2020版高考数学一轮复习第2章函数导数及其应用第5讲课后作业理含解析
2020版高考数学一轮复习 第2章 函数、导数及其应用 第5讲 指数与指数函数讲义 理(含解析)
第5讲指数与指数函数[考纲解读]1。
理解有理指数幂的含义,掌握指数幂的运算,并能通过具体实例了解实数指数幂的意义.2。
理解指数函数的概念,理解指数函数的单调性并掌握指数函数的图象及其通过的特殊点.(重点、难点)3。
通过具体实例,了解指数函数模型的实际背景,并体会指数函数是一类重要的函数模型.[考向预测] 从近三年高考情况来看,本讲是高考中的命题热点.预测2020年高考主要与函数的图象、最值、比较大小、指数函数图象过定点为命题方向;也有可能与其他知识相结合进行考查.1.根式2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:a错误!=错误!(a>0,m,n∈N*且n〉1).②正数的负分数指数幂:a-错误!=错误!=错误!(a〉0,m,n∈N*且n〉1).③0的正分数指数幂等于错误!0;0的负分数指数幂错误!没有意义.(2)有理数指数幂的性质①a r a s=错误!a r+s(a>0,r,s∈Q);②(a r)s=错误!a rs(a>0,r,s∈Q);③(ab)r=错误!a r b r(a〉0,b〉0,r∈Q).3.指数函数的图象与性质y=a x(a〉0且a≠1)a>10〈a〈1图象1.概念辨析(1)错误!与(错误!)n都等于a(n∈N*).()(2)[(-2)6] 错误!=(-2)6×错误!=(-2)3=-8.()(3)函数y=3·2x与y=2x+1都不是指数函数.( )(4)若a m〈a n(a〉0,且a≠1),则m〈n.( )答案(1)×(2)×(3)√(4)×2.小题热身(1)函数y=a x-a(a〉0,且a≠1)的图象可能是( )答案C解析函数y=a x-a的图象过点(1,0),排除A,B,D。
(2)化简错误!的结果是________.答案-错误!解析由题意得x〈0,所以错误!=错误!=错误!=错误!=-错误!。
高考数学一轮总复习第二章函数导数及其应用2.5指数与指数函数课件理
第六页,共42页。
(2)有理数指数幂的性质 ①aras= ar+s (a>0,r,s∈Q); ②(ar)s= ars (a>0,r,s∈Q); ③(ab)r= arbr (a>0,b>0,r∈Q).
第七页,共42页。
2.指数函数的图象与性质
y=ax
a>1
0<a<1
图象
定义域
R
第八页,共42页。
第九页,共42页。
故②正确;③
= = 2;④ 4 -24=2;⑤当 a≠0 时,由(1+a2)m<(1
+a2)n 可知 m<n,当 a=0 时不成立.
答案:②
第十五页,共42页。
3
考点疑难突破
第十六页,共42页。
指数(zhǐshù)幂的化简与求值
计算:
第十七页,共42页。
【解】 (1)原式=
- 51-0 2+1=
第二十页,共42页。
[自 主 演 练]
1.化简 4 16x8y4(x<0,y<0)得( A.2x2y C.4x2y
) B.2xy D.-2x2y
解析: 4 16x8y4=(16x8y4) =[24(-x)8·(-y)4] =
=
2(-x)2(-y)=-2x2y.
答案:D
第二十一页,共42页。
2.(2017 届四川绵阳一诊)计算:2 3×3 1.5×6 12=________. 解析:原式=
【答案】 C
第三十三页,共42页。
角度三 探究指数型函数的性质
(1)函数 y=14x-12x+1 在区间[-3,2]上的值域是________.
(2)函数 f(x)=
的单调减区间为________.
第三十四页,共42页。
【解析】 (1)因为 x∈[-3,2], 所以令 t=12x,则 t∈14,8, 故 y=t2-t+1=t-122+34. 当 t=12时,ymin=34;当 t=8 时,ymax=57. 故所求函数的值域为34,57.
2020年高考数学第一轮复习-听课答案-第二单元-函数、导数及其应用
2020年高考数学第一轮复习第二单元函数、导数及其应用1.编写意图函数是高考内容的重要组成部分,是一轮复习的重点和难点.编写中注意到以下几个问题: (1)该部分内容是第一轮复习初始阶段的知识,因此在选题时注重以基础题为主,尽量避免选用综合性强、思维难度大的题目;(2)函数与方程、分类讨论、数形结合以及化归与转化等数学思想与方法在本单元中均有涉及;(3)突出了函数性质的综合应用;(4)有意识地将函数中的单调性、极值、最值问题与解析几何中的切线、最值问题和不等式的证明等进行交汇,特别是精选一些以导数为解题工具的典型函数问题、切线问题,充分体现导数的工具性.2.教学建议教学时,注意到如下几个问题:(1)重视教材的基础作用和示范作用.函数客观题一般直接来源于教材,往往就是课本的原题或变式题,主观题的生长点也是教材,在函数的复习备考中,要重视教材中一些有典型意义又有创新意识的题目,将其作为函数复习过程中的范例与习题,贯彻“源于课本,高于课本”的原则.(2)阐明知识系统,掌握内在联系.知识的整体性是切实掌握函数知识的重要标志,函数的概念、图像和性质是环环相扣、紧密相连、互相制约的,并形成了一个有序的网络化的知识体系,这就要求在复习过程中应在这个网络化的体系中去讲函数的概念、性质、公式以及例题,只有这样,学生对概念、性质的理解才是深刻的、全面的,记忆才是鲜明的、牢固的、生动的,应用起来才是灵活的、广泛的.(3)关注几类特殊函数.学生对抽象函数的理解较为困难,但抽象函数对培养学生的观察能力有十分重要的作用,应结合高考情况,予以适当关注,但选题不宜过难.分段函数是近几年高考命题的热点,在客观题和主观题中都有涉及,应给予重点关注.(4)在复习中要让学生明确导数作为一种工具在研究函数的变化率、单调性和极值等方面的作用,使学生掌握这种科学的工具,从而加深对函数的理解和直观认识.(5)重视渗透数学思想方法.函数这一部分重要的数学思想方法有函数与方程思想、分类讨论思想、等价转化思想和数形结合思想,数学方法有配方法、换元法、待定系数法、比较法以及构造法等.数学思想方法是以具体的知识为依托的,在复习教学中,要重视知识的形成过程,着重研究解题的思维过程,有意识地渗透思想方法,使学生从更高层次去领悟、把握、反思数学知识,增强数学意识,提高数学能力.3.课时安排本单元包括12讲、三个小题必刷卷、一个解答必刷卷.每讲建议1课时完成,其中第14讲4课时,三个小题必刷卷、一个解答必刷卷建议学生独立完成,本单元大约共需15课时.第4讲函数概念及其表示考试说明 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需求选择恰当的方法(如图像法,列表法,解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).考情分析真题再现■ [2017-2013]课标全国真题再现1.[2016·全国卷Ⅱ]下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()A.y=xB.y=lg xC.y=2xD.y=[解析] D y=10lg x=x,定义域与值域均为(0,+∞),只有选项D满足题意.2.[2015·全国卷Ⅱ]设函数f(x)=则f(-2)+f(log212)=()A.3B.6C.9D.12[解析] C因为f(-2)=1+log24=3,f(log212)==6,所以f(-2)+f(log212)=9,故选C.3.[2017·全国卷Ⅲ]设函数f(x)=则满足f(x)+f>1的x的取值范围是.[答案][解析]f(x)=f(x)+f>1,即f>1-f(x),由图像变换可画出y=f与y=1-f(x)的大致图像如图所示:易得两图像的交点为,则由图可知,满足f>1-f的x的取值范围为.■ [2017-2016]其他省份类似高考真题1.[2017·山东卷]设f(x)=若f(a)=f(a+1),则f=()A.2B.4C.6D.8[解析] C当0<a<1时,a+1>1,由f(a)=f(a+1)得=2(a+1-1)=2a,解得a=,此时f=f(4)=2×(4-1)=6;当a≥1时,a+1≥2,由f(a)=f(a+1)得2(a-1)=2(a+1-1),此时方程无解.综上可知,f=6,故选C.2.[2017·天津卷]已知函数f(x)=设a∈R,若关于x的不等式f(x)≥+a在R上恒成立,则a 的取值范围是()A.[-2,2]B.[-2,2]C.[-2,2]D.[-2,2][解析] A方法一:由题意可知,函数y=f(x)的图像恒不在函数y=+a的图像下方,画出函数y=f(x)和函数y=的图像,如图所示.当a=0时,显然f(x)>+a;当a<0时,函数y=+a的图像由函数y=的图像向右平移|2a|个单位得到,由图可知,当函数y=+a在x<-2a部分的图像经过点(0,2)时,a取得最小值,此时a=-2;当a>0时,函数y=+a的图像由函数y=的图像向左平移2a个单位得到,由图可知,当函数y=+a在x>-2a部分的图像经过点(0,2)或与函数y=f(x)在x>1部分的图像相切时,a 取得最大值,而经过点(0,2)时,a=2,当函数y=+a在x>-2a部分的图像与函数y=f(x)在x>1部分的图像相切时,设切点为P(x0,y0)(x0>1),因为x>1时,f'(x)=1-,则1-=,解得x0=2,所以y0=3,又点P(2,3)在函数y=+a在x>-2a部分的图像上,所以+a=3,解得a=2,因此a的最大值为2.综上所述,a的取值范围是[-2,2].方法二:不等式f(x)≥+a转化为-f(x)≤+a≤f(x),当x<1时,有-|x|-2≤+a≤|x|+2,即-|x|-2-≤a≤|x|+2-.又∵当x<0时,-|x|-2-=-2<-2,|x|+2-=-+2>2,当0≤x<1时,-|x|-2-=--2≤-2,|x|+2-=+2≥2,∴-2≤a≤2;当x≥1时,有-x-≤+a≤x+,即-x-≤a≤x+,又∵-x-≤-2,x+≥2,∴-2≤a≤2.综上,-2≤a≤2.3.[2016·江苏卷]函数y=的定义域是.[答案][-3,1][解析]令3-2x-x2≥0可得x2+2x-3≤0,解得-3≤x≤1,故所求函数的定义域为[-3,1].【课前双基巩固】知识聚焦1.非空数集非空集合任意唯一确定任意唯一确定f:A→B f:A→B2.定义域值域定义域值域3.解析法图像法列表法4.对应关系对点演练1.④[解析]①②对于定义域内任给的一个数x,可能有两个不同的y值,不满足对应的唯一性,故①②错;③的定义域是空集,而函数的定义域是非空的数集,故③错;只有④表示函数.2.-1[解析]因为f(e)=ln e-2=-1,所以f[f(e)]=f(-1)=-1+a=2a,解得a=-1.3.(-∞,-3)∪(-3,8][解析]要使函数有意义,则8-x≥0且x+3≠0,即x≤8且x≠-3,所以其定义域是(-∞,-3)∪(-3,8].4.7[解析]值域C可能为:只含有一个元素时有{a},{b},{c};有两个元素时,有{a,b},{a,c},{b,c};有三个元素时有{a,b,c}.所以共有7种.5.③[解析]对于③,因为当x=4时,y=×4=∉Q,所以③不是函数.6.(-∞,-2]∪[0,10][解析]∵f(x)是分段函数,∴f(x)≥1应分段求解.当x<1时,f(x)≥1⇒(x+1)2≥1⇒x≤-2或x≥0,∴x≤-2或0≤x<1.当x≥1时,f(x)≥1⇒4-≥1,即≤3,∴1≤x≤10.综上所述,x≤-2或0≤x≤10,即x∈(-∞,-2]∪[0,10].7.x2-1(x≥0)[解析]令t=,则t≥0,x=t2,所以f(t)=t2-1(t≥0),即f(x)=x2-1(x≥0).8.9[解析]设函数y=x2的定义域为D,其值域为{1,4},D的所有可能的个数,即是同族函数的个数,D的所有可能为{-1,2},{-1,-2},{1,2},{1,-2},{-1,1,2},{-1,1,-2},{-1,2,-2},{1,2,-2},{-1,1,2,-2},共9个,故答案为9.【课堂考点探究】例1[思路点拨](1)求出函数y=e ln x的定义域和值域,再求出选项中的函数的定义域和值域,比较可得结论;(2)根据二次根式以及对数函数的性质求出函数的定义域即可.(1)C(2)C[解析](1)函数y=e ln x的定义域和值域均为(0,+∞).函数y=x的定义域和值域都是R,不满足要求;函数y=ln x的定义域为(0,+∞),值域为R,不满足要求;函数y=10x的定义域为R,值域为(0,+∞),不满足要求;函数y=的定义域和值域均为(0,+∞),满足要求.故选C.(2)由题意得解得-1≤x<2,故函数的定义域是[-1,2).例2[思路点拨](1)依题意得出-1≤x2-3<1,解之可得定义域;(2)由x∈[-1,2],求得2x的范围为,4,再由≤log2x≤4,即可求出函数的定义域.(1)(-2,-]∪[,2)(2)[,16][解析](1)由题意知解得所以函数的定义域为(-2,-]∪[,2).(2)由已知x∈[-1,2],得2x∈,4,故f(x)的定义域为,4,所以在函数y=f(log2x)中,有≤log2x ≤4,解得≤x≤16,故f(log2x)的定义域为[,16].例3[思路点拨](1)根据函数有定义列出不等式组,求得定义域,再对a分类讨论得a的范围;(2)分m等于0和不等于0两种情况分析.(1) B(2)[0,+∞)[解析](1)函数f(x-a)+f(x+a)的定义域为[a,1+a]∩[-a,1-a],当a≥0时,应有a≤1-a,即0≤a≤;当a<0时,应有-a≤1+a,即-≤a<0.所以a的取值范围是-,.故选B.(2)当m=0时,y=,其定义域为R;当m≠0时,由定义域为R可知,mx2-6mx+9m+8≥0对一切实数x 均成立,于是有解得m>0.综上可知,实数m的取值范围为[0,+∞).强化演练1.C[解析]因为函数y=f(x)的定义域是[-2,3],所以-2≤2x-1≤3,可得-≤x≤2,即y=f(2x-1)的定义域是-,2,故选C.2.A[解析]函数y=f(x)的定义域是[0,2],要使函数g(x)有意义,可得解得0≤x<1,故选A.3.(0,1][解析]函数的定义域满足解得∴0<x≤1,故填(0,1].4.∪[解析]易知a=0不合题意.当a>0时,必有ax2+x+a>0在R上恒成立,即1-4a2<0,所以a>;当a<0时,必有ax2+x+a<0在R上恒成立,即1-4a2<0,所以a<-.所以实数a的取值范围是-∞,-∪,+∞.5.(-∞,-2]∪[解析]由已知得A={x|x<-1或x≥1},B={x|(x-a-1)(x-2a)<0},由a<1得a+1>2a,∴B={x|2a<x<a+1}.∵B⊆A,∴a+1≤-1或2a≥1,∴a≤-2或≤a<1.∴a的取值范围为a ≤-2或≤a<1.例4[思路点拨](1)用换元法,令s=-1(s>-1),求出f(s)即可;(2)用待定系数法;(3)用构造法,根据已知方程构造含有f(x)和f的方程组.(1)ln (x>-1)(2)x2-x+5(3)--[解析](1)令s=-1(s>-1),则x=,所以f(s)=ln (s>-1),即f(x)=ln (x>-1).(2)设f(x)=ax2+bx+c(a≠0),由f(0)=5,得c=5,又f(x+1)-f(x)=a(x+1)2+b(x+1)+5-(ax2+bx+5)=x-1,则2ax+a+b=x-1,所以即所以f(x)=x2-x+5.(3)在f(x)=3·f+1中,将x换成,则换成x,得f=3·f(x)+1,将该方程代入已知方程消去f,得f(x)=--.变式题(1)x2-1(x≥1)(2)-x(x+1)(3)lg(x+1)+lg(1-x)(-1<x<1)[解析](1)令+1=t(t≥1),则x=(t-1)2,代入原式得f(t)=(t-1)2+2(t-1)=t2-1,所以f(x)=x2-1(x≥1).(2)当-1≤x<0时,0≤x+1<1,由已知得f(x)=f(x+1)=-x(x+1).(3)当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1)①.将x换成-x,则-x换成x,得2f(-x)-f(x)=lg(-x+1)②.由①②消去f(-x)得,f(x)=lg(x+1)+lg(1-x)(-1<x<1).例5[思路点拨](1)先求f(-1),再求f[f(-1)]的值;(2)根据自变量的不同取值选择不同的分段解析式求解.(1)(2)4[解析](1)∵函数f(x)=∴f(-1)=1-2-1=,f[f(-1)]=f==.(2)∵f(3)=f(9)=1+log69,f(4)=1+log64,∴f(3)+f(4)=2+log636=4.例6[思路点拨]分别就自变量在不同区间上分类求解.B[解析]因为f(x)=所以若f(a)=2,则当a≥0时,2a-2=2,解得a=2;当a<0时,-a2+3=2,得a=-1.综上a的取值为-1或2.例7[思路点拨](1)分a≤0与a>0讨论求解不等式f(a)>,得a的范围;(2)利用分段函数化简,由里及外列出方程求解即可.(1)D(2)2[解析](1)当a≤0时,2a>,解得-1<a≤0;当a>0时,lo a>,解得0<a<.∴a∈(-1,0]∪0,,即a∈-1,.(2)易知f(4)=0,则f[f(4)]=f(0)=1+a3=,解得a=2.强化演练1.B[解析]∵2+log31<2+log32<2+log33,即2<2+log32<3,∴f(2+log32)=f(2+log32+1)=f(3+log32),又3<3+log32<4,∴f(3+log32)==×=×(3-1=×=×=×=,∴f(2+log32)=.2.B[解析]由f(0)=2,f(-1)=3可得1+b=2,a-1+b=3,可得a=,b=1,所以f(x)=那么f[f(-3)]=f+1=f(9)=lo9=-2.3.B[解析]当2-a≥2,即a≤0时,22-a-2-1=1,解得a=-1;当2-a<2,即a>0时,-log2[3-(2-a)]=1,解得a=-,不符合,舍去.所以a=-1.4.D[解析]∵函数f(x)=且f(a)≥2,∴或即a≤-1或a≥0.5.C[解析]由已知函数和f[f(a)]=2f(a),得f(a)≥1.若a<1,则3a-1≥1,解得a≥,此时≤a<1;若a≥1,则2a≥1,解得a≥0,此时a≥1.综上可知a≥,即a的取值范围是.【备选理由】例1考查抽象函数的定义域问题;例2利用值域求参数,考查分段函数的图像与性质以及数形结合思想;例3考查分段函数与不等式的问题,体会数形结合思想在解题中的应用.1[配合例2使用]已知函数f(3-2x)的定义域为[-1,2],则函数f(x)的定义域为.[答案][-1,5][解析]因为函数f(3-2x)的定义域为[-1,2],所以-1≤x≤2,所以-4≤-2x≤2,所以-1≤3-2x≤5,所以f(x)的定义域为[-1,5].2[配合例3使用][2017·重庆二诊]设函数f(x)=若f(x)在区间[m,4]上的值域为[-1,2],则实数m的取值范围为.[答案][-8,-1][解析]由题意,可以考虑采用数形结合法,作出函数f(x)的图像(如图),当x≤-1时,函数f(x)=log2单调递减,且最小值为f(-1)=-1,则令log2=2,解得x=-8;当x>-1时,函数f(x)=-x2+x+在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f(2)=2,且f(4)=<2,f(-1)=-1.综上得所求实数m的取值范围为[-8,-1].3[配合例7使用]设函数f(x)=若f[f(a)]≤2,则实数a的取值范围是.[答案](-∞,][解析]函数f(x)=的图像如图所示,由f[f(a)]≤2,可得f(a)≥-2.当a<0时,f(a)=a2+a=a+2-≥-2恒成立;当a≥0时,f(a)=-a2≥-2,即a2≤2,得0≤a≤.则实数a的取值范围是a≤.第5讲函数的单调性与最值考试说明 1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数图像分析函数的性质.考情分析真题再现■ [2017-2013]课标全国真题现1.[2017·全国卷Ⅱ]函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)[解析] D函数y=x2-2x-8=(x-1)2-9图像的对称轴为直线x=1,由x2-2x-8>0解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).2.[2017·全国卷Ⅰ]函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3][解析]D因为f(x)为奇函数,所以f(-1)=1,不等式-1≤f(x-2)≤1,即f(1)≤f(x-2)≤f(-1),因为f(x)单调递减,所以-1≤x-2≤1,解得1≤x≤3,故x的取值范围为[1,3].■ [2017-2016]其他省份类似高考真题1.[2017·天津卷]已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a[解析] C由函数f(x)为奇函数且在R上单调递增,可知当x>0时,f(x)>0,∴g(x)=xf(x)为偶函数,且在(0,+∞)上单调递增,∴c=g(3)>a=g(-log25.1)=g(log25.1)>g(2),b=g(20.8)<g(2),∴b<a<c.2.[2017·北京卷]已知函数f(x)=3x-,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数[解析] A因为f(-x)=3-x-=-3x=-3x-=-f(x),所以f(x)为奇函数.又因为y=3x为增函数,y=为减函数,所以f(x)=3x-为增函数.故选A.3.[2017·山东卷]若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是()A.f(x)=2-xB.f(x)=x2C.f(x)=3-xD.f(x)=cos x[解析]A令g(x)=e x f(x).对于A,f(x)的定义域为R,g(x)=e x2-x=在R上单调递增,所以f(x)具有M 性质;对于B,f(x)的定义域为R,g(x)=e x x2,g'(x)=e x x2+2e x x=e x(x2+2x)≥0在R上不恒成立,所以g(x)在R上不单调递增,所以f(x)不具有M性质;对于C,f(x)的定义域为R,g(x)=e x3-x=在R上单调递减,所以f(x)不具有M性质;对于D,f(x)的定义域为R,g(x)=e x cos x,g'(x)=e x cos x-e x sin x=e x(cos x-sin x)≥0在R上不恒成立,所以g(x)在R上不单调递增,所以f(x)不具有M性质.故选A.4.[2016·北京卷]已知x,y∈R,且x>y>0,则()A.->0B.sin x-sin y>0C.x-y<0D.ln x+ln y>0[解析] C选项A中,因为x>y>0,所以<,即-<0,故结论不成立;选项B中,当x=,y=时,sin x-siny<0,故结论不成立;选项C中,函数y=x是定义在R上的减函数,因为x>y>0,所以x<y,所以x-y<0;选项D中,当x=e-1,y=e-2时,结论不成立.5.[2017·江苏卷]已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是.[答案][解析]因为f(-x)=-x3+2x+e-x-e x=-f(x),f(0)=0,所以f(x)是奇函数,则f(a-1)+f(2a2)≤0可化为f(2a2)≤f(1-a).又f'(x)=3x2-2+e x+e-x≥3x2-2+2=3x2≥0,所以f(x)在R上单调递增,则2a2≤1-a,即-1≤a≤.【课前双基巩固】知识聚焦1.f(x1)<f(x2)f(x1)>f(x2)上升的下降的2.增函数或减函数区间D3.f(x)≥M f(x0)=M对点演练1.a<[解析]当2a-1<0,即a<时,f(x)是R上的减函数.2.(2,3][-3,2][解析]由函数f(x)=(x-2)2+5(x∈[-3,3])的图像即可得到单调区间.3.[解析]函数f(x)=在[2,5]上是减函数,所以最大值为f(2)=1,最小值为f(5)=.所以最大值与最小值之和为1+=.4.a≤2[解析]因为函数f(x)=|x-a|+1的单调递增区间是[a,+∞),当f(x)在[2,+∞)上单调递增时,满足[2,+∞)⊆[a,+∞),所以a≤2.5.[解析]函数f(x)的定义域是(-1,4),u(x)=-x2+3x+4=-+,x∈(-1,4)的单调递减区间为,∴函数f(x)的单调递减区间为.6.[解析]由题知函数f(x)是R上的减函数,于是有由此解得a≤,即实数a的取值范围是.7.[-1,1)[解析]由条件知解得-1≤a<1.8.(1)a≤-3(2)-3[解析](1)函数图像的对称轴为直线x=1-a,由1-a≥4,得a≤-3. (2)函数图像的对称轴为直线x=1-a,由1-a=4,得a=-3.【课堂考点探究】例1[思路点拨]直接判断单调性即可,按照单调性的定义证明单调性.解:该函数在(-1,1)上单调递减.证明如下:设-1<x1<x2<1,则f(x1)-f(x2)=-==.∵-1<x1<x2<1,∴x2-x1>0,x1x2+1>0,(-1)(-1)>0.又a>0,∴f(x1)-f(x2)>0,函数f(x)在(-1,1)上单调递减.变式题C[解析]对于A,在(0,+∞)上单调递减,故A错;对于B,在(0,+∞)上先减后增,故B错;对于C,在(0,+∞)上单调递增,故C对;对于D,在(0,+∞)上单调递减,故D错.选C.例2[思路点拨](1)先求出函数y=x2-2x-8在y>0时的单调递增区间,再根据复合函数的单调性的性质判断f(x)的单调性;(2)作出函数g(x)的图像,由图像可得单调区间.(1)D(2)[0,1)[解析](1)函数y=x2-2x-8=(x-1)2-9图像的对称轴为直线x=1,由x2-2x-8>0解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)由题意知g(x)=该函数图像如图所示,其单调递减区间是[0,1).变式题(1)B(2)(-∞,2][解析](1)令t=2x2-3x+2,则y=,由复合函数的单调性易知在上单调递增,故选B.(2)因为f(x)在R上单调递增,所以a-1>0,即a>1,因此g(x)的单调递减区间就是y=|x-2|的单调递减区间(-∞,2].例3[思路点拨](1)转化为同底的指数函数、对数函数,依据它们的单调性比较大小;(2)由已知可知f(x)-ln x为定值,设为t,则f(x)=ln x+t,求出t,再结合函数的单调性分析可得答案.(1)C(2)c>a>b[解析](1)因为a=log52<log5=,b=>=1,c=log73∈(log7,log77)即c∈,1,故b>c>a.故选C.(2)根据题意,对任意的x∈(0,+∞),都有f[f(x)-ln x]=e+1,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)-ln x为定值,设t=f(x)-ln x,则f(x)=ln x+t.又由f(t)=e+1,即ln t+t=e+1,解得t=e,则f(x)=ln x+e(x>0),则f(x)为增函数.又由==,==,log2π>1,则有<<log2π,则有c>a>b.例4[思路点拨](1)构造函数,利用单调性把求解的不等式中的函数符号去掉,得出一般的不等式,解该不等式;(2)可判断出f(x)为增函数,于是可将函数不等式转化为常规不等式. (1)D(2)(1,2)[解析](1)由已知条件知,f(x1)-x1<f(x2)-x2对任意x1<x2恒成立,故函数g(x)=f(x)-x为R上的增函数,且g(-3)=f(-3)-(-3)=-1.不等式f>lo|3x-1|-1,即f(lo|3x-1|)-lo|3x-1|>-1,即g(lo|3x-1|)>g(-3),所以lo|3x-1|>-3,得0<|3x-1|<8,解得x<2且x ≠0,故所求不等式的解集为(-∞,0)∪(0,2).(2)因为y=e x,y=x3在R上均为增函数,所以函数f(x)为增函数,所以不等式f(x2)<f(3x-2)等价于x2<3x-2,即x2-3x+2<0⇔1<x<2,故x∈(1,2).例5[思路点拨]变换函数解析式,利用常见函数的单调性确定f(x)的单调性,从而得到函数的最大值和最小值.4033[解析]f(x)=+2016sin x=+2016sin x=2017-+2016sin x.显然该函数在区间-,上单调递增,故最大值为f,最小值为f-,所以M+N=f+f-=2017-+2016+2017--2016=4034--=4034-1=4033.例6[思路点拨]根据一次函数以及指数函数的单调性得到不等式组,解出即可.D[解析]由题意得解得≤a<3,故选D.强化演练1.B[解析]根据题意可知,函数f(x)在(0,+∞)上单调递减.而1<log47<log49=log23,0<0.20.6<0.20=1,所以log23>log47>0.20.6,所以b<a<c.2.(-,-2)∪(2,)[解析]因为函数f(x)=ln x+2x在定义域上单调递增,且f(1)=ln 1+2=2,所以由f(x2-4)<2得f(x2-4)<f(1),所以0<x2-4<1,解得-<x<-2或2<x<.3.1[解析]当x>1时,y=lo x是减函数,得y<0;当x≤1时,y=-x2+2x=-(x-1)2+1在(-∞,1]上单调递增,得y≤1.综上得f(x)的最大值是1.4.1[解析]∵f(1+x)=f(1-x),∴f(x)的图像关于直线x=1对称,∵函数f(x)=2|x-a|(a∈R)的图像以直线x=a为对称轴,∴a=1,∴f(x)在[1,+∞)上单调递增.∵f(x)在[m,+∞)上单调递增,∴m≥1,则m的最小值为1.5.a≥-[解析]若函数f(x)=ln(ax2+x)在区间(0,1)上单调递增,则函数g(x)=ax2+x在(0,1)上单调递增且g(x)>0恒成立.当a=0时,g(x)=x在(0,1)上单调递增且g(x)>0,符合题意;当a>0时,g(x)图像的对称轴为x=-<0,且有g(x)>0,所以g(x)在(0,1)上单调递增,符合题意;当a<0时,需满足g(x)图像的对称轴x=-≥1,且有g(x)>0,解得a≥-,则-≤a<0.综上,a≥-.【备选理由】例1为抽象函数单调性的判断与证明问题,目的是让学生掌握抽象函数单调性的解决方法;例2为利用指数函数、对数函数的单调性比较大小问题;例3为利用分段函数的单调性解决不等式恒成立问题,需要对所给函数的单调性进行判断,进而将所要求解的不等式转化为常规不等式.1[配合例1使用][2018·南阳一中月考]已知x≠0时,函数f(x)>0,对任意实数x,y都有f(xy)=f(x)f(y),且f(27)=9,当0≤x<1时,f(x)∈[0,1).(1)判断f(x)在[0,+∞)上的单调性,并给出证明;(2)若a≥0且f(a+1)≤,求a的取值范围.解:(1)f(x)在[0,+∞)上单调递增.证明如下:设0≤x1<x2,∴0≤<1,f(x1)=f=f·f(x2).∵当0≤x<1时,f(x)∈[0,1),∴f<1,∴f(x1)<f(x2),故f(x)在(0,+∞)上单调递增.(2)∵f(27)=9,又f(3×9)=f(3)·f(9)=f(3)·f(3)·f(3)=[f(3)]3,∴9=[f(3)]3,即f(3)=.∵f(a+1)≤,∴f(a+1)≤f(3).∵a≥0,∴a+1∈[1,+∞),∴a+1≤3,即a≤2,又a≥0,故0≤a≤2.2[配合例3使用][2017·重庆第二外国语学校月考]设a=,b=,c=ln ,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.a>c>b[解析] B∵0<a=<b==,c=ln <ln 1=0,∴b>a>c.3[配合例4使用][2017·长安一中质检]已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是()A.(-∞,-2)B.(-∞,0)C.(0,2)D.(-2,0)[解析] A二次函数y=x2-4x+3图像的对称轴是直线x=2,∴该函数在(-∞,0]上单调递减,∴x2-4x+3≥3,同样可知函数y=-x2-2x+3在(0,+∞)上单调递减,∴-x2-2x+3<3,∴f(x)在R上单调递减.∴由f(x+a)>f(2a-x)得到x+a<2a-x,即2x<a,∴2x<a在[a,a+1]上恒成立,∴2(a+1)<a,∴a<-2,∴实数a的取值范围是(-∞,-2).故选A.第6讲函数的奇偶性与周期性考试说明 1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图像理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.考情分析真题再现■ [2017-2013]课标全国真题再现1.[2017·全国卷Ⅰ]函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3][解析]D因为f(x)为奇函数,所以f(-1)=1,不等式-1≤f(x-2)≤1,即f(1)≤f(x-2)≤f(-1),因为f(x)单调递减,所以-1≤x-2≤1,解得1≤x≤3,故x的取值范围为[1,3].2.[2014·全国卷Ⅰ]设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数[解析] C由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.3.[2017·全国卷Ⅱ]已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.[答案] 12[解析]因为函数f(x)为奇函数,所以f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.4.[2015·全国卷Ⅰ]若函数f(x)=x ln(x+)为偶函数,则a=.[答案] 1[解析]由f(-x)=f(x)得-x ln(-x+)=x ln(x+),即x[ln(x+)+ln(-x+)]=x ln a=0对定义域内的任意x 恒成立,因为x不恒为0,所以ln a=0,所以a=1.■ [2017-2016]其他省份类似高考真题1.[2017·北京卷]已知函数f(x)=3x-,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数[解析] A因为f(-x)=3-x-=-3x=-3x-=-f(x),所以f(x)为奇函数.又因为y=3x为增函数,y=为减函数,所以f(x)=3x-为增函数.故选A.2.[2016·山东卷]已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f x+=f x-.则f(6)=()A.-2B.-1C.0D.2[解析] D∵当x>时,f x+=f x-,∴f(x)的周期为1,则f(6)=f(1).又∵当-1≤x≤1时,f(-x)=-f(x),∴f(1)=-f(-1).又∵当x<0时,f(x)=x3-1,∴f(-1)=(-1)3-1=-2,∴f(6)=-f(-1)=2.3.[2017·山东卷]已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=.[答案] 6[解析]由f(x+4)=f(x-2)可知周期T=6,所以f(919)=f(153×6+1)=f(1),又因为f(x)为偶函数,所以f(1)=f(-1)=6-(-1)=6.4.[2016·江苏卷]设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.若f-=f,则f(5a)的值是.[答案]-[解析]因为f(x)的周期为2,所以f-=f-=-+a,f=f=,即-+a=,所以a=,故f(5a)=f(3)=f(-1)=-.5.[2016·四川卷]已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f-+f(1)=.[答案]-2[解析]因为f(x)是周期为2的函数,所以f(x)=f(x+2).因为f(x)是奇函数,所以f(x)=-f(-x),所以f(1)=f(-1),f(1)=-f(-1),即f(1)=0.又f=f=-f,f==2,所以f=-2,从而f+f(1)=-2.【课前双基巩固】知识聚焦1.f(-x)=f(x)f(-x)=-f(x)y轴原点2.f(x+T)=f(x)最小的正数最小正数对点演练1.2[解析]f(x)=x2-1和f(x)=x2+cos x为偶函数.2.减减[解析]根据奇偶函数图像的对称性可得.3.1-[解析]f(-2)=-f(2)=-(-1)=1-.4.1[解析]因为f(x+3)=f(x),所以f(x)是以3为周期的周期函数,所以f(2017)=f(672×3+1)=f(1)=log4(12+3)=1.5.奇[解析]由得-1<x<1且x≠0,∴函数f(x)的定义域为(-1,0)∪(0,1).∴f(x)==,∴f(-x)==-f(x),∴f(x)是奇函数.6.①③[解析]对于①,f=-x=-f(x),满足题意;对于②,f=+=f(x)≠-f(x),不满足题意;对于③,f=即f=故f=-f(x),满足题意.7.2[解析]∵f(x)=-f,∴f(x+3)=f=-f=f(x),∴f(2017)=f(3×672+1)=f(1)=2.8.[解析]设x<0,则-x>0,所以f(x)=-f(-x)=-[(-x)2+4(-x)-3]=-x2+4x+3,由奇函数的定义可知f(0)=0,所以f(x)=【课堂考点探究】例1[思路点拨](1)利用函数奇偶性的性质直接判断;(2)对于①②两个函数,先求定义域,再等价化简函数解析式,然后用奇偶性的性质判断,对于③可用图像法判断.(1)C(2)C[解析](1)因为f(x)是奇函数,g(x)是偶函数,所以有f(-x)=-f(x),g(-x)=g(x),于是f(-x)·g(-x)=-f(x)g(x),即f(x)g(x)为奇函数,A错误;|f(-x)|g(-x)=|f(x)|g(x),即|f(x)|g(x)为偶函数,B错误;f(-x)|g(-x)|=-f(x)|g(x)|,即f(x)|g(x)|为奇函数,C正确;|f(-x)g(-x)|=|f(x)g(x)|,即|f(x)g(x)|为偶函数,所以D错误.故选C.(2)①中,易知函数的定义域为{-,},所以f(x)=0,所以f(-x)=-f(x)且f(-x)=f(x),所以①既是奇函数又是偶函数;②中,由得定义域为(-1,0)∪(0,1),关于原点对称,所以x-3<0,所以f(x)=,验证知f(-x)=-f(x)成立,所以②是奇函数;作出图像(图略),知③是奇函数.故选C.变式题(1)A(2)D[解析](1)易知h(x)=f(x)+g(x)的定义域为{x|x≠0}.因为f(-x)+g(-x)=+=--=-=+=f(x)+g(x),所以h(x)=f(x)+g(x)是偶函数.故选A.(2)对于选项A,函数的定义域为R,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),所以f(x)=x+sin 2x 为奇函数;对于选项B,函数的定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),所以f(x)=x2-cos x 为偶函数;对于选项C,函数的定义域为R,f(-x)=3-x-=-3x-=-f(x),所以f(x)=3x-为奇函数;只有f(x)=x2+tan x既不是奇函数也不是偶函数.故选D.例2[思路点拨](1)先确定函数f(x)在0,上的零点情况,再据周期性确定在区间(0,6]上的零点个数;(2)由条件f(x+2)=可得出函数的周期为4,再求f(2018).(1)B(2)A[解析](1)由f x-=f x+得f x+=f(x),即函数是周期为的周期函数.∵当x ∈0,时,f(x)=ln(x2-x+1),令f(x)=0,得x2-x+1=1,解得x=1(x=0舍去),又∵函数f(x)的周期为,∴方程f(x)=0在区间(0,6]上的解有1,,4,,共4个.(2)由f(x+2)=,得f(x+4)==f(x),所以函数f(x)的周期为4,所以f(2018)=f(2).因为f(2+2)=,所以f(2)=-=-=-2-.故f(2018)=-2-.变式题803[解析]依题意,f(1)=f(1+3)=f(4)=3×4-1=11,f(2)=3×2-1=5,f(3)=3×3-1=8,所以f(1)+f(2)+f(3)=24,所以f(1)+f(2)+f(3)+…+f(100)=33[f(1)+f(2)+f(3)]+f(100)=33×24+f(1)=792+11=803.例3[思路点拨](1)利用偶函数将求f(-)转化为求f();(2)观察函数的结构可整理成含有一个奇函数与一个常函数的和的形式,根据奇函数的最大值与最小值和为零求值.(1)B(2)C[解析](1)∵f(x)为偶函数,∴f(-)=f(),又当x>0时,f(x)=log2x,∴f()=log2=,即f(-)=.(2)f(x)==2+,设g(x)=,∵g(-x)=-g(x),∴g(x)为奇函数,∴g(x)max+g(x)min=0.∵M=f(x)max=2+g(x)max,m=f(x)min=2+g(x)min,∴M+m=2+g(x)max+2+g(x)min=4.例4[思路点拨](1)函数只有一个零点,所以f(2x2+1)+f(λ-x)=0有唯一解,即f(2x2+1)=f(x-λ)有唯一解,再求解;(2)函数为偶函数,所以不等式f(a-2)>0等价为f(|a-2|)>f(2),再据单调性求解.(1)C(2)D[解析](1)令y=f(2x2+1)+f(λ-x)=0,因为f(x)是奇函数,所以f(2x2+1)=-f(λ-x)=f(x-λ).又因为f(x)是R上的单调函数,所以2x2+1=x-λ只有一个根,即2x2-x+1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-.(2)∵偶函数f(x)满足f(x)=2x-4(x≥0),∴函数f(x)在[0,+∞)上为增函数,f(2)=0,∴不等式f(a-2)>0等价为f(|a-2|)>f(2),即|a-2|>2,即a-2>2或a-2<-2,解得a>4或a<0.例5[思路点拨](1)由f(x)是奇函数且f(x+1)为偶函数,可得出函数是周期为4的周期函数;(2)由题意可得偶函数y=f(x)是周期为4的函数,f(x)=sin |x|是偶函数,作出函数的图像,两函数图像交点的个数即为所求根的个数.(1)B(2)10[解析](1)∵f(x)为R上的奇函数,∴f(0)=0,且有f(x)=-f(-x),即有f(x+1)=-f(-x-1),又∵f(x+1)为偶函数,∴f(x+1)=f(-x+1),∴f(-x+1)=-f(-x-1),即f(x+1)=-f(x-1),∴f(x+2)=f(x+1+1)=-f(x),∴f(x+4)=f(x),∴f(x)是周期为4的周期函数,∴f(2016)+f(2017)=f(504×4)+f(1+504×4)=f(0)+f(1)=0+1=1.(2)∵函数y=f(x)为偶函数,且满足f(x+2)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=f(x),∴偶函数y=f(x)是周期为4的函数.由x∈[0,2]时,f(x)=2-x2可作出函数f(x)在[-10,10]上的图像,同时作出函数y=sin |x|在[-10,10]上的图像,交点个数即为所求根的个数.数形结合可得交点个数为10.例6[思路点拨](1)由函数f(x)是偶函数和周期函数,得出函数在[3,6]上的单调性,再进行判断;(2)由已知得出函数在x∈0,时单调递增,且f(x)>0,进而根据奇函数得出x∈-,0时的单调情况,再据周期性得出在区间1,上的情况.(1)B(2)D[解析](1)依题意知,f(x)是偶函数,且是以6为周期的周期函数.因为当x∈[0,3]时,f(x)单调递增,所以f(x)在[-3,0]上单调递减.根据函数周期性知,函数f(x)在[3,6]上单调递减.又因为[4,5]⊆[3,6],所以函数f(x)在[4,5]上单调递减.(2)当x∈0,时,由f(x)=lo(1-x)可知f(x)单调递增且f(x)>0,又函数为奇函数,所以在区间-,0上函数也单调递增,且f(x)<0.由f x+=f(x)知,函数的周期为,所以在区间1,上,函数单调递增且f(x)<0.故选D.强化演练1.B[解析]由y=f(-x)和y=f(x+2)是偶函数知f(-x)=f(x),f(x+2)=f(-x+2)=f(x-2),故f(x)=f(x+4),则F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=,故选B.2.D[解析]根据题意,f(x)为偶函数且在[0,+∞)上单调递增,则f(ln x)<f(2)⇔|ln x|<2,即-2<ln x<2,解得e-2<x<e2,即x的取值范围是(e-2,e2).3.D[解析]因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).4.-[解析]由题意可知,f=f=-f=-2××=-.5.[解析]依题意知,函数f(x)为奇函数且周期为2,所以f+f(1)+f+f(2)+f=f+f(1)+f+f(0)+f=f+f(1)-f+f(0)+f=f+f(1)+f(0)=-1+21-1+20-1=.【备选理由】例1增加了函数的奇偶性与函数的对称性结合的问题,有利于从不同角度认识图形与性质;例2考查奇偶性的应用,即利用奇偶性求函数值,注意两个函数之间的关系与联系;例3为奇偶性与单调性结合的题目,要在利用奇函数性质求出函数中的参数后,再结合单调性求解不等式;例4为函数的奇偶性、单调性、周期性及函数的零点等综合的问题,性质涉及多,难度大,需要利用各函数性质及数形结合思想求解.1[配合例3使用]设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,设h(x)=|f(x-1)|+g(x-1),则下列结论中正确的是()A.h(x)的图像关于点(1,0)对称B.h(x)的图像关于点(-1,0)对称C.h(x)的图像关于直线x=1对称D.h(x)的图像关于直线x=-1对称[解析] C因为f(x)是奇函数,所以|f(x)|是偶函数,于是|f(x)|和g(x)都是偶函数,它们的图像都关于y轴对称,所以|f(x-1)|和g(x-1)的图像都关于直线x=1对称,即h(x)=|f(x-1)|+g(x-1)的图像关于直线x=1对称.故选C.2[配合例3使用][2017·怀化四模]已知函数f(x)是定义在R上的奇函数,f(x)=g(x)+x2,且当x≥0时,g(x)=log2(x+1),则g(-1)=.[答案]-3[解析]根据题意,f(x)=g(x)+x2,且当x≥0时,g(x)=log2(x+1),则f(1)=g(1)+1=log2(1+1)+1=2,又因为函数f(x)是定义在R上的奇函数,则f(-1)=-f(1)=g(-1)+(-1)2=-2,则g(-1)=-3.3[配合例4使用]若函数f(x)=1-是奇函数,则使f(x)≥成立的x的取值范围是.[答案][1,+∞)[解析]由题意得f(x)+f(-x)=0⇒1-+1-=0⇒a=1,所以 1-≥⇒2x≥2⇒x≥1.4[配合例6使用][2018·河南林州一中调研]已知函数y=f(x)是R上的偶函数,满足f(x+2)=f(x-2)+f(2),且当x∈[0,2]时,f(x)=2x-4,令函数g(x)=f(x)-m,若g(x)在区间[-10,2]上有6个零点,分别记为x1,x2,x3,x4,x5,x6,则x1+x2+x3+x4+x5+x6=.。
高三数学一轮复习 第2章 函数、导数及其应用第5课时 指数与指数函数精品课件 理 北师大
• 3.指数函数的图象和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图象
图象特征
在x轴 上方,过定点 (0,1)
当x逐渐增大时, 图象逐渐下降
当x逐渐增大时, 图象逐渐上升
函数
定义域
值域
性 单调性 质
函数 值变 化规律
y=ax(a>0,且a≠1)
D.f(-2)>f(2)
解析: 由a-2=4,a>0,得a=12, ∴f(x)=21-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|,即f(-2)>f(-1). 答案: A
4.方程3x-1=19的解是________. • 答案: -1
5.函数y=121-x的值域是________. 解析: 函数的定义域为R,令u=1-x∈R, ∴y=21u>0. 答案: (0,+∞)
• (2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函 数.
• 1.与指数函数有关的复合函数的定义域、值域的求法
• (1)函数y=af(x)的定义域与y=f(x)的定义域相同; • (2)先确定f(x)的值域,再根据指数函数的值域、单调性,可确定y=
af(x)的值域. • 2.与指数函数有关的复合函数的单调性的求解步骤 • (1)求复合函数的定义域; • (2)弄清函数是由哪些基本函数复合而成的; • (3)分层逐一求解函数的单调性; • (4)求出复合函数的单调区间(注意“同增异减”).
【变式训练】 1.计算下列各式:
• 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的 图象,通过平移、对称变换得到其图象.
2024届高考数学一轮总复习第二章函数导数及其应用第五讲指数与指数函数课件
7-2-1=98.
3212
54
(2)原式=
a2 a
b b2
2
a6
1
a3
b6
1
b3
a3 b3
27
a3 b3
a. b
【题后反思】指数幂运算的一般原则 (1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号;底数是小数,先化成分数;底 数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示, 运用指数幂的运算性质来解答.
解析:因为函数 y=ax-b 的图象经过第二、三、四象限,所 以函数 y=ax-b 单调递减且其图象与 y 轴的交点在 y 轴的负半轴
上.令 x=0,则 y=a0-b=1-b,由题意得01<-ab<<10,,
解得0b<>a1<,1, 故 ab∈(0,1). 答案:(0,1)
考点三 指数函数的性质及应用 考向 1 利用指数函数的单调性比较大小 通性通法:比较指数式的大小时,能化成同底数的先化成同 底数幂,再利用单调性比较大小;不能化成同底数的,一般引入 “1”等中间量比较大小.
2.通过具体实例,了解指数函数的实际意义,理 问题.
解指数函数的概念.
2.题型一般为选择、填空
3.能用描点法或借助计算工具画出具体指数函数 题,若题型为解答题,
的图象,探索并理解指数函数的单调性与特殊点 则题目中等偏难
1.根式 (1)一般地,如果 xn=a,那么 x 叫做 a 的 n 次方根,其中 n>1, 且 n∈N*.
即函数 f(x)在定义域 R 上单调递增.
(3)解:f(2x-1)+f(x-2)>0,且 f(x)为奇函数, ∴f(2x-1)>f(-x+2), ∵函数 f(x)在 R 上单调递增, ∴2x-1>-x+2,∴x>1, ∴不等式的解集为(1,+∞).
最新高考数学(文)一轮复习第二章 函数、导数及其应用 第二章 函数、导数及其应用及答案
第二章⎪⎪⎪函、导及其应用第一节函及其表示1.函与映射的概念2.函的有关概念 (1)函的定义域、值域:在函y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函的定义域;与x 的值相对应的y 值叫做函值,函值的集合{f (x )|x ∈A }叫做函的值域.显然,值域是集合B 的子集.(2)函的三要素:定义域、值域和对应关系.(3)相等函:如果两个函的定义域和对应关系完全一致,则这两个函相等,这是判断两函相等的依据.(4)函的表示法表示函的常用方法有:解析法、图象法、列表法. 3.分段函若函在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函通常叫做分段函.1.下列函中,与函y =13x定义域相同的函为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案:D2.若函y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函y =f (x )的图象可能是()答案:B 3.函f (x )=x -4|x |-5的定义域是________________.答案:1.设函f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 答案:±12.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t.∴f (x )=5x +1x 2(x ≠0).答案:5x +1x 2(x ≠0)考点一 函的定义域 基础送分型考点——自主练透1.函f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .C .(-∞,0)∪(1,+∞)D .(-∞,0]∪B .C .,则函g (x )=f x +1x -1的定义域是( )A .B .C .(1,2 017]D .解析:选B 令t =x +1,则由已知函的定义域为,可知1≤t ≤2 017.要使函f (x +1)有意义,则有1≤x +1≤2 017,解得0≤x ≤2 016,故函f (x +1)的定义域为.所以使函g (x )有意义的条件是⎩⎨⎧0≤x ≤2 016,x -1≠0,解得0≤x <1或1<x ≤2 016.故函g (x )的定义域为.4.函f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎨⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函的定义域为(0,2].答案:(0,2]函定义域的求解策略(1)已知函解析式:构造使解析式有意义的不等式(组)求解.(2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函:①若已知函f (x )的定义域为,其复合函f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函f (g (x ))的定义域为,则f (x )的定义域为g (x )在x ∈时的值域. 考点二 求函的解析式 重点保分型考点——师生共研(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 解:(1)(配凑法)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)(待定系法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1, 所以⎩⎨⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)(解方程组法)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得,3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.∴f (x )的解析式是f (x )=2x +1-2-x3.求函解析式的4种方法1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.法二:(配凑法)∵x +2x =(x )2+2x +1-1=(x +1)2-1,∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1. 考点三 分段函 题点多变型考点——多角探明高考对分段函的考查多以选择题、填空题的形式出现,试题难度一般较小. 常见的命题角度有: (1)分段函的函求值问题; (2)分段函的自变量求值问题;(3)分段函与方程、不等式问题.角度一:分段函的函求值问题1.(2017·西安质检)已知函f (x )=⎩⎨⎧log 2x ,x >0,3x+1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:由题意可得f ⎝ ⎛⎭⎪⎫14=log 214=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109.答案:109角度二:分段函的自变量求值问题2.已知f (x )=⎩⎪⎨⎪⎧x 12,x ∈[0,+∞ ,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6.综上可知,a =14或-π6. 答案:14或-π6角度三:分段函与方程、不等式问题 3.已知函f (x )=⎩⎨⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)1.分段函的求值问题的解题思路(1)求函值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函定义区间的各段上,然后求出相应自变量的值,切记要代入检验.2.分段函与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起.1.(2017·唐山统考)已知函f (x )=⎩⎨⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2015·山东高考)设函f (x )=⎩⎨⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .C.⎣⎢⎡⎭⎪⎫23,+∞ D . B .(0,1] C .D ..∴原函的定义域为(0,1].4.已知函y =f (x )的定义域是,则函g (x )=f 3xx -1的定义域是( ) A.⎣⎢⎡⎭⎪⎫0,13∪⎝ ⎛⎦⎥⎤13,1 B . D . 解析:选B 由⎩⎨⎧0≤3x ≤3,x -1≠0可得0≤x <1,选B.5.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函,我们称为满足“倒负”变换的函,下列函:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函是( ) A .①② B .①③ C .②③D .① 解析:选B 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函是①③. 6.函f (x ),g (x )分别由下表给出.则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 27.已知函f (x )=⎩⎨⎧a -1 x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:148.已知函y =f (x 2-1)的定义域为,则函y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为, ∴x ∈,x 2-1∈, ∴y =f (x )的定义域为. 答案:9.已知函f (x )=2x +1与函y =g (x )的图象关于直线x =2成轴对称图形,则函y =g (x )的解析式为________.解析:设点M (x ,y )为函y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎨⎧x ′=4-x ,y ′=y .又y ′=2x ′+1, ∴y =2(4-x )+1=9-2x , 即g (x )=9-2x . 答案:g (x )=9-2x10.如图,已知A (n ,-2),B (1,4)是一次函y =kx +b 的图象和反比例函y =mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函和一次函的解析式. (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函y =m x上,所以m =4,又因为A (n ,-2)在反比例函y =m x =4x的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函y =kx +b 上的点,联立方程组⎩⎨⎧-2k +b =-2,k +b =4,解得⎩⎨⎧k =2,b =2.所以y =4x,y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.三上台阶,自主选做志在冲刺名校 1.已知实a ≠0,函f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34 D.32或-34解析:选B 当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.2.已知函f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________.解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2, f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.答案:73.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常).如图是根据多次实验据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m=1100,n=0,所以y=x2200+x100(x≥0).(2)令x2200+x100≤25.2,得-72≤x≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.第二节函的单调性与最值1.函的单调性(1)单调函的定义如果函y=f(x)在区间D上是增函或减函,那么就说函y=f(x)在这一区间具有(严格的)单调性,区间D叫做函y=f(x)的单调区间.2.函的最值1.下列函中,定义域是R且为增函的是( )A.y=e-x B.y=x3C.y=ln x D.y=|x|答案:B2.y=x2-6x+5的单调减区间为________.解析:y=x2-6x+5=(x-3)2-4,表示开口向上,对称轴为x=3的抛物线,其单调减区间为(-∞,3].答案:(-∞,3]3.若函f(x)=1x 在区间上的最大值与最小值的和为34,则a=________.解析:由f (x )=1x 的图象知,f (x )=1x在(0,+∞)上是减函,∵⊆(0,+∞),∴f (x )=1x在上也是减函,∴f (x )m ax =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:41.易混淆两个概念:“函的单调区间”和“函在某区间上单调”,前者指函具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函f (x )在区间(-1,0)上是减函,在(0,1)上是减函,但在(-1,0)∪(0,1)上却不一定是减函,如函f (x )=1x.3.两函f (x ),g (x )在x ∈(a ,b )上都是增(减)函,则f (x )+g (x )也为增(减)函,但f (x )·g (x ),1f x等的单调性与其正负有关,切不可盲目类比.1.设定义在上的函y =f (x )的图象如图所示,则函y =f (x )的增区间为________.答案:, 2.函f (x )=2x -1在上的最大值与最小值之差为________. 解析:易知f (x )在上是减函,∴f (x )m ax -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 函单调性的判断 基础送分型考点——自主练透1.下列四个函中,在(0,+∞)上为增函的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函; 当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函;当x ∈(0,+∞)时,f (x )=-1x +1为增函; 当x ∈(0,+∞)时,f (x )=-|x |为减函. 2.试讨论函f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.解:法一(定义法):设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1 x 2-1,由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函f(x)在(-1,1)上递增.法二(导法):f′(x)= ax ′ x-1 -ax x-1 ′x-1 2=a x-1 -axx-1 2=-ax-1 2.当a>0时,f′(x)<0,函f(x)在(-1,1)上递减;当a<0时,f′(x)>0,函f(x)在(-1,1)上递增.3.判断函y=x+2x+1在(-1,+∞)上的单调性.解:法一:任取x1,x2∈(-1,+∞),且x1<x2,则y1-y2=x1+2x1+1-x2+2x2+1=x2-x1x1+1 x2+1.∵x1>-1,x2>-1,∴x1+1>0,x2+1>0,又x1<x2,∴x2-x1>0,∴x2-x1x1+1 x2+1>0,即y1-y2>0.∴y1>y2,∴函y=x+2x+1在(-1,+∞)上单调递减.法二:y=x+2x+1=1+1x+1.∵y=x+1在(-1,+∞)上是增函,∴y=1x+1在(-1,+∞)上是减函,∴y=1+1x+1在(-1,+∞)上是减函.即函y=x+2x+1在(-1,+∞)上单调递减.判断或证明函的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差 商变形确定符号与1的大小得出结论(2)导法,其基本步骤: 求导函确定符号得出结论考点二 求函的单调区间 重点保分型考点——师生共研求下列函的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =错误!即y =⎩⎨⎧- x -1 2+2,x ≥0,- x +1 2+2,x <0.画出函图象如图所示,单调递增区间为(-∞,-1]和,单调递减区间为和确定函的单调区间的3种方法单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.1.函y =|x |(1-x )在区间A 上是增函,那么区间A 是( ) A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C .高考对函单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函的值域或最值;(2)比较两个函值或两个自变量的大小; (3)解函不等式;(4)利用单调性求参的取值范围或值.角度一:求函的值域或最值1.函f (x )=⎩⎨⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函f (x )=1x为减函,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函f (x )的最大值为2. 答案:2角度二:比较两个函值或两个自变量的大小2.(2017·哈尔滨联考)已知函f (x )的图象关于直线x =1对称,当x 2>x 1>1时,(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c .角度三:解函不等式3.已知函f (x )为R 上的减函,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选 C 由f (x )为R 上的减函且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎨⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.故选C.角度四:利用单调性求参的取值范围或值 4.已知函f (x )=⎩⎨⎧a -2 x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实a 的取值范围为________.解析:要使函f (x )在R 上单调递增,则有⎩⎨⎧a >1,a -2>0,f 1 ≤0,即⎩⎨⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实a 的取值范围是(2,3]. 答案:(2,3]函单调性应用问题的常见类型及解题策略(1)求函最值(五种常用方法)(2)比较大小比较函值的大小,应将自变量转到同一个单调区间内,然后利用函的单调性解决.(3)解不等式在求解与抽象函有关的不等式时,往往是利用函的单调性将“f”符号脱掉,使其转为具体的不等式求解.此时应特别注意函的定义域.(4)利用单调性求参视参为已知,依据函的图象或单调性定义,确定函的单调区间,与已知单调区间比较求参.①若函在区间上单调,则该函在此区间的任意子区间上也是单调的;②分段函的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.已知函f(x)=|x+a|在(-∞,-1)上是单调函,则a的取值范围是( ) A.(-∞,1] B.(-∞,-1]C.解析:选A 法一:由一次函的图象可知选A.法二:设∀x1,x2∈R且x1<x2,∵f(x)=kx+b在R上是增函,∴(x1-x2)(f(x1)-f(x2))>0,即k(x1-x2)2>0,∵(x1-x2)2>0,∴k>0,故选A.3.(2017·北京东城期中)已知函y =1x -1,那么( ) A .函的单调递减区间为(-∞,1),(1,+∞) B .函的单调递减区间为(-∞,1)∪(1,+∞) C .函的单调递增区间为(-∞,1),(1,+∞) D .函的单调递增区间为(-∞,1)∪(1,+∞) 解析:选A 函y =1x -1可看作是由y =1x向右平移1个单位长度得到的,∵y =1x 在(-∞,0)和(0,+∞)上单调递减,∴y =1x -1在(-∞,1)和(1,+∞)上单调递减,∴函y =1x -1的单调递减区间为(-∞,1)和(1,+∞),故选A. 4.函y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x =14时,y m ax =14.答案:145.函f (x )=log 12(x 2-4)的单调递增区间为________.解析:由x 2-4>0得x <-2或x >2.又u =x 2-4在(-∞,-2)上为减函,在(2,+∞)上为增函,y =log 12u 为减函,故f (x )的单调递增区间为(-∞,-2).答案:(-∞,-2)二保高考,全练题型做到高考达标1.已知函f (x )=x 2-2x -3,则该函的单调递增区间为( ) A .(-∞,1] B . D .∪上单调递减,在 B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]解析:选C 因为log 12a =-log 2 a ,且f (x )是偶函,所以f (log 2a )+f (log 12a )=2f (log 2a )=2f (|log 2a |)≤2f (1),即f (|log 2a |)≤f (1),又函在的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函. ∴f (x )的最大值为f (2)=23-2=6.4.已知函f (x )=⎩⎨⎧a -2 x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2是R 上的单调递减函,则实a的取值范围是( )A .(-∞,2) B.⎝⎛⎦⎥⎤-∞,138 C .(0,2)D.⎣⎢⎡⎭⎪⎫138,2 解析:选B因为函为递减函,则⎩⎨⎧a -2<0,2 a -2 ≤⎝ ⎛⎭⎪⎫122-1,解得a ≤138,故选B.5.(2017·安徽皖江名校联考)定义在上的函f (x )满足(x 1-x 2)>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实a 的取值范围为( )A .>0,x 1≠x 2,∴函在上单调递增,∴⎩⎨⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a .∴⎩⎨⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C.6.函f (x )=1x -1在区间上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在上为减函,∴⎩⎨⎧f a =1,f b =13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎨⎧a =2,b =4.∴a +b =6. 答案:67.已知函f (x )=x 2-2ax -3在区间上具有单调性,则实a 的取值范围为________________.解析:函f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函在(-∞,a ]和上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪∪上的最大值为4,最小值为m ,且函g (x )=(1-4m )x 在上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函f (x )在上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2 x 1-x 2 x 1+2 x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a x2-x1x1-a x2-a.∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].10.已知函f(x)=a-1|x|.(1)求证:函y=f(x)在(0,+∞)上是增函;(2)若f(x)<2x在(1,+∞)上恒成立,求实a的取值范围.解:(1)证明:当x∈(0,+∞)时,f(x)=a-1 x ,设0<x1<x2,则x1x2>0,x2-x1>0,f(x2)-f(x1)=⎝⎛⎭⎪⎫a-1x2-⎝⎛⎭⎪⎫a-1x1=1x1-1x2=x2-x1x1x2>0,所以f(x)在(0,+∞)上是增函.(2)由题意a-1x<2x在(1,+∞)上恒成立,设h(x)=2x+1x,则a<h(x)在(1,+∞)上恒成立.任取x1,x2∈(1,+∞)且x1<x2,h(x1)-h(x2)=(x1-x2)⎝⎛⎭⎪⎫2-1x1x2.因为1<x1<x2,所以x1-x2<0,x1x2>1,所以2-1x1x2>0,所以h(x1)<h(x2),所以h(x)在(1,+∞)上单调递增.故a≤h(1),即a≤3,所以实a 的取值范围是(-∞,3]. 三上台阶,自主选做志在冲刺名校1.如果函y =f (x )在区间I 上是增函,且函y =f xx在区间I 上是减函,那么称函y =f (x )是区间I 上的“缓增函”,区间I 叫做“缓增区间”.若函f (x )=12x 2-x +32是区间I 上的“缓增函”,则“缓增区间”I 为( )A . C .D .解析:选D 因为函f (x )=12x 2-x +32的对称轴为x =1,所以函y =f (x )在区间上单调递减,故“缓增区间”I 为.2.已知定义在区间(0,+∞)上的函f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函.(2)若f (3)=-1,求f (x )在上的最小值. 解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函f (x )在区间(0,+∞)上是单调递减函. (2)因为f (x )在(0,+∞)上是单调递减函, 所以f (x )在上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1, 所以f (9)=-2.所以f (x )在上的最小值为-2.第三节函的奇偶性及周期性1.函的奇偶性(1)周期函对于函f(x),如果存在一个非零常T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函f(x)为周期函,称T为这个函的周期.(2)最小正周期如果在周期函f(x)的所有周期中存在一个最小的正,那么这个最小正就叫做f(x)的最小正周期.1.下列函中,既是偶函又在(0,+∞)上单调递增的是( )A.y=x B.y=cos xC.y=e x D.y=ln |x|答案:D2.已知函f(x)是定义在R上的奇函,且当x>0时,f(x)=x2+1x,则f(-1)=________.答案:-23.若函f (x )是周期为5的奇函,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-11.判断函的奇偶性,易忽视判断函定义域是否关于原点对称.定义域关于原点对称是函具有奇偶性的一个必要条件.2.判断函f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函奇偶性判定时,误用函在定义域某一区间上不是奇偶函去否定函在整个定义域上的奇偶性.1.已知f (x )=ax 2+bx 是定义在上的偶函,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在上的偶函,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.下列函中,为奇函的是( ) A .y =3x +13xB .y =x ,x ∈{0,1}C .y =x ·sin xD .y =⎩⎨⎧1,x <0,0,x =0,-1,x >0解析:选D 由函奇偶性定义易知函y =3x +13x 和y =x ·sin x 都是偶函,排除A 和C ;函y =x ,x ∈{0,1}的定义域不关于坐标原点对称,既不是奇函又不是偶函,排除B ;由奇函的定义知y =⎩⎨⎧1,x <0,0,x =0,-1,x >0是奇函,故选D.考点一 函奇偶性的判断 基础送分型考点——自主练透判断下列函的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3;(3)f (x )=3x -3-x ; (4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎨⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎨⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ). ∴f (x )既是奇函又是偶函. (2)∵函f (x )=3-2x +2x -3的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32,不关于坐标原点对称,∴函f (x )既不是奇函,也不是偶函. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函.(4)∵由⎩⎨⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为,∴f (x )=4-x 2|x +3|-3=4-x 2 x +3 -3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函.(5)易知函的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函是偶函.判定函奇偶性的3种常用方法(1)定义法(2)图象法(3)性质法①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函的奇偶性可概括为“同奇则奇,一偶则偶”.(1)“性质法”中的结论是在两个函的公共定义域内才成立的.(2)判断分段函的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函的周期性 重点保分型考点——师生共研设f(x)是定义在R上的奇函,且对任意实x,恒有f(x+2)=-f(x),当x ∈时,f(x)=2x-x2.(1)求证:f(x)是周期函;(2)计算f(0)+f(1)+f(2)+…+f(2 018).解:(1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函.(2)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-f(1)=-1.又f(x)是周期为4的周期函,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0.∴f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.1.判断函周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a,(2)若f(x+a)=1f x,则T=2a,(3)若f(x+a)=-1f x,则T=2a(a>0).1.若f(x)是R上周期为5的奇函,且满足f(1)=1,f(2)=2,则f(3)-f(4)等于( )A.-1 B.1 C.-2 D.2解析:选A 由f(x)是R上周期为5的奇函,知f(3)=f(-2)=-f(2)=-2,f(4)=f(-1)=-f(1)=-1,∴f(3)-f(4)=-1,故选A.2.已知定义在R上的函满足f(x+2)=-1f x,x∈(0,2]时,f(x)=2x -1.则f(1)+f(2)+f(3)+…+f(2 017)的值为________.解析:∵f(x+2)=-1f x,∴f(x+4)=-1f x+2=f(x),∴函y=f(x)的周期T=4.又x∈(0,2]时,f(x)=2x-1,∴f(1)=1,f(2)=3,f(3)=-1f 1=-1,f(4)=-1f 2=-13.∴f(1)+f(2)+f(3)+…+f(2 017)=504+f (504×4+1) =504⎝ ⎛⎭⎪⎫1+3-1-13+1=1 345. 答案:1 345考点三 函性质的综合应用 题点多变型考点——多角探明函的奇偶性、周期性以及单调性是函的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函相结合,并以结合奇偶性求函值为主.多以选择题、填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.角度一:奇偶性的应用1.(2017·福建三明模拟)函y =f (x )是R 上的奇函,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x解析:选C x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函,∴当x >0时,f (x )=-f (-x )=-2-x .故选C.角度二:单调性与奇偶性结合2.(2016·天津高考)已知f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增.若实a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞C.⎝ ⎛⎭⎪⎫12,32D.⎝ ⎛⎭⎪⎫32,+∞ 解析:选C 因为f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2),可得2|a -1|<2,即|a -1|<12,所以12<a <32.角度三:周期性与奇偶性结合3.已知f (x )是定义在R 上以3为周期的偶函,若f (1)<1,f (5)=2a -3a +1,则实a 的取值范围是( )A .(-1,4)B .(-2,1)C .(-1,2)D .(-1,0)解析:选A 因为函f (x )是定义在R 上以3为周期的偶函,所以f (5)=f (-1)=f (1),即2a -3a +1<1, 简得(a -4)(a +1)<0, 解得-1<a <4,故选A.角度四:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函f (x )满足f (x -4)=-f (x ),且在区间上是增函,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函f (x )是以8为周期的周期函,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f(x)在区间上是增函,f(x)在R上是奇函,所以f(x)在区间上是增函,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).函性质综合应用问题的常见类型及解题策略(1)函单调性与奇偶性结合.注意函单调性及奇偶性的定义,以及奇、偶函图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函值的自变量转到已知解析式的函定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转自变量所在的区间,然后利用奇偶性和单调性求解.1.(2017·广州模拟)已知f(x)在R上是奇函,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )A.2 B.-2C.-98 D.98解析:选B 因为f(x+4)=f(x),所以函f(x)的周期T=4,又f(x)在R 上是奇函,所以f(7)=f(-1)=-f(1)=-2.2.已知偶函f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间上是递增的,则f(-6.5),f(-1),f(0)的大小关系是( )A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)解析:选A 由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),∴函f(x)的周期是2.∵函f(x)为偶函,∴f(-6.5)=f(-0.5)=f(0.5),f(-1)=f(1).∵f(x)在区间上是单调递增的,∴f(0)<f(0.5)<f(1),即f(0)<f(-6.5)<f(-1).3.设f(x)是定义在R上周期为4的奇函,若在区间上,f(x)=⎩⎨⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 018)=________.解析:设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .f (x )是定义在R 上周期为4的奇函,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +1=2a -1,解得a =12,所以f (2 018)=f (2)=2×12-1=0.答案:0一抓基础,多练小题做到眼疾手快1.(2017·石家庄质检)下列函中,既是偶函又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x |解析:选B A 中函y =1x不是偶函且在(0,+∞)上单调递减,故A 错误;B中函满足题意,故B 正确;C 中函不是偶函,故C 错误;D 中函不满足在(0,+∞)上单调递增,故选B.2.已知f (x )为定义在R 上的奇函,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C.54D .3解析:选A 因为f (x )为R 上的奇函,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.函f (x )=x +1x+1,f (a )=3,则f (-a )的值为( )A .-3B .-1C .1D .2解析:选B 由题意得f (a )+f (-a )=a +1a +1+(-a )+1-a +1=2.∴f (-a )=2-f (a )=-1,故选B.4.函f (x )在R 上为奇函,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -15.设函f (x )是定义在R 上周期为2的偶函,当x ∈时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.解析:依题意得,f (2+x )=f (x ),f (-x )=f (x ), 则f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32.答案:32二保高考,全练题型做到高考达标1.(2016·山西考前质检)下列函中,既是偶函又在区间(1,2)内单调递减的是( )A .f (x )=xB .f (x )=1x2C .f (x )=2x +2-xD .f (x )=-cos x解析:选B 对于A ,偶函与单调递减均不满足;对于B ,符合题意;对于C ,不满足单调递减;对于D ,不满足单调递减,故选B.2.设f (x )是周期为2的奇函,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52等于( )A .-12B .-14C.14D.12解析:选A ∵f (x )是周期为2的奇函,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2×12×⎝ ⎛⎭⎪⎫1-12=-12.3.(2017·绵阳诊断)已知偶函f (x )在区间(a <b <0)上的值域为,则在区间上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B 法一:根据题意作出y =f (x )的简图,由图知,选B.法二:当x ∈时,-x ∈,由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间上f (x )min =-4,f (x )m ax =3,故选B. 5.设f (x )是定义在实集上的函,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13解析:选C 由f (2-x )=f (x )可知函f (x )的图象关于x =1对称,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫53,又当x ≥1时,f (x )=ln x 单调递增,所以f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53<f (2),即f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2),故选C.6.(2017·贵州适应性考试)已知f (x )是奇函,g (x )=2+f xf x.若g (2)=3,则g (-2)=________.解析:由题意可得g (2)=2+f 2f 2=3,则f (2)=1,又f (x )是奇函,则f (-2)=-1,所以g (-2)=2+f -2 f -2 =2-1-1=-1.答案:-17.定义在R 上的奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )>0的x 的集合为________.解析:由奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,得函y =f (x )在(-∞,0)上递增,且f ⎝ ⎛⎭⎪⎫-12=0,∴f (x )>0时,x >12或-12<x <0.即满足f (x )>0的x 的集合为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12 8.已知f (x ),g (x )分别是定义在R 上的奇函和偶函,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函和偶函, 所以f (-x )=-f (x ),g (-x )=g (x ), 因此得-f (x )-g (x )=2x .联立方程组解得f (x )=2-x -2x 2,g (x )=-2-x +2x2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1). 答案:f (1)>g (0)>g (-1)9.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函,当x >0时,f (x )=x 1-3x.(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )<-x8.解:(1)因为f (x )是奇函,所以当x <0时,f (x )=-f (-x ),-x >0, 又因为当x >0时,f (x )=x1-3x ,所以当x <0时,f (x )=-f (-x ) =--x 1-3-x =x1-3-x. (2)f (x )<-x 8,当x >0时,即x 1-3x <-x8,所以11-3x <-18,所以13x-1>18,所以3x -1<8, 解得x <2,所以x ∈(0,2). 当x <0时,即x1-3-x<-x 8,所以11-3-x >-18, 所以3-x >32,所以x <-2, 所以解集是(-∞,-2)∪(0,2).10.已知函f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函.(1)求实m 的值;(2)若函f (x )在区间上单调递增,求实a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在上单调递增,结合f (x )的图象(如图所示)知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实a 的取值范围是(1,3].三上台阶,自主选做志在冲刺名校1.已知y =f (x )是偶函,当x >0时,f (x )=x +4x,且当x ∈时,n ≤f (x )≤m恒成立,则m -n 的最小值是________.解析:∵当x ∈时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )m ax ,∴m -n 的最小值是f (x )m ax -f (x )min ,又由偶函的图象关于y 轴对称知,当x ∈时,函的最值与x ∈时的最值相同,又当x >0时,f (x )=x +4x,在上递减,在上递增,且f (1)>f (3),∴f (x )m ax -f (x )min =f (1)-f (2)=5-4=1. 答案:12.设函f (x )是定义在R 上的奇函,对任意实x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函,求实a 的值. 解:(1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x , 且f (-x )=-f (x ),知f (3+x )=f ⎣⎢⎡⎦⎥⎤32+⎝ ⎛⎭⎪⎫32+x =-f⎣⎢⎡⎦⎥⎤32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)因为y =|f (x )|·g (x )是偶函,且|f (-x )|=|-f (x )|=|f (x )|,所以|f (x )|为偶函. 故g (x )=x 2+ax +3为偶函, 即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立. 于是2ax =0恒成立,所以a =0.第四节函的图象1.描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函的定义域;②简函的解析式;③讨论函的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点). (3)描点,连线. 2.图象变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. (2)对称变换。
2020版高考数学一轮复习第2章函数、导数及其应用2.1函数及其表示学案理
2.1 函数及其表示[知识梳理]1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.必记结论函数与映射的相关结论 (1)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等. (2)映射的个数若集合A 中有m 个元素,集合B 中有n 个元素,则从集合A 到集合B 的映射共有n m个. (3)与x 轴垂直的直线和一个函数的图象至多有1个交点. [诊断自测] 1.概念思辨(1)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( ) (4)f (x -1)=x ,则f (x )=(x +1)2(x ≥-1).( ) 答案 (1)× (2)√ (3)× (4)√2.教材衍化(1)(必修A1P 23T 2)下列四个图形中,不是以x 为自变量的函数的图象是( )答案 C解析 由函数定义知,定义域内的每一个x 都有唯一函数值与之对应,A ,B ,D 选项中的图象都符合;C 项中对于大于零的x 而言,有两个不同的值与之对应,不符合函数定义.故选C.(2)(必修A1P 18例2)下列四组函数中,表示相等函数的一组是( ) A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 答案 A解析 A 项,函数g (x )=x 2=|x |,两个函数的对应法则和定义域相同,是相等函数;B 项,函数f (x )=x 2=|x |,g (x )=x (x ≥0),两个函数的对应法则和定义域不相同,不是相等函数;C 项,函数f (x )=x 2-1x -1的定义域为{x |x ≠1},g (x )=x +1的定义域为R ,两个函数的定义域不相同,不是相等函数;D 项,由⎩⎪⎨⎪⎧x +1≥0,x -1≥0,解得x ≥1,即函数f (x )的定义域为{x |x ≥1}.由x 2-1≥0,解得x ≥1或x ≤-1,即g (x )的定义域为{x |x ≥1或x ≤-1},两个函数的定义域不相同,不是相等函数.故选A.3.小题热身(1)(2018·广东深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1] 答案 C解析 由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0,x >0,ln x ≠0,解得0<x <1.故选C.(2)若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x-4,x >0,则f [f (1)]的值为( )A .-10B .10C .-2D .2 答案 C解析 因为f (1)=-2,所以f (-2)=-2.故选C.题型1 函数的概念典例1 集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x用定义法.答案 C解析 依据函数概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应,选项C 不符合.故选C.典例2 (2018·秦都区月考)判断下列各组中的两个函数是同一函数的是( ) ①y 1=(x +3)(x -5)x +3,y 2=x -5;②f (x )=x ,g (x )=x 2; ③f (x )=x ,g (x )=3x 3;④f 1(x )=(2x -5)2,f 2(x )=2x -5. A .①② B .②③ C .③ D .③④用定义法.答案 C解析 对于①,y 1=(x +3)(x -5)x +3=x -5(x ≠-3),与y 2=x -5(x ∈R )的定义域不同,不是同一函数;对于②,f (x )=x ,与g (x )=x 2=|x |的对应关系不同,不是同一函数;对于③,f (x )=x (x ∈R ),与g (x )=3x 3=x (x ∈R )的定义域相同,对应关系也相同,是同一函数;对于④,f 1(x )=(2x -5)2=2x -5⎝ ⎛⎭⎪⎫x ≥52,与f 2(x )=2x -5(x ∈R )的定义域不同,不是同一函数. 综上,以上是同一函数的是③.故选C. 方法技巧与函数概念有关问题的解题策略1.判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.见典例1.2.两个函数是否是相等函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示相等函数.见典例2.冲关针对训练1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={x |0≤x ≤1}为值域的函数的是( )答案 C解析 A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.故选C.2.下列函数中一定是同一函数的是________.答案 ②③解析 ①y =x 与y =a log a x 定义域不同; ②y =2x +1-2x =2x (2-1)=2x相同;③f (u )与f (v )的定义域及对应法则均相同; ④对应法则不相同.题型2 函数的定义域典例1 (2015·湖北高考)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( ) A .(2,3) B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]列不等式组求解.答案 C解析 依题意,知⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧|x |≤4,(x -3)(x -2)x -3>0,解之得2<x <3或3<x ≤4,即函数的定义域为(2,3)∪(3,4].故选C.典例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1)B.⎝⎛⎭⎪⎫-1,-12C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 已知f (x ),x ∈[a ,b ],求f [g (x )]的定义域,则a <g (x )<b .答案 B解析 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12.故选B. [结论探究] 典例2中条件不变,求函数g (x )=f (2x +1)+f (3x +1)的定义域. 解 函数f (3x +1)有意义,需-1<3x +1<0,解得-23<x <-13,又由f (2x +1)有意义,解得-1<x <-12,所以可知g (x )的定义域为⎝ ⎛⎭⎪⎫-23,-12.[条件探究] 若典例2中条件变为:“函数f (x -1)的定义域为(-1,0)”,则结果如何?解 因为f (x -1)的定义域为(-1,0),即-1<x <0,所以-2<x -1<-1,故f (x )的定义域为(-2,-1),则使函数f (2x +1)有意义,需满足-2<2x +1<-1,解得-32<x <-1.所以所求函数的定义域为⎝ ⎛⎭⎪⎫-32,-1.方法技巧1.求函数定义域的三种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解.见典例1. (2)抽象函数(见典例2)①若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出.②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.(3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求. 2.求函数定义域的注意点(1)不要对解析式进行化简变形,以免定义域变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.冲关针对训练1.(2017·临川模拟)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A .[-3,7]B .[-1,4]C .[-5,5] D.⎣⎢⎡⎦⎥⎤0,52 答案 D解析 由y =f (x +1)定义域[-2,3]得y =f (x )定义域为[-1,4],所以-1≤2x -1≤4,解得0≤x ≤52.故选D.2.(2018·石河子月考)已知函数y =f (x )的定义域是(-∞,1),则y =f (x -1)+2-x2x 2-3x -2的定义域是( )A.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2 B.⎝⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫12,1 C .(-∞,1) D .(-∞,2) 答案 A解析 ∵函数y =f (x )的定义域是(-∞,1), ∴y =f (x -1)+2-x2x 2-3x -2中,自变量x 应满足⎩⎪⎨⎪⎧x -1<1,2-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x <2,x ≤2,x ≠-12或x ≠2,即x <2且x ≠-12,∴f (x )的定义域是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2.故选A. 题型3 求函数的解析式典例1 已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式.配凑法.解 f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,故f (x )=x 2-2,且x ≤-2或x ≥2.典例2 已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.换元法.解 令t =2x +1>1,得x =2t -1,所以f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).典例3 已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).待定系数法.解 设f (x )=ax 2+bx +c ,由f (0)=0,得c =0,由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,得a =b =12.所以f (x )=12x 2+12x (x ∈R ).典例4 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,求f (x ). 方程组法.解 由f (x )=2f ⎝ ⎛⎭⎪⎫1xx -1,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,消掉f ⎝ ⎛⎭⎪⎫1x ,可得f (x )=23x +13.方法技巧函数解析式的常见求法1.配凑法.已知f [h (x )]=g (x ),求f (x )的问题,往往把右边的g (x )整理成或配凑成只含h (x )的式子,然后用x 将h (x )代换.见典例1.2.待定系数法.已知函数的类型(如一次函数、二次函数)可用待定系数法,见典例3. 3.换元法.已知f [h (x )]=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元.应用换元法时要注意新元的取值范围.见典例2.4.方程组法.已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f ⎝ ⎛⎭⎪⎫1x ,f (-x )等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).见典例4.冲关针对训练1.(2018·衢州期末)已知f (x )是(0,+∞)上的增函数,若f [f (x )-ln x ]=1,则f (e)=( )A .2B .1C .0D .e 答案 A解析 根据题意,f (x )是(0,+∞)上的增函数,且f [f (x )-ln x ]=1,则f (x )-ln x 为定值.设f (x )-ln x =t ,t 为常数,则f (x )=ln x +t 且f (t )=1,即有ln t +t =1,解得t =1,则f (x )=ln x +1,则f (e)=ln e +1=2.故选A.2.已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). 解 解法一:(换元法)令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).解法二:(配凑法)因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).解法三:(待定系数法)因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ).3.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x -1,求f (x ). 解 (消元法)已知2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x -1,① 以1x代替①式中的x (x ≠0),得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x-1,②①×2-②得3f (x )=6x -3x-1,故f (x )=2x -1x -13(x ≠0).题型4 求函数的值域角度1 分式型典例 求f (x )=5x -14x +2,x ∈[-3,-1]的值域. 分离常数法.解 由y =5x -14x +2可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3,即y ∈⎣⎢⎡⎦⎥⎤85,3.角度2 根式型典例 求函数的值域. (1)y =2x +1-2x ; (2)y =x +4+9-x 2.(1)用换元法,配方法;(2)用三角换元法.解 (1)令t =1-2x ,则x =1-t22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54(t ≥0).∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝ ⎛⎦⎥⎤-∞,54.(2)令x =3cos θ,θ∈[0,π],则y =3cos θ+4+3sin θ=32sin ⎝⎛⎭⎪⎫θ+π4+4.∵0≤θ≤π, ∴π4≤θ+π4≤5π4, ∴-22≤sin ⎝⎛⎭⎪⎫θ+π4≤1,∴1≤y ≤32+4,∴函数的值域为[1,32+4]. 角度3 对勾型函数典例 求y =log 3x +log x 3-1的值域.用分类讨论法.解 y =log 3x +log x 3-1,变形得y =log 3x +1log 3x-1.①当log 3x >0,即x >1时,y =log 3x +1log 3x -1≥2-1=1,当且仅当log 3x =1,即x =3时取“=”.②当log 3x <0,即0<x <1时,y ≤-2-1=-3. 当且仅当log 3x =-1,即x =13时取“=”.综上所述,原函数的值域为(-∞,-3]∪[1,+∞). 角度4 单调性型典例函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)本题用复合函数“同增异减”的单调原则.答案 A解析 根据对数函数的定义可知,真数3x+1>0恒成立,解得x ∈R . 因此,该函数的定义域为R ,原函数f (x )=log 2(3x+1)是由对数函数y =log 2t 和t =3x+1复合的复合函数, 由复合函数的单调性定义(同增异减)知道,原函数在定义域R 上是单调递增的. 根据指数函数的性质可知,3x>0,所以,3x+1>1, 所以f (x )=log 2(3x+1)>log 21=0,故选A. 角度5 有界性型典例 求函数y =1-2x1+2x 的值域. 本题用转化法.解 由y =1-2x1+2x可得2x=1-y 1+y . 由指数函数y =2x的有界性可知2x>0, ∴1-y1+y>0,解得-1<y <1. 所以函数的值域为(-1,1). 角度6 数形结合型典例 求函数y =sin x +1x -1,x ∈⎣⎢⎡⎦⎥⎤π2,π的值域.本题用数形结合法.解 函数y =sin x +1x -1的值域可看作由点A (x ,sin x ),B (1,-1)两点决定的斜率,B (1,-1)是定点,A (x ,sin x )在曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π上,如图,∴k BP ≤y ≤k BQ ,即1π-1≤y ≤4π-2.方法技巧求函数值域的常用方法1.分离常数法(见角度1典例) 2.配方法3.换元法(见角度2典例) (1)代数换元; (2)三角换元.4.有界性法(见角度5典例) 5.数形结合法(见角度6典例) 6.基本不等式法(见角度3典例) 7.利用函数的单调性(见角度4典例)冲关针对训练 求下列函数的值域:解(2)(数形结合法)如图,函数y =(x +3)2+16+(x -5)2+4的几何意义为平面内一点P (x,0)到点A (-3,4)和点B (5,2)的距离之和.由平面解析几何知识,找出B 关于x 轴的对称点B ′(5,-2),连接AB ′交x 轴于一点P ,此时距离之和最小,∴y min =|AB ′|=82+62=10,又y 无最大值,所以y ∈[10,+∞).题型5 分段函数角度1 求分段函数的函数值典例 (2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12确定自变量所在区间,代入相应解析式.答案 C解析 ∵-2<1,log 212>1,∴f (-2)=1+log 2[2-(-2)]=3;f (log 212)=2log212-1=2log26=6.∴f (-2)+f (log 212)=9.故选C. 角度2 求参数的值典例 (2018·襄阳联考)已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f [f (14-a )]=________.本题用方程思想求a ,再根据区间分类讨论,由内到外逐步求解.答案 -158解析 当a ≤1时,f (a )=2a-2=-3无解;当a >1时,由f (a )=-log 2(a +1)=-3,得a +1=8,解得a =7,所以f [f (14-a )]=f [f (7)]=f (-3)=2-3-2=-158.角度3 分段函数与不等式的交汇典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]本题用数形结合思想方法、分离常数法.答案 D解析 由题意作出y =|f (x )|的图象:由图象易知,当a >0时,y =ax 与y =ln (x +1)的图象在x >0时必有交点,所以当a ≤0,x ≥0时,|f (x )|≥ax 显然成立;当x <0时,要使|f (x )|=x 2-2x ≥ax 恒成立, 则a ≥x -2恒成立,又x -2<-2,∴a ≥-2. 综上,-2≤a ≤0.故选D. 方法技巧分段函数问题的常见类型及解题策略1.求函数值.弄清自变量所在区间,然后代入对应的解析式,见角度1.求“层层套”的函数值,要从最内层逐层往外计算.见角度2典例.2.求参数.“分段处理”,采用代入法列出各区间上的方程或不等式.见角度2典例. 3.解不等式.根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提.4.数形结合法也是解决分段函数问题的重要方法,在解决选择填空问题中经常使用,而且解题速度更快更准.见角度3典例.冲关针对训练1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2] 答案 D解析 依题意可知⎩⎪⎨⎪⎧a ≥0,a 2-2a +(-a )2+2(-a )≤0或⎩⎪⎨⎪⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2].故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2,x ≤0,f (x -2)+1,x >0,则f (2018)=________.答案 1008解析 根据题意:f (2018)=f (2016)+1=f (2014)+2=…=f (2)+1008=f (0)+1009=1008.1.(2014·山东高考)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 答案 C解析 要使函数f (x )有意义,需使(log 2x )2-1>0,即(log 2x )2>1,∴log 2x >1或log 2x <-1.解之得x >2或0<x <12.故f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞).故选C. 2.(2018·河北名校联盟联考)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g [f (-8)]=( )A .-1B .-2C .1D .2答案 A解析 ∵函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,∴f (-8)=-f (8)=-log 39=-2,∴g [f (-8)]=g (-2)=f (-2)=-f (2)=-log 33=-1.故选A.3.(2018·工农区模拟)函数y =x +1-1-x 的值域为( ) A .(-∞, 2 ] B .[0, 2 ] C .[-2, 2 ] D .[-2,0]答案 C解析 要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≥0,1-x ≥0,解得-1≤x ≤1,所以函数的定义域为[-1,1],根据函数的解析式,x 增大时,x +1增大,1-x 减小,-1-x 增大,所以y 增大,即该函数为增函数.所以最小值为f (-1)=-2,最大值为f (1)=2, 所以值域为[-2,2].故选C.4.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x >-14.[基础送分 提速狂刷练]一、选择题1.已知A ={x |x =n 2,n ∈N },给出下列关系式:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x 4;⑤f (x )=x 2+1,其中能够表示函数f :A →A 的个数是( )A .2B .3C .4D .5 答案 C解析 对于⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确.故选C.2.(2018·吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2(x >1),则f ⎣⎢⎡⎦⎥⎤1f (2)的值为( )A.1516 B.89 C .-2716D .18 答案 A解析 f (2)=4,f ⎣⎢⎡⎦⎥⎤1f (2)=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.故选A.3.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg 132 D.15lg 2答案 D解析 令x 5=t ,则x =15t 15 (t >0),∴f (t )=lg t 15 =15lg t .∴f (2)=15lg 2.故选D.4.(2017·山西名校联考)设函数f (x )=lg (1-x ),则函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞) D .[-9,1)答案 B解析 f [f (x )]=f [lg (1-x )]=lg [1-lg (1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0⇒-9<x <1.故选B.5.若函数y =f (x )的定义域是[0,1],则函数F (x )=f (x +a )+f (2x +a )(0<a <1)的定义域是( )A.⎣⎢⎡⎦⎥⎤-a 2,1-a 2B.⎣⎢⎡⎦⎥⎤-a2,1-aC .[-a,1-a ] D.⎣⎢⎡⎦⎥⎤-a ,1-a 2答案 A解析 ⎩⎪⎨⎪⎧0≤x +a ≤1,0≤2x +a ≤1⇒-a 2≤x ≤1-a2.故选A.6.函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为( )A.⎝⎛⎦⎥⎤-∞,12 B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫12,1D.⎣⎢⎡⎭⎪⎫12,+∞ 答案 C解析 由于x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,结合函数y =⎝ ⎛⎭⎪⎫12x在(0,1]上的图象可知函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为⎣⎢⎡⎭⎪⎫12,1.故选C. 7.(2018·黄冈联考)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f [f (-3)]=( )A .-2B .2C .3D .-3 答案 B解析 由题意得f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f [f (-3)]=f (9)=log 39=2.故选B.8.(2018·银川模拟)已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③ D .① 答案 B解析 对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.故选B.9.(2018·铜陵一模)若函数f (x )图象上任意一点P (x ,y )皆满足y 2≥x 2,则f (x )的解析式可以是( )A .f (x )=x -1xB .f (x )=e x-1 C .f (x )=x +4xD .f (x )=tan x答案 C解析 A 项,当x =1时,f (x )=1-1=0,02≥12不成立;B 项,当x =-1时,f (x )=1e -1∈(-1,0),⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立;D 项,当x =5π4时,f (x )=1,12≥⎝ ⎛⎭⎪⎫5π42不成立;对于C ,f 2(x )=x 2+16x2+8>x 2,符合题意.故选C.10.(2017·山东模拟)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 ①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1,故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a>1,f [f (a )]=22a, 2f (a )=22a,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C.二、填空题11.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.12.(2018·厦门一模)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫0,12解析 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.13.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.答案 1解析 [a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1.14.(2018·绵阳二诊)现定义一种运算“⊕”:对任意实数a ,b ,a ⊕b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-2x )⊕(x +3),若函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,则实数k 的取值范围是________.答案 (-8,-7]∪(-3,-2)∪{1}解析 因为(x 2-2x )-(x +3)-1=(x -4)(x +1),所以f (x )=(x 2-2x )⊕(x +3)=⎩⎪⎨⎪⎧x +3,x ∈(-∞,-1]∪[4,+∞),x 2-2x ,x ∈(-1,4).作出函数y =f (x )的图象如图所示.函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,即函数y =f (x )的图象与直线y =-k 有两个公共点,结合图象可得-k =-1 或2<-k <3或7≤-k <8,所以实数k 的取值范围是k ∈(-8,-7]∪(-3,-2)∪{1}.三、解答题15.(2018·福建六校联考)已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1).(1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧ x +2>0,4-x >0,解得-2<x <4,∴f (x )的定义域为(-2,4).(2)f (x )=log a (x +2)+log a (4-x )=log a [(x +2)(4-x )],x ∈[0,3].令t =(x +2)(4-x ),则可变形得t =-(x -1)2+9,∵0≤x ≤3,∴5≤t ≤9,若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去), 若0<a <1,则log a 9≤log a t ≤log a 5,∴f (x )min =log a 9=-2,则a 2=19,又0<a <1,∴a =13. 综上,得a =13. 16.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2.(1)求f (2),f (3),f (4)的值;(2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)+f (2016)f (2015)+f (2018)f (2017)的值. 解 (1)∵∀x ,y ∈R ,f (x +y )=f (x )·f (y ),且f (1)=2,∴f (2)=f (1+1)=f (1)·f (1)=22=4,f (3)=f (1+2)=f (1)·f (2)=23=8,f (4)=f (1+3)=f (1)·f (3)=24=16.(2)解法一:由(1)知f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2018)f (2017)=2, 故原式=2×1009=2018.解法二:对∀x ,y ∈R 都有f (x +y )=f (x )·f (y )且f (1)=2,令x =n ,y =1,则f (n +1)=f (n )·f (1),即f (n +1)f (n )=f (1)=2,故f (2)f (1)=f (4)f (3)=…=f (2018)f (2017)=2,故原式=2×1009=2018.。
高考数学一轮总复习 第2章 函数、导数及其应用 2.5 指数与指数函数课件 理
1 3
的值为(
)
A.0 B.13 C.3 D.4
解析 原式=1-(1-4)÷32=3,故选 C.
2. 函数 f(x)=ax-2+1(a>0 且 a≠1)的图象必经 过点
(
)
A.(0,1)
B.(1,1)
C.(2,0)
D.(2,2)
解析 ∵a0=1 故 x-2=0 时 f(x)=2,即 x=2 时 f(x)= 2,故选 D.
4.[2017·广西桂林模拟]当 x<0 时,函数 f(x)=(2a-1)x
的值恒大于 1,则实数 a 的取值范围是(
)
A.12,1 C.(1,+∞)
B.(1,2) D.(-∞,1)
解析 由题意可得 0<2a-1<1,解得12<a<1,故选 A.
板块二 典例探究·考向突破
考向 指数幂的化简与求值
3.[课本改编]已知 a=20.2,b=0.40.2,c=0.40.6,则(
)
A.a>b>c
B.a>c>b
C.c>a>b
D.b>c>a
解析 由 0.2<0.6,0.4<1,并结合指数函数的图象可知 0.40.2>0.40.6,即 b>c;因为 a=20.2>1,b=0.40.2<1,所以 a>b. 综上,a>b>c.
22×10-1×26×23-
3=
2 865.
(2)原式=a-13
b
1 2
·a-
1 2
1
5
高考数学一轮复习第2章基本初等函数导数及其应用第5讲二次函数与幂函数课件理北师大版
3 9 所以当 a=- 时, ( 3- a)( a+ 6)有最大值 . 2 2
考点一
幂函数的图ห้องสมุดไป่ตู้及性质
(1)幂函数 y= f(x)的图象过点 (4, 2),则幂函数 y = f(x)的图象是 ( C )
(2)当 0<x<1 时,f(x)= x , g(x)= x ,h(x)= x h(x)>g(x)>f(x) 系是 _______________________ .
-∞,- b 2a 上 在_______________
单调递增; b 在-2a,+∞ 上单调 递减
- b ,+∞ 2a 上 在_____________
单调递增
对称 性
b 函数的图象关于 x=- 对称 2a
1.辨明两个易误点 (1)对于函数 y=ax2+bx+c,要认为它是二次函数,就必须 满足 a≠0,当题目条件中未说明 a≠0 时,就要讨论 a=0 和 a≠0 两种情况. (2)幂函数的图象一定会出现在第一象限内, 一定不会出现在 第四象限内,至于是否出现在第二、三象限内,要看函数的 奇偶性;幂函数的图象最多只能同时出现在两个象限内;如 果幂函数图象与坐标轴相交,则交点一定是原点.
幂函数的图象特征 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分 第一象限为六个区域, 即 x= 1, y= 1, y= x 分区域. 根据 α<0, 0<α <1,α = 1,α >1 的取值确定位置后,其余象限部分由 奇偶性决定. (2)在比较幂值的大小时, 必须结合幂值的特点, 选择适当的 函数,借助其单调性进行比较.
第二章
基本初等函数、导数及其应用
第 5讲
二次函数与幂函数
2022届高考数学一轮复习第二章函数导数及其应用第5节指数与指数函数课时作业含解析新人教版
第二章 函数、导数及其应用授课提示:对应学生用书第245页[A 组 基础保分练]1.(2021·永州模拟)下列函数中,与函数y =2x -2-x 的定义域、单调性与奇偶性均一致的是( )A .y =sin xB .y =x 3C .y =⎝ ⎛⎭⎪⎫12x D .y =log 2x答案:B2.设a ,b ,c ,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a 答案:C 3.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2] 答案:B4.(2021·临沂三校联考)函数f (x )=2-2x (x <0)的值域是( ) A .(1,2)B .(-∞,2) C .(0,2)D .(1,+∞) 答案:A 5.函数的单调递增区间是( )A .[1,2]B .(-∞,-1)C .(-∞,-2]D .[2,+∞)解析:令t =-x 2+4x -5,其图象的对称轴方程为x =2,单调递减区间为[2,+∞).又函数y =⎝ ⎛⎭⎪⎫13t 为减函数,所以函数的单调递增区间是[2,+∞).答案:D6.设偶函数g (x )=a |x +b |在(0,+∞)上单调递增,则g (a )与g (b -1)的大小关系是________. 答案:g (a )>g (b -1) 7.不等式的解集为________.答案:{x |-1<x <4}8.若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.答案:149.已知函数f (x )=⎝ ⎛⎭⎪⎫23|x |-a .(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求实数a 的值.解析:(1)令t =|x |-a ,则f (t )=⎝ ⎛⎭⎪⎫23t ,不论a 取何值,t 在(-∞,0]上单调递减, 在[0,+∞)上单调递增,又f (t )=⎝ ⎛⎭⎪⎫23t 是单调递减的,因此f (x )的单调递增区间是(-∞,0], 单调递减区间是[0,+∞).(2)由于f (x )的最大值是94,且94=⎝ ⎛⎭⎪⎫23-2,所以g (x )=|x |-a 应该有最小值-2, 即g (0)=-2,从而a =2.10.已知函数f (x )=2x +k ·2-x ,k ∈R . (1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞)都有f (x )>2-x 成立,求实数k 的取值范围. 解析:(1)因为f (x )=2x +k ·2-x 是奇函数, 所以f (-x )=-f (x ),x ∈R , 即2-x +k ·2x =-(2x +k ·2-x ).所以(1+k )+(k +1)·22x =0对一切x ∈R 恒成立, 所以k =-1.(2)因为x ∈[0,+∞)时,均有f (x )>2-x , 即2x +k ·2-x >2-x 成立,所以1-k <22x 对x ≥0恒成立,所以1-k <(22x )min . 因为y =22x 在[0,+∞)上单调递增, 所以(22x )min =1,所以k >0. 所以实数k 的取值范围是(0,+∞).[B 组 能力提升练]1.(多选题)(2021·福建厦门质检改编)已知函数f (x )=⎩⎪⎨⎪⎧-2-x +a ,x <0,2x -a ,x >0(a ∈R ),下述结论正确的是( ) A .f (x )为奇函数B .若f (x )在定义域上是增函数,则a ≤1C .若f (x )的值域为R ,则a <1D .当a ≤1时,若f (x )+f (3x +4)>0,则x ∈(-1,0)∪(0,+∞)解析:当x <0时,-x >0,f (x )=-2-x +a ,f (-x )=2-x -a =-(-2-x +a )=-f (x );当x >0时,-x <0,f (x )=2x -a ,f (-x )=-2x +a =-(2x -a )=-f (x ).则函数f (x )为奇函数,故A 正确;若f (x )在定义域上是增函数,则-2-0+a ≤20-a ,即a ≤1,故B 正确;当x <0时,f (x )=-2-x +a 在区间(-∞,0)上单调递增,此时值域为(-∞,a -1);当x >0时,f (x )=2x -a 在区间(0,+∞)上单调递增,此时值域为(1-a ,+∞).要使得f (x )的值域为R ,则a -1>1-a ,即a >1,故C 错误;当a ≤1时,由于-2-0+a ≤20-a ,则函数f (x )在定义域上是增函数,由f (x )+f (3x +4)>0,得f (x )>f (-3x -4),则⎩⎪⎨⎪⎧x ≠0,-3x -4≠0,x >-3x -4,解得x ∈(-1,0)∪(0,+∞),故D 正确. 答案:ABD2.(2021·青岛模拟)函数y =a x +2-1(a >0且a ≠1)的图象恒过的点是( ) A .(0,0)B .(0,-1) C .(-2,0)D .(-2,-1) 答案: CA .a <b <cB .b <c <aC .c <b <aD .b <a <c 答案:D4.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .⎝ ⎛⎭⎪⎫0,12解析:方程|a x -1|=2a (a >0且a ≠1)有两个不等实数根⇔函数y =|a x -1|与y =2a 的图象有两个交点.①当0<a <1时,如图①,所以0<2a <1,即0<a <12;②当a >1时,如图②, 而y =2a >1不符合要求.综上,0<a <12.答案:D5.已知0<b <a <1,则在a b ,b a ,a a ,b b 中最大的是( ) A .b a B .a a C .a b D .b b解析:因为0<b <a <1,所以y =a x 和y =b x 均为减函数,所以a b >a a ,b a <b b , 又因为y =x b 在(0,+∞)上为增函数,所以a b >b b ,所以在a b ,b a ,a a ,b b 中最大的是a b . 答案:C6.已知函数f (x )=2x -12x +1,则不等式f (x 2-1)+f (2x -7)<0的解集为________.答案:(-4,2)7.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a<b ;④b <a <0;⑤a =b .其中可能成立的关系式有________.(填序号)解析:函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x 的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b 得,a <b <0或0<b <a 或a =b =0. 故①②⑤可能成立,③④不可能成立. 答案:①②⑤[C 组 创新应用练]1.(2021·杭州模拟)设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1解析:根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1. 答案:D2.(2021·北京模拟)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =a e -kx ,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约________年.(参考数据:log 2≈-0.4)解析:由题意可知,当x=5 730时,a e-5 730k=12a,解得k=ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C的残余量约占原始量的76.7%.所以76.7%=e-ln 25 730x,得ln 0.767=-ln 25 730x,x=-5 730×2)=-5 730×log2≈2 292.答案:2 292。
2020版高考数学一轮复习第2章函数、导数及其应用2.11导数在研究函数中的应用(二)学案理
2.11 导数在研究函数中的应用(二)[方法梳理]1.分离参数法分离参数法是求参数的最值范围的一种方法.通过分离参数,用函数的观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决不等式恒成立、不等式有解、函数有零点、函数的单调性中参数的取值范围问题时经常用到.解题的关键是分离出参数后将原问题转化为求函数的最值或值域问题.2.构造函数法构造函数法作为一种数学思维方法,在解决某些数学问题时,若能充分挖掘题目中潜在的信息,构造与之相关的函数,将陌生问题转化为熟悉问题,可使问题顺利解决.3.等价转化法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法.通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题.历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧.4.分类讨论思想方法分类讨论是一种逻辑方法,是一种重要的数学思想,所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略.有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置.5.任意性与存在性①∀x1∈[a,b],∀x2∈[c,d],使f1(x1)>f2(x2)⇔[f1(x1)]min>[f2(x2)]max.②∃x 1∈[a ,b ],∃x 2∈[c ,d ],使f 1(x 1)>f 2(x 2)⇔[f 1(x 1)]max >[f 2(x 2)]min . ③∀x 1∈[a ,b ],∃x 2∈[c ,d ],使f 1(x 1)>f 2(x 2)⇔[f 1(x 1)]min >[f 2(x 2)]min . ④∃x 1∈[a ,b ],∀x 2∈[c ,d ],使f 1(x 1)>f 2(x 2)⇔[f 1(x )]max >[f 2(x )]max .⑤∃x 1∈[a ,b ],x 2∈[c ,d ],使f 1(x 1)=f 2(x 2)⇔f 1(x )的值域与f 2(x )的值域交集不为∅.[诊断自测]1.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( ) A .3f (ln 2)>2f (ln 3) B .3f (ln 2)=2f (ln 3) C .3f (ln 2)<2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小不确定 答案 A解析 构造函数g (x )=f (x )ex,则 g ′(x )=f ′(x )e x -f (x )(e x )′(e x )2=f ′(x )-f (x )ex<0,即g (x )在R 上是减函数, 所以g (ln 2)>g (ln 3),即f (ln 2)eln 2>f (ln 3)eln 3,即f (ln 2)2>f (ln 3)3,所以3f (ln 2)>2f (ln 3),选A.2.(2018·广州五校联考)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x2<0恒成立,则不等式x 2f (x )>0的解集是( ) A .(-2,0)∪(2,+∞) B .(-2,0)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-2)∪(0,2)答案 D解析 ∵当x >0时,⎣⎢⎡⎦⎥⎤f (x )x ′<0,∴φ(x )=f (x )x为减函数, 又φ(2)=0,∴当且仅当0<x <2时,φ(x )>0, 此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数. 故x 2f (x )>0的解集为(-∞,-2)∪(0,2).3.已知f (x )=2x 2+ax -2a2x 在[1,+∞)上是单调递增函数,则a 的取值范围是________.答案 a ≥-1解析 ∵f (x )=x -a x +a 2,∴f ′(x )=1+ax2.又f (x )在[1,+∞)上是单调递增函数,∴f ′(x )≥0,于是可得不等式a ≥-x 2对于x ≥1恒成立.∴a ≥(-x 2)max .由x ≥1,得-x 2≤-1.∴a ≥-1.4.(2017·河南期末)函数y =x 3-2ax +a 在(0,1)内有极小值,则实数a 的取值范围为________.答案 ⎝⎛⎭⎪⎫0,32解析 对于函数y =x 3-2ax +a ,求导可得y ′=3x 2-2a , ∵函数y =x 3-2ax +a 在(0,1)内有极小值,∴y ′=3x 2-2a =0,则其有一根在(0,1)内,当a >0时,3x 2-2a =0两根为± 23a , 若有一根在(0,1)内,则0<23a <1,即0<a <32. 当a =0时,3x 2-2a =0两根相等,均为0,f (x )在(0,1)内无极小值. 当a <0时,3x 2-2a =0无根,f (x )在(0,1)内无极小值, 综合可得,0<a <32,故答案为⎝ ⎛⎭⎪⎫0,32.题型1 利用导数解不等式问题角度1 证明不等式典例 已知函数f (x )=12x 2-ax +(a -1)ln x . 证明:若1<a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2有f (x 1)-f (x 2)x 1-x 2>-1.本题用构造函数法.证明 不妨设x 1>x 2>0,则f (x 1)-f (x 2)x 1-x 2>-1⇔f (x 1)-f (x 2)>-(x 1-x 2)⇔f (x 1)+x 1>f (x 2)+x 2.从而构造函数g (x )=f (x )+x =12x 2-ax +(a -1)·ln x +x .则g ′(x )=x -(a -1)+a -1x≥2x ·a -1x-(a -1)=1-(a -1-1)2. 由于1<a <5,故g ′(x )>0,即g (x )在(0,+∞)单调递增,从而当x 1>x 2>0时,有g (x 1)>g (x 2),即f (x 1)+x 1>f (x 2)+x 2,从而f (x 1)-f (x 2)x 1-x 2>-1.当0<x 1<x 2时,有f (x 1)-f (x 2)x 1-x 2=f (x 2)-f (x 1)x 2-x 1>-1.综上,若1<a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2有f (x 1)-f (x 2)x 1-x 2>-1.角度2 不等式恒成立问题典例 (2015·北京高考)已知函数f (x )=ln 1+x 1-x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 解 (1)f (x )=ln 1+x 1-x ,x ∈(-1,1),f ′(x )=21-x2,f ′(0)=2,f (0)=0,所以切线方程为y =2x .(2)证明:原命题等价于任意x ∈(0,1),f (x )-2⎝ ⎛⎭⎪⎫x +x 33>0.设函数F (x )=ln (1+x )-ln (1-x )-2⎝ ⎛⎭⎪⎫x +x 33, F ′(x )=2x41-x2.当x ∈(0,1)时,F ′(x )>0,函数F (x )在x ∈(0,1)上是单调递增函数.F (x )>F (0)=0,因此任意x ∈(0,1),f (x )>2⎝ ⎛⎭⎪⎫x +x 33. (3)ln 1+x 1-x >k ⎝ ⎛⎭⎪⎫x +x 33,x ∈(0,1)⇔t (x )=ln 1+x 1-x -k ⎝ ⎛⎭⎪⎫x +x 33>0,x ∈(0,1).t ′(x )=21-x 2-k (1+x 2)=kx 4+2-k 1-x 2,x ∈(0,1). 当k ∈[0,2],t ′(x )≥0,函数t (x )单调递增,t (x )>t (0)=0显然成立.当k >2时,令t ′(x 0)=0得x 40=k -2k∈(0,1),t ′(x )的变化情况列表如下:t (x 0)<t (0)=0,显然不成立.当k <0时,显然k 取不到最大值. 综上可知,k 的最大值为2. 角度3 不等式存在性问题典例(2018·太原联考)已知a 为实数,函数f (x )=a ln x +x 2-4x . (1)是否存在实数a ,使得f (x )在x =1处取得极值?证明你的结论;(2)设g (x )=(a -2)x ,若∃x 0∈[1e ,e],使得f (x 0)≤g (x 0)能成立,求实数a 的取值范围.(1)探索性问题在求解后要验证;(2)采用分离系数法,构造函数法.解 (1)函数f (x )定义域为(0,+∞),f ′(x )=a x +2x -4=2x 2-4x +ax.假设存在实数a ,使f (x )在x =1处取极值,则f ′(1)=0, ∴a =2,此时,f ′(x )=2(x -1)2x,当x >0时,f ′(x )≥0恒成立,∴f (x )在(0,+∞)上单调递增, ∴x =1不是f (x )的极值点,故不存在实数a ,使得f (x )在x =1处取得极值. (2)由f (x 0)≤g (x 0),得(x 0-ln x 0)a ≥x 20-2x 0, 记F (x )=x -ln x (x >0), ∴F ′(x )=x -1x(x >0), ∴当0<x <1时,F ′(x )<0,F (x )单调递减; 当x >1时,F ′(x )>0,F (x )单调递增. ∴F (x )>F (1)=1>0,∴a ≥x 20-2x 0x 0-ln x 0,记G (x )=x 2-2x x -ln x ,x ∈⎣⎢⎡⎦⎥⎤1e ,e . ∴G ′(x )=(2x -2)(x -ln x )-(x -2)(x -1)(x -ln x )2=(x -1)(x -2ln x +2)(x -ln x )2. ∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴2-2ln x =2(1-ln x )≥0, ∴x -2ln x +2>0,∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G ′(x )<0,G (x )单调递减; x ∈(1,e)时,G ′(x )>0,G (x )单调递增,∴G (x )min =G (1)=-1, ∴a ≥G (x )min =-1.故实数a 的取值范围为[-1,+∞). 方法技巧解不等式或证明不等式时注意研究函数的单调性,有时需要构造相关函数,利用单调性解之.见角度1的典例.解决“恒成立”与“存在性”问题时,注意它们的互补关系,必要时作等价转化,即构造函数或分离参数,将问题直接转化为函数的最值问题.见角度2,3的典例.冲关针对训练1.(2017·陵川县校级期末)已知对于x ∈R ,g (x )≠0与f ′(x )g (x )>f (x )g ′(x )恒成立,且f (1)=0,则不等式f (x )g (x )>0的解集是________. 答案 (1,+∞) 解析 令h (x )=f (x )g (x ), 则h ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x ),而g (x )≠0与f ′(x )g (x )>f (x )g ′(x )恒成立,故h ′(x )>0,h (x )在R 上递增,而h (1)=0,故不等式f (x )g (x )>0,即h (x )>h (1), 解得x >1,故不等式的解集是(1,+∞).2.已知函数f (x )=x ln x ,g (x )=-x 2+ax -3. (1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x ∈⎝ ⎛⎦⎥⎤1e ,e (e 是自然对数的底数,e =2.71828…)使不等式2f (x )≥g (x )成立,求实数a 的取值范围.解 (1)由已知得f ′(x )=ln x +1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,此时f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,此时f (x )单调递增. 当0<t <t +2<1e 时,t 无解;当0<t ≤1e <t +2,即0<t ≤1e时,f (x )min =f ⎝ ⎛⎭⎪⎫1e=-1e; 当1e <t <t +2,即t >1e时,f (x )在[t ,t +2]上单调递增,故f (x )min =f (t )=t ln t .所以f (x )min=⎩⎪⎨⎪⎧-1e ,0<t ≤1e ,t ln t ,t >1e.(2)由题意知2x ln x ≥-x 2+ax -3, 即a ≤2ln x +x +3x ,x ∈⎝ ⎛⎭⎪⎫1e ,e 设h (x )=2ln x +x +3x ,x ∈⎝ ⎛⎭⎪⎫1e ,e 则h ′(x )=2x +1-3x 2=(x +3)(x -1)x2, 当x ∈⎣⎢⎡⎭⎪⎫1e ,1时,h ′(x )<0,此时h (x )单调递减;当x ∈(1,e]时,h ′(x )>0,此时h (x )单调递增.所以h (x )max =max ⎩⎨⎧⎭⎬⎫h ⎝ ⎛⎭⎪⎫1e ,h (e ),因为存在x ∈⎣⎢⎡⎦⎥⎤1e ,e ,使2f (x )≥g (x )成立, 所以a ≤h (x )max ,又h ⎝ ⎛⎭⎪⎫1e =-2+1e +3e ,h (e)=2+e +3e , 故h ⎝ ⎛⎭⎪⎫1e >h (e),所以a ≤1e +3e -2.题型2 导数与方程问题角度1 零点的判断与证明典例(2015·广东高考)设a >1,函数f (x )=(1+x 2)·e x-a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点.研究f (x )的单调性,再用赋值法证明.解 (1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2a )e ln a-a =(1+ln 2a )a -a =a ln 2a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点.又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数,故函数f (x )在(-∞,+∞)上仅有一个零点.角度2 由零点求参数的取值典例 (2017·张掖模拟)设函数f (x )=x 22-a ln x . (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数y =f (x )的单调区间和极值;(3)若函数f (x )在区间(1,e 2]内恰有两个零点,试求a 的取值范围.将f (x )=0化为2ln x x 2=1a,用构造函数法求解.解 (1)当a =1时,f (x )=x 22-ln x ,f ′(x )=x -1x,∵f ′(1)=0,f (1)=12,∴在点(1,f (1))处的切线方程为y =12.(2)f ′(x )=x 2-ax,当a ≤0时,f ′(x )>0,f (x )递增,函数无极值;当a >0时,在(0,a )上递减,在(a ,+∞)上递增,函数的极小值为f (a )=a (1-ln a )2.1.(2017·达州模拟)函数f (x )=x 3+x 2+5ax -1存在极值点的充要条件是( )A .a ≤115B .a <115C .a ≥115D .a >115答案 B解析 求得导函数f ′(x )=3x 2+2x +5a ,三次函数f (x )有极值,则f ′(x )=0有不相等的两个解,∴Δ=4-60a >0,∴a <115,故选B.2.(2017·深圳一模)若定义在R 上的函数f (x )满足f (x )+f ′(x )<1且f (0)=3,则不等式f (x )>2ex +1(其中e 为自然对数的底数)的解集为________.答案 (-∞,0)解析 设g (x )=e x f (x )-e x(x ∈R ),则g ′(x )=e x f (x )+e x f ′(x )-e x =e x[f (x )+f ′(x )-1], ∵f (x )+f ′(x )<1, ∴f (x )+f ′(x )-1<0, ∴g ′(x )<0,∴y =g (x )在定义域上单调递减, ∵e x f (x )>e x+2, ∴g (x )>2,又∵g (0)=e 0f (0)-e 0=3-1=2, ∴g (x )>g (0), ∴x <0,故答案为(-∞,0).3.(2015·北京高考)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 解 (1)由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞);f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减, 且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点. 当k >e 时,f (x )在区间(0,e)上单调递减, 且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1, e ]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 4.(2015·全国卷Ⅰ)设函数f (x )=e 2x-a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a.解 (1)f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax(x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x单调递增,y =-a x单调递增,所以f ′(x )在(0,+∞)上单调递增,又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明:由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a.故当a >0时,f (x )≥2a +a ln 2a.[重点保分 两级优选练]A 级一、选择题1.(2017·安庆二模)若函数y =a e x+3x 在R 上有小于零的极值点,则实数a 的取值范围是( )A .(-3,+∞)B .(-∞,-3) C.⎝ ⎛⎭⎪⎫-13,+∞D.⎝⎛⎭⎪⎫-∞,-13 答案 B解析 y =a e x+3x ,求导,y ′=a e x+3,由若函数y =a e x+3x 在R 上有小于零的极值点, 则y ′=a e x+3=0有负根,则a ≠0, 则e x=-3a在y 轴的左侧有交点,∴0<-3a<1,解得:a <-3,实数a 的取值范围为(-∞,-3).故选B.2.(2018·太原模拟)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,g (x )≠0,当x <0时,f ′(x )g (x )-f (x )g ′(x )>0,且f (-3)=0,则不等式f (x )g (x )<0的解集是( ) A .(-3,0)∪(3,+∞) B .(-3,0)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-∞,-3)∪(0,3)答案 D解析 ∵f (x ),g (x )分别是定义在R 上的奇函数和偶函数, ∴f (x )g (x )为奇函数,f (x )g (x )的图象关于原点对称. 当x <0时,f ′(x )g (x )-f (x )g ′(x )>0, ∴⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,∴当x <0时,f (x )g (x )是增函数,故当x >0时,f (x )g (x )也是增函数. 函数f (x )g (x )的单调性的示意图,如图所示:∵f (-3)=0,∴f (3)=0,∴由不等式f (x )g (x )<0,可得x <-3或0<x <3,故原不等式的解集为{x |x <-3或0<x <3},故选D.3.(2017·冀州月考)函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163答案 C解析 由图象可得f (x )=0的根为0,1,2,故d =0,f (x )=x (x 2+bx +c ),则1,2为x2+bx +c =0的根,由根与系数的关系得b =-3,c =2,故f (x )=x 3-3x 2+2x ,则f ′(x )=3x 2-6x +2,由图可得x 1,x 2为3x 2-6x +2=0的根,则x 1+x 2=2,x 1x 2=23,故x 21+x 22=(x 1+x 2)2-2x 1x 2=83.4.(2017·合肥期中)已知a 2+2a +2x ≤4x 2-x+1对于任意的x ∈(1,+∞)恒成立,则( )A .a 的最小值为-3B .a 的最小值为-4C .a 的最大值为2D .a 的最大值为4答案 A解析 a 2+2a +2x ≤4x 2-x +1对于任意的x ∈(1,+∞)恒成立,转化为a 2+2a +2≤4x x 2-x+x =4x -1+x =f (x )的最小值.f ′(x )=(x +1)(x -3)(x -1)2,可得x =3时, 函数f (x )取得极小值即最小值f (3)=5. ∴a 2+2a +2≤5,化为a 2+2a -3≤0, 即(a +3)(a -1)≤0,解得-3≤a ≤1. 因此a 的最小值为-3.故选A.5.(2018·兴庆区模拟)设f (x )是定义在R 上的函数,其导函数为f ′(x ),若f (x )+f ′(x )>1,f (0)=2018,则不等式e x f (x )>e x +2017(其中e 为自然对数的底数)的解集为( )A .(-∞,0)∪(0,+∞)B .(0,+∞)C .(2017,+∞)D .(-∞,0)∪(2017,+∞)答案 B解析 设g (x )=e xf (x )-e x,则g ′(x )=e xf (x )+e xf ′(x )-e x=e x[f (x )+f ′(x )-1], ∵f (x )+f ′(x )>1,e x>0,∴g ′(x )=e x[f (x )+f ′(x )-1]>0, ∴g (x )是R 上的增函数. 又g (0)=f (0)-1=2017, ∴g (x )>2017的解集为(0,+∞),即不等式e xf (x )>e x+2017的解集为(0,+∞).故选B.6.(2017·金华模拟)设函数f (x )=x (ln x -ax )(a ∈R )在区间(0,2)上有两个极值点,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫0,ln 2+14 C.⎝ ⎛⎭⎪⎫12,1 D.⎝⎛⎭⎪⎫ln 2+14,12 答案 D解析 f (x )=x (ln x -ax ),求导f ′(x )=ln x -2ax +1,由题意,关于x 的方程2ax =ln x +1在区间(0,2)有两个不相等的实根,则y =2ax 与y =ln x +1有两个交点,由y =ln x +1,求导y ′=1x,设切点(x 0,y 0),ln x 0+1x 0=1x 0,解得x 0=1,∴切线的斜率k =1,则2a =1,a =12,则当x =2,则直线斜率k =ln 2+12, 则a =ln 2+14,∴a 的取值范围为⎝⎛⎭⎪⎫ln 2+14,12,故选D.7.(2017·江西模拟)若函数f (x )=a (x -2)e x+ln x +1x存在唯一的极值点,且此极值大于0,则( )A .0≤a <1eB .0≤a <1e 2C .-1e <a <1e 2D .0≤a <1e 或a =-1e答案 A解析 f (x )=a (x -2)e x+ln x +1x,x >0,∴f ′(x )=a (x -1)e x+1x -1x2=(x -1)⎝ ⎛⎭⎪⎫a e x +1x 2,由f ′(x )=0得到x =1或a e x+1x2=0(*).由于f (x )仅有一个极值点, 关于x 的方程(*)必无解,①当a =0时,(*)无解,符合题意, ②当a ≠0时,由(*)得,a =-1e x x2,∴a >0,由于这两种情况都有,当0<x <1时,f ′(x )<0,于是f (x )为减函数, 当x >1时,f ′(x )>0,于是f (x )为增函数, ∴x =1为f (x )的极值点, ∵f (1)=-a e +1>0,∴a <1e.综上可得a 的取值范围是⎣⎢⎡⎭⎪⎫0,1e .故选A. 8.(2017·濮阳期末)函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0 答案 A解析 对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t .∵f (x )=x 3-3x -1,∴f ′(x )=3x 2-3=3(x -1)(x +1), ∵x ∈[-3,2],∴函数在[-3,-1],[1,2]上单调递增,在[-1,1]上单调递减, ∴f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19,∴f (x )max -f (x )min =20, ∴t ≥20,∴实数t 的最小值是20,故选A.9.(2018·黄陵模拟)已知函数y =x e x+x 2+2x +a 恰有两个不同的零点,则实数a 的取值范围为( )A.⎝⎛⎦⎥⎤-∞,1e +1B.⎝⎛⎭⎪⎫-∞,1e +1C.⎝ ⎛⎭⎪⎫1e +1,+∞D.⎝ ⎛⎭⎪⎫1e ,+∞答案 B解析 函数y =x e x+x 2+2x +a 恰有两个不同的零点, 就是x e x +x 2+2x +a =0恰有两个不同的实数解, 设g (x )=x e x+x 2+2x ,则g ′(x )=e x+x e x+2x +2=(x +1)(e x+2),x <-1,g ′(x )<0,函数是减函数,x >-1,g ′(x )>0,函数是增函数,函数的最小值为g (-1)=-1-1e ,则-a >-1-1e,即a <1+1e.函数y =x e x +x 2+2x +a 恰有两个不同的零点,则实数a 的取值范围为⎝ ⎛⎭⎪⎫-∞,1e +1.故选B. 10.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 |MN |的最小值,即函数h (x )=x 2-ln x 的最小值,h ′(x )=2x -1x =2x 2-1x,令h ′(x )=0,得x =22或x =-22(舍去),显然x =22是函数h (x )在其定义域内唯一的极小值点,也是最小值点,故t =22. 二、填空题11.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-19,+∞解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .要使f (x )在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则必须有f ′⎝ ⎛⎭⎪⎫23>0,即29+2a >0,解得a >-19,所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.12.(2017·信阳模拟)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为________.答案 (-∞,-1)∪(-1,1)∪(3,+∞)解析 由函数图象可知f ′(x )>0的解集为(-∞,-1)∪(1,+∞),f ′(x )<0的解集为(-1,1).由(x 2-2x -3)f ′(x )>0,得⎩⎪⎨⎪⎧x 2-2x -3>0,f ′(x )>0,①或⎩⎪⎨⎪⎧x 2-2x -3<0,f ′(x )<0,②解①得x <-1或x >3; 解②得-1<x <1.∴不等式(x 2-2x -3)f ′(x )>0的解集为(-∞,-1)∪(-1,1)∪(3,+∞). 故答案为(-∞,-1)∪(-1,1)∪(3,+∞).13.(2017·七里河模拟)定义在R 上的奇函数y =f (x )满足f (3)=0,且当x >0时,不等式f (x )>-xf ′(x )恒成立,则函数g (x )=xf (x )+lg |x +1|的零点的个数是________.答案 3解析 定义在R 上的奇函数f (x )满足:f (0)=0=f (3)=f (-3),且f (-x )=-f (x ),又x >0时,f (x )>-xf ′(x ),即f (x )+xf ′(x )>0,∴[xf (x )]′>0,函数h (x )=xf (x )在x >0时是增函数.又h (-x )=-xf (-x )=xf (x ),∴h (x )=xf (x )是偶函数;∴x <0时,h (x )是减函数,结合函数的定义域为R ,且f (0)=f (3)=f (-3)=0, 可得函数y 1=xf (x )与y 2=-lg |x +1|的大致图象如图所示,∴由图象知,函数g(x)=xf(x)+lg |x+1|的零点的个数为3个.14.(2015·安徽高考)设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2.答案①③④⑤解析令f(x)=x3+ax+b,则f′(x)=3x2+a.对于①,由a=b=-3,得f(x)=x3-3x-3,f′(x)=3(x+1)(x-1),f(x)极大值=f(-1)=-1<0,f(x)极小值=f(1)=-5<0,函数f(x)的图象与x轴只有一个交点,故x3+ax+b =0仅有一个实根;对于②,由a=-3,b=2,得f(x)=x3-3x+2,f′(x)=3(x+1)(x-1),f(x)极大值=f(-1)=4>0,f(x)极小值=f(1)=0,函数f(x)的图象与x轴有两个交点,故x3+ax+b=0有两个实根;对于③,由a=-3,b>2,得f(x)=x3-3x+b,f′(x)=3(x+1)(x-1),f(x)极大值=f(-1)=2+b>0,f(x)极小值=f(1)=b-2>0,函数f(x)的图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;对于④,由a=0,b=2,得f(x)=x3+2,f′(x)=3x2≥0,f(x)在R上单调递增,函数f(x)的图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;对于⑤,由a=1,b=2,得f(x)=x3+x+2,f′(x)=3x2+1>0,f(x)在R上单调递增,函数f(x)的图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根.B级三、解答题15.(2017·西城区期末)已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.(1)求函数f(x)的单调区间;(2)当a<1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.解(1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x变化时,f(x)和f′(x)的变化情况如下:(2)结论:函数g (x )有且仅有一个零点. 理由如下:由g (x )=f (x -a )-x 2=0,得方程x e x -a=x 2,显然x =0为此方程的一个实数解, 所以x =0是函数g (x )的一个零点. 当x ≠0时,方程可化简为e x -a=x .设函数F (x )=ex -a-x ,则F ′(x )=e x -a-1,令F ′(x )=0,得x =a .当x 变化时,F (x )与F ′(x )的变化情况如下:所以F (x )的最小值F (x )min =F (a )=1-a . 因为a <1,所以F (x )min =F (a )=1-a >0, 所以对于任意x ∈R ,F (x )>0, 因此方程ex -a=x 无实数解.所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.16.设函数f (x )=-13x 3+x 2+(a 2-1)x ,其中a >0.(1)若函数y =f (x )在x =-1处取得极值,求a 的值;(2)已知函数f (x )有3个不同的零点,分别为0,x 1,x 2,且x 1<x 2,若对任意的x ∈[x 1,x 2],f (x )>f (1)恒成立,求a 的取值范围.解 (1)f ′(x )=-x 2+2x +(a 2-1), 因为y =f (x )在x =-1处取得极值, 所以f ′(-1)=0.即-(-1)2+2(-1)+(a 2-1)=0. 解得a =±2,经检验得a =2.(2)由题意得f (x )=x ⎝ ⎛⎭⎪⎫-13x 2+x +a 2-1=-13x ·(x -x 1)(x -x 2),所以方程-13x 2+x +a 2-1=0有两个相异的实根x 1,x 2.故Δ=1+43(a 2-1)>0,解得a <-12(舍去)或a >12,且x 1+x 2=3,又因为x 1<x 2,所以2x 2>x 1+x 2=3,故x 2>32>1.①若x 1≤1<x 2,则f (1)=-13(1-x 1)(1-x 2)≥0,而f (x 1)=0不符合题意.②若1<x 1<x 2,对任意的x ∈[x 1,x 2],有x -x 1≥0,x -x 2≤0,所以f (x )=-13x (x -x 1)(x-x 2)≥0.又f (x 1)=0,所以f (x )在[x 1,x 2]上的最小值为0.于是对任意的x ∈[x 1,x 2],f (x )>f (1)恒成立的充要条件为f (1)=a 2-13<0,解得-33<a <33. 综上得12<a <33,即a 的取值范围为⎝ ⎛⎭⎪⎫12,33.。
2020高考数学一轮复习第二章函数、导数及其应用第5讲幂函数与二次函数课件
[解析] (1)f(x)=x2-2x+5=(x-1)2+4≥4, ∴f(x)的最小值为4. (2)∵f(x)的对称轴为x=1,又1∈[-1,2], ∴f(x)min=f(1)=4,由二次函数的图象知,f(x)在[-1,1]上单调递减,在[1,2] 上单调递增.
又f(-1)=(-1)2-2×(-1)+5=8,f(2)=22-2×2+5=5,∴f(x)max=8, f(x)min=4.
(2)因为抛物线与x轴交于(-2,0),(4,0)两点,所以可设二次函数解析式为y = a(x + 2)(x - 4) , 又 因 为 二 次 函 数 图 象 过 点 (1,9) , 所 以 9 = a(1 + 2)(1 - 4) , 解 得:a=-1.所以所求函数解析式为:y=-(x+2)(x-4)=-x2+2x+8.
1.已知幂函数 f(x)=k·xα 的图象过点(12, 22),则 k+α=
(C)
A.12
B.1
C.32 [解析]
D.2 由幂函数的定义知 k=1.又 f(12)= 22,所以(12)a= 22,解得 α=12,从
而 k+α=32.
2.若幂函数的图象过点(2,14),则它的单调递增区间是
A.(0,+∞)
(3)∵f(x)的对称轴为 x=1. 当 t≥1 时,f(x)在[t,t+1]上单调递增, ∴f(x)min=f(t)=t2-2t+5, 当 t<1<t+1 即 0<t<1 时,f(x)在[t,1]上单调递减,在[1,t+1]上单调递增,∴ f(x)min=f(1)=12-2+5=4. 当 t+1≤1 即 t≤0,f(x)在[t,t+1]上单调递减,f(x)min=f(t+1)=t2+4.
B.[0,+∞)
C.(-∞,+∞)
2020年高考数学理科一轮温习第2章函数导数及其应用第5讲课后作业
A 组 基础关1.设a =22.5,b =2.50,c =⎝ ⎛⎭⎪⎪⎫122.5,那么a ,b ,c 的大小关系是( )A .a >c >bB .c >a >bC .a >b >cD .b >a >c 答案 C解析 因为a =22.5>1,b =2.50=1,c =⎝ ⎛⎭⎪⎪⎫122.5<⎝ ⎛⎭⎪⎪⎫120=1,因此a >b >c .2.(2018·河北八所重点中学一模)设a >0,将a 2a ·3a 2表示成份数指数幂的形式,其结果是( )A .a12B .a 56C .a 76D .a32答案 C解析 原式=a2⎝ ⎛⎭⎪⎫a ·a 23 12 =a2(a 53 ) 12 =a 2-56=a76.3.设2x =8y +1,9y =3x -9,那么x +y 的值为( ) A .18 B .21 C .24 D .27 答案 D解析 由2x =8y +1得2x =23y +3,因此x =3y +3,① 由9y =3x -9得32y =3x -9,因此2y =x -9,② 联立①②,解得x =21,y =6,因此x +y =27.4.(2018·南阳、信阳等六市一模)设x >0,且1<b x <a x ,那么( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b答案 C解析 ∵x >0时,1<b x ,∴b >1.∵x >0时,b x <a x ,∴x >0时,⎝ ⎛⎭⎪⎫a b x >1.∴a b >1,∴a >b ,∴1<b <a .5.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象通过点(2,1),那么f (x )的值域为( ) A .[9,81] B .[3,9] C .[1,9] D .[1,+∞) 答案 C解析由f(x)过定点(2,1)可知b=2,因为f (x )=3x -2在[2,4]上是增函数, 因此f (x )min =f (2)=1,f (x )max =f (4)=9.应选C.6.已知奇函数y =⎩⎨⎧f (x ),x >0,g (x ),x <0.若f (x )=a x (a >0,a ≠1)对应的图象如下图,那么g (x )=( )A.⎝ ⎛⎭⎪⎫12-x B .-⎝ ⎛⎭⎪⎫12x C .2-x D .-2x 答案 D解析 由题意得f (1)=a =12,因此当x >0时,y =⎝ ⎛⎭⎪⎫12x ;当x <0时,-x >0,g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x =-2x .7.(2018·四川绵阳期中)已知函数f (x )=a x ,其中a >0,且a ≠1,若是以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2 答案 A解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0.又∵f (x )=a x , ∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,应选A. 8.计算:⎝ ⎛⎭⎪⎫32- 13×⎝ ⎛⎭⎪⎫-760+8 14 ×42-⎝ ⎛⎭⎪⎫-2323=________.答案 2 解析 原式=⎝ ⎛⎭⎪⎫2313×1+2 34 ×2 14 -⎝ ⎛⎭⎪⎫23 13=2. 9.不等式⎝ ⎛⎭⎪⎫13x -x2<9的解集是________.答案 {x |-1<x <2}解析 原不等式可化为3x 2-x<32,因为函数y =3x 在R 上单调递增,因此x 2-x <2,解得-1<x <2,因此原不等式的解集为{x |-1<x <2}.10.(2019·西安八校联考)已知函数f (x )=(a -2)a x (a >0,且a ≠1),假设对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,那么a 的取值范围是________.答案 (0,1)∪(2,+∞)解析 由题意知f (x )在R 上是单调增函数,当0<a <1时,a -2<0,y =a x 单调递减,因此f (x )单调递增;当1<a <2时,a -2<0,y =a x 单调递增,因此f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,因此f (x )单调递增.故a 的取值范围是(0,1)∪(2,+∞).B 组 能力关1.(2018·长春模拟)函数y =4x +2x +1+1的值域为( ) A .(0,+∞) B .(1,+∞) C .[1,+∞) D .(-∞,+∞) 答案 B解析 y =4x +2x +1+1=(2x )2+2·2x +1, 令t =2x ,那么t >0,y =t 2+2t +1=(t +1)2,此函数在t ∈(0,+∞)上单调递增,因此函数y =4x +2x +1+1的值域是(1,+∞).2.设f (x )是概念在R 上的偶函数,且当x ≥0时,f (x )=⎩⎨⎧-x 2+1,0≤x <1,2-2x ,x ≥1,假设对任意的x∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,那么实数m 的最大值是( )A .-1B .-13C .-12 D.13 答案 B解析 易知函数f (x )在[0,+∞)上单调递减, 又函数f (x )是概念在R 上的偶函数, 因此函数f (x )在(-∞,0)上单调递增, 那么由f (1-x )≤f (x +m ),得 |1-x |≥|x +m |,即(1-x )2≥(x +m )2,即g (x )=(2m +2)x +m 2-1≤0在x ∈[m ,m +1]上恒成立, 则⎩⎪⎨⎪⎧g (m )=(3m -1)(m +1)≤0,g (m +1)=(m +1)(3m +1)≤0,解得-1≤m≤-1,3即实数m的最大值为-13.3.(2019·湖南月考)如图,四边形OABC 是面积为8的平行四边形,AC ⊥CO ,AC 与BO 交于点E ,某指数函数y =a x (a >0且a ≠1)的图象通过点E ,B ,那么a =( )A. 2B. 3 C .2 D .3 答案 A解析 设C (0,y C ),因为AC ⊥CO ,那么设A (x A ,y C ), 于是B (x A ,2y C ),E ⎝ ⎛⎭⎪⎫12x A ,y C .因平行四边形OABC 的面积为8,那么y C ·x A =8,因点E ,B 在y =a x 上,那么axA =2y C ,a xA2=y C ,因此y 2C =2y C ,解得y C =2或y C =0(舍去),那么x A =4,于是a 4=4,考虑到a >0,因此a = 2.4.假设函数f (x )=2x +12x -a 是奇函数,那么使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案 C解析 ∵f (x )为奇函数,∴f (-x )=-f (x ),即2-x +12-x -a =-2x +12x -a ,整理得(a -1)(2x +2-x +2)=0, ∴a =1,∴f (x )>3,即为2x +12x -1>3,当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x -3,无解.∴x 的取值范围为(0,1).5.(2018·辽宁凌源二中模拟)概念区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的概念域为[a ,b ],值域为[1,9],那么区间[a ,b ]长度的最小值为________.答案 2解析 ∵函数f (x )=3|x |的概念域为[a ,b ],值域为[1,9],∴0∈[a ,b ].2和-2至少有一个属于区间[a ,b ],故区间[a ,b ]的长度最小时为[-2,0]或[0,2].即区间[a ,b ]长度的最小值为2.6.已知a >0,且a ≠1,假设函数y =|a x -2|与y =3a 的图象有两个交点,求实数a 的取值范围. 解 ①当0<a <1时,作出函数y =|a x -2|的图象如图1.假设直线y =3a 与函数y =|a x -2|(0<a <1)的图象有两个交点,那么由图象可知0<3a <2,因此0<a <23.②当a >1时,作出函数y =|a x -2|的图象如图2,假设直线y =3a 与函数y =|a x -2|(a >1)的图象有两个交点,那么由图象可知0<3a <2,现在无解.因此实数a 的取值范围是⎝ ⎛⎭⎪⎫0,23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习第2章: 第2章 函数、导数及其应用 第5讲A 组 基础关1.设a =22.5,b =2.50,c =⎝ ⎛⎭⎪⎫12 2.5,则a ,b ,c 的大小关系是( )A .a >c >bB .c >a >bC .a >b >cD .b >a >c 答案 C解析 因为a =22.5>1,b =2.50=1,c =⎝ ⎛⎭⎪⎫12 2.5<⎝ ⎛⎭⎪⎫120=1,所以a >b >c .2.(2018·河北八所重点中学一模)设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 12B .a 56C .a 76D .a 32 答案 C解析 原式=a 2⎝ ⎛⎭⎪⎫a ·a 23 12=a 2a53 12=a 2- 56 =a 76.3.设2x =8y +1,9y=3x -9,则x +y 的值为( )A .18B .21C .24D .27 答案 D解析 由2x=8y +1得2x =23y +3,所以x =3y +3,①由9y=3x -9得32y=3x -9,所以2y =x -9,②联立①②,解得x =21,y =6,所以x +y =27.4.(2018·南阳、信阳等六市一模)设x >0,且1<b x<a x,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b答案 C解析 ∵x >0时,1<b x,∴b >1.∵x >0时,b x<a x,∴x >0时,⎝ ⎛⎭⎪⎫a b x >1.∴a b>1,∴a >b ,∴1<b <a .5.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)答案 C解析 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9.故选C.6.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,gx ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=()A.⎝ ⎛⎭⎪⎫12-x B .-⎝ ⎛⎭⎪⎫12x C .2-x D .-2x答案 D解析 由题意得f (1)=a =12,所以当x >0时,y =⎝ ⎛⎭⎪⎫12x ;当x <0时,-x >0,g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x =-2x .7.(2018·四川绵阳期中)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2答案 A解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0.又∵f (x )=a x,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A. 8.计算:⎝ ⎛⎭⎪⎫32- 13 ×⎝ ⎛⎭⎪⎫-760+814 ×42-⎝ ⎛⎭⎪⎫-2323 =________. 答案 2解析 原式=⎝ ⎛⎭⎪⎫23 13×1+2 34 ×2 14 -⎝ ⎛⎭⎪⎫2313 =2.9.不等式⎝ ⎛⎭⎪⎫13x -x 2<9的解集是________.答案 {x |-1<x <2}解析 原不等式可化为3x 2-x<32,因为函数y =3x在R 上单调递增,所以x 2-x <2,解得-1<x <2,所以原不等式的解集为{x |-1<x <2}.10.(2019·西安八校联考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f x 1-f x 2x 1-x 2>0,则a 的取值范围是________.答案 (0,1)∪(2,+∞)解析 由题意知f (x )在R 上是单调增函数,当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,所以f (x )单调递增.故a 的取值范围是(0,1)∪(2,+∞).B 组 能力关1.(2018·长春模拟)函数y =4x+2x +1+1的值域为( )A .(0,+∞) B.(1,+∞) C .[1,+∞) D.(-∞,+∞) 答案B 解析 y =4x+2x +1+1=(2x )2+2·2x+1,令t =2x,则t >0,y =t 2+2t +1=(t +1)2,此函数在t ∈(0,+∞)上单调递增,所以函数y =4x+2x +1+1的值域是(1,+∞).2.设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x 2+1,0≤x <1,2-2x,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m 的最大值是( )A .-1B .-13C .-12 D.13答案 B解析 易知函数f (x )在[0,+∞)上单调递减, 又函数f (x )是定义在R 上的偶函数, 所以函数f (x )在(-∞,0)上单调递增, 则由f (1-x )≤f (x +m ),得|1-x |≥|x +m |,即(1-x )2≥(x +m )2,即g (x )=(2m +2)x +m 2-1≤0在x ∈[m ,m +1]上恒成立,则⎩⎪⎨⎪⎧gm =3m -1m +1≤0,g m +1=m +13m +1≤0,解得-1≤m ≤-13,即实数m 的最大值为-13.3.(2019·湖南月考)如图,四边形OABC 是面积为8的平行四边形,AC ⊥CO ,AC 与BO 交于点E ,某指数函数y =a x(a >0且a ≠1)的图象经过点E ,B ,则a =( )A. 2B. 3 C .2 D .3 答案 A解析 设C (0,y C ),因为AC ⊥CO ,则设A (x A ,y C ),于是B (x A ,2y C ),E ⎝ ⎛⎭⎪⎫12x A ,y C . 因平行四边形OABC 的面积为8,则y C ·x A =8,因点E ,B 在y =a x上,则axA =2y C ,axA2=y C ,所以y 2C =2y C ,解得y C =2或y C =0(舍去),则x A =4,于是a 4=4,考虑到a >0,所以a = 2.4.若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案 C解析 ∵f (x )为奇函数,∴f (-x )=-f (x ), 即2-x+12-x -a =-2x+12x -a ,整理得(a -1)(2x +2-x+2)=0, ∴a =1,∴f (x )>3,即为2x+12x -1>3,当x >0时,2x -1>0,∴2x +1>3·2x-3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x-3,无解.∴x 的取值范围为(0,1). 5.(2018·辽宁凌源二中模拟)定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]长度的最小值为________.答案 2解析 ∵函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],∴0∈[a ,b ].2和-2至少有一个属于区间[a ,b ],故区间[a ,b ]的长度最小时为[-2,0]或[0,2]. 即区间[a ,b ]长度的最小值为2.6.已知a >0,且a ≠1,若函数y =|a x-2|与y =3a 的图象有两个交点,求实数a 的取值范围.解 ①当0<a <1时,作出函数y =|a x-2|的图象如图1.若直线y =3a 与函数y =|a x-2|(0<a <1)的图象有两个交点,则由图象可知0<3a <2,所以0<a <23.②当a >1时,作出函数y =|a x-2|的图象如图2,若直线y =3a 与函数y =|a x-2|(a >1)的图象有两个交点,则由图象可知0<3a <2,此时无解.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫0,23.。