为企业人工智能应用
解决方案的催化剂。

它主要是根据当前方法的输入数据,运用一些特定的算法和先进的技术,来使用FSM方法解决企业各种复杂问题。

首先,FSM方法基于建模分析。

通过对当前企业状况、流程及结果的分析模型,FSM可以有效地识别影响因素,同时创建加权最小二乘的模型,以捕捉企业结构及
业务行为socket支持的演变。

其次,FSM方法有效地利用正态密度函数对数据进行拟合,以详细地说明所有
潜在变量之间的关系。

基于该模型,可以构建出精确的概率分布,以便尽可能快地识别影响输出数据的影响因素。

最后,FSM方法提供的高度的实时响应能力,主要
是基于它的实时数据学习功能,可以有效地实时检测企业信息变化,从而实现企业健康可持续状态的维护。

总的来说,FSM方法在企业应用中具有优势,它可以有效地识别影响企业绩效
的因素,构建出精确的概率模型,实现实时数据学习,从而有效地支持企业信息变产过程中文类扮演及参与活动。

FSM方法得到了广泛应用,不仅在新型企业智能应
用解决方案中,且在各种大数据管理系统被广泛接受。

8.3 隶属函数的确定

8.3 隶属函数的确定
1 (x 5)2
1 A(x)
1 1 (x 5)2 5
1 A(x)
1 1 (x 5)2 10
借用已有的客观尺度
论域 设备 产品 家庭
模糊集 设备完好 质量稳定 贫困家庭
隶属度 设备完好率
正品率 Engel系数
④ ☆随着n的增加,隶属频率趋于稳定
指派法Biblioteka 隶属函数类型举例一般表达
偏大型 偏小型 居中型
大、热、年老
A(x)

0f (,x)
x , x

a a

小、冷、年轻 中、暖、中年
A(x)

1f (, x)
,
x x

a a

A(x) f0(,x),
xa x [a,b]

0, x b
模糊数学
之隶属函数的确定
模糊统计法 指派法 借用已有的客观尺度
模糊统计法
模 糊 统 计 法 : 以 确 定 “青年人” 的隶属函数为 例 ① ☆以人的年龄作为论域U,调查n个人选
☆请他们认真考虑“青年人”的含义后 ②,
提出自己认为的最合适的年龄区间 ☆对于确定年龄(如27),若n个人选中,
③ 有m个人的年龄区间覆盖27,则称m/n 为27对 于 “青年人” 的 隶 属 频 率
例1 参数确定 试确定A = “年 轻 人 ” 的隶属 函数.
指派法选择偏小型柯西分布
1,
x a
A(x) 1,x(a1x a)
a 20, 2,A(30) 0.5
1/ 25
例2 函数修正 试确定A=“靠 近 5的 数 ” 的隶属 函数.
1 A(x)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6 确定隶属函数的方法综述
一、确定隶属函数的几种主要方法
1.F统计方法 确定“青年人”的隶属函数.
以年龄为论域 U , A是“青年人”在 U上的F集. 选取u0 27岁, 用F统计实验确定u0对A的隶属度. 选择若干(n)合适人选,请他们写出各自认为 “青年人”最适宜、最恰当的年限,即将模糊概念 明确化。
隶属频率
m/n
0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78
m A(27) 0.78 n 将论域U分组,每组以中值为代表,分别计算各组
隶属频率.(见表2 2)
表2-2 分组计算隶属频率(实验次数129)
分组
频数 隶属频率
1
33.5~34.5 26 0.202
22.5~23.5 129
1
34.5~35.4 26 0.202
23.5~24.5 129
1
35.5~36.5 1 0.008
24.5~25.5 128 0.992
连续描出图形,可得到“青年人”隶属函数曲线。
1
0.8
0.6
0.4
0.2
0 15 20 25 30 35
设进行了n次试验,第k次试验的映射为ek .

aik
(u)
1 0
ek (u) Ai ek (u) Ai
aik (u)为元素u在第k次试验划归Ai的次数
u对Ai的隶属频率
Ai
(u)
1 n
n
aik
(u)
k 1
m
Ai
i 1
(u)
m1 i 1n
n
aik
(u)
k 1
1 n
m
n
aik
i 1k 1
(u)
0 b x
1
0a
x
1
0 ab
x
(2)半梯形分布与梯形分布
①偏小型
1 xa
1
A( x)
b b
x a
0
a xb b x
0
ab
x
②偏大型
0
A(
x)
x b
a a
xa a xb
1
1 b x
0 ab
x
③中间型
0
x
a
A(
x
)
b
1
a
d x d c
0
xa a xb b xc c xd dx
17.5~18.5 124 0.961 29.5~30.5 77 0.597
18.5~19.5 125 0.969 30.5~31.5 27 0.209
19.5~20.5 129
1
31.5~32.5 27 0.209
20.5~21.5 129
1
32.5~33.5 26 0.202
21.5~22.5 129
类似地
A3( x) P{ x}
x
P ( x)dx
其中P ( x)和P ( x)分别是随机变量和的概率密度,即
A2( x) 1 A1( x) A3( x) 按概率方法计算,得
A1
(
x)
1
x a1
1
A3
(
x
)
x
a2
2
从而
这里
பைடு நூலகம்A2
(
x
)
x
a1
1
x
a2
2
x
( x)
若n次实验中覆盖27岁的年龄区间的次数为m,
则称m/n为27岁对于(青年人)的隶属频率。
表2-1 27岁对(青年人)的隶属频率
实验次数n 10 20 30 40 50 60 70 80 90 100 110 120 130
隶属次数m 6 14 23 31 39 47 53 62 68 76 85 95 101
1
t2
e 2 dt
2
用这种方法确定三相隶属函数的方法,叫做三分法.
3.F分布 实数R作为论域的情况. 实数R上F集的隶属函数称为F分布.
列出典型F分布, 根据问题性质选择适当分布.
(1)矩形分布或半矩形分布
1 ①偏小型
A(
x)
1 0
xa xa
0a
x
②偏大型
A(
x)
0 1
xa xa
③中间型
0 x a A( x) 1 a x b
分组
频数 隶属频率
13.5~14.5
2
0.016 25.5~26.5 103 0.798
14.5~15.5
27 0.210 26.5~27.5 101 0.783
15.5~16.5
51 0.395 27.5~28.5 99 0.767
16.5~17.5
67 0.519 28.5~29.5 80 0.620
A(u0 )
区 别:
若把概率统计比喻为“变动的点”是否 落在“不动的圈”内,
则把模糊统计比喻为“变动的圈”是否 盖住“不动的点”.
二相F统计: 设有二相集P2 { A, Ac }
每次F试验确定一个映射: e : U P2 这是对U的一次划分,是两个相反的模糊概念 在U中竟选的结果。隶属函数A(u)与Ac (u)满足

e(
,
)(
x)
A1( A2 (
x) x)
x x
A3( x) x
概率P{ x }是随机变量落在区间[ x,b)的可能大小.
若x增大,则[ x,b)变小,从而落在区间 [ x,b)的可能性
也变小. 概率P{ x }的这个特性与矮个子F集相同 .
所以有
A1( x) P{ x } x P ( x)dx
1 0a b c d x
: 矮个子与中等个子的分界点
:中等个子与高个子的分界点
矮个子,中等个子和高个子的区间是随机区间,
从而和是随机变量.它们服从正态分布.
~
N
(a1
,
2 1
),
~
N
(a2
,
2 2
)
A1( x)
A2( x)
A3( x)
0
a1
a2
x
数对( , )确定映射
e( ,) : U { A1, A2, A3}
1 n
nm
aik
k 1i 1
(u)
1 n
n
1
i 1
1 n

n
1
2.三分法 用随机区间的思想处理模糊性(模糊性的清晰化)
建立矮个子A1 ,中等个子A2 ,高个子A3的隶属函数 设 P3 { A1, A2, A3}, U [0,3] (单位:m) 每次F试验确定U的一次划分,每次划分确定 一对数( ,).
u U , A(u) Ac (u) 1
多相F统计: 设有多相集Pm { A1, A2 , , Am } Ai F (U ) i 1,2 m.每次试验都确定一个映射
e : U Pm 多项F统计的结果,可确定各相在U上的隶属函数 它们满足
u U , A1(u) A2(u) Am (u) 1

上述F统计试验说明了隶属程度的客观规律.
中年人
F统计与概率统计区别:
随机试验: 在每次试验中,A是确定的,
基本事件是随机变动的. 做n次试验
A发生的频率 “ A”的次数 P( A)
n
F统计试验:在每次试验中,u0是确定的, 集合A 是随机变动的 . 做n次试验
u0 对A的隶属频率
“u0
A”的次数 n
相关文档
最新文档