高一数学常见的对数函数解题方法教案
人教版数学高一教案对数及其运算(一)
§3.2 对数与对数函数3.2.1 对数及其运算(一)一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:对数性质的推导三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪教学过程[问题情境] 对数,延长了天文学家的生命.“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看到,伽利略把对数与最宝贵的空间和时间相提并论.那么,“对数”到底是什么呢?本节就来探讨这个问题.探究点一 对数的概念问题1 若24=M ,则M 等于多少?若2-2=N ,则N 等于多少?答: M =16,N =14. 问题2 若2x =16,则x 等于多少?若2x =14,则x 等于多少? 答: x 的值分别为4,-2.问题3 满足2x =3的x 的值,我们用log 23表示,即x =log 23,并叫做“以2为底3的对数”.那么满足2x =16,2x =14,4x =8的x 的值如何表示? 答: 分别表示为log 216,log 214,log 48. 小结: 1.在指数函数f (x )=a x (a >0,且a ≠1)中,对于实数集R 内的每一个值x ,在正实数集内都有唯一确定的值y 和它对应;反之,对于正实数集内的每一个确定的值y ,在R 内都有唯一确定的值x 和它对应.幂指数x ,又叫做以a 为底y 的对数.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.2.对数log a N (a >0,且a ≠1)的性质(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.3.常用对数以10为底的对数叫做常用对数.为了简便起见,对数log 10N 简记作lg N .探究点二 对数与指数的关系问题1 当a >0,且a ≠1时,若a x =N ,则x =log a N ,反之成立吗?为什么?答:反之也成立,因为对数表达式x =log a N 不过是指数式a x =N 的另一种表达形式,它们是同一关系的两种表达形式.问题2 在指数式a x =N 和对数式x =log a N 中,a ,x ,N 各自的地位有什么不同?答问题3 若a b =N ,则b =log a N ,二者组合可得什么等式?答:对数恒等式:a =N .问题4 当a >0,且a ≠1时,log a (-2),log a 0存在吗?为什么?由此能得到什么结论? 答:不存在,因为log a (-2),log a 0对应的指数式分别为a x =-2,a x =0,x 的值不存在,由此能得到的结论是:0和负数没有对数.问题5 根据对数定义,log a 1和log a a (a >0,a ≠1)的值分别是多少?答:log a 1=0,log a a =1.∵对任意a >0且a ≠1,都有a 0=1, ∴化成对数式为log a 1=0; ∵a 1=a ,∴化成对数式为log a a =1.小结: 对数log a N (a >0,且a ≠1)具有下列性质:(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.例1 求log 22, log 21, log 216, log 212. 解: 因为21=2,所以log 22=1;因为20=1,所以log 21=0;因为24=16,所以log 216=4;因为2-1=12,所以log 212=-1. 小结: log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,表示a ,x ,N 三者之间的同一种关系,可以利用其中两个量表示第三个量.因此,已知a ,x ,N 中的任意两个量,就能求出另一个量. 跟踪训练1 将下列指数式写成对数式:(1)54=625; (2)2-6=164; (3)3a =27; (4)⎝⎛⎭⎫13m =5.73. 解: (1)log 5625=4;(2)log 2164=-6;(3)log 327=a ;(4)log 135.73=m . 例2 计算:(1)log 927; (2)log 4381; (3)log 354625.解:(1)设x =log 927,则9x =27,32x =33,∴x =32. (2)设x =log 4381,则⎝⎛⎭⎫43x =81,3=34,∴x =16.(3)令x =log 354625,∴⎝⎛⎭⎫354x =625,5=54,∴x =3.小结:要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练2 求下列各式中的x 的值:(1)log 64x =-23; (2)log x 8=6; (3)lg 100=x . 解: (1)x =(64) -23=(43) -23=4-2=116.(2)x 6=8,所以x =(x 6) 16=816=(23) 16=212= 2.(3)10x =100=102,于是x =2.探究点三 常用对数问题 阅读教材96页下半页,说出什么叫常用对数?常用对数如何表示?答:以10为底的对数叫做常用对数.通常把底10略去不写,并把“log”写成“lg”,并把log 10N 记做lg N .如果以后没有指出对数的底,都是指常用对数.如“100的对数是2”就是“100的常用对数是2”.例3 求lg 10,lg 100,lg 0.01.解:因为101=10,所以lg 10=1;因为102=100,所以lg 100=2;因为10-2=0.01,所以lg 0.01=-2.小结:由本例题可以看出,对于常用对数,当真数为10n (n ∈Z )时,lg 10n =n ;当真数不是10的整数次方时,常用对数的值可通过查对数表或使用科学计算器求得.跟踪训练3 求下列各式中的x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1; (3)log (2-1)13+22=x .解: (1)∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.(3)∵log (2-1)13+22=x ,∴(2-1)x =13+22=1(2+1)2=12+1=2-1, ∴x =1.当堂检测1.若log (x +1)(x +1)=1,则x 的取值范围是( B ) A.x >-1B.x >-1且x ≠0C.x ≠0D.x ∈R 解析:由对数函数的定义可知x +1≠1,x +1>0即x >-1且x ≠0.2.已知log 12x =3,则x 13=__12______.解析:∵log 12x =3,∴x =(12)3, ∴x 13=12. 3.已知a 12=49(a >0),则log 23a =__4______.解析:由a 12=49(a >0),得a =(49)2=(23)4, 所以log 23a =log 23(23)4=4. 4.将下列对数式写成指数式:(1)log 16=-4;(2)log 2128=7;(3)lg 0.01=-2.解:(1)⎝⎛⎭⎫12-4=16;(2)27=128; (3)10-2=0.01.课堂小结:1.掌握指数式与对数式的互化a b =N ⇔log a N =b .2.对数的常用性质有:负数和0没有对数,log a 1=0,log a a =1.3.对数恒等式有:a log a N =N ,log a a n =n .4.常用对数:底数为10的对数称为常用对数,记为lg N .。
高中数学对数函数备课教案
高中数学对数函数备课教案备课内容:对数函数
教学目标:
1. 了解对数函数的定义和性质;
2. 掌握对数函数的图像特点和变化规律;
3. 能够解决对数函数的相关题目。
教学重点:
1. 对数函数的定义和性质;
2. 对数函数的图像特点和变化规律。
教学难点:
1. 对数函数与指数函数之间的关系;
2. 解决对数函数相关题目的方法。
教学准备:
1. 教学课件;
2. 教辅书籍;
3. 黑板、粉笔;
4. 试题集。
教学步骤:
一、导入(5分钟)
1. 上课前,与学生讨论指数函数的相关知识;
2. 引入对数函数的概念,并与指数函数进行比较。
二、讲解(15分钟)
1. 讲解对数函数的定义和性质;
2. 展示对数函数的图像特点和变化规律;
3. 指导学生如何分析对数函数的性质和变化规律。
三、练习(15分钟)
1. 让学生通过计算和作图来练习对数函数相关题目;
2. 纠正学生的错误,并解释正确的解题方法。
四、总结(5分钟)
1. 总结对数函数的重要性及与指数函数的关系;
2. 强调对数函数在实际问题中的应用。
五、作业布置(5分钟)
1. 布置对数函数相关的作业;
2. 可根据学生的不同水平布置不同难度的题目。
教学反思:
在备课过程中,要充分理解对数函数的概念及其性质,并通过实际例题进行讲解,让学生
理解对数函数的图像特点和变化规律。
同时,要设计合理的练习题目,帮助学生巩固所学
知识,提高解题能力。
在教学过程中,要及时发现学生的问题并加以解决,确保教学效果。
高一数学教案:对数函数1
2.3.4对数函数【学习目标】一、过程目标 1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二知识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体【学前准备】对照指数函数试研究对数函数的定义、图象和性质。
【探究活动】一、创设情境回顾指数函数定义、图象和性质。
二、活动尝试师:我们已经学习了指数和对数这两种运算,请同学们回顾指数幂运算和对数运算的定义,并说出这两种运算的本质区别。
(生交流,师结合学生的交流作如下总结)在等式)0,1,0(>≠>=N a a N a b且 中已知底数a 和指数b ,求幂值N ,就是指数问题;已知底数a 和幂值N ,求指数b ,就是我们前面刚刚学习过的对数问题,而且无论是求幂值N 还是求指数b ,结果都只有一个。
师:在某细胞分裂过程中,细胞个数y 是分裂次数x 的函数xy 2=。
因此,当已知细胞的分裂次数x 的值(即输入值是分裂次数x ),就能求出细胞个数y 的值(即输出值是细胞个数y ),这样,就建立起细胞个数y 和分裂次数x 之间的一个关系式,你还记得这个函数模型的类型吗?生:是 函数。
师:反过来,在等式xy 2=中,如果我们知道了细胞个数y ,求分裂次数x ,这将会是我们研究的哪类问题?生: 问题。
高一数学常见的对数函数解题方法学案
常见的对数函数解题策略一、分类讨论例1 若实数a 满足2log 13a <,求a 的取值范围。
分析:需对a 进行分类讨论。
当1a >时,∵log 1a a =,∴2log log 3aa a <,∴23a >; 当01a <<时,∵2log log 3a a a <,∴23a <,即203a <<。
故20,(1,)3a ⎛⎫∈+∞ ⎪⎝⎭。
评注:解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答。
理解会用以下几个结论很有必要:①当1a >时,若log 0a x >,则1x >,若log 0a x <,则01x <<;②当01a <<时,若log 0a x >,则01x <<,若log 0a x <,则1x >。
二、数形结合例2 若x 满足2log 3x x =-,则x 满足区间( )A .(0,1)B .(1,2)C .(1,3)D .(3,4)分析:本题左边是一个对数函数,右边是一个一次函数,可通过作图象求解。
解析:在同一直角坐标系中画出2log y x =,3y x =-的图象,如图所示,可观察两图象交点的横坐标满足13x <<,答案选C 。
评注:解决该类问题的关键是正确作出函数2log y x =,3y x =-的图象,从而观察交点的横坐标的取值范围。
三、特殊值法2log x3x =-x例3 已知log (2)a y ax =-在[0,1]上为x 的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,)+∞分析:由函数的单调性求底数a 的取值范围,逆向考查,难度较大,可采用特殊值法进行判断。
解析:取特殊值0.5a =,10x =,21x =,则有10.5log (2)log 2a ax -=,20.53log (2)log 2a ax -=,与y 是x 的减函数矛盾,排除A 和C ; 取特殊值3a =,11x =,则2230ax -=-<,所以3a ≠,排除D 。
高一数学对数及其运算教学
高一数学对数及其运算教学一、教学任务及对象1、教学任务本节课的教学任务是向高一学生讲授数学中的对数及其运算。
对数是数学中一个重要的概念,它在解决复杂数学问题,尤其在自然科学、工程技术和经济学等领域有着广泛的应用。
通过本节课的学习,学生将掌握对数的定义、性质以及基本的对数运算,从而为后续学习指数函数、对数函数以及解决实际问题打下坚实基础。
2、教学对象本节课的教学对象是高中一年级的学生。
这一阶段的学生已经具备了一定的数学基础,掌握了实数的基本概念和运算规则,但对于对数这一较为抽象的概念可能还感到陌生。
因此,在教学过程中,需要将抽象的概念具体化、形象化,帮助学生理解并掌握对数的本质及其运算方法。
同时,针对不同学生的认知水平和学习风格,采用多样化的教学策略,使全体学生能够积极参与,提高学习兴趣和效果。
二、教学目标1、知识与技能(1)理解对数的定义,掌握对数的性质,能够准确区分自然对数与常用对数;(2)学会对数的运算方法,包括对数的加、减、乘、除以及幂运算,能够熟练进行对数计算;(3)了解对数在解决实际问题中的应用,例如在物理学、生物学、经济学等领域;(4)掌握对数函数的基本概念,为后续学习对数函数的性质和图像打下基础。
2、过程与方法(1)通过实际例子引出对数的概念,让学生在对数产生的背景中感受对数的意义;(2)采用师生互动、小组讨论的方式,引导学生发现并总结对数的性质和运算规律;(3)设计丰富的例题和练习,让学生在解决问题的过程中运用对数知识,培养分析问题和解决问题的能力;(4)利用数学软件或图形计算器等辅助工具,帮助学生直观地理解对数函数的图像和变化趋势。
3、情感,态度与价值观(1)培养学生对数学学科的兴趣,激发他们学习数学的热情;(2)鼓励学生主动参与课堂讨论,敢于提出问题,勇于挑战困难,形成积极向上的学习态度;(3)通过小组合作,培养学生团结协作、互相帮助的精神,增强集体荣誉感;(4)让学生体会数学在自然科学和社会科学中的应用价值,认识到学习数学的重要性,从而树立正确的价值观。
高一数学教案对数5篇
高一数学教案对数5篇高一数学教案对数1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案对数2教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。
高一数学对数函数教案5篇
高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
高中数学对数计算教案大全
高中数学对数计算教案大全一、教学内容:对数的概念和基本计算二、教学目标:1. 了解对数的概念和性质;2. 能够熟练地进行对数的基本运算;3. 能够应用对数计算解决实际问题。
三、教学重点和难点:1. 对数的概念和性质;2. 对数的基本运算;3. 对数计算在实际问题中的应用。
四、教学方法:1. 讲授法:通过教师讲解和示范,让学生掌握对数的概念和基本运算;2. 案例演练法:通过实例演练,让学生熟练掌握对数的应用方法;3. 课堂互动法:通过提问、讨论和小组合作等形式,激发学生学习的兴趣和动力。
五、教学内容和方法:1. 对数的定义和性质(10分钟)- 讲解对数的定义,解释对数的含义和特点;- 讲解对数的性质,包括对数的唯一性、对数的运算规则等。
2. 对数的基本运算(20分钟)- 讲解对数的加法、减法、乘法和除法的运算规则;- 给出相关示例,让学生进行练习。
3. 对数计算的应用(30分钟)- 讲解对数在实际问题中的应用,如物理、化学、生物等领域;- 给出一些实际问题,让学生应用对数进行计算和解答。
4. 讲解课后作业(10分钟)- 布置相关的课后作业,加强学生对对数计算的练习和巩固。
六、教学评估:1. 学生课堂表现:包括学生在课堂上的参与度、思维活跃度等方面;2. 学生作业完成情况:评价学生对对数计算的掌握和运用能力;3. 学生学习成绩:通过考试和测验等形式,检查学生的学习效果和掌握程度。
七、教学反思:教师应及时总结教学效果,分析学生的学习情况,及时调整教学方法和内容,不断提高教学质量和效果。
同时,鼓励学生主动思考和探索,培养其对数计算能力,提高其数学素养和实际运用能力。
数学教案高中对数函数
数学教案高中对数函数
1. 了解对数函数的基本概念和性质。
2. 学会求解对数函数的基本运算和应用问题。
3. 能够分析对数函数的图像及性质。
教学重点:
1. 对数函数的定义和性质。
2. 对数函数的运算。
3. 对数函数的图像分析。
教学难点:
1. 对数函数与指数函数的关系。
2. 对数函数的变化规律。
教学准备:
1. 教材《高中数学》。
2. 教学课件。
3. 实例题目。
教学过程:
第一步:引入
通过举例引入对数函数的定义和性质,让学生了解对数函数的基本概念。
第二步:基本性质
讲解对数函数的基本性质,包括对数的定义、性质和常用公式等内容。
第三步:基本运算
讲解对数函数的基本运算,包括对数的加减乘除运算,以及对数方程的解法。
第四步:应用问题
通过实例题目,让学生掌握对数函数在实际问题中的应用方法。
第五步:图像分析
讲解对数函数的图像及性质,包括对数函数的增减性和极限性质等内容。
第六步:练习与总结
让学生进行练习题目,巩固对数函数的基本知识,并对本节课进行总结和归纳。
教学反思:
通过本节课的教学,学生应该能够掌握对数函数的基本概念、性质和运算方法,以及对数函数的图像分析方法,从而提高数学思维能力和解题能力。
同时,教师还应该注重引导学生进行思维训练和实际问题的应用,提高学生的分析和解决问题的能力。
高一数学对数函数教案集锦7篇
高一数学对数函数教案集锦7篇高一数学对数函数教案1学习目标1. 通过详细实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出详细对数函数的图象,探究并了解对数函数的单调性与特别点;3. 通过比拟、对比的方法,引导学生结合图象类比指数函数,探究讨论对数函数的性质,培育数形结合的思想方法,学会讨论函数性质的方法.旧知提示复习:若,则,其中称为,其范围为,称为 .合作探究(预习教材P70- P72,找出怀疑之处)探究1:元旦晚会前,同学们剪彩带备用。
现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。
设所得的彩带的根数为,剪的次数为,试用表示 .新知:对数函数的概念试一试:以下函数是对数函数的是( )A. B. C. D. E.反思:对数函数定义与指数函数类似,都是形式定义,留意区分,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且 .探究2:你能类比前面争论指数函数性质的思路,提出讨论对数函数性质的内容和方法吗?讨论方法:画出函数图象,结合图象讨论函数性质.讨论内容:定义域、值域、特别点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出以下对数函数的`图象.新知:对数函数的图象和性质:象定义域值域过定点单调性思索:当时,时,; 时,;当时,时,; 时, .典型例题例1求以下函数的定义域:(1) ; (2) .例2比拟大小:(1) ; (2) ; (3) ;(4) 与 .课堂小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.学问拓展对数函数凹凸性:函数,是任意两个正实数. 当时,;当时, .学习评价1. 函数的定义域为( )A. B. C. D.2. 函数的定义域为( )A. B. C. D.3. 函数的定义域是 .4. 比拟大小:(1)log 67 log 7 6 ; (2) ; (3) .课后作业1. 不等式的解集是( ).A. B. C. D.2. 若,则( )A. B. C. D.3. 当a1时,在同一坐标系中,函数与的图象是( ).4. 已知函数的定义域为,函数的定义域为,则有( )A. B. C. D.5. 函数的定义域为 .6. 若且,函数的图象恒过定点,则的坐标是 .7.已知,则= .8. 求以下函数的定义域:2.2.2 对数函数及其性质(2)学习目标1. 解对数函数在生产实际中的简洁应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.旧知提示复习1:对数函数图象和性质.a1 0图性质(1)定义域:(2)值域:(3)过定点:(4)单调性:复习2:比拟两个对数的大小:(1) ; (2) .复习3:(1) 的定义域为;(2) 的定义域为 .复习4:右图是函数,,,的图象,则底数之间的关系为 .合作探究(预习教材P72- P73,找出怀疑之处)探究:如何由求出x?新知:反函数试一试:在同一平面直角坐标系中,画出指数函数及其反函数图象,发觉什么性质?反思:(1)假如在函数的图象上,那么P0关于直线的对称点在函数的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于对称.典型例题例1求以下函数的反函数:(1) ; (2) .提高:①设函数过定点,则过定点 .②函数的反函数过定点 .③己知函数的图象过点(1,3)其反函数的图象过点(2,0),则的表达式为 .小结:求反函数的步骤(解x 习惯表示定义域)例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?(2)纯洁水摩尔/升,计算其酸碱度.例3 求以下函数的值域:(1) ;(2) .课堂小结①函数模型应用思想;②反函数概念.学问拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是穿插相等.学习评价1. 函数的反函数是( ).A. B. C. D.2. 函数的反函数的单调性是( ).A. 在R上单调递增B. 在R上单调递减C. 在上单调递增D. 在上单调递减3. 函数的反函数是( ).A. B. C. D.4. 函数的值域为( ).A. B. C. D.5. 指数函数的反函数的图象过点,则a的值为 .6. 点在函数的反函数图象上,则实数a的值为 . 课后作业1. 函数的反函数为( )A. B. C. D.2. 设,,,,则的大小关系是( )A. B. C. D.3. 的反函数为 .4. 函数的值域为 .5. 已知函数的反函数图象经过点,则 .6. 设,则满意的值为 .7. 求以下函数的反函数.(1) y= ; (2)y= (a1,x (3) .高一数学对数函数教案2教学目标:1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培育学生数形结合的思想,以及分析推理的力量.教学重点:对数函数性质的应用.教学难点:对数函数的性质向对数型函数的演化延长.教学过程:一、问题情境1.复习对数函数的性质.2.答复以下问题.(1)函数y=log2x的值域是;(2)函数y=log2x(x≥1)的值域是;(3)函数y=log2x(03.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题.三、数学运用例1 求函数y=log2(x2+2x+2)的定义域和值域.练习:(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是 .(3)函数y=log (x2-6x+17)的值域 .(4)函数的值域是_______________.例2 推断以下函数的奇偶性:(1)f (x)=lg (2)f (x)=ln( -x)例3 已知loga 0.75>1,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a>0,a≠1).(1)求函数的定义域与值域;(2)求函数的单调区间.练习:1.以下函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有(请写出全部正确结论的序号).2.函数y=lg( -1)的`图象关于对称.3.已知函数(a>0,a≠1)的图象关于原点对称,那么实数m= .4.求函数,其中x [ ,9]的值域.四、要点归纳与方法小结(1)借助于对数函数的性质讨论对数型函数的定义域与值域;(2)换元法;(3)能画出较简单函数的图象,依据图象讨论函数的性质(数形结合).五、作业课本P70~71-4,5,10,11.高一数学对数函数教案31.把握对数函数的概念,图象和性质,且在把握性质的根底上能进展初步的应用。
高一数学课程教案初步认识对数函数的像与性质
高一数学课程教案初步认识对数函数的像与性质高一数学课程教案 - 初步认识对数函数的像与性质对数函数是高中数学中的重要知识点之一,在数学课程教学中起着重要的作用。
本教案旨在帮助高一学生初步认识对数函数的像与性质,从而提升他们的数学思维和解题能力。
一、对数函数的基本概念对数函数可以表示为y=logₐx,其中x>0,a>0且a≠1。
在此教案中,我们以底数为2的对数函数为例进行讲解。
二、对数函数的像对数函数y=log₂x的像是指函数的值域。
在讲解像之前,我们先回顾一下指数函数y=2ˣ的定义域和值域。
指数函数的定义域为实数集R,值域为正实数集R⁺。
当x取任何实数时,2ˣ都是正实数。
那么对数函数的像与指数函数有何关系呢?我们来观察一下指数函数和对数函数的图像。
[插入对数函数和指数函数的图像]从图像中可以看出,指数函数的图像位于第一象限,而对数函数的图像则位于第一和第四象限。
对数函数是指数函数的反函数,因此对数函数的像应为正实数。
由此可以得出,对数函数的像为实数集R。
三、对数函数的性质1. 对数函数的定义域为正实数集R⁺。
这是由于对数函数要求底数大于0且不等于1,而指数函数的自变量为实数。
2. 对数函数的值域为实数集R。
由于对数函数是指数函数的反函数,因此对数函数的像为实数。
3. 对数函数的图像在直线y=x上对称。
这是因为反函数的特性决定的,也可以从对数函数和指数函数的图像中观察得出。
四、对数函数的应用对数函数在实际问题中有广泛的应用。
以下是对数函数的几个常见应用领域:1. 指数增长和衰减模型。
由于指数函数和对数函数是相互关联的,所以对数函数可以用来描述指数增长和衰减的过程。
2. 计算器的对数功能。
常见的科学计算器都配备了对数功能,这是因为对数函数在计算中的重要性。
3. 数据压缩和编码。
对数函数可以用于数据的压缩和编码,从而减少存储和传输的空间。
五、课堂练习1. 计算log₂8的值。
2. 求解方程2ˣ=16。
高中数学不等式和对数教案
高中数学不等式和对数教案
教学目标:
1. 理解不等式与对数的基本概念和性质。
2. 掌握不等式与对数的基本运算方法。
3. 能够应用不等式与对数解决实际问题。
教学重点:
1. 不等式的解法和应用。
2. 对数的基本性质和运算规律。
教学难点:
1. 不等式和对数的分析和推导。
2. 对数解不等式的应用题目。
教学准备:
1. 教师准备:教师课前准备好教案、教具和教学PPT。
2. 学生准备:学生准备好课本和笔记。
教学过程:
一、引入:
教师通过举一个生活中的例子,引导学生思考不等式和对数的作用和意义。
二、讲解不等式:
1. 教师讲解不等式的基本概念和性质。
2. 探讨不等式的解法和应用。
3. 示例演练让学生掌握不等式的运算方法。
三、讲解对数:
1. 教师讲解对数的基本概念和性质。
2. 探讨对数的运算规律和性质。
3. 示例演练让学生掌握对数的计算方法。
四、综合练习:
1. 综合练习不等式和对数的解题方法。
2. 解答学生提出的问题。
五、课堂总结:
教师对本节课的内容进行总结,强调重点和难点。
六、作业布置:
布置相应的作业,巩固学生对不等式和对数的掌握。
教学反思:
本节课内容难度适中,但涉及的知识点较多,学生需要花时间来理解和掌握。
在教学中要注重例题讲解和练习,帮助学生加深理解和巩固知识点。
同时要引导学生运用不等式和对数来解决实际问题,培养学生的数学思维能力和解决问题的能力。
高一数学课程教案引入对数函数的概念与性质
高一数学课程教案引入对数函数的概念与性质一、教学内容与目标:本节课主要目标是引入对数函数的概念与性质,让学生了解对数函数的基本概念、特点以及在实际问题中的应用,并掌握常见的对数函数的性质。
具体内容如下:1. 对数函数的概念引入1.1 引导学生回顾指数函数的基本概念1.2 解释对数函数与指数函数的关系1.3 介绍对数函数的定义与表示方法2. 对数函数的性质2.1 对数函数的定义域和值域2.2 对数函数的图像及其性质2.3 对数函数的增减性和奇偶性2.4 对数函数的其它重要性质3. 对数函数的应用3.1 对数函数在实际问题中的应用举例3.2 解决实际问题时对数函数的运用技巧二、教学过程:1. 导入与概念引入1.1 老师通过提问与学生互动,回顾指数函数的基本概念,引出对数函数的概念引入。
1.2 老师给出一个实际问题,让学生思考如何利用对数函数解决该问题,引出对数函数与指数函数的关系。
2. 对数函数的概念与表示方法2.1 老师解释对数函数的定义与表示方法,引导学生理解对数函数的基本概念。
2.2 老师通过实例演示,让学生掌握对数函数的表示方法和运用技巧。
3. 对数函数的性质3.1 老师介绍对数函数的定义域和值域,引导学生理解对数函数的取值范围。
3.2 老师讲解对数函数的图像及其性质,帮助学生掌握对数函数的形状与变化趋势。
3.3 老师引导学生探究对数函数的增减性和奇偶性,提出相关问题并引导学生回答与讨论。
3.4 老师介绍对数函数的其它重要性质,如对数函数与指数函数的反函数关系等。
4. 对数函数的应用4.1 老师给出一些具体问题,让学生运用对数函数解决实际问题。
4.2 老师引导学生分析问题,培养学生运用对数函数解决实际问题的能力。
三、教学方法与手段:1. 教师讲授法:通过讲解基本概念与性质,帮助学生建立对对数函数的初步认识。
2. 提问与讨论法:通过提出问题,引导学生思考与讨论,激发学生的学习兴趣和独立思考能力。
高中对数数学教案设计
高中对数数学教案设计
【教学目标】:
1. 理解对数的基本概念和性质;
2. 掌握对数运算规律;
3. 熟练应用对数解决实际问题。
【教学重点】:
1. 对数的定义和性质;
2. 对数的运算规律;
3. 对数的实际应用。
【教学难点】:
1. 解决包含对数的复杂方程;
2. 运用对数解决生活中的实际问题。
【教学准备】:
1. 教材《高中数学》;
2. 多媒体教具。
【教学过程】:
一、导入(5分钟)
引入对数的概念,通过举例引导学生了解对数的定义和性质。
二、讲解(15分钟)
1. 对数的定义和性质;
2. 对数的运算规律;
3. 对数的变换公式。
三、练习(20分钟)
1. 完成练习册上的对数运算题目;
2. 解决生活中的实际问题,如声音强度、震级等相关问题。
四、讨论(15分钟)
学生互相讨论解题思路及方法,学习彼此之间的优点。
五、总结(5分钟)
总结今天所学内容,强化对对数的理解和应用。
【课堂延伸】:
根据学生不同程度,可选择性地引入高阶对数概念,如对数函数、对数方程等,增加课堂深度。
【课后作业】:
1. 完成课本习题;
2. 撰写一篇关于对数的应用文。
【教学反思】:
通过此次教学,发现学生在对数的理解和应用上存在一定困难,需要进一步引导和巩固。
应在后续教学中加强练习和实际应用,提高学生对对数的掌握水平。
高一数学必修知识点1《对数函数》教案
高一数学必修知识点1《对数函数》教案教学目标:①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。
③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:⒈复习提问:对数函数的概念及性质。
⒉开始正课1比较数的大小例1比较下列各组数的大小。
⑴loga5.1,loga5.9(a>0,a≠1)⑵log0.50.6,logЛ0.5,lnЛ师:请同学们观察一下⑴中这两个对数有何特征生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9;当a>1时,函数y=loga某单调递增,所以loga5.1板书:解:Ⅰ)当0∵5.1<5.9∴loga5.1>loga5.9Ⅱ)当a>1时,函数y=loga某在(0,+∞)上是增函数,∵5.1<5.9∴loga5.1师:请同学们观察一下⑵中这三个对数有何特征生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5<log0.50.6<lnЛ。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。
2函数的定义域,值域及单调性。
高一数学(对数函数的概念与图象)教学设计 教案
2.2.2对数函数的概念与图象一、内容与解析(一)内容:对数函数的概念与图象(二)解析:本节课要学的内容是什么是对数函数,对数函数的图象形状及画法,其核心是对数函数的图象画法,理解它关键就是要理解掌握对数函数的图象特点.学生已经掌握了指数函数的图象画法及特点,函数图象的一般画法,本节课的内容就是在此基础上的发展.由于它是研究对数函数性质的依据,是本学科的核心内容.教学的重点是对数函数的图象特点与画法,解决重点的关键是利用函数图象的一般画法画出具体对数函数的图象,从而归纳出对数函数的图象特点,再根据图象特点确定对数函数的一般画法。
二、教学目标及解析(一)教学目标:1,理解对数函数的概念;掌握对数函数的图象的特点及画法。
2,通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的函数图象的画法逐步认识对数函数的特征;3,培养学生运用类比方法探索研究数学问题的素养,提高学生分析问题、解决问题的能力。
(二)解析:1,理解对数函数的概念是来源于实践的,能从函数概念的角度阐述其意义;掌握对数函数的图象和性质,做到能画草图,能分析图象,能从图象观察得出对数函数的单调性、值域、定点等;了解同底指数函数和对数函数互为反函数,能说出它们的图象之间的关系,知道它们的定义域和值域之间的关系,了解反函数带有逆运算的意味;2,通过具体的实例,归纳得出一般的函数图象特征,并能够通过图象特征得到相应的函数特征,培养学生的作图、识图的能力和归纳总结能力;3,类比指数函数的图象和性质的研究方法,来研究对数函数,让学生认识到研究问题的方法上的一般性;同时,让学生认识到类比这一数学思想,即对相似的问题可以借鉴之前问题的研究方法来研究,有助于提高学生分析问题、解决问题的能力。
三、问题诊断分析本节课容易出现的问题是:对数函数的图象特点的探究容易出现图象不对、归纳不全、有所偏差等情形。
出现这一问题的原因是:学生作图能力、识图能力、归纳能力不强。
对数教学设计优秀10篇
对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。
高中数学对数的教案
高中数学对数的教案教学目标:1. 理解对数的概念和特点。
2. 掌握对数运算的基本规律。
3. 能够解决实际问题中的对数计算题目。
教学重点和难点:重点:对数的定义、性质和运算规律。
难点:运用对数解决实际问题。
教学准备:1. 教师备课内容:对数的定义、性质、运算规律和应用。
2. 学生学习资料:教科书、练习册、笔记本等。
教学过程:1. 导入:通过引入一个真实生活中的问题,引发学生对对数的兴趣和好奇心,如:某个物种的数量翻倍的规律。
2. 讲解对数的定义和性质:介绍对数的定义、性质,引导学生理解对数的含义和作用,如:logaM=N 等价于 a^N=M。
3. 讲解对数运算规律:介绍对数的运算规律,包括对数的加减乘除运算规律,引导学生学会对数的基本计算方法。
4. 案例分析:结合实际问题,进行对数的应用案例分析,让学生感受对数在解决实际问题中的重要性和实用性。
5. 练习:布置一些对数计算练习题,让学生独立完成并相互交流讨论,巩固对数的运算能力。
6. 总结:总结本节课的重点内容,强化学生对对数的理解和应用能力。
教学延伸:1. 鼓励学生进行更多的实际问题解决,提高对数的应用能力。
2. 引导学生进行对数的拓展学习,如对数的图像性质、对数方程的求解等。
教学反思:1. 检查学生对对数的理解情况,及时纠正学生的错误认识。
2. 调整教学方法,根据学生的学习情况进行灵活的教学安排。
教学评价:通过学生的课堂表现、作业成绩和考试成绩等多方面进行综合评价,及时反馈学生的学习情况,以便调整教学策略和方法。
高一数学教案范文:对数函数教案6篇
高一数学教案范文:对数函数教案高一数学教案范文:对数函数教案精选6篇(一)教案主题:对数函数教学目标:1. 理解对数的定义和性质;2. 熟练掌握对数函数的图像和性质;3. 能够解决与对数函数相关的实际问题。
教学重点:1. 对数的定义和性质;2. 对数函数的图像和性质。
教学难点:对数函数的应用和解决实际问题。
教学过程:Step 1:导入通过一幅图片展示一张单调递增函数的图像,并引导学生思考这个函数的性质。
Step 2:激发兴趣提问:上述的函数图像中,这个函数的自变量是否能取任意实数?为什么?这个函数的值域是否有限制?存在哪些特殊的点,比如零点、极值点等?Step 3:引入概念引导学生思考自然对数的定义和性质,然后介绍对数的定义和常见的特殊情况。
Step 4:讲解对数函数的基本性质1. 对数函数的图像特点:单调递增、定义域、值域;2. 对数函数的零点和极值点;3. 对数函数的性质关系式:ln(xy) = ln(x) + ln(y),ln(x/y) = ln(x) - ln(y)。
Step 5:示例演练结合具体的实例,让学生通过计算和图像分析的方法,熟悉对数函数的表达式和性质。
Step 6:拓展应用通过一些实际问题的展示,引导学生运用对数函数解决实际问题,如指数增长问题、物质衰减问题等。
Step 7:总结提高总结对数函数的定义、性质和应用,并引导学生思考对数函数与指数函数的关系。
Step 8:作业布置要求学生完成与对数函数相关的习题,巩固所学内容。
评价与反馈:通过学生作业的批改和讲解,及时反馈学生对对数函数概念和应用的掌握程度。
教学资源:1. PPT;2. 教科书;3. 白板、彩色粉笔;4. 实际问题的案例材料。
教学延伸:对数函数在科学和工程领域中具有广泛的应用,可以通过提供更多实际问题的案例,培养学生运用对数函数分析和解决问题的能力。
高一数学教案范文:对数函数教案精选6篇(二)教学目标:1. 理解对数函数的概念及性质。
高一数学对数教程
高一数学对数教程一、教学任务及对象1、教学任务本教学任务是基于高一数学教学大纲,针对对数概念及其运算的教学。
学生将通过本教程的学习,理解对数的定义,掌握对数的性质与运算规则,并能运用对数解决实际问题。
此外,通过探索对数与指数的关系,培养学生数形结合的数学思维,提高他们解决问题的能力。
2、教学对象教学对象为高一学生,他们在先前的数学学习中已经掌握了实数的概念、基本的代数运算,以及初步的函数知识。
在此基础上,学生将通过本教程的学习,进一步拓展数学知识,提高数学逻辑推理和分析问题的能力。
考虑到学生的学习能力存在差异,教学过程中将采用差异化教学策略,确保每个学生都能在对数的学习中获得成长与进步。
二、教学目标1、知识与技能(1)理解对数的定义,掌握对数的性质,包括对数的换底公式、对数函数的单调性等基本知识;(2)掌握对数的运算规则,能熟练进行对数的加减乘除运算,解决有关对数的方程与不等式问题;(3)掌握对数函数的图像特点,了解对数函数在实际问题中的应用,例如人口增长、放射性衰变等;(4)通过探索对数与指数的关系,理解两者之间的互为逆运算,提高数形结合的数学思维能力;(5)运用对数知识解决生活中的实际问题,培养学以致用的能力。
2、过程与方法(1)采用自主探究、小组合作的学习方式,引导学生主动发现问题、解决问题;(2)通过实际案例的分析,让学生学会运用对数知识进行数据分析和问题求解;(3)设计不同难度的练习题,使学生在巩固基础知识的同时,逐步提高解题能力;(4)利用数学软件或图形计算器,帮助学生直观地理解对数函数的图像特点;(5)培养学生总结归纳、逻辑推理的能力,提高数学思维品质。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养他们勇于探索、积极进取的精神;(2)通过数学学习,让学生认识到数学在现实生活中的重要作用,提高他们的数学素养;(3)培养学生严谨、踏实的学术态度,让他们在学习过程中体验到努力与收获的快乐;(4)引导学生正确看待数学学习中的困难,鼓励他们克服困难,不断挑战自我;(5)强调数学的实用价值,使学生形成学以致用的观念,增强他们的社会责任感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的对数函数解题策略
一、分类讨论
例1 若实数a 满足2log 13
a <,求a 的取值范围。
分析:需对a 进行分类讨论。
当1a >时,∵log 1a a =,∴2log log 3a
a a <,∴23
a >; 当01a <<时,∵2log log 3a a a <,∴23a <,即203a <<。
故20,(1,)3a ⎛⎫∈+∞ ⎪⎝⎭。
评注:解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答。
理解会用以下几个结论很有必要:①当1a >时,若log 0a x >,则1x >,若l o g 0a x <,则01x <<;②当01a <<时,若log 0a x >,则01x <<,若log 0a x <,则1x >。
二、数形结合
例2 若x 满足2log 3x x =-,则x 满足区间( )
A .(0,1)
B .(1,2)
C .(1,3)
D .(3,4)
分析:本题左边是一个对数函数,右边是一个一次函数,可通过作图象求解。
解析:在同一直角坐标系中画出2log y x =,3y x =-的图象,如图所示,可观察两图象交点的横坐标满足13x <<,答案选C 。
评注:解决该类问题的关键是正确作出函数2log y x =,3y x =-的图象,从而观察交点的横坐标的取值范围。
三、特殊值法
2x
x -x
例3 已知log (2)a y ax =-在[0,1]上为x 的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,)+∞
分析:由函数的单调性求底数a 的取值范围,逆向考查,难度较大,可采用特殊值法进行判断。
解析:取特殊值0.5a =,10x =,21x =,则有10.5
l o g (2)l o g 2a ax -
=,20.53log (2)log 2a ax -=,与y 是x 的减函数矛盾,排除A 和C ; 取特殊值3a =,11x =,则2230ax -=-<,所以3a ≠,排除D 。
答案选B 。
评注:本题由常规的具体函数判断其单调性,变换为已知函数的单调性反过来确定函数中底数a 的范围,提高了思维层次。
四、合理换元
例4 若28x ≤≤,求函数2
21144log log 5y x x ⎛⎫=++ ⎪⎝⎭的值域。
分析:通过对函数式进行变形,此题是一个二次函数求值域问题,可换元进行求解。
解析:设14log t x =,∵28x ≤≤,∴114
4log 8log 2t ≤≤,即3122t -
≤≤-。
又2
21144log log 5y x x ⎛⎫=++ ⎪⎝⎭21144
log 2log 5x x ⎛⎫++ ⎪⎝⎭,
∴2225(1)4y t t t =++=++,∵3122
t -≤≤-, ∴当1t =-时,y 最小值为4;当32t =-或12
t =-时,y 值相等且最大,y 最大为174。
故函数y 的值域为174,4⎡⎤⎢⎥⎣⎦。
评注:换元法是一种常见的数学思想,也是一种常用的解题技巧,希望同学们在今后的学习中合理转化,灵活运用。