三相异步电动机调压调速系统设计与实验
三相异步电动机的起动与调速实验报告
三相异步电动机的起动与调速实验报告实验报告:三相异步电动机的起动与调速一、实验目的1.学会使用三相异步电动机进行起动和调速实验;2.理解三相异步电动机的工作原理和特性;3.掌握控制电源频率和电压对电动机起动和调速的影响。
二、实验原理1.三相异步电动机的起动三相异步电动机的起动可以分为直接起动、通过降压启动器起动和通过自耦变压器起动等几种方式。
实验中我们采用的是直接起动方式。
直接起动是将三相电源直接接到电动机的定子绕组上,通过电源的三相电流激励定子绕组产生磁场,使得电动机启动转矩产生,从而实现电机的起动。
2.三相异步电动机的调速三、实验装置和仪器1.三相异步电动机:用于实现起动和调速实验。
2.控制电源:用于提供三相交流电源,调整电源频率和电压。
3.电压表和电流表:用于测量电源电压和电流。
4.转速计:用于测量电动机转速。
5.手动控制开关。
四、实验步骤1.连接实验电路:将三相异步电动机与控制电源、电压表和转速计连接起来,根据电路图正确接线。
2.起动实验:将控制电源调至合适的频率和电压,打开电源开关,记录电动机的起动时间,并观察电动机的起动转矩和转速情况。
3.调速实验:保持电动机运行状态,通过改变控制电源的频率和电压,逐渐增大或减小转速,同时记录相应的电源频率和电压。
五、实验结果与分析1.起动实验结果:记录电动机的起动时间,并观察电动机的起动转矩和转速情况。
2.调速实验结果:通过改变控制电源的频率和电压,记录相应的转速和电源频率和电压,并绘制转速和电源频率、电压的关系图。
六、实验结论通过实验我们可以得到以下结论:1.三相异步电动机可以通过改变电源频率和电压来实现起动和调速;2.电源频率和电压对电动机起动和调速有直接的影响;3.控制电源的频率和电压可以调整电动机的转速;七、实验总结通过本次实验,我深入了解了三相异步电动机的起动和调速原理和特性。
在实验中,我掌握了使用三相异步电动机进行起动和调速的操作方法,并学会了通过改变电源频率和电压来调整电动机的转速。
双闭环三相异步电机调压调速系统实验报告
“运动控制系统”专题实验r2 r2+Rs1 r2+Rs2 r2+Rs3sm sm1 sm2 s Tem图6-1整个调速系统采用了速度, 电流两个反馈控制环。
这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。
在稳定运行情况下, 电流环对电网振动仍有较大的抗扰作用, 但在起动过程中电流环仅起限制最大电流的作用, 不会出现最佳起动的恒流特性, 也不可能是恒转矩起动。
2.异步电机调压调速系统结构简单, 采用双闭环系统时静差率较小, 且比较容易实现正, 反转, 反接和能耗制动。
但在恒转矩负载下不能长时间低速运行, 因低速运行时转差功率全部消耗在转子电阻中, 使转子过热。
3.双闭环异步电机调压调速系统的机械特性。
转子变电阻时的机械特性:3.三相异步电机的调速方法三种类型: 转差功率消耗型: 调压、变电阻等调速方式, 转速越低, 转差功率消耗越大。
转差功率馈送型: 控制绕线转子异步电机的转子电压, 利用转差功率可实现调节转速的目的。
如串级调速。
转差功率不变型:转差功率很小, 而且不随转速变换, 如改变磁极对数调速, 变频调速。
1)定子调压调速当负载转矩一定时, 随着电机定子电压的降低, 主磁通减少, 转子感应电势减少, 转(2)空载电压为200V时n/(r/min) 1281 1223 1184 1107 1045I G/A 0.10 0.11 0.12 0.13 0.13U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.28312.闭环系统静特性n/(r/min) 1420 1415 1418 1415 1416 1412I G/A 0.11 0.14 0.16 0.19 0.21 0.26U G/V 203 200 201 200 200 199 M/(N·m) 0.2394 0.2795 0.3080 0.3777 0.3496 0.4482 静特性曲线:3.与开环机械特性比较, 闭环静特性比开环机械特性硬得多, 且随着电压降低, 开环特性越来越软。
三相异步电动机的起动与调速实验原理
三相异步电动机的起动与调速实验原理三相异步电动机是工业和家庭使用中最普遍的电动机。
其结构简单、性能稳定、故障率低、使用寿命长、维护成本低等优点,使得其被广泛应用于各种机械设备、压缩机、水泵、风扇等领域。
起动和调速是三相异步电动机运行的两个重要参数。
起动是指当电动机停止工作后重新启动的过程,调速是指根据工况需要改变电动机转速的过程。
本实验旨在探究三相异步电动机的起动和调速原理,并提供相关实验过程和数据分析。
一、起动实验原理三相异步电动机旋转时,电机产生的磁通量与旋转的同步速度不同。
当电动机停止后,转子上的磁通量与定子绕组中的磁通量存在差异。
这种差异会产生感应电动势,从而产生电流,这个过程被称为转子电动势或者诱导电动势。
在起动过程中,需要通过外部直流电源加上励磁电流,与转子电动势产生作用,使转子开始旋转。
起动时,电源的直流电压加到电动机定子绕组上,电动机的转子开始旋转,开始产生诱导电动势。
当转子旋转速度接近同步速度时,电动机称为同步运行。
在起动期间,由于初始转矩低,转子转速较慢,同步速度不易达到。
这时候,为了防止电动机过载,需要启动电动机保护器,保护器中的热继电器会自动切断电源,从而保护电动机。
二、实验过程1. 实验设备准备:三相异步电动机、电源电缆、电池、保护器、电流表、万用表、转速表、电阻箱等。
2. 接线并设定电流值:将电动机与电源电缆接入,接线过程中需要注意接线正确。
设定适当的电流值,并开始记录数据。
3. 启动电动机:通过保护器开关启动电动机,等待电动机开始旋转。
4. 记录数据:记录电动机转速、电流和电压值,同时获得电动机启动时间和转矩。
5. 重复实验:重复上述步骤,多次进行实验并记录数据,以便进行平均数计算和结果验证。
三、数据分析在起动实验中,需要记录的数据包括电动机启动时间、电流、电压和转速值。
在多次实验后,根据数据计算出平均值,并进行结果分析。
启动时间:启动时间是电动机开始运转到转子开始旋转的时间间隔。
三相异步电动机的起动与调速实验报告(2)
三相异步电动机的起动与调速实验报告(2)实验五三相异步电动机的起动与调速⼀.实验⽬的通过实验掌握异步电动机的起动和调速的⽅法。
⼆.预习要点1.复习异步电动机有哪些起动⽅法和起动技术指标。
2.复习异步电动机的调速⽅法。
三.实验项⽬1.异步电动机的直接起动。
2.异步电动机星形——三⾓形(Y-△)换接起动。
3.绕线式异步电动机转⼦绕组串⼊可变电阻器起动。
4.绕线式异步电动机转⼦绕组串⼊可变电阻器调速。
四.实验设备及仪器1.SMEL 电⼒电⼦及电⽓传动教学实验台主控制屏。
2.电机导轨及测功机、转矩转速测量(NMEL-13F )。
3.电机起动箱(NMEL-09)。
5.⿏笼式异步电动机(M04)。
6.绕线式异步电动机(M09)。
7.开关板(NMEL-0B5)。
五.实验⽅法1.三相笼型异步电动机直接起动试验。
按图5-1接线,电机绕组为△接法。
起动前,把转矩转速测量实验箱(NMEL-13F )中“转矩设定”电位器旋钮逆时针调到底,“转速控制”、“转矩控制”选择 “转矩控制”,检查电机导轨和NMEL-13F 的连接是否良好。
a .把三相交流电源调节旋钮逆时针调到底,合上绿⾊“闭合”按钮开关。
调节调压器,使输出电压达电机额定电压220伏,使电机起动旋转。
(电机起动后,观察NMEL-13F 中的转速表,如出现电机转向不符合要求,则须切断电源,调整次序,再重新起动电机。
)图5-1 异步电动机直接启动接线图b .断开三相交流电源,待电动机完全停⽌旋转后,接通三相交流电源,使电机全压起动,观察电机起动瞬间电流值,读取电压值U K 、电流值I K 、转矩值T K ,填⼊表5-1中。
U N :电机额定电压,V ;图5-3 绕线式异步电动机转⼦绕组串电阻启动接线图2.星形——三⾓形(Y-△)起动按图5-2接线,电压表、电流表的选择同前,开关S 选⽤MEL-05。
a .起动前,把三相调压器退到零位,三⼑双掷开关合向右边(Y )接法。
实验二 三相交流异步电动机变频调速实验
实验二三相交流异步电动机变频调速实验一、实验目的1.学习和掌握变频器的操作及控制方法;2.深入了解三相异步电动机变频调速性能;3.进一步学习PLC控制系统硬件电路设计和程序设计、调试。
二、实验原理1.三相交流异步电动机变频调速原理通过改变三相异步电动机定子绕组电压的频率,可以改变转子的旋转速度,当改变频率的同时改变电压的大小,使电压与频率的比值等于常数,则可保证电动机的输出转矩不变。
变频器就是专用于三相异步电动机调频调速的控制装置。
它的输入为单相交流电压(控制750W及以下的小功率电动机)或三相交流电压(控制750W以上的大功率电动机),而输出为幅值和频率均可调的三相交流电压供给三相异步电动机。
变频器的生产厂家很多,产品也很多,但基本原理相同。
本实验中采用的是松下小型变频器VFO 200W,有如下几种操作模式。
(1)运行/停止、正转/反转的操作模式:对于电动机的启动/停止以及正反转的控制有外部操作和面板操作两种模式,通过专用参数的设定来实现。
面板操作模式:通过变频器自带面板上的操作键实现运行/停止、正转/反转控制;外部操作模式:通过接在变频器专用输入端开关信号的接通、断开实现运行/停止、正转/反转。
(2)频率设定模式:频率的设定分为面板设定、外部设定两种,通过专用参数的设定来实现。
面板设定模式是根据面板上的电位器或专用键来设定频率的大小。
外部设定模式可以通过变频器上专用输入端上的电位器、电压信号、电流信号、开关编码信号以及PWM信号来实现频率的设定。
2.实验电路图本次实验的主要内容为“外部控制和外部电位器频率设定”。
实验电路图如图17.1所示。
图17.1 三相交流异步电动机变频调速实验电路图由图17.1可知,运行时,PLC程序要使Y4为1,停止时要使Y4为0,频率大小通过改变1、2、3端连接的电位器位置来调节。
3.电路接线表本实验的电路接线表如下表17.1(注:图17.1中方框内的接线已经在内部接好,不需再接线)表17.1 三相交流异步电动机变频调速实验电路接线图三、实验步骤1.按表17.1接线(为了安全起见,接线时请务必断开QF4);2.征得老师同意后,合上断路器QF2和QF4,接通操作面板上的电源开关;3.运行PC机上的PLC工具软件FXGP_WIN-C,输入课前编好的PLC程序(或直接打开已经编制好的,路径为:HJD-DJ1 \程序\实验17\变频调速.PMW),确认程序无误后,将其写入到PLC并运行。
三相异步电动机的起动与调速实验报告
三相异步电动机的起动与调速实验报告实验报告:三相异步电动机的起动与调速引言:一、实验目的:1.了解三相异步电动机的起动原理;2.熟悉三相异步电动机的转子启动方法;3.掌握三相异步电动机的调速控制原理;4.实验验证电压调制调速与变频器调速的效果。
二、实验仪器与设备:1.三相异步电动机;2.电动机启动电容器;3.电源;4.变压器;5.变频器。
三、实验原理:1.三相异步电动机的起动原理:三相异步电动机的起动有直接启动和间接启动两种方法。
直接启动是将电动机直接连接到电源上,通过电流大小的限制和时间延迟来确保电动机的安全起动。
间接启动是通过在电动机的主回路中加入启动电容器来增加电动机的起动转矩,使电动机能够正常起动。
2.三相异步电动机的调速原理:四、实验步骤与结果:1.实验起动部分:(1)将电动机的U、V、W三相绕组分别与电源的U、V、W相连接;(2)通过开关将电容器接入电动机的主回路;(3)按下启动按钮,记录电动机的起动时间;(4)重复实验3次,取平均值。
2.实验调速部分:(1)使用电压调制调速方法,通过改变电源的电压大小,观察电动机的转速变化;(2)使用变频器调速方法,通过改变变频器的输出频率,观察电动机的转速变化;(3)记录不同电压或频率下电动机的转速,并绘制转速-电压(或频率)曲线。
五、实验讨论与分析:1.起动部分:根据实验结果,我们可以得到电动机的起动时间。
通过与电动机的技术手册对比,可以验证实验结果与理论值的一致性。
2.调速部分:通过对转速-电压(或频率)曲线的分析,我们可以发现电压或频率与电动机的转速之间存在一定的线性关系。
在电压调制调速方法中,电压越高,电动机的转速越大;在变频器调速方法中,频率越高,电动机的转速越大。
这与我们之前学到的电动机调速原理是一致的。
六、实验总结:通过本次实验,我们深入了解了三相异步电动机的起动方法和调速控制原理,并通过实验验证了电压调制调速与变频器调速的效果。
掌握了这些知识和技能,有助于我们在实际工程中更好地应用与操作三相异步电动机。
三相的异步电动机变频调速系统设计的及仿真
三相的异步电动机变频调速系统设计的及仿真引言:在现代工业生产中,电动机作为一种重要的动力设备,广泛应用于各种机器和设备中。
为了满足不同工艺和运行要求,需要调节电动机的运行速度。
传统的方法是通过改变电源的频率来达到调速的目的。
然而,这种方法存在一定的局限性,无法实现精确的调速效果。
因此,引入变频调速系统成为了提高电机调速性能的有效手段。
本文将对三相异步电动机变频调速系统的设计及仿真进行详细介绍。
一、系统设计:1.变频器设计:变频器是变频调速系统的核心部分,用于将输入电源的频率和电压变换成适合电动机工作的频率和电压。
变频器由整流器、滤波器和逆变器组成。
整流器将输入的交流电变换成直流电,滤波器用于平滑输出电压,逆变器将直流电转换成可控的交流电输出。
变频器还包括控制模块,用于实现调速功能。
2.控制系统设计:控制系统包括速度传感器、PID控制器和功率放大器。
速度传感器用于实时测量电机转速,PID控制器根据设定转速和实际转速之间的差异,调节变频器的输出频率和电压,以实现电机的准确调速。
二、系统仿真:为了验证设计的可行性和调速性能,可以使用MATLAB/Simulink进行系统仿真。
具体的仿真流程如下:1. 搭建电机模型:根据电机的参数和等效电路,搭建电机的MATLAB/Simulink模型,包括电机的输入端口、输出端口和机械负载。
2. 设计控制系统:在Simulink中添加速度传感器、PID控制器和功率放大器,并与电机模型连接起来。
3.设定仿真参数:设置电机的参数、控制系统的参数和仿真时间等参数。
4.进行仿真实验:根据实际需求,设置不同的转速设定值,观察电机的响应情况,如稳态误差和调速时间等。
5.优化系统性能:根据仿真结果,调整参数和控制策略,优化系统的调速性能,如减小稳态误差和调速时间。
三、结论:三相异步电动机变频调速系统是一种能够实现精确调速的调速方案。
通过合理设计和仿真验证,可以得到一个性能稳定、调速精度高的变频调速系统。
三相异步电机交流变频调速系统设计实验
三相异步电机交流变频调速系统设计实验指导书仇国庆编写重庆邮电大学自动化学院测控技术实验中心2010/11/2三相异步电机交流变频调速系统设计实验指导书一、实验目的:1. 了解三相异步电机调速的方法;2. 熟悉交流变频器的使用;3. 掌握三相异步电机交流变频调速系统设计。
4. 交流异步电动机机械特性及变频调速特性测试二、控制系统设计要求系统设计要求能够实现三相异步电动机的如下状态的控制:正转;反转;停止;点动;加速;减速。
图1 控制系统硬件结构图三、基本知识:1.异步电动机调速系统种类很多,常见的有:(1)降电压调速;(2)电磁转差离合器调速(3)绕线转子异步电机转子串电阻调速(4)绕线转子异步电机串级调速(5)变极对数调速(6)变频调速等等。
2.三相交流异步电动机2.1 异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。
n转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑴磁场以⑵通电的转子绕组相对磁场运动,产生电磁力⑶ 电磁力使转子绕组以转速n 旋转,方向与磁场旋转方向相同2.2 旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。
这三个交变磁场应满足:⑴ 空间位置上互差rad 3/2π电度角。
由定子三相绕组的布置来保证⑵ 在时间上互差rad 3/2π相位角(或1/3周期)。
由通入的三相交变电流来保证。
2.3 电动机转速产生转子电流的必要条件:是转子绕组切割定子磁场的磁力线。
因此,转子的转速n 必须低于定子磁场的转速0n 。
两者之差称为转差:n n n -=∆0转差与定子磁场转速(常称为同步转速)之比,称为转差率:0/n n s ∆=同步转速0n 由下式决定:p f n /600=上式中,f 为输入电流的频率,p 为旋转磁场的极对数。
由此可得转子的转速:p s f n /)1(60-=3.异步电动机调速由转速p s f n /)1(60-=可知异步电动机调速有以下几方法:(1) 改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。
完整版《三相异步电动机变频调速系统设计》
完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统是一种应用广泛的电机控制系统,通过对电机的供电频率和电压进行调整,实现电机的调速功能。
本文将对三相异步电动机变频调速系统进行详细的设计。
1.系统结构三相异步电动机变频调速系统主要由电机、变频器和控制系统三部分组成。
电机作为执行元件,接受变频器输出的电压和频率进行运行;变频器则负责将输入的电网电压和频率转换为适合电机运行的电压和频率;控制系统则完成对变频器的控制和监测,实现对电机的精确调速。
2.硬件设计在硬件设计方面,需要选择适合电机的变频器和控制器,并完成相应的接线和连接。
变频器通常需要选择带有电压和频率调节功能的型号,以满足不同工作条件下的电机要求。
控制器则需要选择具备快速响应和稳定性能的型号,以确保系统的准确调速。
3.变频器参数设置变频器的参数设置对于电机的工作性能影响较大。
在设置参数时,首先需要根据电机的额定功率和工作特性确定变频器的额定输出功率。
同时,还需要根据电机的额定电压和额定转速设置变频器的额定输出电压和额定输出频率。
此外,还需要根据电机的负载特性设置变频器的过载保护和反馈调节参数。
4.控制系统设计控制系统的设计主要包括速度信号检测、计算和反馈控制三个步骤。
速度信号检测可以通过安装编码器或霍尔传感器等装置实现。
根据检测到的速度信号,控制系统可以计算出电机的当前转速,并与设定的目标转速进行比较,得到误差信号。
通过对误差信号进行PID控制,控制系统可以调整变频器的输出频率和电压,以实现对电机转速的控制。
5.保护措施设计三相异步电动机变频调速系统在运行过程中需要考虑到一些保护措施,以防止电机过载、短路等故障。
常见的保护措施包括过载保护、过流保护、过热保护和失速保护等。
通过在控制系统中添加相应的保护逻辑和监测装置,可以及时发现并处理电机故障,保证系统的安全运行。
总之,三相异步电动机变频调速系统设计涉及到硬件设计、变频器参数设置、控制系统设计和保护措施设计等方面。
三相异步电动机的起动与调速实验报告
三相异步电动机的起动与调速实验报告暨南⼤学本科实验报告专⽤纸课程名称《电机与拖动基础》成绩评定实验项⽬名称三相异步电动机的起动与调速指导教师张新征验项⽬类型验证实验地点红楼302实验组编号 3 学号2011052536 姓名罗育浩学院电⽓信息学院专业⾃动化实验时间2014年6 ⽉12 ⽇下午温度28 ℃湿度%⼀、实验⽬的通过实验掌握异步电动机的起动和调速的⽅法。
⼆、预习要点1、异步电动机有哪些起动⽅法和起动技术指标。
2、异步电动机的调速⽅法。
三、实验项⽬1、直接起动(必做)2、星形——三⾓形(Y-Δ)换接起动。
(必做)3、⾃耦变压器起动。
(选做)4、线绕式异步电动机转⼦绕组串⼊可变电阻器起动。
(必做)5、线绕式异步电动机转⼦绕组串⼊可变电阻器调速。
(必做)四、实验⽅法12、屏上挂件排列顺序D33、D32、D51、D31、D433、三相⿏笼式异步电机直接起动试验图4-5 异步电动机直接起动(1) 按图4-5接线。
电机绕组为Δ接法。
异步电动机直接与测速发电机同轴联接,不联接校正直流测功机DJ23。
电流表⽤D32上的指针表。
(2) 把交流调压器退到零位,开启钥匙开关,按下“启动”按钮,接通三相交流电源。
(3) 调节调压器,使输出电压达电机额定电压220伏,使电机起动旋转,(如电机旋转⽅向不符合要求需调整相序时,必须按下“停⽌”按钮,切断三相交流电源)。
(4)再按下“停⽌”按钮,断开三相交流电源,待电动机停⽌旋转后,按下“启动”按钮,接通三相交流电源,使电机全压起动,观察电机起动瞬间电流值(按指针式电流表偏转的最⼤位置所对应的读数值定性计量)。
(5)安装DD05步骤:断开电源开关,将调压器调⾄零位,除去圆盘上的堵转⼿柄,然后⽤细线穿过圆盘的⼩孔,在圆盘外的细线上应打⼀⼩结卡住。
将细线在圆盘外凹槽内绕1~3圈,留有⼀定的长度便于和弹簧秤相连。
⽤内六⾓扳⼿将圆盘固定在电机左侧的联接轴上,将测功⽀架装在与实验操作⼈员⾯对着导轨的另⼀侧,⽤偏⼼螺丝固定,最后⽤细线将弹簧秤与测功⽀架相连即可。
实验六三相异步电动机的起动、反转与调速
实验六三相异步电动机的起动、反转与调速一、实验目的掌握三相异步电动机起动、反转和调速的方法。
二、实验项目1、三相绕线式异步电动机直接起动2、三相绕线式异步电动机转子绕组串电阻起动3、三相绕线式异步电动机转子绕组串电阻调速4、三相异步电动机转向改变5、星形(Y)——三角形(Δ)换接起动三、实验设备该实验是在DDSZ-1型电机及电气技术实验装置上完成的。
本次实验使用设备包括:1、DD01电源控制屏2、D33挂件3、D32挂件4、D51挂件5、DJ17-3绕线式异步电动机转子专用箱6、DD03测试台和三相绕线式异步电动机本次实验使用DD01电源控制屏上方的交流电源。
D33挂件,共有三个完全相同的多量程指针式交流电压表,本次实验选用其中的一块电压表。
D32挂件,共有三个完全相同的多量程指针式交流电流表,本次实验选用其中的一块电流表。
D51挂件,由波形测试部分和开关S1、S2、S3组成,本次实验只使用开关S1 。
DJ17-3转子专用箱的电阻值是可调的,分0Ω、20Ω、40Ω、60Ω、∞五档,实验中作为异步电动机转子绕组的串接电阻。
DD03测试台包括导轨、测速发电机和指针式转速表三相绕线式异步电动机,定子三相绕组有六个接线端,转子三相绕组有四个接线端。
四、实验内容及方法接线之前:开启电源总开关,按下绿色“启动”按钮,将电源控制屏上方的交流“电压指示切换”开关切换到“三相调压输出”位置,旋转控制屏左侧的三相调压器旋钮,将其输出电压调到220V后,按下红色“停止”按钮。
1、三相绕线式异步电动机起动、调速、改变转向实验三相绕线式异步电动机起动、调速、改变转向实验接线图图6-1 三相绕线式异步电动机起动、调速、改变转向实验接线图三相绕线式异步电动机定子绕组接线:定子绕组按星形接法从“三相调压输出”U端接到交流电流表“2.5A”黄色端,从电流表黑色“*”端接到异步电动机定子绕组A端,分别从“三相调压输出”V、W端接到定子绕组的B端和C端,将电动机定子绕组的另外三个接线端X、Y、Z用导线连接。
异步电动机采用调压调速时
异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电动机或绕线式异步电动机在转子中串入适当的电阻后是机械特性变软后,其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此长采用双闭环调速系统。
双闭环三相异步电动机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。
控制部分由“电流调节器”,“速度变换”,“触发电路”,“正桥功放”等组成。
其系统原理框图如图所示。
整个调速系统采用了速度,电流两个反馈控制环。
这里的速度环作用基本上与直流调速系统想同,而电流环的作用则有所不同。
在稳定运行的情况下,电流环对电网扰动仍有较大的抗绕作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。
异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转和能耗制动。
但在恒转矩负载下不能长时间低速运行,因为低速运行时转差率功率Ps=SPm全部消耗在转子电阻中,会使转子过热。
222222交流调速调压系统的电气原理图如图所示。
交流调压调速系统的仿真模型如图所示。
下面介绍各部分的建模与参数设置过程。
1.系统的建模和模型参数设置(1)主电路的建模和参数设置由图可见,主电路由三相对称交流电压源,晶闸管三相交流调压器,交流异步电动机,电动机信号分配器等部分组成。
此处着重讨论晶闸管三相交流调压器,交流异步电动机,电动机测试信号分配器的建模和参数设置问题。
@1晶闸管三相交流调压器的建模和参数设置。
晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管采用“相位控制”方式,利用电网自然换流。
图()所示为晶闸管三相交流调压器的仿真模型及模块符号。
图()所示为三相交流调压器中的晶闸管元件的参数设置情况。
在图()中我们是用单个晶闸管元件按三相交流调压的接线要求建成仿真模型的,单个晶闸管元件的参数设置仍然遵循晶闸管整流桥的参数设置原则。
基于PLC实现的三相异步电动机变频调速控实验报告(精)
基于PLC 实现的三相异步电动机变频调速控制实验报告学院:电气与控制工程学院专业:电气工程及其自动化班级:1001学号:0906060124姓名:赵东兵一、实验名称:基于PLC 实现的三相异步电动机七段变频调速控制系统二、实验目的:1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。
2. 通过系统设计,进一步了解PLC 、变频器及编码器之间的配合关系。
3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。
4. 培养动手能力,增强对可编程控制器运用的能力。
5. 培养分析,查找故障的能力。
6. 增加对可编程控制器外围电路的认识。
三、实验器件:220V PLC实验台一套、380V 变频器实验台一套、三相电动机一台(Nr=1400r/min,p=2)、光电编码器一个(864p/r)、万用表一个、导线若干。
四、实验原理:1. 实验原理:通过光电编码器将电动机的转速采集出来并送入PLC 中,通过实验程序将采集到的信息与DM3X(加速/DM4X(减速)区的设定值进行比较,当频率满足设定值时用PLC 控制变频器(变频器工作在端子调速模式下),电动机停止加速,保持匀速5S ,5S 后PLC 控制变频器加速端子继续加速。
从而实现完成七段速逐段加速。
以15HZ 为基准加速频率上限为45Hz (可以根据具体情况设定),并在最高段速保持10s, 此后电机开始减速,当到达设定的频率时,PLC 控制变频器停止加速,保持匀速5S ,5S 后PLC 控制变频器减速端子继续减速;反转的运动过程与正转正转过程相似。
2. 实验原理图实验速度曲线如下图:五、实验相关器件特点:1. 欧姆龙CPM2AH :CPM2A 在一个小巧的单元内综合有各种性能,包括同步脉冲控制,中断输入,脉冲输出,模拟量设定,和时钟功能等。
CPM2A CPU单元又是一个独立单元,能处理广泛的机械控制应用,所以它是在设备内用作内装控制单元的理想产品,完整的通信功能保证了与个人计算机、其它OMRON PC和OMRON 可编程终端的通信。
双闭环三相异步电机调压调速系统实验报告
双闭环三相异步电机调压调速系统实验报告一、实验目的1.实现双闭环三相异步电机的调压调速系统;2.了解电机调速系统的工作原理及稳态特性;3.掌握电机调速过程中的调节和优化方法。
二、实验原理1.双闭环三相异步电机调压调速系统的组成本次实验所用的电机调压调速系统主要由以下三个部分组成:(1)电源控制模块:主要是对驱动电机的电源进行控制,电源的形式可以是AC或DC。
(2)DSP控制模块:对电机进行调速调压和保护,实现电机的闭环控制。
(3)电机驱动模块:主要包括功率放大器和信号变换器。
2.电机调速控制原理实现电机调速控制主要通过改变电机转矩的大小和方向来实现。
根据电机理论,电机的转矩和电机 stator winding 上的电流之间有着线性关系,因此,改变电机 stator winding 上的电流大小和方向来改变电机的转矩。
启动电机的一种典型方法是通过 stator winding 上的正弦波 AC 电源激励。
通过改变 AC 电源的频率和幅度,可以改变电机的转速。
当电机开始旋转后,其转速可以通过反馈闭环控制来调节和控制。
例如,根据 PI 控制器的输出,可以调整电机的功率放大器来调整电机的 stator winding 上的电流,从而实现电机的转速调节和控制。
3.电机调压控制原理与电机调速不同,电机调压是通过控制电机 stator winding 上的电压大小来调整电机的输出功率和转矩。
在调压控制中,需要根据负载的需求来确定合适的电压值,并通过反馈机制来实现闭环控制。
三、实验内容与步骤1.实验装置准备本次实验所用的设备包括三相异步电动机、DSP开发板、电源、三相电表、频率计和电源电压采样电路等。
首先进行电机的接线,通过电源采样电路连接电源进行电压的采样和测量,再通过三相电表测量电机中三相电流和电机的输入功率等。
2.实验参数设置设置电机参数,包括电机的额定电压、额定功率、转速、电流等参数,并将这些参数输入到 DSP 控制模块中。
三相异步电动机的速度控制
智能照明
智能照明系统通过控制灯具的亮 度和色温来营造不同的氛围,其 中三相异步电动机的速度控制可 以实现灯具的精确调光和动态效 果。
智能窗帘
智能窗帘通过三相异步电动机驱 动,实现窗帘的自动开合和角度 调整。速度控制可以确保窗帘运 动的平稳性和精确性,提高用户 体验。
新能源汽车领域应用前景
电动汽车驱动系统
转差率
转差率是异步电动机的一个重要参数,表示转子转速与旋转磁场转速 之间的差异程度。转差率的大小直接影响电动机的运行效率和性能。
异步电动机运行特性
启动特性
异步电动机在启动时,通常需要较大的启动电流以克服转 子的静摩擦力和惯性力。启动后,随着转速的升高,电流 逐渐减小。
负载特性
异步电动机在带负载运行时,随着负载的增加,转速会相 应降低,同时电流增大。在额定负载下,电动机的运行效 率最高。
见。
06
三相异步电动机速度控制 应用前景
工业领域应用现状
自动化生产线
在自动化生产线中,三相异步电动机的速度控制是实现精确同步和高效生产的关键。通过 调整电动机的转速,可以适应不同工序的加工需求,提高生产线的整体效率。
数控机床
数控机床是工业制造领域的重要设备,其主轴和进给轴通常采用三相异步电动机驱动。通 过速度控制,可以实现高精度、高效率的切削加工,提高产品质量和生产效率。
子铁芯中产生旋转磁场。
磁极对数
旋转磁场的转速与磁极对数有关。 磁极对数越多,旋转磁场的转速
越低。
转子转动原理
转子导体
转子导体中的电流在旋转磁场的作用下受到电磁力作用,使得转子 开始转动。
转子转速
转子的转速通常略低于旋转磁场的转速,这也是异步电动机得名的 原因。转子的转速与负载大小、电源电压、电动机设计等因素有关。
三相异步电动机变频调速
.一、三相异步电动机变频调速原理由于电机转速 n 与旋转磁场转速 n1接近,磁场转速 n1改变后,电机转速 n 也60 f 1可知,改变电源频率 f 1,可以调节磁场旋转,从就随之变化,由公式 n1p而改变电机转速,这种方法称为变频调速。
根据三相异步电动机的转速公式为60 f1n1 1 sn 1 sp式中 f 1为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s为异步电动机的转差率。
所以调节三相异步电动机的转速有三种方案。
异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。
改变异步电动机定子绕组供电电源的频率 f 1,可以改变同步转速n ,从而改变转速。
如果频率 f 1连续可调,则可平滑的调节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为U 1E1 4.44 f 1N 1k m m式中 E1为气隙磁通在定子每相中的感应电动势;f1为定子电源频率; N1为定子每相绕组匝数; k m为基波绕组系数,m为每极气隙磁通量。
如果改变频率 f 1,且保持定子电源电压U1不变,则气隙每极磁通m 将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。
因此,降低电源频率 f 1时,必须同时降低电源电压,已达到控制磁通m 的目的。
.1、基频以下变频调速为了防止磁路的饱和,当降低定子电源频率 f 1时,保持U1为常数,使气每f 1极磁通m 为常数,应使电压和频率按比例的配合调节。
这时,电动机的电磁转[1][8]m 1 pU r 2r 21m 1 p U 1 2f 1ss 1T矩为222 f 1r 2 22 f 1r 2x 12r 1x 2r 1x 1 x 2ss上 式 对 s 求 导 , 即dT ,有最大转矩和临界转差率为ds12U2f11111T m22 f 1 r 1222 2 f1f 1r 1 22r 1x 1 x 2r 1 x 1 x 2s mr 2由上式可知:当U1常数时,在 f 1 较高时,即接近额22f 1x 1 x 2r 1定频率时, r 1 = x 1 x 2 ,随着 f 1 的降低, T m 减少的不多; 当 f 1 较低时, x 1 x 2较小; r 1 相对变大,则随着 f 1 的降低, T m 就减小了。
111111111双闭环三相异步电动机调压调速系统设计
双闭环三相异步电动机调压调速系统设计引言:异步电动机的转速恒小于旋转磁场的转速n1,只有这样,转子绕组才能产生电磁转矩,使电动机旋转。
如果n=n1,转子绕组和定子磁场之间无相对运动,则转子绕组中无感应电动势和感应电流产生,可见n<n1是异步电动机工作的必要条件。
由于电动机转速n 和旋转磁场转速n1不同步,故称为异步电动机。
一、三相异步工作原理三相绕组接通三相电源产生的磁场在空间旋转,称为旋转磁场。
转速的大小由电动机极数和电源频率而定。
旋转磁场的转速n1称为同步转速。
它和电网的频率f1及电机的磁极对数p 的关系为:n1=60f1∕p对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。
所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。
交流异步电动机机械特性的参数表达式如下:变压调速是异步电动机调速方法中的一种,由三相异步电动机机械特性参数表达式可知,当异步电动机等效电路的参数不变时,在相同点的转速下,电磁转矩e T 和定子电压S U 的平方成正比,因此,改变定子外加电压就可以机械特性的函数关系,从而改变电动机在一定负载转矩下的转速。
本实验即采用定子调压调速系统,就是在恒定交流电源和交流电动机之间接入晶闸管作为交流电压控制器,即改变定子电压调速。
如下图画出了定子电压为1U 、'1U 、"1U ('"111U U U >>)时的机械特性。
()()⎥⎦⎤⎢⎣⎡+++=2'21'1'23lr ls r S r sL L S R R S R UT ωω二、设计流程1电动机的选型:假设电动机工作于普通机床主轴传动系统中,设定最大转速为1440r/min,可选出电动机型参数如下:型号:Y132S-4 额定功率:5.5KW 满载时定子电流:12A满载时转速:1440r/min 满载时效率:85.5% 满载时功率因数:0.84 堵转电流/额定电流:7A 堵转转矩/额定转矩:2.2N.m铁芯长度:115mm 气隙长度0.4mm 定子外径:210mm定子内径:136mm 定子线规根数-d:1-0.9mm每槽线数:47 绕组形式:单层交叉节距:1~9mm定转子槽数Z1/Z2: 36/32系统结构确定如图所示2主电路设计:2.1晶闸管的选择晶闸管选择主要根据变流器的运行条件,计算晶闸管电压、电流值,选出晶闸管的型号规格。
实验四 双闭环三相异步电动机调压调速系统
实验四双闭环三相异步电动机调压调速系统实验四双闭环三相异步电动机调压调速系统实验四双闭环三相异步电动机调压调速系统(验证)一.实验目的1.熟悉相控交流调压调速系统的组成和工作。
2.了解双闭环三相异步电动机调压调速系统的原理及组成。
3.通过测量交流调压系统的静态和动态特性,进一步了解电流环和速度环在交流调压系统中的作用。
二.实验内容1.测量绕线式异步电动机转子串电阻时的人工机械特性。
2.测量双闭环交流调压调速系统的静态特性。
3.测量双闭环交流调压调速系统的动态特性。
三.实验系统组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器和三相绕线式异步电动机(转子回路串联电阻)。
控制系统由电流调节器(ACR)、速度调节器(ASR)、电流转换器(FBC)、速度转换器(FBS)、触发器(GT)、一组桥式脉冲放大器等组成。
系统原理图如图7-1所示。
整个调速系统采用了速度,电流两个反馈控制环。
这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。
在稳定运行情况下,电流环对电网波动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。
异步电动机调压调速系统结构简单。
采用双闭环系统时,静态误差率小,易于实现正向、反向、反向连接和能耗制动。
然而,在恒定转矩负载下,它不能长时间低速运行,因为在低速运行时,所有的转差功率都消耗在转子电阻中,导致转子过热。
四.实验设备和仪器1.MCL系列教学实验平台主控制面板。
2.Mcl-18组件。
3.Mcl-33组件。
4.三相绕线型异步电动机-负载直流发电机-测速发电机组5.mel―03三相可调电阻器。
6.mel―11组件。
7.双踪示波器。
.8.万用表。
五、预防措施1.接入asr构成转速负反馈时,为了防止振荡,可预先把asr的rp3电位器逆时针旋到底,使调节器放大倍数最小,同时,asr的“5”、“6”端接入可调电容(预置7μf)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机调压调速系统设计与实验
The Standardization Office was revised on the afternoon of December 13, 2020
综合性设计型实验报告
实验名称:三相异步电动机调压调速系统设计与实验姓名:迟铭
学号:03
专业:自动化2007级
所在院系:化工学院化工机械系
指导教师:曲瀛
实验时间:2010年12月13—24日
综合性设计型实验报告
系别:化工机械系班级:自动化2007级 2010 —2011学年第 1 学期
双闭环调压调速系统控制原理图
三、设计流程
1、系统主电路的参数计算 系统控制电机的参数为:
m in /1380,6.0,220,120r n A I V U W P N N N N ====
Y 接晶闸管未导通时,均承受本相相电压,导通时电流为A I N 6.0=,流过晶闸管最大电流时,对应波形为全波,根据有效值I 公式为:
220
1[()]2I i t d t
π
ωωπ
=
⎰
(3-1)
负载平均电流A I d 6.0=,所对应的电流有效值'I 应小于额定电流所对应的有效值电流。
2、根据系统方块图进行动态计算
图中1M
MA M K W T S
=
+为三相异步电动机的近似传函,这里M K 为电动机的传递函数,jd T 为机电时间常数。
Un
△U Ui* U1
Uct
W ASR (S ) W ACR (S ) W GT-(S)
W MA (S )
W F (S)
n(S)
U n
—
n W K =
调速系统电流及转速仿真
根据双闭环调压调速系统的动态结构图和计算出的相关参数,首先建立开环调压调速系统的Matlab/Simulink动态仿真模型,如下图所示:
开环调压调速系统仿真模型图
开环调速系统转速仿真波形
开环调速系统电流仿真波形
根据双闭环调压调速系统的动态结构图和计算出的相关参数,建立转速电流双闭环调压调速系统的Matlab/Simulink动态仿真模型,如下图所示
双闭环交流调速系统的仿真模型图转速电流双闭环调速系统转速仿真波形
转速电流双闭环调速系统电流仿真波形
3~
M ~
TVC
在仿真过程中会出现电流波形的超调特别大的情况,这是不符合实际要求
的,符合实际要求的波形应该是具有较小的超调量。
经过分析知道是给定滤波时间常数太小造成的,改变给定滤波时间常数,得到以上较理想的波形。
关键技术分析:
1、三相异步电动机调压调速方案的确定
开环调压调速系统可以实现一定范围的无级调速,但是无法满足生产机械对静差率要求高的场合,因此采用闭环调速,单纯的闭环调压调速又无法满足快速启动与制动,所以,在闭环的基础上选择转速电流双闭环调压调速系统。
2、晶闸管触发角选择与调试
本实验即采用定子调压调速系统,即在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,即改变定子电压调速。
交流调压器采用三对晶闸管反并联分别串接在三相电路中,如右图所示:
通过对晶闸管的控制就可以控制交流电力,在每半个周波内通过对晶闸管开相位的控制,可以方便的调节输出电压有效值,所以,在实验过程中如何有效地调节晶闸管的触发角是关键。
实验过程:(包括主要步骤、成果介绍、实验分析)
一、主要步骤
1、DJK02和DJK02-1上的“触发电路”调试
2、(1)打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
3、(2)将DJK01“电源控制屏”上“调速电源选择开关”拨至“交流调速”侧
4、(3)用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。
5、(4)观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。
6、(5)将DJK04上的“给定”输出 Ug直接与DJK02-1上的移相控制电压Uct 相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使a=180。
(6)适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。
7、(7)将DJK02-1面板上的U1f端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1—VT6晶闸管门极和阴极之间的触发脉冲是否正常。
8、2、控制单元调试
9、(1)调节器的调零
10、将DJK04中“速度调节器”所有输入端接地,再将DJK08中的可调电阻接到“速度调节器”的“4”、“5”两端,用导线将“5”、“6”短接,使“电流调节器”成为P(比例)调节器。
调节面板上的调零电位器RP3,用万用表的毫伏档测量电流调节器“7”端的输出,使调节器的输出电压尽可能接近于零11、将DJK04中“电流调节器”所有输入端接地,再将DJK08中的可调电阻接到“速度调节器”的“8”、“9”两端,用导线将“9”、“10”短接,使“电流调节器”成为P(比例)调节器。
调节面板上的调零电位器RP3,用万用表的毫伏档测量电流调节器“11”端的输出,使调节器的输出电压尽可能接近于
零
12、(2)调节器正、反限幅值的调整
13、 直接将DJK04的给定电压Ug 接入DJK02-1移相控制电压Uct 的输入端,三相交流调压输出 的任意两路接一电阻负载(D42三相可调电阻),放在阻值最大位置,用示波器观察输出的电压波形。
当给定电压Ug 超过某一数值Ug'时,U 的波形接近正弦波时,一般可确定移相控制电压的最大允许值Uctmax=Ug',即Ug 的允许调节范围为0—Uctmax 。
记录Ug'于
下表中:
把“速度调节器”的“5”、“6”短接线去掉,将DJK08中的可调电容接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,然后将DJK04的给定输出端接到转速调节器的“3”端,当加一定的正给定时,调整负限幅电位器RP2,使之输出电压为-6V ,当调节器输入端加负给定时,调整限幅电位器RP1,使之输入出电压为最小值即可。
把“电流调节器”的“8”、“9”短接线去掉,将DJK08中的可调电容接入“8”、“9”两端,使调节器成为PI (比例积分)调节器,然后将DJK04的给定输出端接到电流调节器的“4”端,当加正给定时,调整负限幅电位器RP2,使之输出电压为最小值即可,当调节器输入端加负给定时,调整正限幅电位器RP1,使电流调节器的输出正限幅为Uctmax 。
(3)电流反馈的整定
直接的将DJK04的给定电压Ug 接入DJK02-1移相控制电压Uct 的输入端,三相交流高压输出接三相线绕式异步电动机,测量三相线绕式异步电动机,测量三相线绕式异步电动机单相的电流值和电流反馈电压,调节“电流反馈与过流保护”上的电流反馈电位器RP1,是电流的反馈系数达到一个合理的数值。
(4)转速反馈的整定
(5) 直接将DJK04的给定电压Ug 接入DJK02-1移相控制电压Uct 的输入端,输出接三相线绕式异步电动机,测量电动机的转速值和转速反馈电压值,调节“速度变换”电位器RP1,使n=1300rpm 时的转速反馈电压为Ufn=-6V 。
Ug
Uctmax=Ug'
附表一
三相异步电动机不同电压下的机械特性仿真程序
附图一
实验数据绘制三相异步电动机在不同电压下的机械特性曲线
附图二
实验数据绘制n=1200rpm时的系统闭环静态特性n=f(T)
n=800rpm时的系统闭环静态特性n=f(T)。