(精心整理)整式和分式复习
初中数学分式整式复习题
初中数学分式整式复习题分式与整式是初中数学中的重要概念,它们在代数运算中扮演着关键角色。
为了帮助同学们复习,下面提供一些初中数学分式与整式的复习题。
一、整式1. 单项式:一个由数字和字母乘积组成的代数式,例如 \(3x^2\)、\(-5y\)。
2. 多项式:由若干个单项式相加组成的代数式,例如 \(2x^2 + 3x - 1\)。
3. 同类项:在多项式中,系数不同但字母部分相同的项。
4. 合并同类项:将多项式中的同类项合并,简化表达式。
例题1:合并以下多项式中的同类项:\[ 4x^2 + 3x - 7 - 2x^2 + x \]二、分式1. 分式:一个代数式,其分子和分母都是多项式,且分母不为零。
2. 最简分式:分子和分母没有公因数的分式。
3. 约分:将分式的分子和分母同时除以它们的最大公因数,得到最简分式。
4. 通分:将几个分母不同的分式转化为分母相同的分式,以便进行加减运算。
例题2:将分式 \(\frac{2x}{x+1}\) 和 \(\frac{3}{x-1}\) 通分,并进行加法运算。
三、分式与整式的混合运算1. 加减法:在进行分式加减时,需要先通分,然后进行加减运算。
2. 乘除法:分式相乘时,分子相乘,分母相乘;分式相除时,将除数的分子和分母颠倒,然后相乘。
例题3:计算以下表达式的值:\[ \left(\frac{2}{x} + \frac{3}{x-1}\right) \div\frac{4}{x^2-1} \]四、分式方程1. 分式方程:包含分式的方程。
2. 解分式方程:通过消去分母,将分式方程转化为整式方程求解。
例题4:解以下分式方程:\[ \frac{1}{x-1} + \frac{2}{x+1} = \frac{3}{x^2-1} \]在解答这些题目时,注意检查每一步的运算是否正确,特别是分式运算中的通分和约分,以及分式方程的解是否满足原方程。
希望这些题目能帮助你更好地复习分式与整式的概念和运算。
整式与分式例题和知识点总结
整式与分式例题和知识点总结一、整式整式是代数式的一部分,是有理式的一部分,在有理式中可以包含加、减、乘、除、乘方五种运算,但在整式中除数不能含有字母。
1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:3x 是单项式,系数是 3,次数是 1;-5 是单项式,系数是-5,次数是 0;$x^2y$是单项式,系数是 1,次数是 3。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
例如:$2x 3$是多项式,有两项,分别是 2x 和-3,其中-3 是常数项,次数是 1;$x^2 + 2x + 1$是多项式,有三项,分别是$x^2$、2x 和 1,次数是 2。
3、整式的加减整式加减的实质是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
例如:3x + 5x = 8x, 7$y^2$ 2$y^2$ = 5$y^2$例题 1:化简$5a^2b 3ab^2 + 2ab^2 4a^2b$解:原式=(5 4)$a^2b +(-3 + 2)ab^2$=$a^2b ab^2$例题 2:已知多项式$A = 3x^2 5x + 1$,$B =-2x^2 + 3x 4$,求$A + B$。
解:$A + B =(3x^2 5x + 1) +(-2x^2 + 3x 4)$=$3x^2 5x + 1 2x^2 + 3x 4$=$(3 2)x^2 +(-5 + 3)x +(1 4)$=$x^2 2x 3$4、整式的乘法(1)单项式乘以单项式系数相乘,同底数幂相乘,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:$2x^2 \cdot 3x^3 = 6x^5$(2)单项式乘以多项式用单项式去乘多项式的每一项,再把所得的积相加。
整式、分式、因式分解
个性化教学辅导教案学科: 数学任课教师:讲课时刻(6)),0(1);0(10为正整数p a a a a a pp ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
二、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子叫做分式。
1.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0; 分式无意义的条件:分式的分母等于0。
2.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
(),其中A 、B 、C 是整式注意:(1)“C 是一个不等于0的整式”是分式基本性质的一个制约条件; (2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C ;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。
3.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
4..分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母各自乘方。
5.任何一个不等于零的数的零次幂等于1,即;当n为正整数时,(注意:当幂指数为负整数时,最后的计算结果要把幂指数化为正整数。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)
○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
(完整)整式和分式复习
3、1ab a b -+-
4、 bm ma b a -+-33
(三)错题练习: 错例1
错因:受干扰,负迁移产生了的错误. 错例2
错因:未把3y 看作一个整体,平方时没给系数3平方. 错例3
错因:未掌握完全平方公式的结构特征,没给结果的第二项2倍. 错例4
错因:(1)受符号变化的影响,把两个完全平方公式混淆,结果第二项符号出错. (2)完全平方公式与平方差公式混淆. 错例5
错因:未掌握完全平方公式的结构特征,错用了平方差公式. (四)小结:
在应用完全平方公式运算之前注意以下几点:
1、使用完全平方公式首先要熟记公式和公式的特征,不能出现222)(b a b a ±=±的错误或
222)(b ab a b a +±=±(漏掉2倍)等错误.
2、在公式()222
2b ab a b a ++=+中,左边是一个二项式的完全平方,右边都是一个二次三项式,本公式
可用语言叙述为:首平方,尾平方,两倍之积在中央。
3、公式中a 、b 的既可以代表具体的数,也可以代表单项式或多项式.
4、要能根据公式的特征及题目的特征灵活选择适当的公式计算。
5、用加法结合律,可为使用公式创造条件。
利用这种方法,可以把多项式的完全平方转化为二项式的完全平方.。
初中数学知识归纳整式与分式的运算
初中数学知识归纳整式与分式的运算初中数学知识归纳:整式与分式的运算在初中数学学习中,我们不可避免地会遇到各种各样的数学知识与概念。
其中,整式与分式的运算是一个重要的内容。
本文将对整式与分式的概念、运算规则等进行归纳总结,帮助同学们更好地理解和掌握这一知识点。
一、整式的概念与运算整式是由常数、变量和它们的积、积的积等有限个数相加或相减而成的代数式。
一般地,整式可以表示为:\[f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\]其中,\(a_n\)至\(a_0\)为常数系数,\(x\)为变量,\(n\)为整数且大于0。
整式的运算包括加法和减法。
加法运算的规则如下:- 将同类项的系数相加,其他部分保持不变;- 如果没有相同的项,则直接写出各个项,不作任何运算。
例如,对于整式\(f(x)=3x^3+2x^2-5x+1\)和\(g(x)=2x^3-3x^2+x+2\)的加法运算,我们可得:\[f(x)+g(x)=(3+2)x^3+(2-3)x^2+(-5+1)x+(1+2)=5x^3-x^2-4x+3\]减法运算与加法运算类似,只需将被减数改为相反数后进行加法运算。
二、分式的概念与运算分式是由整式的两个整式相除得到的表达式。
一般地,分式可以表示为:\[\frac{{f(x)}}{{g(x)}}\]其中,\(f(x)\)为分子,\(g(x)\)为分母,且\(g(x)\)不能为0。
分式的运算包括加法、减法、乘法和除法。
我们逐一介绍其运算规则。
1. 加法与减法:对于两个分式\(\frac{{f_1(x)}}{{g_1(x)}}\)和\(\frac{{f_2(x)}}{{g_2(x)}}\)的加法或减法运算,需要先找到它们的公共分母,然后将分子进行相应的加减运算后,保持分母不变,即可得到结果的分式。
例如,对于分式\(\frac{{2x}}{{x-1}}\)和\(\frac{{1}}{{x+1}}\)的加法运算,我们可得:\[\frac{{2x}}{{x-1}}+\frac{{1}}{{x+1}}=\frac{{2x(x+1)+1(x-1)}}{{(x-1)(x+1)}}=\frac{{2x^2+x-1}}{{x^2-1}}\]2. 乘法:对于两个分式\(\frac{{f_1(x)}}{{g_1(x)}}\)和\(\frac{{f_2(x)}}{{g_2(x)}}\)的乘法运算,我们只需将它们的分子相乘作为结果的分子,分母相乘作为结果的分母即可。
中考复习(2)整式与分式
点评 解此题关键是紧扣P、Q关于原点对称,关于原点对称的 点的横、纵坐标是互为相反数,所以,可以得出关于a、b的二 元一次方程组,求出a、b的值从而求出结论.
8.(1) 分解因式:x 2 4 x 2x 2 . (2)分解因式:x 2 2 x 8 x 2x 4 .
(3)下列多项式中,能在实 数范围内分解因式的是 B (A) x 2 4; ( B) x 2 2; (C ) x 2 x 1; ( D) x 2 x 1.
9.分解因式:x 4 8 x 2 9 10.分解因式:a ab c bc
2 2
. . .
a a a a 用式子表示为 : . b b b b
分式
3.分式的运算
(1)分式的乘、除法 ①两个分式相乘,把分子相乘的积作为分子,分母相 乘的积作为分母,即 a c ac b d bd ②两个分式相除,把除式的分子、分母颠倒位置后, 再与被除式相乘.类比分数除法理解为:除以一个4a 4a
2 2
点评 因式分解一定要分解到不能分解为止.
四.分式
1.分式中的有关概念
A (1)分式:形如 (A、B是整式,且B中含有字母)的式 B
子叫做分式。其中A叫做分式的分子,B叫做分式的分母 (2)有理式:整式和分式统称为有理式. 注意:分式有意义的条件——分母不能为0
2 a 3 4a 20. a a 1 a 1 1 a 1 a
2 3 6 2 4
a; ( D ) a a .
6 3 1 2 1 4 3 4 3 2 1 2 4.计算: xy y 2 x xy y x y . 3 2 2
整式及分式总复习
整式总复习教学目标1、复习巩固整式的乘除法及因式分解,并能掌握它们的算法及相互关系 3、学生综合能力的训练;分析问题习惯的培养。
教学重点1、 整式运算方法及因式分解的灵活应用2、分式方程的解法及其应用 教学重点学生综合能力及灵活性的训练教学过程整式的乘除法【课前热身】1. 31-x 2y 的系数是 ,次数是 . 2.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 一个字母 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = .6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23 D .32例2按下列程序计算,把答案写在表格:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.【中考演练】1.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18B .12C .9D .7 2. 若3223mnx y x y -与 是同类项,则m + n =____________.3.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 .4.大家一定熟知辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . 因式分解【课前热身】1.若 , ),4)(3(2==-+=++b a x x b ax x 则.2. 简便计算:2200820092008-⨯ = .3. () 下列式子中是完全平方式的是( )A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a【考点】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a ,⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析11 1 12 11 3 3 1 1 4 6 4 1 .......................................ⅠⅡ1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】例1 分解因式: 3y 2-27=___________________.例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.(08)将3214x x x +-分解因式的结果是 . 3. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.4.计算: 2222211111(1)(1)(1)(1)(1)234910-----.5.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b aba -=-+ ②即222c b a =+ ③ ∴△ABC 为Rt △。
初中数学复习第四讲——整式与分式
分解,也叫做把这个多项式分解因式。
(1)提取公因式法:(一个多项式中每一项都含有的因式叫做这个
多项式的公因式。)如果一个多项式的各项含有公因式,那么
可以把该公因式提取出来作为多项式的一个因式,提取公因式
后的式子放在括号里,作为另一个因式,这种分解因式的方法
的最大公因数、相同因式的最低次幂。如果分子、分母是多项式,先分
解因式,再约分。化简分式时要将分式化成最简分式或整式。
16.通分:将几个异分母的分式分别化为与原来分式的值相等的同分母分式的过
程叫做通分。
17.分式的运算:(1)分式的乘除:两个分式相乘,将分子相乘的积作分子,分母
相乘的积作分母;分式除以分式,将除式的分子和分母颠倒
数、同底数幂分别相乘的积作为积的因式,其余字母连同它
的指数不变,也作为积的因式。
(2)单项式与多项式相乘:单项式与多项式相乘,用单项式乘
以多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘:多项式与多项式相乘,先用一个多
项式的每一项乘以另一个多项式的每一项,再把所得到的
积相加。
12.同底数幂的除法:同底数幂相除,底数不变,指数相减。即
成立,规定 (其中a≠0,p是自然数)。
整数指数幂运算性质:
(m、n为整数,a≠0)
(m、n为整数,a≠0)
((n为整数,a≠0,b≠0).
初中数学复习--第四讲——整式与分式
———————————————————————————————— 作者:
————————————————————————————————日期:
初中数学复习第四讲——整式与分式
代数复习2(整式分式、二次根式)-学生版
教学内容—代数复习2(整式分式、二次根式) gyq知识精要(一)整式 1、代数式的分类: (拓展→)2、整式:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。
3、整式的运算:⑴整式的加减:实质上就是合并同类项. ⑵整式的乘除:4、因式分解是整式乘法的逆向变形 整式的除法⎧⎪⎪⎨⎪⎪⎩同底数幂的除法单项式除以单项式多项式除以单项式零指数与负整指数(二)分式的意义 1、分式的定义:两个整式A 、B 相除,即A÷B 时,可以表示为A/B.如果B 中含有字母,那么A/B 叫做 分式,A 叫做分式的分子,B 叫做分式的分母。
2、分式有意义和值为零的条件:分式有意义的条件:分式的分母不能为零。
(反过来,如果分式的分母为零,那么这个 分式无意义。
)3、分式值为零的条件:分式的分子为零且分母不为零。
理解分式的基本性质时,必须注意:(1)分式的基本性质中的A 、B 、M 表示的都是整式.例如:2222y xy y y y x y x=⋅⋅=,)(33)(3))((322b a bc ac b a b a c b a b a c b a ≠--=--+=+.随着知识的扩 充,A 、B 、M 还可以表示任何代数式.(2)在分式的基本性质中,M ≠0. 例如:xx yxy x x x y x y 6432)32(2)32(22--=--=,这里M =2x -3,因此, M ≠0,即2x -3≠0,所以x ≠23.这个条件往往被忽略,学习时,必须特别注意. 代数式 整式分式单项式 多项式有理式无理式备选例题例一、如图是一个由四个矩形一个小正方形围成的大正方形,已知该图案面积为49,小正方形面积为4,若用y x ,表示矩形的长和宽,则下列式子中不正确的是( ) A 7=+y x B 2-=y x C 4944=+xy D 2522=+y x例二、已知M x y x y y x yx yx y 222222-=--+-+,则M =__________。
中考数学整式与分式知识点总结
中考数学整式与分式知识点总结
2019年中考数学整式与分式知识点总结
整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
中考数学总复习资料 整式和分式
整式和因式分解
[知识要点]
1.代数式
2.整式
(1)同类项:所含字母相同,且相同字母的次数也相同的项叫同类项。
(2)添括号,去括号法则
(3)指数运算
3.因式分解
(1)定义:把一个多项式化成几个整式积的形式,叫做因式分解。
(2)因式分解方法:1)提公因式法 2)公式法 3)十字相乘法 4)分组分解法
分式
[知识要点]
1.分式
(1)定义:分母中含有字母的式子。
(2)分式有意义的条件:分母≠0
(3)分式值=0的条件:分子=0且分母≠0
2.分式的性质
(1)基本性质:
(2)变号法则:分子、分母和分式本身的符号,改变其中任意两个,分式的值不变。
3.分式运算:加、减、乘、除、乘方、开方。
初二数学重要知识归纳整式与分式运算技巧
初二数学重要知识归纳整式与分式运算技巧初二数学重要知识归纳 - 整式与分式运算技巧在初二数学学习中,整式与分式运算是非常重要的知识点。
掌握这些技巧将帮助我们更好地理解和解决数学问题。
本文将对整式与分式运算技巧进行归纳总结,希望对同学们的学习有所帮助。
一、整式运算技巧1. 同类项合并:在进行整式加减运算时,首先需要将同类项合并。
同类项是具有相同字母部分和相同指数的项。
通过合并同类项可以简化整式的表达式,使计算更加方便。
例如:3x + 5x - 2y + 4y = (3x + 5x) + (-2y + 4y) = 8x + 2y2. 整式的乘法:整式的乘法可以利用分配律进行展开,将每一项相乘后再进行合并。
例如:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 153. 多项式的乘法:多项式的乘法可以使用分配律以及结合律进行展开和合并。
例如:(3x - 4)(x + 2) = 3x * x + 3x * 2 + (-4) * x + (-4) * 2 = 3x^2 + 6x - 4x - 8 = 3x^2 + 2x - 8二、分式运算技巧1. 分式的乘法:分式的乘法可以直接将分子与分母分别相乘得到新的分式。
例如:(2/3) * (4/5) = (2 * 4) / (3 * 5) = 8/152. 分式的除法:分式的除法可以通过将除法转化为乘法的倒数形式,然后进行相乘。
例如:(5/6) / (2/3) = (5/6) * (3/2) = (5 * 3) / (6 * 2) = 15/12 = 5/43. 分式的加减法:分式的加减法需要找到它们的公共分母,然后将分子进行加减操作,最后化简分式。
例如:(1/4) + (2/5) = (5/20) + (8/20) = 13/20三、混合运算技巧在实际问题中,可能会出现整式和分式的混合运算,我们需要根据具体情况选择合适的方法进行运算。
整式与分式总复习
A.扩大2倍B.缩小2倍C.改变原来的丄D.不改变
4
2.如果丄二3,则丄二上二()
y y
4X
A.—B・ xy C・ 4 D・—
3y
若宀—’则•(二訂爲的值等于()
2長
A.
B.逅C.73
D・
血或逅
3
3
3
4.已知两个分式:
A-4B-1
1
-4-
■fet申y+ 9"7、raj右"二-・
x2-4x + 2
式的通分.
5.分式的运算
(1)加减法法则:①同分母的分式相加减:.
②异分母的分式相加减:.
(2)乘法法则:.乘方法则:.
(3)除法法则:.
【典例精析】
例1⑴已知X-丄=3,贝U2+ X =・
(2)已知丄一丄=3,则代数式2—14q-空的值为
x yx-2xy-y
【中考演练】
X
1•把分式一(xHO,yHO)中的分子、分母的x、y同时扩大2倍,那么分式的值()
4
3.如图所示,边长为a"的矩形,它的周长为14,面积为10,求a2b + ab2的值.
b
1
► ◄
5.已知b、c是ZXABC的三边,且满足a4+b2c2=b4+a2c\试判断ZkABC的
形状•阅读下面解题过程:
解:由a4+b2c2=b4+a2c2^:
a^b4=a2c2^h2c2
①
(a2+b2^a2-b2)=c2(a2-b2)
②
即/=c2
③
:.AABC为RtAo
④
试问:以上解题过程是否正确:
初三数学第一轮复习——整式及分式
b a
n
bn an
.
二、分式加减法法则
①同分母加减法的法则:分母不变,分子相加减.
1. b c b c ; 2. b d bc ad bc ad .
aa a
a c ac ac ac
②异分母分式加减法的法则:先通分,把异分母 分式化为同分母分式.
约分思路:
1.如果分式的分子、分母是单 32a3b2c 项式或因式乘积形式时,可 24a2b3d
直接约去分子、分母的公因式;
2.如果分式的分子、分母是多项式时,首先进 行因式分解,把多项式分成因式乘积的形 式,然后约去分子、分母的公因式
2x2 y x3 (1) x2 y 2xy2
2
x2 4x 3 x2 x 6
注意:同类项的两个条件缺一不可; 所有的常数项都是同类项。
1、单项式 2 x3 y2的次数是________。 7
2、单项式 - 1 xab ya1 与 3x2 y 是同类项,则
3
a-b的值是_____
二、整式的概念 多项式 几个单项式的和叫做多项式.
一个多项式中,次数最高的项的次数,叫做这个 多项式的_次__数__. 在多项式中,每个单项式叫做多项式的__项____, 其中不含字母的项叫做_常__数__项__。 例如:多项式-2+4x2y+6x-x3y2五是 次四 项式,
只乘分子(或分母)
1. 将如分果式把x分 2式y中的x 2x和的y都x和扩大y都10扩倍大,k那倍么,分式 x x y
的那值么分式(的值)应( A )
A(.A扩)扩大1大0倍k倍
(BB.缩)不小变10倍
C(C.扩)扩大大2倍k2倍
整式分式复习资料
整式乘除与因式分解一、重点难点:重点是整式的乘法运算,因式分解运算.难点是乘法公式的灵活运用和分解因式的方法。
二、知识要点【知识点一】幂的运算(1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加.即 n m n m a a a +=⋅(m ,n 都是正整数)(2)幂的乘方:幂的乘方:底数不变, 指数相乘.即 mn n m a a =)((m ,n 都是正整数)(3)积的乘方:先把积中的每一个因式分别乘方,再把所得的结果相乘.即n n n b a ab =)((n 是正整数)(4)同底数幂的除法:同底数幂相除,底数不变,指数相减.(这个也可以看做分式的运算)即n m n m a a a -=÷(a ≠0, m ,n 都是正整数,且m >n )① 零指数幂:不等于零的数的零次幂等于1. 即=0a 1(a ≠0).推导过程:1a 0-===÷a a a m m m m (这里面注意:a ≠0,因为分母中有a )②负整数指数幂: 不等于零的数的负整数次幂等于这个数的正整数次幂的倒数.即 =-p a p a 1 (a ≠0,p 是正整数).例1. 计算a a a ⋅+2433)(2)(3解:a a a ⋅+2433)(2)(3=9998952323a a a a a a =+=⋅+点评:在整式运算中同样应遵循有括号先算括号(先小括号,再中括号,后大括号,),然后算乘方、再算乘除、最后算加减的原则.例2:0. 252009×42009-8100×0. 5300.解: 0. 252009×42009-8100×0. 5300=(0. 25×4)2009-(23)100×0. 5300=12009-(2×0. 5)300=1-1300=0【知识点二】整式乘法(1) 单项式乘单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因数.即:3a 2b 4c ×2x 3bc 6=(3×2)(b 4×b)(c ×c 6)×a 2×x 3=6a 2x 3b 5c 7(2)单项式乘多项式单项式与多项式相乘,就是根据乘法对加法的分配律,用单项式乘多项式的每一项,再把所得的积相加.即:a(m+n)=am+an (单项式计算部分与上面原理相同)(3)多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(就是反复多用几次乘法分配律)。
中考数学知识点总结:整式与分式
2019中考数学知识点总结:整式与分式?整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、1ab a b -+-
4、 bm ma b a -+-33
(三)错题练习:
错例1
错因:受干扰,负迁移产生了的错误. 错例2
错因:未把3y 看作一个整体,平方时没给系数3平方. 错例3
错因:未掌握完全平方公式的结构特征,没给结果的第二项2倍. 错例4
错因:(1)受符号变化的影响,把两个完全平方公式混淆,结果第二项符号出错. (2)完全平方公式与平方差公式混淆. 错例5
错因:未掌握完全平方公式的结构特征,错用了平方差公式. (四)小结:
在应用完全平方公式运算之前注意以下几点:
1、使用完全平方公式首先要熟记公式和公式的特征,不能出现2
2
2
)(b a b a ±=±的错误或
222)(b ab a b a +±=±(漏掉2倍)等错误.
2、在公式()2
22
2b ab a b a ++=+中,左边是一个二项式的完全平方,右边都是一个二次三项式,本公式可用语言
叙述为:首平方,尾平方,两倍之积在中央.
3、公式中a 、b 的既可以代表具体的数,也可以代表单项式或多项式.
4、要能根据公式的特征及题目的特征灵活选择适当的公式计算.
5、用加法结合律,可为使用公式创造条件.利用这种方法,可以把多项式的完全平方转化为二项式的完全平方.。