22.3 实际问题与二次函数(2)
人教版初中数学22.3 实际问题与二次函数(第2课时) 课件
22.3 实际问题与二次函数/
22.3 实际问题与二次函数 (第2课时)
导入新知
22.3 实际问题与二次函数/
在日常生活中存在着许许多多的与数学知识有关的实际 问题.如繁华的商业城中很多人在买卖东西。
【思考】如果你去买商品,你会选买哪一家呢?如果你是商 场经理,如何定价才能使商场获得最大利润呢?
探究新知
22.3 实际问题与二次函数/
素养考点 2 限定取值范围中如何确定最大利润
例3 某商店试销一种新商品,新商品的进价为30元/件,经过一段
时间的试销发现,每月的销售量会因售价的调整而不同.令每月销
售量为y件,售价为x元/件,每月的总利润为Q元.
(1)当售价在40~50元时,每月销售量都为60件,则此时每 月的总利润最多是多少元?
即定价65元时,最大利润是6250元.
探究新知
22.3 实际问题与二次函数/
例2 某商品现在的售价为每件60元,每星期可卖出300 件,市场调查反映:每涨价1元,每星期少卖出10件; 每降价1元,每星期可多卖出18件,已知商品的进价为 每件40元,如何定价才能使利润最大? 降价销售
①每件降价x元,则每星期售出商品的利润y元,填空:
解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件), (2)由题意得: y=(x﹣40)[200﹣10(x﹣50)] =﹣10x2+1100x﹣28000 =﹣10(x﹣55)2+2250.
∴每件销售价为55元时,获得最大利润;最大利润为2250元.
课堂检测
22.3 实际问题与二次函数/
①每件商品的销售单价上涨x元,一个月内获取的商品总利润为y元,填空:
人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
人教初中数学九上 22.3 实际问题与二次函数教案
实际问题与二次函数(第1课时)课型:新授课教学目标知识与技能:1.经理探索物体运动中的最大高度等问题的过程,体会二次函数是一类最优化的数学模型,并感受数学的应用价值。
2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的顶点坐标求出实际问题的最大值(或最小值),发展解决问题的能力。
过程与方法:经理物体运动中的最大高度等问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。
情感态度与价值观:体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:1、探究运动中的最大高度等问题2、能够分析和表示实际问题中变量之间的二次函数学关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力。
教学难点运用二次函数解决实际问题教学方法:讲解、归纳、讨论、分析、练习教学过程:一、创设问题情境,引入新课。
前面我们认识了二次函数,研究了二次函数的图像和性质,掌握了二次函数的表达式,首先我们来回顾二次函数的两种形式y=a(x-h)2+k和 y=ax2+bx+c各有怎样的性质:1.二次函数y=a(x-h)2+k的图象和性质(1)当a>0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。
(2)当a<0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。
2.二次函数y=ax2+bx+c 的图象和性质(1)当a>0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。
(2)当 a <0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。
根据上述性质你能尝试解决下面的问题吗?1、二次函数 图象的开口方向、对称轴和顶点坐标分别为( ) (A )开口向下,对称轴为x = –3 ,顶点坐标为(3,5), (B )开口向下,对称轴为x = 3 ,顶点坐标为(3,5) (C )开口向上,对称轴为x = –3 ,顶点坐标为(-3,5) (D )开口向上,对称轴为x = 3 ,顶点坐标为(-3,5)2、抛物线y =x 2–2x –3 的对称轴和顶点坐标分别是( ) A .x =1,(1,-4) B .x =1,(1,4) C .x =-1,(-1,4) D .x =-1,(-1,-4)由此可以看出由二次函数的解析式可以求出相应函数的最大(小)值,这节课我们就来学习用二次函数解决实际问题。
22.3.2实际问题与二次函数②
探究3:
下图是抛物线形拱桥,当拱桥顶离水面 2 m时, 水面宽 4 m,水面下降 1 m, 水面宽度增加多少?
分析:二次函数的图象是抛物线,建立适当的坐标系, 就可以求出这条抛物线表示的二次函数。那么,如何建立 平面直角坐标系?
解:如图建立如下平面直角坐标系,
设这条抛物线解析式为
y 0 x
x
y 1
以水面所在直线为x轴, 拱桥与水面左侧交点为原 点,建立平面直角坐标系.
当
y 1 时, x 6 2
∴水面的宽度增加了 2 6 4 m
所以,水面下降1m,水面的 宽度为2 6 m.
y
y
0 0
x
X
注意:
建立平面直角坐标系要选择适当的x轴,y 轴,原点(3选2),以方便叙述和解决问题。
∴水面的宽度增加了 2 6 4 系, 设这条抛物线解析式为
y
(2,2)
y a( x 2)2 2
由抛物线经过点(0,0),可得
a 1 2
(0,0)
●
(4, 0)
●
0
所以,这条抛物线的二次函数为: 1 y ( x 2) 2 2 2 当水面下降1m时,水面的纵坐标为
当x 1.2时,y 1.1 1.2 2 4.4 2.816 2.7
∴汽车能顺利经过大门.
(-2,-2)
●
y ax2
由抛物线经过点(2,-2),可得
1 a 2
(2,-2)
●
所以,这条抛物线的二次函数为: 1 2 y x 2 当水面下降1m时,水面的纵坐标为
当
y 3 y 3 时,x 6
以抛物线顶点为原点, 抛物线对称轴为y轴,建立 平面直角坐标系.
人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案
22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。
22.3实际问题与二次函数 第2课时 最大利润问题(精品原创)
,
在日常生活中存在着许许多多的与数学知识有关的 实际问题。如商品销?
如果你是商场经理,如何定价才能使商场获得最大利润呢?
温故而知新
某商场春节前购进一批海南西瓜,每天能售出500千克, 每千克盈利0.3元.为了尽快减少库存,商场决定采取适当的 降价措施.调查表明:当销售价每降价0.1元时,其销售量每 天将多售出100千克.商场要想平均每天盈利达到120元,每 千克西瓜应降价多少元?
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?
例 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:如调整价格,每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大? 分析: 调整价格包括涨价和降价两种情况
先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品
解:设降低x元后,单件利润为(13.5-x-2.5),销售件 数是(500+100x), y=(13.5-x-2.5)(500+100x) 即y=-100x2+600x+5500 (0≤x≤11 )
配方得y=-100(x-3)2+6400
当x=3时,y的最大值是6400元. ∴销售单价为10.5元时,最大利润为6400元.
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?
人教版九年级数学上册22.3 实际问题与二次函数第二课时课件
这个月为他承担的总差价为多少元? (2)设李明获得的利润为w(元),当销售单价为多少元时,每月
可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如
果李明想要每月获得的利润不低于3 000元,那么政府每个月为 他承担的总差价最少为多少元?
7.(12分)在“母亲节”前夕,我市某校学生积极参与“关爱贫 困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课 余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现, 若每件按24元的价格销售时,每天能卖出36件;若每件按29 元的价格销售时,每天能卖出21件.假定每天销售件数y(件) 与销售价格x(元/件)满足一个以x为自变量的一次函数.
C.y=a(1-x)2
D.y=a(1+x)2
2.(4分)一台机器原价60万元,如果每年的折旧率为x,两年 后这台机器的价位为y万元,则y关于x的函数关系式为( A )
A.y=60(1-x)2
B.y=60(1-x2)
C.y=60-x2
D.y=60(1+x)2
3.(4分)喜迎圣诞,某商店销售一种进价为50元/件的商品, 售价为60元/件,每星期可卖出200件,若每件商品的售价每上 涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元 (x为正整数),每星期销售该商品的利润为y元,则y与x的函数 关系式为(A )
资,则 5 年所获利润的最大值是 205万元 .
9.出售某种文具盒,若每个获利 x 元,一天可售出(6-x)个,则
当 x=__3__元时,一天出售该种文具盒的总利润最大.
二、解答题(共48分) 10.(14分)某网店以每件60元的价格购进一批商品,若以单 价80元销售,每月可售出300件.调查表明:单价每上涨1元, 该商品每月的销售量就减少10件. (1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的 函数关系式; (2)单价定为多少元时,每月销售该商品的利润最大?最大利 润为多少?
人教初中数学九上 22.3 实际问题与二次函数(第2课时)教案
随 S 出发时间如何变化?写出函数关系式及 t 的取值范围.
作业:1.必做:课本第 52 页,4、5 题.
作业设必做题
【例题】 1.一块三角形废料如图 26.3.2—2 所示,∠A=30°, 教师出示例题.
∠C=90°,AB=12.用这块废料剪出一个长方形 CDEF,其中,点 D、 请一位学生板练,其
E、F 分别在 AC,AB,BC 上,要使剪出的长方形 CDEF
他学生练习.完成练
面积最大,点 E 应选在何处?
习后,先在小组内进
入
2.一个圆柱的高等于底面半径,写出它的表面积 S 与半径 r 之 及表面积公式.
间的函数关系式
思考解答写出关系
3.一个长方形的长是宽的 2 倍,写出长方形的面积与宽之间的 式.
函数关系式
4.已知一个矩形的周长为 12 米,设矩形的一边长为 xm,面积为 Sm2,求 S 与 x 之间的函数关系式,并确定自变量的取值范围
态度
重点 用二次函数的知识分析解决有关面积问题的实际问题.
难点 通过图形之间的关系列出函数解析式.
【教学环节安排】
环节
教学问题设计
教学活动设计
情 创设情景 引入新课
首先让学生明确矩
境
1.正方体的六个面是全等的正方形,设正方形的棱长为 x,表面 形、圆、三角形、正
引 积为 y,求 y 与 x 之间的函数关系式,并求出自变量 x 的取值范围 方体、圆柱的面积以
行交流、讨论.
图 26.3.2—2
【分析】师生共同分析:长方形 CDEF 面积是大三角形的面积减
去两个小三角形的面积.
解:(略)
用一段长 30m 的篱笆,围城一个一边靠墙
1. 抓 住 图 形 的 特
人教版九年级上册数学22.3实际问题与二次函数(教案)
1.教学重点
-二次函数在实际问题中的应用:本节课的核心是让学生掌握如何将实际问题转化为二次函数模型,从而利用数学工具解决具体问题。例如,通过分析物体的抛物线运动,建立速度与时间的关系,进而求解物体的最大高度或最远距离。
-二次函数的性质及其图像:重点讲解二次函数的开口方向、顶点、对称轴等性质,并通过图像加深理解,使学生能够熟练运用这些性质解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax²+bx+c的函数,它能够描述许多抛物线形状的现象。它在物理学、经济学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设一个物体以抛物线轨迹运动,我们要计算它的最大高度和飞行距离。这个案例将展示二次函数在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂上,我们探讨了实际问题与二次函数的关联,尝试将抽象的数学概念应用到具体的生活实例中。我注意到,在理论介绍环节,学生对二次函数的基本概念掌握得还算扎实,但在案例分析时,一些学生在构建数学模型上遇到了困难。这让我意识到,将实际问题转化为数学语言,对他们来说是一个不小的挑战。
在实践活动和小组讨论中,学生们的参与度很高,大家积极讨论、动手实践,课堂氛围相当活跃。我特别高兴看到他们在讨论中互相启发,共同解决问题。然而,我也发现有些小组在分析问题时,还是局限于表面的理解,未能深入挖掘问题背后的数学原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
22.3 实际问题与二次函数(第2课时)-人教版九年级数学上册课时互动训练
22.3 实际问题与二次函数(第2课时)自主预习1.出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.2.某服装店购进价格为每件15元的童装若干件,销售一段时间后发现:当每件的售价为25元时平均每天能售出8件,若每件每降价2元,平均每天能多售出4件.若设每件服装定价为x(x<25)元,则每件服装的利润为________元,每天销售服装________件,该服装店每天的销售利润y=____________________元;若设每件服装降价x元,则每件服装的利润为____________元,每天销售服装____________件,该服装店每天的销售利润y=_______________________________________元.(所列算式均不化简)互动训练知识点一:利用二次函数解决销售中的最大利润等问题1.某种产品按质量分为10个档次,生产最低档次产品,每件获利8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,每提高一个档次将减少3件.如果每天获得利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5 B.7 C.9 D.102.某玩具厂计划生产一种玩具熊,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊的成本为R(元),售价为每只P(元),且R,P与x之间的关系式分别为R=30x+500,P=170-2x.若想获得最大利润,则日产量为()A.25只B.30只C.35只D.40只3.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=-x2+10x,y2=2x.若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元4. 某商店购进一批单价为20元/件的日用品,如果以单价30元/件销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价定为多少,才能在半个月内获得最大利润?5.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:每条裤子每降价1元,则每月可多销售5条.设每条裤子的售价为x 元(x为正整数),每月的销售量为y条.(1)直接写出y与x之间的函数关系式(不用写自变量的取值范围);(2)设该网店每月获得的利润为w元,当每条裤子的售价降价多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?6. 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:且日销量y(件)是销售价x(元)的一次函数.(1)求日销量y(件)与x(元)的一次函数.(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时最大销售利润是多少?知识点二:利用二次函数解决房间住宿中的最大利润等问题7. 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间每天的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为W元,求W与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?8.某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:(1)根据所给数据在图(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?课时达标1.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=-x2+70x-800,要想获得最大利润,则销售单价为()A.30元B.35元C.40元D.45元2.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)3.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,可列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=154. 某批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以45元的价格销售,则平均每天销售105箱;若每箱以50元的价格销售,则平均每天销售90箱,假定每天的销售量y(箱)与销售价x(元/箱)之间满足一次函数关系.(1)求每天的销售量y(箱)与销售价x(元/箱)之间的函数解析式(不需要写出自变量的取值范围);(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数解析式;(3)当每箱苹果的销售价为多少时,可以获得最大利润?最大利润是多少?5. 为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.6. 某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?6题图拓展探究1.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元/本,且获利不高于30%.试销售期间发现,当销售单价定为44元/本时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元/本.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围.(2)当每本足球纪念册销售单价是多少元时,商店每天获利2 400元?(3)将足球纪念册销售单价定为多少元/件时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?2.利民商店经销甲、乙两种商品,现有如图22311所示的信息.图22311请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价分别是多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品的零售单价分别每降0.1元/件,这两种商品每天均可多销售100件.为了使每天获取最大的利润,商店决定把甲、乙两种商品的零售单价都降m元/件,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?最大利润是多少?22.3 实际问题与二次函数(第2课时)答案自主预习 1.32.(x -15), (8+25-x 2×4),(x -15)(8+25-x2×4);(25-15-x ), (8+x 2×4), (25-15-x )(8+x2×4).互动训练1.C 2.C 3.D4.解:设单价提高x 元,利润为y 元.根据题意,列函数解析式为y =(30+x -20)(400-20x )=-20x 2+200x +4000(0≤x ≤20). 所以当x =5时,y 有最大值为4500元.5.解:(1)由题意可得:y =100+5(80-x ),整理得y =-5x +500. (2)由题意,得 w =(x -40)(-5x +500)=-5x 2+700x -20000 =-5(x -70)2+4500.∵a =-5<0,∴w 有最大值,当x =70时,w 最大值=4500. 80-70=10(元).答:当每条裤子的售价降价10元时,每月获得的利润最大,最大利润为4500元. (3)由题意,得-5(x -70)2+4500=4220+200, 解得x 1=66,x 2=74.∵抛物线开口向下,∴当66≤x ≤74时,符合该网店要求. 而为了让顾客得到最大的实惠,应取x =66, 故休闲裤的销售单价应定为66元/条. 6. 解:(1)设此一次函数解析式为y =kx +b ,∴⎩⎨⎧=+=+20202515b k b k ,解得,⎩⎨⎧==401-b k ,即一次函数的解析式为y =-x +40.(2)设销售利润为w 元,则W =(x -10)(-x +40)=-(x -25)2+225, 当x =25时,w 有最大值225.即产品的销售价定为25元时,每日获得销售利润最大为225元. 7. 解:(1)y =50-101x (0≤x ≤160,且x 是10的正整数倍). (2) W =(50-101x )(180+x -20)=-101x 2+34x +8000. (3) W =-101x 2+34x +8000=-101(x -170)2+10890. 当x <170时,W 随x 增大而增大,但0≤x ≤160, ∴当x =160时,y =50-101x =34. 答:一天订住34个房间时,宾馆的利润最大,最大利润为10880元. 8. 解:(1)如答图.第1题答图(2)设y =kx +b (k ≠0),把(200,60)和(220,50)代入,得⎩⎪⎨⎪⎧ 200k +b =60,220k +b =50,解得⎩⎪⎨⎪⎧ k =-12,b =160.∴y =-12x +160(170≤x ≤240). (3)w =xy =x ⎝⎛⎭⎫-12x +160=-12(x -160)2+12 800. ∵a =-12<0,∴当170≤x ≤240时,w 随x 的增大而减小, ∴当x 取170时,w 有最大值,最大值为12 750.∴当宾馆标准房的价格定为170元时,客房的日营业额最大,最大为12 750元. 课时达标1. B. 解析:∵y =﹣x 2+70x ﹣800=﹣(x ﹣35)2+425,∴当x =35时,y 取得最大值,最大值为425,即销售单价为35元时,销售利润最大,故选:B .2. B. 解析:每件商品降价x 元后,则每星期的销售量为(300+20x)件,单价为(60-x)元,则y =(60-x)(300+20x),故选B.3. A. 解析:设每盆应该多植x 株,由题意得, (3+x )(4-0.5x )=15,故选A .4. 解:(1)y =-3x +240.(2)由题意,得w =(x -40)(-3x +240)=-3x 2+360x -9600.(3)当x =60时,w 有最大值,因为x ≤55,所以当x =55时,w 的值最大,为1125元.5. 解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)6. 解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎨⎧m =18,n =638. ∴ y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12). 设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338, ∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214, ∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 拓展探究1. 解:(1)y =300-10(x -44),即y =-10x +740(44≤x ≤52).(2)根据题意,得(x -40)(-10x +740)=2 400,解得x 1=50,x 2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2 400元. (3)w =(x -40)(-10x +740)=-10x 2+1 140x -29 600=-10(x -57)2+2 890.当x <57时,w 随x 的增大而增大,而44≤x ≤52,∴当x =52时,w 有最大值,最大值为-10×(52-57)2+2 890=2 640.答:将足球纪念册销售单价定为52元/件时,商店每天销售纪念册获得的利润w 元最大,最大利润是2 640元.2.解:(1)设甲商品的进货单价是x 元/件,乙商品的进货单价是y 元/件.根据题意,得⎩⎪⎨⎪⎧ x +y =5,3x +1+22y -1=19,解得⎩⎪⎨⎪⎧x =2,y =3. 答:甲商品的进货单价是2元/件,乙商品的进货单价是3元/件.(2)设每天销售甲、乙两种商品获取的利润为w 元,则w =(1-m )⎝⎛⎭⎫500+100×m 0.1+[(2×3-1)-3-m ]·⎝⎛⎭⎫300+100×m 0.1=-2 000m 2+2 200m +1 100=-2 000(m -0.55)2+1 705,∴当m =0.55时,w 有最大值,最大值为1 705.答:当m 定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,最大利润是1 705元.。
22-3实际问题与二次函数(第2课时销售利润问题)(同步课件)-九年级数学上册同步精品课堂(人教版)
(1)请你根据表中的数据,用所学过的一次函数、二次函数 的知识确定p与x之间的函数解析式.
拓展训练
人教版数学九年级上册
解:(1)假设p与x成一次函数关系,设函数解析式为p=kx+b,
则
30k+b=600, 40k+b=300,
解得
k=-30, b=1 500,
∴p=-30x+1 500. 检验:当x=35,p=450时;
解:(3)设日获利为y元,则y=p(x-30-a)=(-30x+1500)(x-30-a),
即y=-30x2+(2 400+30a)x-(1 500a+45 000), 其图象的对称轴为直线x=- 2 400+30a =40+12a.
2 (-30)
①若a≥10,则当x=45时,y有最大值,即y最大值=2 250-150a<2
解:(1)平均每棵树结的橙子个数y(单位:个)与x之间的关系式
为
y=600-5x(0≤x<120且x为整数).
(2)设果园多种x棵橙子树时,橙子的总产量为W个, 则W=(600-5x)(100+x) =-5x2+100x+60 000 =-5(x-10)2+60 500,
则果园多种10棵橙子树时,可使橙子的总产量最大,最大为
件,市场调查反映:如调整价格,每涨价1元,每星期少卖出 10件;每降价1元,每星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大?
分析:调整价格包括涨价和降价两种情况.我们先来看 涨价的情况.
合作探究
人教版数学九年级上册
(1)设每件涨价x元,则每星期售出商品的利润y随之变
化.我们先来确定y随x变化的函数解析式.涨价x元时,每星
人教版数学九年级上册
人教版数学九年级上册
(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(2)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第22章二次函数22.3实际问题与二次函数一、选择题1.某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-2x2+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元2.某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个3.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD的总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.183m2C.243m2 D.4532m24.一种包装盒的设计方法如图所示,四边形ABCD是边长为80cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30B.25C.20D.155.在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1m ,球落地点A 到点O 的距离是4m ,那么这条抛物线的解析式是()A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -16.三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为()A .米B .米C .米D .7米二、填空题7.某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,则可卖出(30-x )件.若要使销售利润最大,则每件的售价应为________元.8.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a 元,则可卖出(350-10a )件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.9.如图所示是一座抛物线形拱桥,当水面宽为12m 时,桥拱顶部离水面4m ,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.10.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.11.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体总长为27m,则能建成的饲养室总占地面积最大为________m2.12.如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为________m.13.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.14.如图,小明的父亲在相距2m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5m,绳子自然下垂呈抛物线状,身高1m的小明距较近的那棵树0.5m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.三、解答题15.(2020·营口)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?16.有一个窗户边框的形状如图①,上部是由4个全等扇形组成的半圆,下部是矩形,如果制作窗户边框的材料总长为6m,如何设计这个窗户边框的尺寸,使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35m,窗框矩形部分的另一边长约为1.23m时,窗户的透光面积最大,最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6m,利用图③,解答下列问题:(1)若AB为1m,求此时窗户的透光面积;(2)与题干中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.17.(2019•绍兴)有一块形状如图的五边形余料ABCDE ,6AB AE ==,5BC =,90A B Ð=Ð=°,135C Ð=°,90E Ð>°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.18.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价买?(2)写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x ≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?19.(2020·无锡)有一块矩形地块ABCD ,AB =20米,BC =30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米。
22.3 实际问题与二次函数(商品利润问题)课件人教版数学九年级上册
巩固练习
该怎么解这个题 目呢?
本题是以文字信息形式出现的求最大总收入的 实际应用问题,解题时要抓住题目中关键词语, 对信息进行梳理,分析,建立二次函数模型。
新知探究 知识点一:利润问题中的数量关系
②自变量x的取值范围如何确定?
营销规律是价格下降,销量上升,因此只要考虑 单件利润就可以,故 20-x≥0,且x≥0, 因此自变量的取值范围是 0≤x≤20.
新知探究 知识点一:利润问题中的数量关系
③降价多少元时,利润y最大,是多少? 即:y=-20x2+100x+6000,
复习回顾
利润问题 一.几个量之间的关系. 1.总价、单价、数量的关系:总价=单价×数量 2.利润、售价、进价的关系:利润=售价-进价 3.总利润、单件利润、数量的关系:总利润=单件利润×数量 二.在商品销售中,通常采用哪些方法增加利润?
新课导入
某商店经营衬衫,已知获利以y(元)与销售单价x(元)之间满足关系式y=x2+24x+2956,则此店销售单价定为多少时,获利多少?最多获利多少?
巩固练习
解析 总利润=单件产品利润×销售教量
解:(1)获利(30-20)[105-5(30-25)]=800(元)。 (2)设售价为每件x元时一个月的获利为y元。 由题意得y=(x-20)[105-5(x-25)] =-5x2+330x-4600 =-5(x-33)2+845 当x=33时,y的最大值是845. 故当售价定为每件33元时,一个月获利最大,最大利润是845元。
新课导入
在商品经营活动中,经常会遇到求最大利润、最大铸量等问题,解此类题的关健 是通过题意,找出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x 的取值范围。
人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在最大利润问题中的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,虽然学生们提出了很多有见地的观点,但我感觉他们在分析问题和解决问题的能力上还有待提高。为此,我计划在今后的教学中,多设计一些开放性的问题,引导学生深入思考,培养他们的逻辑思维和分析能力。
总之,在本次教学过程中,我深刻认识到了自身在教学方法和策略上的不足,也看到了学生在学习过程中遇到的困难。在今后的教学中,我将不断调整和改进,努力提高教学效果,让每个学生都能在数学学习的道路上取得更好的成绩。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-二次函数模型的建立:如何根据问题的具体情境,正确地建立二次函数模型,包括确定自变量和因变量,理解函数中各个参数的实际意义。
-实际问题与数学模型的关联:将实际问题抽象成数学模型,理解数学模型背后的实际背景,以及如何将数学结果应用到实际问题中去。
举例:在农产品销售问题中,重点在于让学生理解售价、销售量和成本之间的关系,并将其表达为二次函数的形式。
22.3实际问题与二次函数(第二课时)教案
22.3实际问题与二次函数第二课时 二次函数与最大利润问题一、 教学目标知识与技能:通过探究实际问题与二次函数的关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
过程与方法:通过研究生活中实际问题,让学生体会建立数学建模的思想;通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法。
情感态度与价值观:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。
二、 教学重点及难点教学重点:用二次函数的知识分析解决有关利润的实际问题。
教学难点:通过问题中的数量变化关系列出函数解析式。
三、学情分析我班学生已经学习了二次函数的定义、图象和性质,在此之前也学习了列代数式、列方程解应用题,所以学生具备了一定的建模能力,但我班学生的理解能力较弱,对应用题具有恐惧感,然而应用二次函数的知识解决实际问题需要很强的灵活应用能力,对学生而言建模难度很大。
三、 教学过程(一) 复习引入 (1)商家进了一批杯子,进货价是10元/个 ,以a 元/个的价格售出,则商家所获利润为()10a -元。
(2)某种商品的进价是400元,标价为600元,卖出3x 件,为了减少库存,商家采取打八折促销,卖出了(65)x +件,则商家所获利润为(1080400)x +元 。
利润问题主要用到的关系式是:利润=售价-进价 总利润=单件利润 ⨯ 销售数量(二)创设情境问题(合作交流)童装的进价40元/件,售价60元/件,每星期可卖出300件。
如果调整价格,每涨价1元,每星期要少卖出10件。
要想获得7200元的利润,该商品应定价为多少元?分析:没调价之前商场一周的利润为 6000 元;设销售单价上调了x 元,那么每件商品的利润可表示为 (60-40+x ) 元,每周的销售量可表示为(300-10x ) 件,一周的利润可表示为(60-40+x )(300-10x )元,要想获得6090元利润可列方程 (60-40+x)(300-10x)=7200 。
九年级数学上册第22章《实际问题与二次函数(2)》名师教案(人教版)
22.3 实际问题与二次函数(2)——二次函数与几何最值问题一、教学目标(一)学习目标1. 能根据具体几何问题中的数量关系,列出二次函数关系式2.会利用二次函数求几何图形中的周长、面积等的最值3.体会利用二次函数求面积其中所蕴含的数学思想和方法(二)学习重点应用二次函数解决几何图形中有关的最值问题(三)学习难点函数特征与几何特征的相互转化以及讨论最值在何处取得二、教学设计(一)课前设计预习任务1.22(3)2y x =--+;对称轴3x =、顶点坐标()3,2、当3x =时,y 取最大值为22.21322y x x =--;对称轴1x =、顶点坐标()1,2-、当1x =时,y 取最小值为-2 3.(1)(3)y x x =-+对称轴1x =-、顶点坐标()1,4--、当1x =-时,y 取最小值为4- 预习自测1. 已知二次函数的解析式为22813y x x =++(1)当33x -≤≤,该函数的最大和最小值分别是_________和_____________;(2)当03x ≤≤,该函数的最大和最小值分别是_________和_____________.【知识点】求二次函数的区间最值【数学思想】数形结合【思路点拨】先化成顶点式或是利用顶点坐标公式求出顶点,再看对称轴和区间的位置关系,进而求解.【解题过程】解:把原式化为顶点式为2228132(2)5y x x x =++=++,可知此函数的顶点坐标是(2,5)-,对称轴为2x =-(1) 当33x -≤≤时可知,max 355x y ==时,2x =-时min 5y =;(2)当03x ≤≤,对称轴2x =-时在所给的区间左侧,此时y 随x 的增大而增大,因此可知max 355x y ==时,min 013x y ==时【答案】(1)55,5;(2)55,13.【设计意图】通过做练习复习区间最值的求解以及应该注意的问题,实际问题中有时会涉及到区间最值,学生很容易出问题.设计此题就是为了提醒学生注意求解函数问题不能离开定义域这个条件才有意义,因为任何实际问题的定义域都受现实条件的制约,为学习新课做好知识铺垫.2.在一幅长80cm ,宽50cm 的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5000cm 2,设金色纸边的宽为xcm ,那么满足的方程是( ).A .x 2+130x-1400=0B .x 2-130x-1400=0C .x 2+65x-250=0D .x 2-65x-250=0【知识点】矩形性质,矩形面积【数学思想】数形结合【思路点拨】挂图长为(80+2x )cm ,宽为(50+2x )cm ,根据整个挂图的面积是5000cm 2,即长×宽=5000,列方程进行化简即可.【解题过程】解:挂图长为(80+2x )cm ,宽为(50+2x )cm ;所以(80+2x )(50+2x )=5000,即4x2+160x+4000+100x=5000,所以4x2+260x-1000=0.即x2+65x-250=0. 故选C.【答案】C .【设计意图】根据矩形的面积公式本题易得解.3.用长16 m 的绳子围成如图所示的矩形框,使矩形框的面积最大,那么这个矩形框的最大面积是_______ 2m .【知识点】矩形性质,矩形周长,求二次函数最值【数学思想】数形结合【思路点拨】设竖边为x ,用x 表示横边,再表示面积,再求最值【解题过程】设竖边为x,则横边为1623x - 21622(4)32333x x s x --==-+ 当4x =时,y 取最大值为323【答案】323 【设计意图】把其中的一个主要变量设为x ,另一个设为y ,其它变量用含x 的代数式表示,找等量关系,建立函数模型,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.4.如图,点C 是线段AB 上的一个动点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大【知识点】正方形性质,求面积最大问题【数学思想】数形结合【思路点拨】把其中的一个主要变量设为x ,其它变量用含x 的代数式表示,找等量关系,建立函数模型【解题过程】设AC=x 则BC= 1x -22211(1)2()22s x x x =-+=-+ 当12x =时,取最小值为12∴当C 是AB 的中点时,S 最小【答案】A【设计意图】把其中的一个主要变量设为x ,另一个设为y ,其它变量用含x 的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.(二)课堂设计1.知识回顾(1)对于任意一个二次函数的一般式2(0)y ax bx c a =++≠,可以利用配方把它化为顶点式2()y a x h k =-+,进而写出顶点坐标(h,k )和对称轴x=h(2)求二次函数2(0)y ax bx c a =++≠与x 轴的交点,即令y=0即可;其与x 轴交点即为12(,0)(,0)x x ;求二次函数2(0)y ax bx c a =++≠与y 轴的交点,即令x=0即可;其与y 轴交点即为(0,)c(3)将二次函数的一般式2(0)y ax bx c a =++≠转化成顶点式2()y a x h k =-+来求二次函数最值,当x h =时,y 取最值为k2.问题探究探究一 最大面积(★)●活动1 创设情境,发现问题[做一做]:请你画一个周长为24厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?做一做中,让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大. 学生通过画周长一定的矩形,会发现矩形长、宽、面积不确定,从而回想起常量与变量的概念,最值又与二次函数有关,进而自己联想到用二次函数知识去解决.【设计意图】做一做中,让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大,目的一是为激发学生的学习兴趣,二是为了引出想一想.周长固定、要画一个面积最大的矩形,这个问题本身对学生来说具有很大的趣味性和挑战性,学生既感到好奇,又乐于探究它的结论,从而很自然地从复习旧知识过渡到新知识的学习.●活动2 师生共研,探索解法例1. 李老师计划用长为24米的篱笆,围成长方形花圃,他想请同学们帮他思考一下如何围才能使围成的花圃面积最大,最大值是多少?让学生讨论,得出解法.点拨:先用未知数表示面积问题中的各个量,再利用矩形面积公式列出表达式,然后根据表达式,利用二次函数求最值.生答:设矩形宽为x厘米,则长为2422x-=(12-x)厘米.12S x x=-(),当x=6时,S取最大值为36.【设计意图】把前面矩形的周长24厘米改为24米,变成一个实际问题,目的在于让学生体会其应用价值——数学来源于生活也服务于生活.学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.解决完想一想之后及时让学生总结方法,为后面阶段打下思想方法基础.练习1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l为多少米时,场地的面积S最大?【知识点】矩形性质,矩形周长,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式是本题关键.【解题过程】设矩形一边长l,则长为602302ll-=-()厘米.()30S l l=-,当15l=时,S取最大值为225【答案】当15l =时,S 取最大值为225【设计意图】一个实际问题,目的在于让学生体会其应用价值——数学来源于生活也服务于生活.学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为l ,其它变量用含l 的代数式表示,找等量关系,建立函数模型●活动3 变式应用例2.(例1变式) 后来李老师惊喜的发现有一面长度为8米的墙可以靠,则他怎样围可以使花圃的面积最大?最大面积是多少?学生根据例1的解法,独立求解【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式是本题关键.考虑实际问题中靠墙所造成的易错点.最值不是由顶点处取到,学会区间求最值.【解题过程】生答:(1)设矩形长为x 厘米,则宽为242x -厘米.(8x ≤) 241(24)22x S x x x -=⋅=-=()2112722x --+; ∵a=12-<0,开口向下, ∵8x ≤,当8x =时,S 取最大值为64【答案】面积S 取最大值为64【设计意图】此时有了上一问的方法和技巧,很多学生能够类比的方法建立模型,设出未知数,列出函数关系式.但问题是此时自变量x 有取值范围的限制,不能“任性”的取值.从而让学生在不断的探究和合作中感悟,对于实际问题一定需要考虑其自变量x 的取值范围才可以求最值.练习2.如图,用一段长为60 m 的篱笆围成一个一边靠墙的矩形菜园,墙长32 m ,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式时考虑实际问题中靠墙所造成的易错点(这道题靠墙依然可以在顶点处取到最值).【解题过程】与墙垂直的一边为x 米,则(602)S x x =-∵0≤60-2x≤32. ∴ 14≤x≤30当15x =时,S 取最大值为450【答案】当15x =时,S 取最大值为450【设计意图】这一阶段,我让学生分组讨论,每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既 加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.小结:在实际问题中求解二次函数的最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.探究二 利用二次函数求几何最值的训练●活动① 基础性例题例1. 为了改善小区环境,某小区决定要在一块一边靠墙(墙长 25 m )的空地上修建一个矩形绿化带 ABCD ,绿化带一边靠墙, 另三边用总长为 40 m 的栅栏围住 (如下图).设绿化带的 BC 边长为 x m ,绿化带的面积为2m y .(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.(2)当 x 为何值时,满足条件的绿化带的面积最大?【知识点】一侧靠墙的矩形,周长确定求其面积最大【数学思想】数形结合【思路点拨】利用题目给出的已知条件列出满足题意的式子,进而转化为二次函数求最值. 【解题过程】解:(1) 24012022x y x x x -==-+g , 自变量x 的取值范围是0<x ≤25;(2) ()22112020+20022y x x x =-+=-- ∵20<25,∴当x=20时,y 有最大值200,即当x=20时,满足条件的绿化带面积最大【答案】(1)21202y x x =-+,其中025x ≤≤; (2)当x=20时,满足条件的绿化带面积最大【设计意图】这一阶段,我让学生分组讨论,每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.练习.某窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长为15 m (图中所有线条长度之和),当x 等于多少时,窗户通过的光线最多?此时,窗户的面积是多少?(结果精确到0.01 m)【知识点】周长确定的矩形面积最大问题【数学思想】数形结合【思路点拨】中间线段用x 的代数式来表示,要充分利用几何关系;要注意顶点的横坐标是否在自变量x 的取值范围内.【解题过程】由题意可知1426152y x x π+⨯+=,化简得1564x x y π--=,设窗户的面积为S m 2, 则2211561523242x x S x x x x ππ--=+=-+g , ∵30a =-<,∴S 有最大值.∴当x =1.25 m 时,S 最大值≈4.69(m 2),即当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m 2.【答案】当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m 2.【设计意图】这一阶段,让学生自己通过自己的思考,动手来进行操作解决问题.每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既 加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.●活动② 提升型例题分组讨论交流解题思路,小组活动后,小组代表展示活动成果.例2.如图,在矩形ABCD 中,AB =2 cm ,BC =4 cm ,P 是BC 上的一动点,动点Q 仅在PC 或其延长线上,且BP =PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP =x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y 2cm ,试分别写出02x ≤≤和24x ≤≤时,y 与x 之间的函数关系式.【知识点】正方形性质,矩形性质,求二次函数最值【数学思想】数形结合,分类讨论【思路点拨】根据题目题意画出相关的图形,充分利用几何关系来求解同时写出自变量x 的取值范围内.【解题过程】如图,阴影部分的重叠部分的面积为y当02x ≤≤时,如下面的左边的图形所示, PQ BP x ==,此时22y PQ x ==,其中02x ≤≤;当24x ≤≤时,如下面的右边的图形所示, PQ BP x ==,此时4PC BC BP x =-=-,其中24x ≤≤;2(4)28y PC CD PC AB x x =⨯=⨯=-=-+,其中24x ≤≤综上所述:2,0228,24x x y x x ⎧≤≤=⎨-+≤≤⎩【答案】2,0228,24x x y x x ⎧≤≤=⎨-+≤≤⎩【设计意图】让学生自己通过自己的思考,结合题意画出符合题意的图形,根据图形来求解,让学生感受分类讨论的数学思想.练习.如图,从一张矩形纸片较短的边上找一点E ,过E 点剪下两个正方形,它们的边长分别是AE ,DE ,要使剪下的两个正方形的面积和最小,点E 应选在何处?为什么?【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】根据图形之间的关系,表示出两个正方形的边长,进而表示出两个正方形的面积之和,转化为二次函数求最值.【解题过程】令,,DE x AD a AE a x ===-, 所以面积之和222222()222()22a a S x a x x ax a x =+-=-+=-+, 所以当2a x =时,面积最小,即E 应选在AD 的中点. 【答案】E 应选在AD 的中点. 【设计意图】新课程下的数学活动必须建立在学生已有的认知发展水平及知识经验基础之上,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验. 例3.如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的总面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米,如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?【知识点】梯形面积,正比例函数,解一元二次方程,二次函数求最值【数学思想】数形结合【思路点拨】想象把所有的阴影部分拼在一起就是一个小梯形.解答抛物线形实际问题的一般思路:1.把实际问题中的已知条件转化为数学问题;2.建立适当的平面直角坐标系,把已知条件转化为坐标系中点的坐标;3.求抛物线的解析式.【解题过程】(1)横向甬道的面积为:21(120180)150()2x x cm ⨯+= (2)依题意:2112801502(120180)8028x x x ⨯+-=⨯+⨯⨯ 整理得:21557500x x -+=解得125,150(x x ==舍去)故甬道的宽为5米;(3)设建设花坛的总费用为y 万元. 则210.02(120180)80(2310) 5.72y x x x ⎡⎤=⨯⨯+⨯--++⎢⎥⎣⎦20.040.5240x x =-+当 6.252b x a=-=时,y 的值最小. ∵根据设计的要求,甬道的宽不能超过6米,∴当x=6米时,总费用最少.即最少费用为 238.44万元. 【答案】(1)横向甬道的面积为:21(120180)150()2x x cm ⨯+= (2)故甬道的宽为5米;(3)当x=6米时,总费用最少.即最少费用为 238.44万元.【设计意图】新课程下的数学活动必须建立在学生已有的认知发展水平及知识经验基础之上,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验 练习.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4 m ,当水渠深x 为_______时,横断面面积最大,最大面积是__________.【知识点】梯形面积,二次函数求最值【数学思想】数形结合【思路点拨】根据题目中给定的角度,求出两腰和下底之间的关系式,进而列式转化为二次函数求解.【解题过程】底角为120°,则高和腰之间的夹角为30°,水渠深度 为x ,则得到:33AE x =,腰长33AB CD x == 两腰与下底的和为4得到:下底为434BC x =-所以上底为234AD x =设横断面的面积为S,则21()342S AD BC BE x x =+=-+ ∵2330x -<=,对称轴为 ∴当23x =时,横断面面积最大为43 【答案】当233x =时,横断面面积最大为433 【设计意图】加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣●活动③ 探究型例题例4. 在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发,沿AB 边向点B 以1cm/秒的速度移动,同时,点Q 从点B 出发沿BC 边向点C 以2cm/秒的速度移动.如果P 、Q 两点在分别到达B 、C 两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ 的面积等于8平方厘米?(2)设运动开始后第t 秒时,五边形APQCD 的面积为S 平方厘米,写出S 与t 的函数关系式,并指出自变量t 的取值范围;(3) t 为何值时S 最小?求出S 的最小值.【知识点】矩形性质,三角形、五边形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个边长,列出面积的关系式,再依次解决三个问题.【解题过程】(1)设x 秒后△PBQ 的面积等于8,则AP=x ,QB=2x ∴PB=6﹣x .∴12×(6﹣x )2x=8, 解得1x =2,2x =4,所以2秒或4秒后△PBQ 的面积等于8;(2)第t 秒钟时,AP=t cm ,故PB=()6t -cm ,BQ=2t cm , 故212(6)=62PBQ S t t t ∆=⋅--+ ∵61272ABCD S =⨯=矩形∴()27267206.PBQ S S t t t ∆=-=-+<<(3)∵()22672=363S t t t =-+-+,∴当3t =秒时,S 取最小值为63.【答案】(1)2秒或4秒后△PBQ 的面积等于8;(2)()27267206.PBQ S S t t t ∆=-=-+<<(3)当3t =时,S 取最小值为63【设计意图】此题设计了一个动点最值问题,有前面的方法和思路加上前面基础题作铺垫,大部分学生可以完成.练习. 曾经有这样一道题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m ,如何设计这个窗户,使透光面积最大?(该题的答案是:当窗户半圆的半径约为0.35m 时,透光面积最大值约为1.05m ²) 我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m ,利用图3,解答下列问题:(1)若AB 为1m ,求此时窗户的透光面积?(2)与该例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【知识点】矩形性质,二次函数求最值【数学思想】数形结合【思路点拨】由题意列出式子,转化为二次函数求最值【解题过程】(1)由已知可以得到:161115224AD ----== 此时窗户的透光面积55144S =⨯=; (2)设AB=x ,则734AD x =- ∵7304x -> ∴1207x << 设窗户的面积为S,由已知可以得到2277769(3)3()44477S AB AD x x x x x ==-=-+=--+g 当67x =时,max 9 1.057S => 与前面的例题比较,改变窗户形状后,窗户透光面积的最大值变大【答案】(1)窗户的透光面积55144S =⨯= (2)与前面的例题比较,改变窗户形状后,窗户透光面积的最大值变大【设计意图】学生在探索这个问题的过程中,将自然地体会到数学来源于生活,同时也服务于生活体验到数学与现实生活的紧密联系,同时加强学生自己的过手能力和计算能力,以课本上的例题为引子,在原来的基础上进行拓展,让学生吃透课本.3. 课堂总结知识梳理1.二次函数的三种形式:一般式2(0)y ax bx c a =++≠;顶点式2()(0)y a x h k a =-+≠以及交点式12()()(0)y a x x x x a =--≠.2.二次函数的三种形式之间的相互转化:一般式2(0)y ax bx c a =++≠可以利用配方化为顶点式2224()(0)24b ac b y ax bx c a x a a a -=++=++≠,进而可以得到顶点坐标公式24(,)24b ac b a a --,对称轴2b x a=-.交点式可以先化为一般式再配方转化为顶点式,有时也可以利用交点式快速的求对称轴122x x x +=. 3.利用二次函数求矩形周长一定的情况下,矩形面积的最大值,在求解的过程中需要标注自变量x 的取值范围,求解的过程中注意是顶点最值还是区间最值,这里往往难度较大.重难点归纳1. 利用二次函数的一般式求最值,有两种思路,第一可以先通过配方2224()(0)24b ac b y ax bx c a x a a a -=++=++≠ 把一般式化为顶点式,再利用顶点式求函数的最值;第二可以直接利用顶点坐标公式24(,)24b ac b a a--来求解. 利用交点式求二次函数的最值,一般是快速的利用对称轴的方程122x x x +=来求对称轴,进而求解. 2.实际问题中已知矩形的周长来求解面积最大,此时需要结合题意求解相关的边长,列出方程或是等式转化为二次函数的形式,但需要注意实际问题中往往需要注明自变量x 的取值范围.3. 强化利用二次函数求面积时,应该用一个变量来表示另一个变量,进而表示出面积,写出自变量的取值范围,再结合二次函数求最值的方法来求解,在求解的过程中应该注意是顶点最值还是区间最值,最后还需检验解的合理性.4.数形结合思想特别重要,在思考的过程中需要结合题意画出满足条件的图形,尤其是动态问题中画出图形是解题的关键.(三)课后作业基础型 自主突破1.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( )A .60 m 2B .63 m 2C .64 m 2D .66 m 2【知识点】矩形面积,求二次函数最值【数学思想】数形结合【解题过程】设AB=x ,则BC=16-x ,其中016x <<.所以矩形ABCD 的面积为 2(16)16S AB BC x x x x ==-=-+g10,8x -<=Q 对称轴且016x <<8x ∴=当时,矩形ABCD 的面积最大,2max 64m S =.【思路点拨】通过设未知数,先把矩形ABCD 的面积表示出来,是一个开口向下的二次函数,然后利用顶点坐标公式求出对称轴8x =,又知道自变量016x <<,因此当取对称轴8x =时,面积最大.【答案】C2.用一根长为40 cm 的绳子围成一个面积为a 2cm 的矩形,那么a 的值不可能为( )A .20B .40C .100D .120【知识点】矩形面积,求二次函数最值【数学思想】数形结合【解题过程】设矩形的一边为x ,则另外一边为20x -,其中020x <<.所以围成矩形的面积为2(20)20S x x x x =-=-+ 10,10x -<=Q 对称轴且020x <<10x ∴=当时,矩形的面积最大,2max 100cm S =,因此0100S <≤,故a 不可能取120.【思路点拨】矩形的周长为40,可以设出其中一边,可表示出另外一边,需要注意此时自变量的取值范围,再表示出矩形的面积,此时面积是一个开口向下的二次函数,然后利用顶点坐标公式求出对称轴10x =,又知道自变量020x <<,因此可以算出面积的取值范围.【答案】D3.已知一个直角三角形两直角边长之和为20,则这个直角三角形的最大面积为( )A .25B .50C .100D .不确定【知识点】三角形面积,求二次函数最值【数学思想】数形结合【解题过程】设这个直角三角形的一边为x ,则另外一边为20x -,其中020x <<.所以面积为211(20)1022S x x x x =-=-+ 10,102x -<=Q 对称轴且020x << 10x ∴=当时,三角形的面积最大,max 50S=,因此max 50S =. 【思路点拨】已知直角三角形的两边之和是20,设其中一边为x , 表示出该直角三角形的面积211(20)1022S x x x x =-=-+,此时面积是一个开口向下的二次函数,然后利用顶点坐标公式24(,)24b ac b a a--求出对称轴10x =,其中020x <<,因此可以算出面积的最大值【答案】B4.将一条长为20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是____2cm .【知识点】正方形面积,求二次函数最值【数学思想】数形结合【解题过程】设其中一个正方形的周长为xcm ,其边长为4x ,则另外一个正方形的周长为(20x -)cm ,其边长为204x -其中020x <<.所以这两个正方形的面积之和为 2222015()()254482x x S x x -=+=-+ 10,108x >=Q 对称轴且020x << 10x ∴=当时,三角形的面积最小,2min 25cm 2S=, 因此2min 25cm 2S =. 【思路点拨】两个正方形的周长之和为20,,设其中一个正方形的边长为x , 表示出另一个的周长,进而表示出两个正方形的面积之和。
22.3实际问题与二次函数(二)
22.3实际问题与二次函数(二)一、课前导学1.二次函数c bx ax y ++=2的顶点坐标是( _, )2.一般地:因为如果抛物线c bx ax y ++=2的顶点是最高(或最低)点,所以当=x _______时,二次函数有最大(或最小)值是_____________。
二、自主探究,合作交流☆探究1:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?探究:调整价格分涨价和降价两种情况:(1)涨价前每件利润 元,设每件涨价x 元,则涨价后每件的利润为 元,实际卖出 件,根据=⨯总利润每件利润销售量,可以得到涨价后的总利润为 元,所以每星期出售商品的利润y (元)随x (元)变化的解析式为: ,即: ( ≤x ≤ ).因此,当2b x a =-=时,y 有最大值244ac b a -=.也就是说,在涨价的情况下,涨价 元时,利润最大,最大利润是 .(2)综上所述,每件定价 元时,能使利润最大,最大利润为 元.☆探究2:商场第一年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,写出第三年的销售量y关于每年增加百分率x的函数解析式。
解:第一年销量台,第二年销量台,第三年销量台,∴第三年的销售量y关于每年增加百分率x的函数解析式: ,三、自主探究,交流展示1. 某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2. 某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天180元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?四、练检巩固1. 某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?2. 利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?五、能力提升1.中百超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)•与销售单价x(元)(30x)存在如下图所示的一次函数关系式.(1)试求出y与x的函数关系式;(2)设中百超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(•直接写出答案).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
43
12
最高点为
3 8
,
9 1671 12
.
2.某种商品每件的进价为30元,在某段时间内若以每件x元 出售,可卖出(200-x)件,应如何定价才能使利润最大?
解:设所得利润为y元, 由题意得y=(x-30)(200-x)
=-x2+230x-6000 =-(x-115)2+7225 (0<x<200) 当x=115时,y有最大值. 即当这件商品定价为115元时,利润最大.
重点:建立销售问题中的二次函数模型. 难点:建立二次函数模型.
推进新课
总利润=单件利润×件数
某商品现在的售价为每件60元,每星期可卖出300
件.市场调查反映:如调整价格,每涨价1元,每星期要少
卖出10件;每降价1元,每星期可多卖出20件.已知商
品的进价为每件40元,如何定价才能使利润最大?
分析:
进价/元 售价/元 单件利润 件数
总利润
现价 40 涨价 40 降价 40
60
60-40
300
(60 40)300
60+n 60+n-40 300-10n (60 n 40)(300 10n)
60-m 60-m-40 300+20m(60- m 40)(300 20m)
进价/元 售价/元 单件利润 件数
总利润
现价 40 涨价 40
60
60-n4取0 何值30时0 ,y有(最60大 40)300
60+n 60+n值-4?0 最30大0-1值0n是(多60少 n? 40)(300 10n)
解:(1)设每件涨价n元,利润为y1.
则y1=(60+n – 40 )(300 – 10n)
怎样确定n的取
即y1=-10n2+100n+6000
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 32
9
4a 4 4 16 ,
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
教学反思
本课时探究二次函数在商品销售利润问题中的应用, 教学时,让学生自行分析,找出问题中的数量关系并列函 数关系式,教师适时予以引导,需要注意的是,自变量的取 值要满足问题的实际意义。
拓展延伸
3.求函数y=-x2+6x+5的最大值和最小值.
(1)0≤x≤6;
(2) -2≤x≤2.
解:y=-x2+6x+5=-(x-3)2+14 (1)当0≤x≤6时, 当x=3时, y有最大值14, 当x=0或6时, y有最小值5.
(2)当-2≤x≤2时, 当x=2时,y有最大值13, 当x=-2时,y有最小值-11.
值范围?
由
n 0, 300 10n
0.
可得:0≤n≤30.
当n b 100 5 2a 2 (10)
y1最大 -1052 1005 6000 6250
即涨价情况下,定价65元时,有最大利润6250元.
降价情况下的最大利润又是多少呢?
降价:
即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综合以上可知: 该商品的价格定价为65元时,可获得最大利润6250元。
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
n取何值时,y有最大 值?最大值是多少?
y2=-20m2+100m+6000 (0≤n≤20) =-20(m2-5m)+6000
=-20(m-2.5)2+6125
抛物线y2=-20m2+100m+6000顶点坐标为 (2.5,6125) , 所以商品的单价上涨 2.5 元时,利润最大为 6125 元.
22.3 实际问题与二次函数
第2课时 实际问题与二次函数(2)
R·九年级上册
新课导入
问题:某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每涨价1元,每星期要少卖出10 件;每降价1元,每星期可多卖出20件.已知商品的进价为 每件40元,如何定价才能使利润最大?
(1)能用二次函数表示实际问题中的数量关系(包括写出解 析式、自变量的取值范围、画图象草图). (2)会用二次函数求销售问题中的最大利润.