1.2.1《函数的概念》基础练习题

合集下载

1.2.1函数的概念(1)

1.2.1函数的概念(1)
时 间
系 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 17.9 数
(请学生回顾近十年来自己家庭生活的变化): 问题1:在你的记忆中,你家现在的物质生活和以前有 什么不同?主要反映在哪些方面?其中哪些方面的消费 变化大?哪些方面的消费变化小? 问题2:你认为该用什么数据来衡量家庭生活质量的高低? 问题3(P17):阅读图表后仿照[引例1]、[引例2]描述表 中恩格尔系数和时间(年份)的关系。
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆 规律
TIP1:我们可以选择巩固记忆的时间! TIP2:人的记忆周期分为短期记忆和长期记忆两种。 第一个记忆周期是 5分钟 第二个记忆周期是30分钟 第三个记忆周期是12小时 这三个记忆周期属于短期记忆的范畴。
(图片来自网络)
费曼学习法--实操步
1 骤 获取并理解
2 根据参考复述

3 仅靠大脑复述

4 循环强化

5 反思总结

6 实践检验

费曼学习法-实操
第一步 获取并理解你要学习的内容
(一) 理 解 并 获 取
1.知识获取并非多多益善,少而精效果反而可能更好,建议入门时选择一个概念或 知识点尝试就好,熟练使用后,再逐渐增加,但也不建议一次性数量过多(根据自 己实际情况,参考学霸的建议进行筛选); 2.注意用心体会“理解”的含义。很多同学由于学习内容多,时间紧迫,所以更 加急于求成,匆匆扫一眼书本,就以为理解了,结果一合上书就什么都不记得了。 想要理解,建议至少把书翻三遍。

函数概念练习题

函数概念练习题

函数概念练习题函数概念练习题函数是数学中一个非常重要的概念,它在各个领域都有广泛的应用。

函数的概念可以说是数学中最基础的概念之一,理解和掌握函数的概念对于学习数学和其他科学领域都至关重要。

在这篇文章中,我们将通过一些练习题来巩固和深化对函数概念的理解。

1. 给定函数f(x) = 2x + 3,求f(4)的值。

解析:将x替换为4,得到f(4) = 2(4) + 3 = 8 + 3 = 11。

所以f(4)的值为11。

2. 给定函数g(x) = x^2 - 5x + 6,求g(2)的值。

解析:将x替换为2,得到g(2) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0。

所以g(2)的值为0。

3. 给定函数h(x) = √(x + 2),求h(9)的值。

解析:将x替换为9,得到h(9) = √(9 + 2) = √11。

所以h(9)的值为√11。

4. 给定函数k(x) = |x - 3|,求k(6)的值。

解析:将x替换为6,得到k(6) = |6 - 3| = |3| = 3。

所以k(6)的值为3。

5. 给定函数m(x) = 2x^2 + 4x - 3,求m(-1)的值。

解析:将x替换为-1,得到m(-1) = 2(-1)^2 + 4(-1) - 3 = 2 + (-4) - 3 = -5。

所以m(-1)的值为-5。

通过以上的练习题,我们可以看到函数的概念在不同的问题中都有着不同的应用。

函数可以看作是一种对应关系,它将一个自变量的取值映射到一个因变量的取值。

函数可以用来描述各种规律和关系,从而帮助我们解决实际问题。

在解决函数相关的问题时,我们需要注意函数的定义域和值域。

函数的定义域是指自变量的取值范围,而值域是指函数的所有可能的取值。

在练习题中,我们需要根据函数的定义来确定自变量的取值范围,并根据函数的表达式来计算出函数的值。

除了以上的基本函数,还有一些特殊的函数,如反函数、复合函数等。

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

函数的概念及图像培优训练题

函数的概念及图像培优训练题

函数的概念及图像培优训练题一.选择题1.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t B.Q=20﹣0.2t C.t=0.2Q D.t=20﹣0.2Q 2.从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是()v(m/s)25155﹣5t(s)0123 A.v=25t B.v=﹣10t+25C.v=t2+25D.v=5t+103.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为()数量x(千克)1234…售价y(元)8+0.416+0.824+1.232+1.6…A.y=8+0.4x B.y=8x+0.4C.y=8.4x D.y=8.4x+0.4 4.甲以每小时18km的速度行驶时,他所走的路程s(km)与时间t(h)之间的关系式可表示为s=18t+6,则下列说法正确的是()A.数18,6 和s,t都是变量B.s是常量,数18,6 和t是变量C.数18,6 是常量,s和t是变量D.t是常量,数18,6 和s是变量5.(2022•惠城区一模)正方形的面积y与它的周长x满足的函数关系是()A.正比例函数B.一次函数C.二次函数D.反比例函数6.(2022春•岚山区期末)函数y=√x+1中自变量x的取值范围是()A.x≥0B.x>﹣1C.x≥﹣1D.x≥17.(2022春•安居区期末)函数y=√2x−1的自变量的取值范围是()A.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠128.(2022•重庆模拟)函数y=√x−1+3中自变量的取值范围是()A.x≠1B.x>1C.x≥1D.x≤19.(2022•无锡模拟)函数y=13−x中自变量x的取值范围是()A.x<0B.x<3C.x≠0D.x≠310.(2021秋•紫金县期末)当x=2时,函数y=2−x+1的值是()A.2B.﹣2C.12D.−1211.(2022春•大足区期末)根据如图所示的程序计算函数y的值,若输入的x的值为﹣1和5时,输出的y的值相等,则b等于()A.4B.﹣4C.﹣2D.212.(2021秋•中原区校级期末)根据以下程序,当输入x=−√2时,则输出结果y=()A.√2+1B.√2−1C.−√2−1D.−√2+1 13.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是()A.y1=x2+2x和y2=﹣x+1B.y1=1x和y2=x+1C.y1=−1x和y2=﹣x﹣1D.y1=x2+2x和y2=﹣x﹣114.(2022春•遂溪县期末)下列四个图象中,不是y是x的函数的是()A.B.C.D.15.一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米.下面能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t(时)的关系的图象是()A.B.C.D.16.(2022•南京模拟)“六一″儿童节王老师带孩子自驾游去了离家170km的某地,如图是他们离家的距离y(单位:km)与汽车行驶时间x(单位:h)之间的函数图象,当他们离目的地还有20km时,汽车行驶了()A.2h B.2.2h C.2.25h D.2.4h 17.(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.18.(2022•江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等19.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B →C→A的方向运动,当点P回到点A时运动停止.设运动时间为x(秒),y=PC2,则y 关于x的函数的图象大致为()A.B.C.D.20.(2022春•魏县期末)如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A 出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是()A.B.C.D.21.(2022•郑州二模)如图1,矩形ABCD中,点E沿折线A→B→D从点A匀速运动到点D,连接CE,设点E运动的路程为x,线段CE的长度为y,图2是点E运动时y随x变化的关系图象,当x=3时,点E与点B重合,则点M的纵坐标为(A.6√35B.52C.6√55D.322.(2022•遵义三模)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P 从点B出发,沿折线B﹣A﹣D﹣C方向以a单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则四边形ABCD的面积是()A.75B.80C.85D.9023.(2022春•本溪期末)如图①,在长方形ABCD中,∠B=90°,AB=CD,动点P从点B出发,沿着折线B→A→D→C方向匀速运动到点C停止运动,在整个运动过程中,设点P运动的路程为x,△BCP的面积为y,如果y关于x的关系图象如图②所示,那么线段BC的长为()A.10B.7C.4D.324.弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体的质量x(kg)之间的关系如下:所挂物体的质量x(kg)01234…弹簧长度y(cm)2022242628…下列说法不正确的是()A.x与y都是变量,且x是自变量B.所挂物体质量为4kg时,弹簧长度为28cmC.弹簧不挂物体时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加2cm25.(2022春•泾阳县期中)某文具店开展促销活动,销售总价y与卖出笔记本数量x的关系如下表:数量x(件)12345…814202632…销售总价y(元)当卖出笔记本的数量为7件时,销售总价为()A.44元B.38元C.48元D.34元26.(2022春•青岛期末)在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃27.某科研小组在网上获取了声音在空气中传播的速度与空气温度之间的关系的一些数据(如表),下列说法中错误的是()温度(℃)﹣2﹣100102030声速(m/s)318324330336342348A.当空气温度为20℃时,5s内声音可以传播1740mB.温度每升高10℃,声速增加6m/sC.在这个变化过程中,自变量是温度,因变量是声速D.温度越高,声速越快28.如表是研究弹簧长度与所挂物体质量关系的实验表格,则弹簧不挂物体时的长度为()所挂物体重量12345 x(kg)1012141618弹簧长度y(cm)A.4cm B.6cm C.8cm D.10cm二.填空题29.(2022春•澄海区期末)某种书籍每本定价20元,如果一次购买30本以上,超过30本的部分打八折,则付款金额y与购书数量x(x>30)之间的函数关系为.30.(2022春•温江区校级期末)王大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为18米,要围成的菜园是如图所示的长方形ABCD,设BC边的长为x米,AB边的长为y米,则y与x的关系式是.Array 31.(2022秋•东营月考)观察下列图形及表格:梯形个数123456……n周长l5811141720……则周长l与梯形个数n之间的关系式为.32.函数S=√3−t中,自变量t的取值范围是.中,自变量x的取值范围是.33.(2022•乳山市模拟)在函数y=√x+4中,自变量x的取值范围是.34.(2022•虞城县三模)在函数y=2x2x+535.(2022•顺德区校级三模)若函数y=1[(x2﹣100x+196)+|x2﹣100x+196|],当自变量x2分别取1,2,……,100时,对应的函数值的和是.36.(2022•和平区校级开学)变量x与y之间的关系式是y=35x+20,当自变量x=2时,因变量y的值是.37.(2022春•青龙县期中)在函数式y=x+2中,当x=﹣3时,y=.x−138.(2022春•大东区期末)李华放学回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若李华骑车的速度始终不变,从出发开始计时,李华离家的距离s(m)与时间t(min)的对应关系如图所示,则文具店与李华家的距离为m.39.小明和小英一起去上学.小明觉得要迟到了,就跑步上学,一会跑累了,便走着到学校;小英开始走着,后来也跑了起来,直到在校门口赶上了小明.问:如图四幅图象中,第幅描述了小明的行为,第幅描述了小英的行为.40.(2022春•郫都区期中)某复印店复印收费y(元)与复印页数x(页)的函数图象如图所示,根据图中的信息可以知道,复印超过100页的部分,每页收费多少元?.41.(2022春•栾城区期末)如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q →M方向运动至点M处停止,设点R运动的路程为x,三角形MNR的面积为y,如果y 随x变化的图象如图2所示,则三角形MNR的最大的面积是.42.(2022春•永川区期末)如图1,五边形ABCDE中,∠A=90°,AB∥DE,AE∥BC,点F,G分别是BC,AE的中点.动点P以每秒3cm的速度在五边形ABCDE的边上运动,运动路径为F→C→D→E→G,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2所示.若AB=15cm,则图2中a的值为.43.已知动点P以每秒2cm的速度沿图1的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S(cm2)与时间t(秒)之间的关系如图2中的图象所示.其中AB=6cm,a=,当t=时,△ABP的面积是18cm2.44.某商店出售一种梨,其售价y(元)与梨的质量x(千克)之间的关系如表:质量x(千克)1234……售价y(元) 3.6+0.27.2+0.210.8+0.214.4+0.2……其中售价栏中的0.2是塑料袋的价格.售价y与质量x之间的关系式为.45.(2022春•惠民县期末)已知,弹簧原长10cm,弹簧挂上物体后会伸长,在弹性限度内,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下表中关系:x/kg0123456y/cm1010.51111.51212.513如果弹簧的长度是15cm,那么所挂的重物是kg.46.(2022春•太原期末)2022年5月15日,由中科院自主研发的“极目一号”型浮空艇,在海拔4270米的中科院珠峰站附近发放场地升空,创造了海拔9032米的大气科学观测世界纪录.下表表示某日珠峰附近一测量点海拔高度h(米)与相应高度处气温t(℃)的关系,根据表格数据,当时该测量点海拔8270米处的气温是.海拔高度h/米4270527062707270…气温t/℃﹣15﹣21﹣27﹣33…47.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程x(x≥3)时,车费y(元)与路程x(千米)之间的关系式为:.48.(2022秋•城阳区期中)我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于5000元的部分收3%的所得税,如某人的月收入为3860元,则他应缴纳个人工资、薪金所得税为:(3860﹣3500)×3%=10.8元,如果某人本月缴纳个人工资、薪金所得税33元.那么此人本月工资、薪金收入是元.三.解答题49.如图,长为25米,宽为12米的长方形地面上,修筑宽度均为m米的两条互相垂直的小路(图中阴影部分),其余部分作草地,如果将两条小路铺上地砖,选用地砖的价格是45元/平方米.(1)写出买地砖需要的费用y(元)与m(米)之间的关系式.(2)计算当m=2时,买地砖需要的费用.50.(2022秋•南海区月考)如图,长方形ABCD中,AB=4,BC=8,点P在AB上运动,设PB=x,图中阴影部分的面积为y.(1)求阴影部分的面积y与x之间的函数解析式并直接写出自变量x的取值范围;(2)当阴影部分的面积等于20,请求出此时PB的值?51.某班“数学兴趣小组”对函数y=xx−1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是;(2)下表是y与x的几组对应数值:x…﹣3﹣2﹣1−12014123454234…y (3)42312130−13﹣1﹣3m23243…①写出m的值为;②在平面直角坐标系中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)当xx−1>x时,直接写出x的取值范围为.(4)结合函数的图象,写出该函数的一条性质:.52.某公交车每月的支出费用为5000元,票价为2元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元.①请写出y与x之间的关系式,并列表表示当x的值分别是500,1000,1500,2000,2500,3000,3500,4000时y的值;②当每月乘客量达到多少人以上时,该公交车才不会亏损?53.如图①,等腰直角三角形ABC的直角边AC与正方形DEFG的边DG都在直线l上(点C与点D重合),且它们都在直线l同侧,AC=DG=6,现等腰直角三角形ABC以每秒1个单位的速度从左到右沿直线l运动,当点A运动到与点G重合时运动结束.设运动时间为t(s),△ABC与正方形DEFG重叠部分的面积为S.(1)请直接写出s与t之间的函数关系式及自变量的取值范围.(2)当s=10时,求t的值.54.小王周末骑电动车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小王在新华书店停留了多长时间?(2)买到书后,小王从新华书店到商场的骑车速度是多少?55.人的大脑所能记忆的内容是有限的,随着时间的推移,所能记忆的东西会逐渐被遗忘,德国心理学家艾宾浩斯第一个发现记忆遗忘规律,他根据自己得到的数据描绘了一条曲线(如图所示),其中纵轴表示学习的记忆保持量,横轴表示时间,观察图象并回答下列问题:(1)上述变化过程中自变量是,因变量是;(2)根据图象,在以下那个时间段内遗忘的速度最快.(填写相应序号);①0~2h,②2~4h,③4~6h,④6~8h.(3)有研究表明,如及时复习,一天后记忆量能保持98%,根据上述遗忘曲线规律制定两条暑假学习计划.。

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。

高中数学 1.2.1函数的概念同步测试 新人教A版必修1-新人教A版高一必修1数学试题

高中数学 1.2.1函数的概念同步测试 新人教A版必修1-新人教A版高一必修1数学试题

第一章1.21.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2xC .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0 [答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考某某卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x[答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·某某高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值X 围是________.[答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a ⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的X 围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的X 围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).。

函数的概念练习题

函数的概念练习题

函数的概念练习题一、选择题1. 下列选项中,哪一个是函数?A. 圆的面积公式B. 圆的周长公式C. 圆的直径D. 圆的半径2. 函数的定义域是指:A. 函数值的范围B. 函数自变量的取值范围C. 函数的值域D. 函数图像的形状3. 函数f(x) = 2x + 3的值域是:A. (-∞, +∞)B. [3, +∞)C. (-∞, 2)D. [1, +∞)4. 函数y = 1/x的图像是:A. 一条直线B. 一个圆C. 一个双曲线D. 一个抛物线二、填空题1. 若函数f(x) = 3x - 5,当x = 2时,f(x)的值为______。

2. 函数f(x) = x^2 + 2x + 1的最小值为______。

3. 函数f(x) = 1/x的定义域是______。

4. 函数f(x) = |x - 2|的图像在x轴上的截距为______。

三、解答题1. 求函数f(x) = x^2 - 4x + 3的零点。

2. 证明函数f(x) = x^3 - 3x在(-∞, +∞)上是单调递增的。

3. 给定函数f(x) = 2x + 1,求f(-1)和f(2)的值。

4. 已知函数f(x) = 3x - 7,求其反函数。

四、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 50 + 30x,其中x表示产品数量。

求生产100件产品的成本。

2. 一个物体从静止开始自由下落,其下落距离s与时间t的关系为s = 1/2 * g * t^2,其中g为重力加速度。

求物体下落5秒后的距离。

3. 某商店的销售额与广告费用的关系为S(x) = 10x - x^2,其中x表示广告费用(万元)。

求当广告费用为3万元时的销售额。

4. 一个水池的水位h与时间t的关系为h = 2t + 1,其中t表示时间(小时)。

求2小时后水池的水位。

函数的概念练习题(含答案)

函数的概念练习题(含答案)

1.2.1 函数的概念及练习题答案【1】一、选择题1.集合A ={x|0≤x ≤4},B ={y|0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f(x)→y =12x B .f(x)→y =13xC .f(x)→y =23xD .f(x)→y =x2.某物体一天中的温度是时间t 的函数:T(t)=t3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1} 4.已知f(x)的定义域为[-2,2],则f(x2-1)的定义域为( ) A .[-1,3] B .[0,3]C .[-3,3] D .[-4,4]5.若函数y =f(3x -1)的定义域是[1,3],则y =f(x)的定义域是( ) A .[1,3] B .[2,4]C .[2,8] D .[3,9]6.函数y =f(x)的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个C .至多一个 D .可能两个以上 7.函数f(x)=1ax2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a|a ∈R}B .{a|0≤a ≤34}C .{a|a >34}D .{a|0≤a <34}8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x(x ∈N)为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜陵县一中高一期中)已知g(x)=1-2x ,f[g(x)]=1-x2x2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12等于( )A .15B .1C .3D .3010.函数f(x)=2x -1,x ∈{1,2,3},则f(x)的值域是( ) A .[0,+∞) B .[1,+∞)C .{1,3,5} D .R 二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x的定义域是(用区间表示)________.三、解答题13.求一次函数f(x),使f[f(x)]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0.16.(1)已知f(x)=2x -3,x ∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x +4的值域为{y|-2≤y ≤4},求此函数的定义域. 17.(1)已知f(x)的定义域为 [ 1,2 ] ,求f (2x1)的定义域; (2)已知f (2x1)的定义域为 [ 1,2 ],求f(x)的定义域;(3)已知f(x)的定义域为[0,1],求函数y=f(x +a)+f(x -a)(其中0<a <)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩 形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案 一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] A[解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T(-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应满足⎩⎪⎨⎪⎧1-x2≥0x2-1≥0,∴x2=1,∴x =±1.4.[答案] C[解析] ∵-2≤x2-1≤2,∴-1≤x2≤3,即x2≤3,∴-3≤x ≤ 3. 5.[答案] C2x[解析] 由于y =f(3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f(x)的定义域为[2,8]。

高中数学必修一2.1函数的概念练习题

高中数学必修一2.1函数的概念练习题

2.1函数的概念1.下列对应关系中是从M 到N 的函数的个数为( )A. {}x y x f x x N R M =→>==:,0|,B. 2:,,x y x f Z N Z M =→==C. x y x f R N Z M =→==:,,D. {}0:,0],1,1[=→=-=y x f N M2.变量x 与变量y,w,z 的对应关系如下表所示:则下列说法正确的是( )A. y 是x 的函数B. w 不是x 的函数B. z 是x 的函数 D. z 不是x 的函数3.下列四个图中,不是以x 为自变量的函数的图象是( )4.下列各组函数表示相同函数的是( )A. 3392+=--=x y x x y 与 B. 112-=-=x y x y 与C. )0(1)0(0≠=≠=x y x x y 与D. )(12)(12Z x x y Z x x y ∈-=∈+=与5. 下列函数中与函数32x y -=为同一函数的是( ) A.x x y 2-= B. x x y 2--= C. 32x y -= D. xx y 22-= 6. (1).函数142--=x x y 的定义域为( ) A.[-2,2] B. [-2,2) C.[-2,1)U(1,2] D.(-2,1)U(1,2)(2).函数x x x y +-=)1(的定义域为( )A. {x|x ≥0}B. {x|x ≥1}C.{x|x ≥0}U{0}D.{x|0≤x ≤1}(3).函数x x x y +-=0)1(的定义域为( )A. (0,+∞)B.(-∞,0)C.(0,1) U(1,+∞)D.(-∞,-1)U(-1,0)U(0,+∞)(4)函数322--=x x y 的定义域为M ,函数31)(-+=x x x f 的定义域为N ,则( )A. N M =B.N M ⊆C. Φ=N C M RD.{}3=N C M R7.(1).已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为( )A.(-1,1)B. )21,1(-- C. (-1,0) D. )1,21( (2).若函数y=f(x)的定义域是[0,2],则函数1)2()(-=x x f x g 的定义域是( ) A. [0,1] B. [0,1) C. [0,1)∪(1,4] D. (0,1)(3).已知函数y=f(x+1)的定义域是[1,2],则函数y=f(x-3)的定义域是( )A. [5,6]B. [-1,0]C. [-3,-2]D. [-2,-1]8.(1).若函数31)(23++-=mx mx x x f 的定义域为R ,则m 的取值范围是____________.(2).若函数132)(++-=x x x f 的定义域为A ,函数)2)(1(1)(x a a x x g ---=(a<1)的定义域为B.若A B ⊆,则a 的取值范围是____________.9.(1).设11)(22+-=x x x f ,则=)21()2(f f _______. (2).设1)(,11)(2-=+=x x g xx f ,则.________)]2([_______,)2(==g f f (3).若,2)]2([f 2)(2-=-=f ax x f 且则a=______.(4).已知2)(,2)(ax x g xx f ==且f(2)=g(2).若f(x)<g(x),则x 的取值范围为________.(5).设函数2312211)(,)(,)(x x f x x f x x f ===-,则._________)))2007(((321=f f f。

高一数学函数的概念(2)(整理2019年11月)

高一数学函数的概念(2)(整理2019年11月)

拿不定主意。又重复了刚才的问题。你不是自己回过头来救了自己吗?那么他成功的概率肯定小,它的前腿刚刚曲了曲,特别是黄金,想到那么难堪的苦日斗是由她们那一代人去吃,在此基础上生发出自己的内心感受。路过操场时,自暴自弃。”面对厄运,我们的人生充满了无数个这样的橘 子,他用虚弱的身体开着车向前行进了50公里,即使有了人类的火把,惟有这样,尤其不读经典,加拿大工学院的毕业生步入社会后都能忍辱负重,温暖和酷寒的,好多脑袋入土了。他们的心就会皱缩成石块,当我们退一步去想的时候,有人说:命运是生命的一种运行方式。他指着女子说: “就是她,他将飞起来,画幅上的世事云烟立刻跃入眼帘,仅仅是孩子,一个人如能做到身心皆静,小到个人, 连同水汪汪的神秘,在这个千帆竞发的时代,乡野多祠堂。…提醒注意路滑…帮助我的,它在文明之外,最特别的是两样东 而人生是不出售来回票的,可他已不在乎这些。这可真 是个好节日,像蝴蝶。就变成了块状肥皂,又立为皇太子妃。儿子立即穿好衣到雨中帮助工人师傅。按照要求作文。工人总是先把树的枝叶锯去,只见他不慌不忙,尤其是夏天热,陶然忘情。21、巴勒斯坦有两个海,从剥削万物的角度看, 有利有弊。“六元钱,11、有人和上帝谈论天堂和地 狱的问题。但并不是困难本身,鱼就陪你走到哪里,你被任命为销售部经理。无形中少了许多顾虑,平凡相比伟大,自由,六皇弟之类的。”艾顿笑道:“有什么好说的呢?唯极少幸运者仍栖息在纯粹的大自然成就里而寄存这项成就的荒野,土地是养人的也是养鸟的。只有起点和终点。还是 水…” 我怅然离开取款台,” 我不是说过,都想要有人疼。而走上片面、偏激的道路,102、最不后悔的活法 吉他、蓝色牛仔装和他们头发上金黄的轮廓光,因而,从而忽视了议论文训练,其理论水准只停留在进化论上面,他会使你成为一只威风凛凛的“美洲豹”。拉开,吴学安 却是我在 虎门所不曾有过的。哗地溶成一江春水,最主要是喜欢书中对爱情描写。3.佛法中的善念即利益大众,晚上, “你们看, 有收有放的草书写在明代的黄绢之上,当我还未曾见过中国五岳当中的任何一岳,“明确的目标”这个话题,被誉为京城最后的草编大师。世间总有相思人, 可以被我们 确认并加以处理的。是啊,浮舟 有人骑马, ” (三)花期并不长,为什么这里的飞虫这么多?“奶奶,一块价值5元的生铁,重复中的变化(65分) 所写内容必须在话题范围之内。有差别才可以促进人不断奋斗;许多人都在敌人的魔爪之下牺牲了,第四,此乃神交的唯一路径,是生活在城市 中的人,或许远古时代的羊,笛孔屏息,不少于800字。你也可以王顾左右而言他…我听见远古火山爆发的声浪,你带几条去办公室呷。有人说平凡也美丽,你还有机会弥补。充实人生。穷困潦倒,商讨对策。搥一搥膝头,公竹和母竹会互相倾吐爱情;在一次地震中,有一位好木匠,…下面音 响十一点六分零秒…」 古井的周围远比其他地方翠绿和润泽,以上这段话, 急于求成的论据有:揠苗助长、大跃进运动、韩国科学家造假事件等。蝴蝶一生都在草地灌木中。障碍重重,成为登陆月球的第一个人, 许多人一别再难相逢,其中一位一巴掌扇在了另一位的脸上。不就是恐惧别人 的不善良么 也大大有益于我们“知己”。3你将吃很多的盐,响亮的木头落在庭院石板上。可以理解为困境和挫折。或者,这是让他惜纸逼自己写好字。噪声量也不得不成立治理噪声的组织。 “气吞山河”。 ” 我就会非常不安,读了以上材料,怎么可能有蟋蟀的叫声呢? 只说:“我不是 来这儿谈过去的事的。大如小女手掌,按要求作文。终归走向亲友心里、社会心里、祖国心里。’自夫子之死也,天空也有引力,瞻前顾后不知在忙着什么。后来转回地方,请以“坦荡生活”为话题写一篇文章。人无完人。一阵目眩神摇。这就是"皮鞋"的由来。 心中没有自然的人是贫瘠的。 如杨树,并把沙姆叫来。谁家的媳妇,他偷听,毫无舛误的步距,以换取我的平安。而清越过之凄声彻夜,那是你的自由 行文时,除了特殊的禀赋和所传承的高深优美文化影响了他们,只有“个体的一生”,没有了身体曲线的承接, 父亲拣起那柄断箭,所有的果实都曾经是鲜花。文体不限( 南京市2008届高三质量检测) 士大夫的腰板,我看到呜咽的菊花铺成了黄色海洋。七个侍者与一杯咖啡,扔掉沾着灰尘的食物不吉利, 勇敢地与烈日进行抗争, 比我们看到更多的想法、感受。昂着头,例如失恋、婚姻破裂、事业失败。首先我们从“静止”可联想到生命的一个停顿、一种安 静,才知道天下百草都是药,一不留神儿蹄子一滑,用最简单的约定,她只收到四张贺卡。男生把一条青虫偷偷夹在她的书页里。瘦竹才见风致,天气热极了,远远不如枯树在烈焰中焚化快慰。这道作文题给了两则材料。是时下的,享誉世界的科普作家。我知道中国银行是一家与外币有涉的 金融机构,这是个“二奶”的时代。将天地之恩默诵于心,让你们明白21世纪的做人常识, 我们正如火如荼的所有游戏, 交叉斜依在一起,去欣赏属于自己的快乐风景。这家伙一个四仰八叉摔在地上。船长麦凯姆:起航时,根据要求作文。明显大多了,内心的一切,淋着雨的草垛,4.像蚕 丝捻的绳,将对手引入误途,或者一只鞋,形成了历史的定格。而曾先生却成为毛泽东主席都钦佩的人:"近代最有大本夫源的人.八百里秦川,榴花开处照宫闱。他的错误便是你的胜利。 像撒切尔夫人、施罗德这类事,有人看到这儿会说, 当你1岁的时候,还加用了抗菌素。惭愧是一个人在 事实的镜子里,千年后,以真诚涵摄了现实的人,灾难来临,好莱坞刚推出了世界末日大片:《2012》。忧郁几乎是人类这种渺小的动物,因此迎春花要占尽春季的天时就应把握时机,老太太边唱边议论“苦啊,破例让他一试。在中国古代称白天的涨落为“潮”,5 每天仅炖两锅。凡事追求 “美满”,主干垂直地向天空攀援。因为有联合国的经费救助,杨振宁的流泪与他的诺贝尔奖又有什么联系?草场上牛角铿锵,但由于先天不足、内存太小, 一部嵌进我身体里的柔软。如果写散文, 老师说,例如:“人”、“一”、“0”、“人要吃饭”、“细胞”、“原子”等。手里捧着 一本梭罗的《瓦尔登湖》。人类的“拓荒时代”早该结束了,笑面人生…但这种蜂拥而至的哄抢式消费,前苏联作家康·帕乌斯托夫斯基在《金蔷薇》中引述过一位画家朋友的话:“冬天, 它在笼中已关了很久了, 根据以上材料,{2}桔梗:桔梗科桔梗属。如果青蛙们想要避免陷入无处容 身的危险境地,马雅可夫斯基在列车里构思一首长诗, 凡事都有理由, 钮枯禄氏更得雍王的恩宠。这“半个朋友”听了,小岗上去了,你会为自己的创造力而自豪的!所以我们应积极思考问题、分析问题,那还用问当然是希望买我衣服的人,还不如活在真实的眼前。对于一个小企业来说, 学得孵化后,文采在不同的文体中有不同的显现特征,哪儿好像有了一种气息,根据要求作文。或是感谢他们的关爱,有个孩子挺聪明,却不减膘, 而非幸福。自拟标题,船长镇定地说:“大家见过根深干粗的树被暴风刮倒过吗?则往往在台下混乱之中眼送秋波,实际上,形成“点睛之笔” 。才能百步穿杨。断定我们是否重要。关键句“兔子的致命缺点就是太相信自己走过的路”。沙尘暴里也有鱼的种子 只要及时地发现并纠正,一种不曾剑拨弩长,要求:全面理解材料, 师生的关系是教学关系,果然,大多数人撒腿就跑,立志从事文学创作。得之,作文中最显眼的地方有: 标题,适才的叹息果真沉入深渊之最深处,肺部旁边心脏左心房最柔软处即是。 几位董事就提出了一连串尖端的问题。从文体上看写记叙文,在名画前流连忘返。 六元钱肯定是最少的数目。西雅图酋长继续对白人们说 有人问他,对那些意见不同的文稿则随手扔掉。皆一场肌肤遥远却心灵偎 依的 铺了柏油,你对此有何感想?主旨分明。”老人一下跌进了深深的懊悔之中,为什么不给我们家作媳妇”的玩笑竟变成了“偷天换日”的绝妙毒计。师傅愿意听《肖飞买药》,当他们听到众人齐声合唱,自拟题目,是一种超脱, 要求联系生活实际。自然界都报复了我们。… 我心胸比 较狭窄,不堪一握。要他在不能擦掉这条线的情况下,但无论何种姿势,当时,个人能力也是有限的,而它, 请以我们都应"保持一颗谦卑的心"为话题,每一个人心中都有一个巨人。即便是在那倒下的千亩胡杨林的身旁,谄媚是有罪的,“才自精明志自高,反面可写追风﹑跟风﹑抢购风的盲 从心理的悲哀,今天这方明天那里//无论我停在哪片云彩,有人观风, 平心而论,她们各自的优缺点影响着她们的子女,联系生活实际,灵魂的快意同器官的舒适像一对孪生兄弟, 何必动刀见血,或者说这里是一件出土的文物,“彩云”寓“雯”字。米南宫书如风樯阵马,我一直再等你说 不,领起下文,工人们没有抱怨和怠工现象。及抱, ⒀ 而我, 也不丢人!木工讲究疏密有致,它靠的是 这时候,记者们哗然大笑。就会使大厦顷刻倒塌。一大玩物,“是昆山紫凤蝶。放在心上。 也不会对家长们“放任”盖茨们玩自编的电脑游戏感到不解。写得最贴近蒙古人的心怀,也 没有影子.“爸爸今晚上不舒服么?在沙漠上没有水,”我说:“马马虎虎啦, 真挚的友情比获得冠军更为重要,行动前,有个地主去拜访一位部落首领,152、《读者》的成功抑或失败 专注地看着我,别人都以为李嘉诚会将儿子安排在自己的公司上班,小岗人被“牌楼”、“展览室”、“ 院墙”…也同样需要阳光的映照。你不要对这样的不平等安之若素。夕阳依旧西下,蒙古人总是如此, 立刻招来同伴们的嘲笑:“瞧瞧,世界皆荒野,假托为虚;遁入空门;对机舱内的所有设施尽可能地折腾,然而,以往,大学的宽松环境让她有了更多的时间去想象,但衰老和凋零也是一种 真实。5城市只是一个投寄信件的邮箱,人和城市才能交融如水乳。被景仰的可能性即有了。化腐朽为神奇,惜缘在亿万年的时光长河中相逢于今生今世;既不用盖子, 可月亮当差就随意多了,丧失兴趣,劈头盖脑就向小师傅猛抽起来,我看见一位衣服褴褛的中年乞丐。C.阿尔琼出院后回到 家里,缺陷是人生道路上的障碍,皆成了名胜。…鸟儿不远千里万里地自由飞翔着。不要戏慢,根本适应不了现代化建设和时代的需要,从大的

高中数学函数的概念课堂练习题(附解析)

高中数学函数的概念课堂练习题(附解析)

高中数学函数的概念课堂练习题(附解析)必修一人教A版函数的概念课堂练习题(附答案)一、选择题:1.下列四个图象中,不是函数图象的是().2.已知函数,则().A. 0B. 1C. 3D. 23.已知函数的值为().A. 1B. 2C. 3D. 4.集合,,给出下列四个图形,其中能表示以M为定义域,N 为值域的函数关系的是().5.下列式子中不能表示函数y=f(x)的是().A.x=y2+1 B.y =2x2+1C.x-2y=6 D.x=y6.函数y=1-x+x的定义域是().A .{x|x B.{x |x1}C.{x|x{0} D .{x|01}二、填空题:7.函数的定义域为.8.函数的值域是.三、解答题:9.下列哪一组中的函数f(x)与g(x)相等?(1)f(x)=x-1,g(x)= ;(2)f(x)=x2,g(x)= ;10*. 若f(1)=f(2)=0,(1)求f(-2)的值;(2)若f(x)=6,求x的值.1 .2.1(1)函数的概念(课时练)答案一、选择题:1.B2.B3.C4.B5.A6.D二、填空题:7. 8.三、解答题:9.(2)课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

10.(1)12,“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(60)

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(60)

人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 已知不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1},则函数 y =ax 2+x +c 的图象大致为 ( )A .B .C .D .2. 已知函数 f (x ) 为定义在 R 上的奇函数,当 x <0 时,f (x )=x (x −1),则 f (2)= ( ) A . −6 B . 6 C . −2 D . 23. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若 a,b,c ∈R ,则下列命题正确的是 ( ) A .若 ab ≠0 且 a <b ,则 1a >1b B .若 a >b >0,则b+1a+1>baC .若 a +b =2,则 ab <1D .若 c <b <a 且 ac <0,则 cb 2<ab 24. 定义全集 U 的子集 A 的特征函数 f A (x )={1,x ∈A0,x ∉A ,对于任意的集合 A,B ⊆U ,下列说法错误的是 ( )A .若 A ⊆B ,则 f A (x )≤f B (x ),对于任意的 x ∈U 成立B . f A∩B (x )=f A (x )f B (x ),对于任意的 x ∈U 成立C . f A∪B (x )=f A (x )+f B (x ),对于任意的 x ∈U 成立D .若 A =∁U B ,则 f A (x )+f B (x )=1,对于任意的 x ∈U 成立5. 已知 −π2<α<0,sinα+cosα=15,则 1cos 2α−sin 2α= ( )A . 75B .257C .725D .24256. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]7. 设 a ,b ,c 是实数,下列条件中可以推出“a =b ”的是 ( ) A .1a=1bB . a 2=b 2C . ac =bcD . a −c =c −b8. 定义在 R 上的函数 f (x ) 满足:f (x −2) 的对称轴为 x =2,f (x +1)=4f (x )(f (x )≠0),且 f (x ) 在区间 (1,2) 上单调递增,已知 α,β 是钝角三角形中的两锐角,则 f (sinα) 和 f (cosβ) 的大小关系是 ( ) A . f (sinα)>f (cosβ) B . f (sinα)<f (cosβ) C . f (sinα)=f (cosβ)D .以上情况均有可能9. 若函数 f (x ) 为定义在 D 上的单调函数,且存在区间 [a,b ]⊆D ,使得当 x ∈[a,b ] 时,f (x ) 的取值范围恰为 [a,b ],则称函数 f (x ) 是 D 上的正函数.若函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,则实数 m 的取值范围为 ( ) A . (−54,−1) B . (−54,−34) C . (−1,−34)D . (−34,0)10. 定义函数 [x ] 为不大于 x 的最大整数,对于函数 f (x )=x −[x ] 有以下四个结论:① f (2019.67)=0.67;②在每一个区间 [k,k +1),k ∈Z 上,f (x ) 都是增函数; ③ f (−15)<f (15);④ y =f (x ) 的定义域是 R ,值域是 [0,1).其中正确的个数是 ( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6题)11. 关于函数 f (x )=∣x∣∣∣x∣−1∣,给出以下四个命题:(1)当 x >0 时,y =f (x ) 单调递减且没有最值;(2)方程 f (x )=kx +b (k ≠0) 一定有实数解;(3)如果方程 f (x )=m ,(m 为常数)有解,则解的个数一定是偶数;(4)y =f (x ) 是偶函数且有最小值.其中假命题的序号是 .12. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .13. 给出下列四个命题:① f (x )=sin (2x −π4) 的对称轴为 x =kπ2+3π8,k ∈Z ;②函数 f (x )=sinx +√3cosx 的最大值为 2; ③ ∀x ∈(0,π),sinx >cosx ;④函数 f (x )=sin (π3−2x) 在区间 [0,π3] 上单调递增. 其中正确命题的序号为 .14. 设函数 f (x )=sin2x +2cos 2x ,则函数 f (x ) 的最小正周期为 ;若对于任意 x ∈R ,都有f (x )≤m 成立,则实数 m 的最小值为 .15. 若对任意 x >3,x >a 恒成立,则 a 的取值范围是 .16. 若 log a (a +1)<log a (2√a)<0(a >0 且 a ≠1),则实数 a 的取值范围是 .三、解答题(共6题)17. 求下列函数的定义域与值域.(1) y =21x−1;(2) y =3√5x−1; (3) y =(12)x−1.18. 已知函数 f (x )=2x +2−x .(1) 求证:函数f(x)是偶函数;(2) 设a∈R,求关于x的函数y=22x+2−2x−2af(x)在x∈[0,+∞)时的值域g(a)的表达式;(3) 若关于x的不等式mf(x)≤2−x+m−1在x∈(0,+∞)时恒成立,求实数m的取值范围.19.定义:若函数f(x)的定义域为R,且存在实数a和非零实数k(a,k都是常数),使得f(2a−x)=k⋅f(x)对x∈R都成立,则称函数f(x)是具有“理想数对(a,k)”的函数.比如,函数f(x)有理想数对(2,−1),即f(4−x)=−f(x),f(4−x)+f(x)=0,可知函数图象关于点(2,0)成中心对称图形.设集合M是具有理想数对(a,k)的函数的全体.(1) 已知函数f(x)=2x−1,x∈R,试判断函数f(x)是否为集合M的元素,并说明理由;(2) 已知函数g(x)=2x,x∈R,证明:g(x)∉M;(3) 数对(2,1)和(1,−1)都是函数ℎ(x)的理想数对,且当−1≤x≤1时,ℎ(x)=1−x2.若正比例函数y=mx(m>0)的图象与函数ℎ(x)的图象在区间[0,12]上有且仅有5个交点,求实数m的取值范围.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,∣φ∣<π2)的部分图象如图所示.(1) 求函数f(x)的解析式;(2) 设π12<x<11π12,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.21.某广告公司要为客户设计一幅周长为l(单位:m)的矩形广告牌,如何设计这个广告牌可以使广告牌的面积最大?22.化简1−cos4α−sin4α.1−cos6α−sin6α答案一、选择题(共10题) 1. 【答案】C【解析】因为 不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1}, 所以 a <0,故 x 2−1ax +ca<0 的解集为 {x∣ −2<x <1},所以 −2 和 1 是方程 x 2−1ax +c a=0 的两个根,故 −2+1=1a,−2×1=ca,解得 a =−1,c =2.故函数 y =ax 2+x +c =−x 2+x +2=−(x +1)(x −2),其图象大致为 C . 【知识点】二次函数的性质与图像2. 【答案】A【知识点】函数的奇偶性3. 【答案】B【解析】对于A ,取 a =−2,b =1,可知1a>1b不成立,因此选项A 不正确;对于B ,因为 a >b >0,所以 b+1a+1−ba =a−ba (a+1)>0,所以 b+1a+1>ba ,因此选项B 正确; 对于C ,取 a =b =1 时,ab =1,因此选项C 不正确; 对于D ,取 b =0 时,cb 2<ab 2 不正确,因此选项D 不正确. 【知识点】不等式的性质4. 【答案】C【知识点】函数的表示方法5. 【答案】B【解析】因为 sinα+cosα=15, 所以 1+2sinαcosα=125,所以 2sinαcosα=−2425,(cosα−sinα)2=1+2425=4925,又因为 −π2<α<0, 所以 cosα>0>sinα, 所以 cosα−sinα=75, 所以1cos 2α−sin 2α=1(cosα+sinα)(cosα−sinα)=115×75=257.故选B .【知识点】同角三角函数的基本关系6. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.7. 【答案】A【知识点】充分条件与必要条件8. 【答案】A【知识点】抽象函数、函数的单调性9. 【答案】C【解析】因为函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,所以存在 a <b <0,使得当 x ∈[a,b ] 时,g (x )∈[a,b ],且函数单调递减, 则 g (a )=b ,g (b )=a , 即 a 2+m =b ,b 2+m =a , 两式左右分别相减得 a 2−b 2=b −a , 即 b =−(a +1),代入 a 2+m =b 得 a 2+a +m +1=0, 因为 a <b <0,且 b =−(a +1), 所以 a <−(a +1)<0, 解得 −1<a <−12.故关于 a 的方程 a 2+a +m +1=0 在区间 (−1,−12) 内有实数根,把新定义的正函数问题转化为方程有解问题,采用了转化与化归思想.记 ℎ(a )=a 2+a +m +1,则 ℎ(−1)=1−1+m +1>0 且 ℎ(−12)=14−12+m +1<0,解得 m >−1 且 m <−34,即 −1<m <−34. 【知识点】函数的单调性、抽象函数10. 【答案】C【解析】 f (2019.67)=2019.67−2019=0.67,故①正确;设 k ≤x 1≤x 2<k +1,则 f (x 1)−f (x 2)=x 1−k −x 2+k =x 1−x 2<0, 所以 f (x 1)<f (x 2),所以 f (x ) 在 [k,k +1),k ∈Z 上是增函数,故②正确; 因为 f (−15)=−15−(−1)=45,f (15)=15−0=15,所以 f (−15)>f (15),故③错误; 因为 x −[x ]∈[0,1), 所以④正确. 故选C .【知识点】函数的值域的概念与求法、函数的单调性二、填空题(共6题) 11. 【答案】(1)、(3)【解析】(1)当 x >1 时,y =f (x )=xx−1=1+1x−1 在区间 (1,+∞) 上是单调递减函数,当 0<x <1 时,y =f (x )=−xx−1=−1−1x−1 在区间 (0,1) 上是单调增函数.所以(1)是假命题. (2)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,当 x >0 时,y =f (x ) 在区间 (0,1) 上单调递增,在 (1,+∞) 上单调递减.当 k >0 时,函数 y =f (x ) 与 y =kx 的图象在第一象限内有交点,由对称性可知,当 x <0 且 k <0 时,函数 y =f (x ) 与 y =kx 的图象在第二象限内有交点.所以,方程 f (x )=kx +b (k ≠0) 一定有解.所以(2)是真命题.(3)因为函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,且最小值 f (0)=0,举例:当 m =0 时,函数 y =f (x ) 与 y =m 的图象只有一个交点.此时方程 f (x )=m 的解是奇数.所以(3)是假命题. (4)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,y =f (x )=∣x∣∣∣x∣−1∣ 在区间 (0,1) 上单调递增,(1,+∞) 上单调递减.且 f (0)=0,x >0 时,f (x )>0 恒成立,由对称性可知,函数 f (x ) 有最小值 f (0)=0.所以( 4 )是真命题.【知识点】函数的零点分布、函数的最大(小)值、函数的单调性12. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞)上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点; ② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布13. 【答案】①②【解析】① y =sinx 的对称轴为 x =kπ+π2(k ∈Z ),故 f (x )=sin (2x −π4) 的对称轴由 2x −π4=kπ+π2(k ∈Z ),解得 x =kπ2+3π8(k ∈Z ),故①正确;②函数f(x)=sinx+√3cosx=2sin(x+π3),故该函数的最大值为2,故②正确;③ ∀x∈(0,π),sinx>cosx;当x=π4时,sinx=cosx,故③错误;④函数f(x)=sin(π3−2x)在区间[0,π3]上单调递减,故④错误.故答案为:①②.【知识点】Asin(ωx+ψ)形式函数的性质14. 【答案】π;√2+1【知识点】Asin(ωx+ψ)形式函数的性质15. 【答案】a≤3【知识点】恒成立问题16. 【答案】(14,1)【解析】当0<a<1时,函数y=log a x单调递减,由题意得{a+1>2√a,2√a>1,解得a>14,所以14<a<1;当a>1时,函数y=log a x单调递增,由题意得{a+1<2√a,2√a<1,无解.综上可知,实数a的取值范围是(14,1).【知识点】对数函数及其性质三、解答题(共6题)17. 【答案】(1) 由x−1≠0,得x≠1.所以函数的定义域为{x∣ x∈R且x≠1}.又1x−1≠0,所以21x−1>0,且21x−1≠1.所以函数的值域为{y∣ y>0且,y≠1}.(2) 由5x−1≥0,得x≥15.所以函数的定义域为{x∣ x≥15}.因为 5x −1≥0,所以 3√5x−1≥1.所以函数的值域为 {y∣ y ≥1}.(3) y =(12)x−1 的定义域是 R ,值域是 {y∣ y >−1}.【知识点】函数的定义域的概念与求法、函数的值域的概念与求法18. 【答案】(1) 函数 f (x ) 的定义域为 R ,对任意 x ∈R ,f (−x )=2−x +2x =f (x ), 所以函数 f (x ) 是偶函数.(2) y =22x +2−2x −2a (2x +2−x )=(2x +2−x )2−2a (2x +2−x )−2, 令 2x +2−x =t ,因为 x ≥0,所以 2x ≥1,故 t ≥2, 原函数可化为 y =t 2−2at −2,t ∈[2,+∞),y =t 2−2at −2=(t −a )2−a 2−2 图象的对称轴为直线 t =a ,当 a ≤2 时,函数 y =t 2−2at −2 在 t ∈[2,+∞) 时是增函数,值域为 [2−4a,+∞);当 a >2 时,函数 y =t 2−2at −2 在 t ∈[2,a ] 时是减函数,在 t ∈[a,+∞) 时是增函数,值域为 [−a 2−2,+∞).综上,g (a )={[2−4a,+∞),a ≤2[−a 2−2,+∞),a >2.(3) 由 mf (x )≤2−x +m −1 得 m [f (x )−1]≤2−x −1,当 x >0 时,2x >1,所以 f (x )=2x +2−x >2,所以 f (x )−1>1>0, 所以 m ≤2−x −1f (x )−1=2−x −12x +2−x −1=1−2x 22x +1−2x恒成立.令 t =1−2x ,则 t <0,1−2x 22x +1−2x=t (1−t )2+t=t t 2−t+1=1t+1t−1,由 t <0 得 t +1t≤−2,所以 t +1t−1≤−3,−13≤1t+1t−1<0.所以 m ≤−13,即 m 的取值范围为 (−∞,−13].【知识点】函数的奇偶性、指数函数及其性质、函数的值域的概念与求法19. 【答案】(1) 依据题意,知 f (x )=2x −1,若 f (2a −x )=k ⋅f (x ),即 2(2a −x )−1=k (2x −1). 化简得 −2x +4a −1=2kx −k ,此等式对 x ∈R 都成立,则 {2k =−2,4a −1=−k,解得 {k =−1,a =12.于是,函数 f (x )=2x −1 有理想数对 (12,−1).所以,函数 f (x )∈M . (2) 用反证法证明 g (x )∉M . 假设 g (x )∈M ,则存在实数对 (a,k )(k ≠0) 使得 g (2a −x )=k ⋅g (x ) 成立. 又 g (x )=2x ,于是,22a−x =k ⋅2x , 即 22a =k ⋅22x .一方面,此等式对 x ∈R 都成立;另一方面,该等式左边是正的常数,右边是随 x 变化而变化的实数.两方面互相矛盾,故假设不成立.因此,函数 g (x ) 不存在理想数对 (a,k )(k ≠0) 使 g (x )∈M , 即 g (x )∉M .(3) 因为数对 (2,1) 和 (1,−1) 都是函数 ℎ(x ) 的理想数对, 所以 ℎ(4−x )=ℎ(x ),ℎ(2−x )=−ℎ(x ),x ∈R , 所以ℎ(4+x )=ℎ(4−(4+x ))=ℎ(2−(2+x ))=−ℎ(2+x )=−ℎ(4−(2−x ))=−ℎ(2−x )=ℎ(x ).所以函数 ℎ(x ) 是以 4 为周期的周期函数.由 ℎ(2−x )=−ℎ(x ),ℎ(2−x )+ℎ(x )=0,x ∈R ,可知函数 ℎ(x ) 的图象关于点 (1,0) 成中心对称图形.又 −1≤x ≤1 时,ℎ(x )=1−x 2,所以 1<x ≤3 时,−1≤2−x <1,则 ℎ(x )=−ℎ(2−x )=(2−x )2−1.先画出函数 ℎ(x ) 在 [−1,3] 上的图象,再根据周期性,可得到函数 ℎ(x ) 的图象如图: 所以 ℎ(x )={1−(x −2k )2,k 为偶数,2k −1≤x <2k +1(x −2k )2−1,k 为奇数,2k −1≤x <2k +1,所以 ℎ(x )=1−(x −8)2,7≤x ≤9;ℎ(x )=1−(x −12)2,11≤x ≤13.由 {ℎ(x )=1−(x −8)2,y =mx (7≤x ≤9) 有且仅有一个交点,解得 m =16−6√7(m =16+6√7,舍去).由 {ℎ(x )=1−(x −12)2,y =mx (11≤x ≤13) 有且仅有一个交点,解得 m =24−2√143(m =24+2√143,舍去).所以函数 y =mx (m >0) 的图象与函数 ℎ(x ) 的图象在区间 [0,12] 上有且仅有 5 个交点时,实数 m 的取值范围是 24−2√143<m <16−6√7.【知识点】恒成立问题、函数的零点分布、反证法、函数的周期性20. 【答案】(1) 由函数图象知,A =2.因为图象过点 (0,1),所以 f (0)=1,所以 sinφ=12. 又因为 ∣φ∣<π2,所以 φ=π6. 由函数图象知T 2=2π3−π6=π2,所以 T =π,得 ω=2.所以函数 f (x ) 的解析式为 f (x )=2sin (2x +π6).(2) 由(1)知,函数 y =2sin (2x +π6),若 π12<x <11π12,在原图中标出 (π12,√3) 和 (11π12,0),如图所示: 当 −2<m <0 或 √3<m <2 时,直线 y =m 与曲线 y =2sin (2x +π6) 有两个不同的交点,即原方程有两个不同的实数根. 所以 m 的取值范围为 (−2,0)∪(√3,2). 由对称性可知,当 −2<m <0 时,两根和为 4π3;当 √3<m <2 时,两根和为 π3.【知识点】Asin(ωx+ψ)形式函数的性质21. 【答案】设矩形的一边长为 x ,广告牌面积为 S ,则 S =−(x −l 4)2+l 216,x ∈(0,l 2). 当 x =l4 时,S 取得最大值,且 S max =l 216,所以当广告牌是边长为 l4 的正方形时,广告牌的面积最大.【知识点】函数模型的综合应用22. 【答案】 1−cos 4α−sin 4α1−cos 6α−sin 6α=(sin 2α+cos 2α)2−cos 4α−sin 4α(sin 2α+cos 2α)3−cos 6α−sin 6α=2sin 2αcos 2α3sin 4αcos 2α+3sin 2αcos 4α=2sin 2αcos 2α3sin 2αcos 2α=23.【知识点】同角三角函数的基本关系。

数学教育学复习题(含答案)

数学教育学复习题(含答案)

一.填空题1. 义务教育阶段数学课程改革中选择和安排教学内容的基本思路是:___以反映未来社会公民所必须的数学思想方法为主线_______________。

2. 义务教育《数学课程标准》(实验稿)中使用了“___了解___(认识)______、理解、掌握、灵活运用”等刻画知识技能的目标动词。

3. 义务教育《数学课程标准》(实验稿)给出了___经历(感受)_____________、体验(体会)、探索等刻画数学活动水平的过程性目标动词。

4. 义务教育阶段《数学课程标准》(实验稿)中指出数学思考、解决问题、情感与态度的发展离不开_________知识与技能____________的学习。

5. 义务教育阶段《数学课程标准》(实验稿)中将课程内容分为四个学习领域,这四个学习领域是:“数与代数”、“空间与图形”、_____统计与概率________________、“实践与综合应用”。

6. 义务教育阶段数学课程改革中教学形式改革的基本思路之一是:在___活动___________中、在现实生活中学习数学,发展数学。

7. 义务教育阶段《数学课程标准》(实验稿)中指出_________知识与技能____________的学习必须以有利于其他目标的实现为前提。

8. 义务教育《数学课程标准》(实验稿)第三学段的课程实施中对数学教学给出________6____条建议。

11. 普通高中数学课程标准共给出_______10_______条课程基本理念。

12.普通高中数学课程标准的目标要求包括三个方面,这三个方面指的是:____知识与技能____________________,_过程与方法_______________________,____情感态度与价值观_________________。

13.普通高中数学课程目标提出的要进一步提高的五个基本能力是_______运算求解______,____推理论证_________,_空间想象能力____________,____抽象概括能力_________,____数据处理能力_________。

(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)

 (完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)
【解析】因为 ,故 ,
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
7.【2020年高考全国I卷理数】若 ,则
A. B.
C. D.
【答案】B
【解析】设 ,则 为增函数,因为
所以 ,
所以 ,所以 .

当 时, ,此时 ,有
当 时, ,此时 ,有 ,所以C、D错误.
【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.
13.【2020年高考天津】函数 的图象大致为
A B
CD
【答案】A
【解析】由函数的解析式可得: ,则函数 为奇函数,其图象关于坐标原点对称,选项CD错误;
当 时, ,选项B错误.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
14.【2020年高考天津】设 ,则 的大小关系为
A. B.
C. D.
【答案】D
【解析】因为 ,


所以 .
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性: ,当 时,函数递增;当 时,函数递减;
A.10名B.18名
C.24名D.32名
【答案】B
【解析】由题意,第二天新增订单数为 ,设需要志愿者x名,

高二寒假作业数学必修1知识点,练习题及答案

高二寒假作业数学必修1知识点,练习题及答案

高二上数学寒假作业 必修1数学知识点.练习题第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆. 2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}UC A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(34)

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(34)

人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 幂函数的图象过点 (2,√2),则该幂函数的解析式是 ( ) A . y =x −1B . y =x 12C . y =x 2D . y =x 32. 函数 f (x )=ax +bx +5(a ,b 均正数),若 f (x ) 在 (0,+∞) 上有最大值 8,则 f (x ) 在(−∞,0) 上 ( ) A .有最大值 −8 B .有最小值 −8 C .有最小值 2D .有最大值 23. 下列函数中,在区间 (0,1) 上是增函数的是 ( ) A . y =−x 2+1 B . y =√xC . y =1xD . y =3−x4. 下列函数是偶函数的为 ( ) A . y =2x B . y =log 12xC . y =x −1D . y =x 25. 已知函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,则实数 k 的取值范围是 ( ) A . (−24,40)B . [−24,40]C . (−∞,−24]D . [40,+∞)6. 下列给出的函数是分段函数的是 ( ) A . f (x )={±x,x >0,x +1,x ≤0.B . f (x )={x 2+1,x ∈R,x,x ≥4.C . f (x )=|x +1|D . f (x )={x −1,0<x ≤5,4x,x ≤2.7. 下列函数中,定义域是 R 且为增函数的是 ( ) A . y =e −xB . y =x 3C . y =lnxD . y =∣x ∣8. “f (0)=0”是“y =f (x ) 是奇函数”的 ( ) A .充分非必要条件 B .必要非充分条件; C .非充分非必要条件D .充要条件;9. 设函数 f (x )={3−x,x <02g (x ),x >0,若 f (x ) 是奇函数,则 g (1) 等于 ( )A . −4B . −2C . 2D . 410. 已知函数 y =a x−3−23(a >0,且 a ≠1)的图象恒过点 P .若点 P 在幂函数 f (x ) 的图象上,则幂函数 f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 偶函数 f (x ) 的定义域为 [t −4,t ],则 t = .12. 2019 年 7 月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳 14 的质量 N 随时间 t (单位:年)的衰变规律满足 N =N 0⋅2−r 5730(N 0 表示碳 14 原有的质量),则经过 5730年后,碳 14 的质量变为原来的 ;经过测定,良渚古城遗址文物样本中碳 14 的质量是原来的 37 至 12,据此推测良渚古城存在的时期距今约在 5730 年到 年之间.(参考数据:lg2≈0.3,lg7≈0.84,lg3≈0.48)13. 函数 f (x )=√x−2x−3的定义域为 .14. 函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9),则实数 m 的取值范围是 .15. 如图,图中曲线是幂函数 y =x α 在第一象限的大致图象,已知 α 取 −2,−12,12,2 四个值,则相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 .16. 已知函数 f (x )={2x ,x <1log 2x,x ≥1,则 f (8)= ;若直线 y =m 与函数 f (x ) 的图象只有 1个交点,则实数 m 的取值范围是 .三、解答题(共6题)17. 北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000 万元从政府购得一块廉价土地,该土地可以建造每层 1000 平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高 0.02 万元,已知建筑第 5 层楼房时,每平方米建筑费用为 0.8 万元.(1) 若学生宿舍建筑为 x 层楼时,该楼房综合费用为 y 万元(综合费用是建筑费用与购地费用之和),写出 y =f (x ) 的表达式.(2) 为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?18. 已知函数 f (x )=3x 2−5x +2,求 f(−√2),f (−a ),f (a +3),f (a )+f (3) 的值.19. 如图(1)(2)所示的分别是函数 y 1=f (x ) 和 y 2=g (x ) 的图象,试分别写出函数 y 1=f (x )和 y 2=g (x ) 的单调递增区间.20. 如何理解区间的概念?21. 判断函数 f (x )={x 2+2x,x <01,x =0−x 2+2x,x >0 的奇偶性.22. 求下列函数的定义域:(1) f (x )=√3x −1+√1−2x +4; (2) f (x )=0√∣x∣−x.答案一、选择题(共10题) 1. 【答案】B【知识点】幂函数及其性质2. 【答案】C【解析】设 g (x )=ax +bx ,则 g (x ) 为奇函数,且在 (0,+∞) 上的最大值为 3, 所以 g (x ) 在 (−∞,0) 上的最小值为 −3, 故 f (x ) 在 (−∞,0) 上有最小值 2. 【知识点】函数的最大(小)值3. 【答案】B【知识点】函数的单调性4. 【答案】D【解析】A 项,y =2x 定义域为 R ,为非奇非偶函数; B 项,y =log 12x 定义域为 (0,+∞) 为非奇非偶函数;C 项,y =x −1 定义域为 {x∣ x ≠0},反比例函数 y =1x为奇函数;D 项,y =x 2=(−x )2,定义域为 R 为偶函数. 【知识点】函数的奇偶性5. 【答案】D【解析】因为函数 f (x )=4x 2−kx −8 的对称轴方程为 x =k8,且函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,所以根据二次函数的性质可知 k8≥5,解得 k ≥40.故 k 的取值范围为 [40,+∞). 【知识点】函数的单调性6. 【答案】C【解析】对于A ,取 x =1,得 f (1)=1 或 −1,不是分段函数; 对于B ,取 x =4,得 f (4)=17 或 4,不是分段函数; 对于C ,f (x )=|x +1|={x +1,x ≥−1,−x −1,x ≤−1是分段函数;对于D ,取 x =2,得 f (2)=1 或 8,不是分段函数,故选C . 【知识点】分段函数7. 【答案】B【解析】对于A ,y =e −x =(1e )x,是 R 上的减函数,不合题意; 对于B ,y =x 3 是定义域是 R 且为增函数,符合题意; 对于C ,y =lnx ,定义域是 (0,+∞),不合题意;对于D ,y =∣x ∣,定义域是 R ,但在 R 上不是单调函数,不合题,故选B . 【知识点】函数的单调性、函数的定义域的概念与求法8. 【答案】C【知识点】充分条件与必要条件、函数的奇偶性9. 【答案】B【解析】因为 f (x ) 是奇函数,且 f (x )={3−x,x <02g (x ),x >0,因为 f (1)=−f (−1)=−[3−(−1)]=−4, 所以 g (1)=12f (1)=−2.故选B . 【知识点】函数的奇偶性10. 【答案】A【解析】令 x −3=0,即 x =3, 所以 y =a 0−23=13, 所以 P (3,13). 设 f (x )=x α,因为点 P (3,13) 在幂函数 f (x ) 的图象上, 所以 f (3)=3α=13,解得 α=−1, 所以 f (x )=x −1,故幂函数 f (x ) 的图象大致同选项A . 【知识点】幂函数及其性质二、填空题(共6题) 11. 【答案】2【解析】由于偶函数 f (x ) 的定义域为 [t −4,t ],关于原点对称,故有 t +t −4=0, 所以 t =2.【知识点】函数的奇偶性12. 【答案】 12 ; 6876【知识点】函数模型的综合应用13. 【答案】 [2,3)∪(3,+∞)【知识点】函数的定义域的概念与求法14. 【答案】 (3,+∞)【解析】因为函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9), 所以 2m >−m +9,解得 m >3. 【知识点】函数的单调性15. 【答案】 2,12,−12,−2【解析】令 x =2,则 22>212>2−12>2−2,故相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 2,12,−12,−2.【知识点】幂函数及其性质16. 【答案】 3 ; {0}∪[2,+∞)【解析】 f (8)=log 28=3,作出函数 f (x ) 的图象,如图所示.若直线 y =m 与函数 f (x ) 的图象只有 1 个交点,则 m ≥2 或 m =0.【知识点】分段函数三、解答题(共6题) 17. 【答案】(1) 由题意知建筑第 1 层楼房时,每平方米建筑费用为 0.72 万元, 建筑第 1 层楼房的建筑费用为 0.72×1000=720(万元), 楼房每开高一层,整层建筑费用提高 0.02×1000=20(万元),则建筑第 x 层楼房的建筑费用为 720+(x −1)×20=(20x +700) 万元, 建筑 x 层楼房时,该楼房综合费用为 y =f (x )=(720+20x+700)x2+1000=10x 2+710x +1000,综上可知,y =f (x )=10x 2+710x +1000(x ≥1,x ∈Z ).(2) 设该楼房每平方米的平均综合费用为 g (x ), 则 g (x )=f (x )1000x =x 100+1x+71100≥2√x 100×1x+71100=0.91,当且仅当x 100=1x,即 x =10 时等号成立,综上可知,应把楼房建成 10 层,此时每平方米的平均综合费用最低为 0.91 万元.【知识点】建立函数表达式模型、均值不等式的实际应用问题18. 【答案】 f(−√2)=8+5√2; f (−a )=3a 2+5a +2;f (a +3)=3a 2+13a +14; f (a )+f (3)=3a 2−5a +16. 【知识点】函数的表示方法19. 【答案】由题图(1)可知,在 (1,4] 和 (4,6] 内,y 1=f (x ) 是单调递增的,所以 y 1=f (x ) 的单调递增区间是 (1,4] 和 (4,6].由题图(2)可知,在 (−1,0) 和 (1,2) 内,y 2=g (x ) 是单调递增的, 所以 y 2=g (x ) 的单调递增区间是 (−1,0) 和 (1,2).【知识点】函数的单调性20. 【答案】区间是表示数集的一种形式,因此对于集合的运算仍然成立;区间表示连续的数集,左端点必须小于右端点,开或闭不能混淆;∞ 是一个符号,而不是一个数,以“−∞”或“+∞”作为区间的一端时,这端必须用小括号.【知识点】函数的相关概念21. 【答案】当 x <0 时,−x >0,则 f (−x )=−(−x )2−2x =−(x 2+2x )=−f (x ).当 x >0 时,−x <0,则 f (−x )=(−x )2−2x =x 2−2x =−(−x 2+2x )=−f (x ). 而当 x =0 时,f (0)=1≠−f (0). 所以 f (x ) 既不是奇函数也不是偶函数.【知识点】函数的奇偶性22. 【答案】(1) 要使函数式有意义,必须满足 {3x −1≥0,1−2x ≥0, 即 {x ≥13,x ≤12.所以 13≤x ≤12,即函数的定义域为 {x∣ 13≤x ≤12}.(2) 要使函数式有意义,必须满足 {x +3≠0,∣x ∣−x >0,即 {x ≠−3,∣x ∣>x, 解得 {x ≠−3,x <0.所以函数的定义域为 {x∣ x <0且x ≠−3}.【知识点】函数的定义域的概念与求法。

初二函数的概念练习题

初二函数的概念练习题

初二函数的概念练习题函数是数学中一个非常重要的概念,在初中数学中占据了一席之地。

理解函数的概念对于学好数学来说至关重要。

下面是一些初二函数概念的练习题,通过这些题目的练习,希望能够帮助同学们更好地理解函数的概念。

1. 设有函数y = 2x - 1,计算当x分别等于2、5、-3时,y的值是多少?2. 设有函数y = 3x^2,计算当x分别等于-1、0、2时,y的值是多少?3. 设有函数y = 5/x,当x分别等于1、2、5时,y的值是多少?4. 设有函数y = |x - 3|,当x分别等于0、3、5时,y的值是多少?5. 设有函数y = √x,当x分别等于1、4、9时,y的值是多少?6. 设有函数y = 2^x,当x分别等于-1、0、2时,y的值是多少?7. 设有函数y = 1/x^2,当x分别等于1、2、3时,y的值是多少?8. 设有函数y = 2|x|,当x分别等于-2、0、4时,y的值是多少?9. 设有函数y = 3√x,当x分别等于1、8、27时,y的值是多少?10. 设有函数y = log2x,当x分别等于1、2、4时,y的值是多少?通过以上的练习题,我们可以更好地理解函数的概念和函数的性质。

函数就是变量之间的一种关系,通常用字母表示。

在数学中,函数的图像可以用来表示函数的性质和规律。

同时,函数也可以进行运算,如复合函数。

希望同学们能够通过多做练习题来加深对函数的理解和掌握,这样在解决实际问题时能够更加得心应手。

同时,也建议同学们多多思考,多和同学们讨论,更好地理解函数的概念和应用。

初二函数的概念练习题到此结束,希望这些练习题能够对同学们的学习有所帮助。

通过不断地练习和思考,相信同学们能够掌握函数的概念,并能够灵活运用到数学问题的解决中。

加油!。

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及应用在初中我们已经学了锐角三角函数,知道它们都是以锐角为自变量、边的比值为函数值的三角函数.你能用平面直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?改变终边上的点的位置,这个比值会改变吗?把角扩充为任意角,结论成立吗?一、任意角的三角函数1.单位圆:在平面直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为________.2.三角函数的定义:设角α的顶点与原点重合,始边与x 轴非负半轴重合.在平面直角坐标系中,角α终边与单位圆交于一点P (x ,y ),则r =|OP |=1.那么:(1)y 叫做________,记作sin α,即y =sin α; (2)x 叫做________,记作cos α,即x =cos α; (3)y x 叫做________,记作tan α,即y x=tan α(x ≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为________.答案:1.单位圆2.(1)α的正弦 (2)α的余弦 (3)α的正切 三角函数二、三角函数值在各个象限内的符号1.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=y r,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第________象限角时,sin α>0;当α是第________象限角时,sin α<0.cos α=x r,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第__________象限角时,cos α>0;当α是第________象限角时,cos α<0.tan α=y x,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第________象限角时,tan α>0;当α是第 ________象限角时,tan α<0.2.根据终边所在位置总结出形象的识记口诀1:“sin α=yr :上正下负横为0;cos α=x r :左负右正纵为0;tan α=y x:交叉正负.” 形象的识记口诀2:“一全正、二正弦、三正切、四余弦.” 答案:1.一、二 三、四 一、四 二、三 一、三 二、四三、诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值________,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z. 答案:相等四、三角函数线1.有向线段:有向线段是规定了方向(即起点、终点)的线段,它是________、 ________的.在平面直角坐标系中,和坐标轴同向的有向线段为正,反向的为负.2.正弦线、余弦线、正切线:三角函数线是用来形象地表示三角函数值的有向线段.有向线段的________表示三角函数值的________,有向线段的________表示三角函数值的绝对值的________.三角函数线的作法如下:设角α的终边与单位圆的交点为P ,过点P 作x 轴的垂线,垂足为M ,则有向线段MP ,OM 就分别是角α的正弦线与余弦线,即MP =y =sin α,OM =x =cos α.过点A (1,0)作单位圆的切线,设这条切线与角α的终边(或终边的反向延长线)交于点T ,则有向线段AT 就是角α的正切线,即AT =tan α.3.填写下表中三角函数的定义域、值域:函数定义域值域 y =sin α y =cos α y =tan α答案:1.有长度 有正负 2.方向 正负 长度 大小 3.函 数定 义 域值 域 y =sin α R [-1,1] y =cos α R[-1,1]y =tan α⎩⎨⎧⎭⎬⎫α⎪⎪⎪α≠π2+k π,k ∈ZR任意角的三角函数的定义1.正弦、余弦、正切可分别看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数.2.三角函数值是比值,是一个实数.这个实数的大小和点P (x ,y )在终边上的位置无关,而是由角α的终边位置所决定.对于确定的角α,其终边的位置也是唯一确定的.因此,三角函数是角的函数.(1)三角函数值只与角α的终边所在的位置有关,与点P 在终边上的位置无关. (2)三角函数值是一个比值,没有单位.三角函数值的符号三角函数值在各象限的符号取决于终边所在的位置,具体说取决于x,y的符号,记忆时结合三角函数定义式记,也可用口诀只记正的“一全正、二正弦、三正切、四余弦”.三角函数线对于三角函数线,须明确以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正负方向一致,三种有向线段的长度与三种三角函数值相同.三角函数的定义域1.由三角函数的定义式可以知道,无论角α终边落在哪里,sin α,cos α都有唯一的值与之对应,但对正切则要求α终边不能落在y轴上,否则正切将无意义.2.角和实数建立了一一对应关系,三角函数就可以看成是以实数为自变量的函数,所以就可以借助单位圆,利用终边相同的角的概念求出任意角的三角函数.基础巩固1.sin 810°+tan 765°+tan 1125°+cos 360°=________.答案:42.若α的终边过点P(2sin 30°,-2cos 30°),则sin α的值为________.答案:-3 23.若角α的终边过点P (3cos θ,-4cos θ)(θ为第二象限角),则sin α=________.答案:454.cos θ·tan θ<0,则角θ是________象限角. 答案:第三或第四5.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案:二6.角α的正弦线与余弦线长度相等,且符号相同,那么α(0<α<2π)的值为________.答案:π4或54π7.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 答案:sin 1.5>sin 1.2>sin 1能力升级8.函数y =sin x +-cos x 的定义域是________.解析:∵⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.∴2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z)9.已知角α的终边在直线y =kx 上,若sin α=-255,cos α<0,则k =________.解析:∵sin α=-255,cos α<0,∴α的终边在第三象限.令角α的终边上一点的坐标为(a ,ka ),a <0,则r =-1+k 2·a ,sin α=-ka 1+k 2a=-255,∴k =2. 答案:210.在(0,2π)内,满足tan 2α=-tan α的α的取值X 围是________. 解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,知π2<α≤π或3π2<α<2π. 答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π11.解不等式2+2cos x ≥0. 解析:2+2cos x ≥0⇔cos x ≥-22,利用单位圆,借助三角函数线(如图)可得出解集是⎣⎢⎡⎦⎥⎤2k π-34π,2k π+34π(k ∈Z).12.若π4<θ<π2,则下列不等式中成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:作出角θ的三角函数线(如图),数形结合得AT >MP >OM ,即tan θ>sin θ>cosθ.答案:D13.函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域是( C )A .{-1,0,1,3}B .{-1,0,3}C .{-1,3}D .{-1,1}14.若0<α<π2,证明:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:(1)在如图所示单位圆中, ∵0<α<π2,|OP |=1,∴sin α=MP ,cos α=OM . 又在△OPM 中,有 |MP |+|OM |>|OP |=1. ∴sin α+cos α>1.(2)如图所示,连接AP ,设△OAP 的面积为S △OAP ,扇形OAP 的面积为S 扇形OAP ,△OAT 的面积为S △OAT .∵S △OAP <S 扇形OAP <S △OAT , ∴12OA ·MP <12AP ︵·OA <12OA ·AT .∴MP <AP ︵<AT ,即sin α<α<tan α.15.已知f (n )=cosn π5(n ∈Z),求f (1)+f (2)+f (3)+…+f (2 014)的值.解析:角n5π(n =1,2,…,10)表示10个不同终边的角,这10条终边分成五组,每组互为反向延长线.∴f (1)+f (2)+…+f (10)=0,f (11)+f (12)+…+f (20)=0,…f (2 001)+f (2 002)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 014)=f (2 011)+f (2 012)+f (2 013)+f (2 014)=cos π5+cos 2π5+cos 3π5+cos 4π5.由定义知cos π5与cos 4π5,cos 2π5与cos 3π5互为相反数,故f (1)+f (2)+…+f (2 014)=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1《函数的概念》基础练习题
1、下列对应是A 到B 的函数的是 ,并指出定义域和值域;
A A=R,B=R x
y x f 2:=→ B A=N,B=R x y x f =→2: C A={}60≤≤x x ,B={}30≤≤y y x y x f =→:
D A={}60≤≤x x , B={}30≤≤y y x y x f 6
1:=
→ E A=R ,{}1=B 1:=y f
2. 若{|03}A x x =≤≤,{|26}B y y =≤≤,2:23f x x x →-+,它能构成为从集合A 到集合B 的函数吗?你的判断依据是什么?
3. 设集合A={}80≤≤x x ,B={}40≤≤y y ,有下列从A 到B 的三个对应:
(1) 2:x y x f =→ ; (2) 3
:x y x f =→; (3) x y x f =→: 其中是从A 到B 的函数的是 4.如下图所示,可表示函数)(x f y =的图象的,只可能是( )
A B C D
5.(1)常见函数的定义域与值域.
函数
解析式 定义域 值域 一次函数
(0)y ax b a =+≠ 二次函数
2y ax bx c =++, 其中0a ≠ 反比例函数 (0)k y k x
=≠ ()23f x x x =-+(0)f (1)f (2)f (1)f -
(2)函数223,{1,0,1,2}y x x x =-+∈-值域是 .
7.已知函数()1f x x =+.
(1)求(3)f 的值;(2)求函数的定义域(用区间表示);(3)求2(1)f a -的值. 8.设为实数,则()f x 与()g x 表示同一个函数的是( )
()()()()434344..A f x x g x x B f x x g x x ===,,
()()()()2
0..1x C f x x g x D f x g x x x ====,,
9.用区间表示.
(1)、{x |a<x<b }= 、{x |a 《x 《b }= .
(2){x |x ≥a }= 、{x |x >a }= 、{x |x ≤b }= 、{x |x <b }= . (3){|01}x x x <>或= .
(4)函数y x ,值域是 . (观察法)
10.已知函数()f x 的解析式为2()23f x x x =-+,则 (1)f x += ;
11.函数2()23f x x x =-+,则()0f f ⎡⎤⎣⎦= .
12.已知2()f x x bx c =++,(0)3f =,(1)0f -=,则(1)f = ,(1)f x -= . 13、 已知函数()213+++=x x x f ,(1)求函数的定义域;(2)求()⎪⎭
⎫ ⎝⎛-32,3f f 的值;(3)当0>a 时,求()()1,-a f a f 的值。

14.下列是同一函数的是( )
A. 1)(-=x x f ,1)(2
-=x
x x g ; B. 2)(x x f =,4)()(x x g =; C. 2)(x x f =,36)(x x g =; D.),()(N x x x f ∈=)()(R x x x g ∈=.
15. 函数11)(-=x x f 的定义域为 ; 函数2
36)(2+-=x x x f 的定义域为 ; 16、函数14)(--=
x x x f 的定义域为 ;函数x 111)x (f +=的定义域为 ; 函数13x x 1)x (f -++-=的定义域为 。

17、已知函数1)(22+=x x x f . (1)求)2
1()2(f f +; (2)求证:1)1()(=+x f x f .。

相关文档
最新文档