中科院量子力学考研真题及答案详解(19902010共40套真题)
量子力学基础试题及答案
量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学真题和答案解析
量子力学真题和答案解析是物理学中的一个重要分支,研究微观领域的宇宙现象和微观粒子的行为规律。
具有复杂的数学理论基础,因此在学习和研究过程中常常会遇到各种难题和问题。
为了更好地理解和应用,解析真题和答案是非常重要的一步。
首先,解析真题前,我们需要了解一些基本概念和原理。
描述了微观粒子的行为,其中最基本的概念是量子态和波函数。
量子态描述了粒子的所有性质,而波函数则是的核心数学工具,用于描述粒子的状态和演化规律。
在研究真题时,我们需要仔细分析题目中给出的信息和条件。
通常,题目会给出一些实验或者观测结果,然后要求利用所学知识来推断和解释这些结果。
这就需要我们从题目中提取关键信息,并应用的原理进行分析。
解析真题时,我们可以采用逐步推导的方法。
首先,根据题目中给定的信息,我们可以确定所研究系统的量子态。
然后,根据波函数的演化规律,我们可以利用薛定谔方程或者时间演化算符来推导出系统的时间演化。
最后,我们可以根据所给条件和结果来验证和解释我们的推导和计算结果。
在解析真题时,我们还需要注意一些常见的问题和误区。
首先,是一种概率性理论,因此我们无法准确预测每一次实验的结果。
我们只能给出在大量重复实验中的平均结果。
其次,波函数的坍缩现象是的核心特征之一。
在测量时,波函数会坍缩到某一特定的量子态,从而给出确定的结果。
最后,量子纠缠是中的一个重要现象。
它描述了在某些情况下,两个或多个微观粒子之间存在着密切的关联,无论它们之间的距离有多远。
总结一下,解析真题和答案是学习和研究的重要一步。
我们需要了解的基本概念和原理,并且可以采用逐步推导的方法来分析和解决问题。
我们还需要注意中的一些常见问题和误区,以便更好地理解和应用的原理和概念。
通过解析真题和答案,我们可以提高对的理解,并且能够更好地应用于实际问题和研究中。
中科院量子力学考研真题及答案详解(19902010共40套真题)
1990年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(理论型),00分。
、在,氢原子波函数为说明:共五道大题无选择题,计分在题尾标出,满分10t =100210211211一(,0)2r ψψψ=+⎣⎦ 其中右方函数下标表示量子数。
忽略自旋和辐射跃迁。
投影-⎡⎤(1) 此系统的平均能量是多少?nlm 0z L =(2) 这系统在任意时刻处于角动量的几率是多少? 、利用坐标与动量算符之间的对易投影关系,证明二()2∞00n nE E n x -=∑常数这里是哈密顿量n E 2ˆˆ()2p H V m=+x 的本征能量,相应的本征态为n 。
求出该常数。
、设一质量为μ的粒子在球对称势()(0)V r kr k =>三中运动。
利用测不准关系估算其(束缚态)类似于氢原子,只是用一个正电子代替质子作为核,在非基态的能量。
四、电子偶素e e +-种接触型自旋交换作用相对论极限下,其能量和波函数与氢原子类似。
今设在电子偶素的基态里,存在一8e p ˆˆˆ3H M M π和ˆpM '=-⋅其中ˆe M 是电子和正电子的自旋磁矩ˆˆ(,q )MS q ==e mc±量差,决定哪一个能量更低。
对普通的氢原子,基态波函数: 。
利用一级微扰论,计算此基态中自旋单态与三重态之间的能221137e c 1002,,r a a me ψ-==一质量为= μ的粒子被势场00()(0)r aV r V e V a -=>>所散射,用一级玻恩近似计算微分散射截面。
五、1990年招收攻读硕士学位研究生入学试卷试题名称:量子力学(实验型)分。
光电效应实验指出:当光照射到金属上,说明:共五道大题,无选择题,计分在题尾标出,满分100一、(1) a) 只有当光频率大于一定值0ν时,才有光电子发射出;b) 光电子的能量只与光的频率有关,而与光的强度无关;c) 只要光的频率大于0ν,光子立即产生。
试述:a) 经典理论为何不能解释上述现象,或者说这些实验现象与经典理论矛盾何斯坦假说正确解释上述实验结果。
《量子力学》22套考研自测题+答案
。
2.在量子力学中,一个力学量是否是守恒量只决定于
的性
质,也就是说,决定于该力学量是否与体系的
对易,而与
体系的
无关。一个力学量是否具有确定值,只决定于体系
的
,也就是说,决定于体系是否处于该力学量的
,
无论该力学量是否守恒量。
二、(本题 15 分)
1.设全同二粒子的体系的 Hamilton 量为 Hˆ (1,2,),波函数为
(1) Nˆ ≡ aˆ +aˆ 本征值必为实数。
(2) Nˆ 2 = Nˆ
(3) Nˆ 的本征值为 0 或者 1。
2.利用对易式σ ×σ = 2iσ ,求证:{σ i ,σ j }= 0 ,(i, j = x, y, z) ,其中,σ i ,σ j
为 Pauli 矩阵。
三、(本题 15 分)
1.设氦原子中的两个电子都处于 1s 态,(不简并)两个电子体系的
ψ (x,0) =
α⎡
π
⎢ ⎣
1− 3
2 3
⎤ αx⎥
⎦
exp(−
1 2
α
2x2)
α
,其中
=
μω
,求
1、在 t = 0 时体系能量的取值几率和平均值。
2、 t > 0 时体系波函数和体系能量的取值几率及平均值
四、(15 分)当 λ 为一小量时,利用微扰论求矩阵
⎜⎛ 1 2λ
0 ⎟⎞
⎜ 2λ 2 + λ 3λ ⎟
HY制作
HY制作
HY制作
量子力学自测题(1)
一、简答与证明:(共 25 分) 1、什么是德布罗意波?并写出德布罗意波的表达式。 (4 分) 2、什么样的状态是定态,其性质是什么?(6 分) 3、全同费米子的波函数有什么特点?并写出两个费米子组成的全 同粒子体系的波函数。(4 分)
历年量子力学考研真题试卷
历年量子力学考研真题试卷历年量子力学考研真题试卷量子力学是现代物理学的重要分支,也是考研物理专业的必考内容之一。
历年来,考研真题试卷中的量子力学部分涵盖了许多重要的概念和原理,对于考生来说是一项重要的挑战。
本文将对历年的量子力学考研真题试卷进行回顾和分析,帮助考生更好地准备考试。
首先,我们来看一道经典的考研真题:2015年考研物理专业真题中的一道量子力学选择题。
题目如下:在一个一维无限深势阱中,一束波长为λ的平面波入射,其入射角为θ。
已知势阱宽度为a,求波函数在势阱内的形式。
这道题目考查了量子力学中的一维无限深势阱问题。
解答这道题目需要运用波函数的性质和边界条件来分析。
首先,我们可以根据波函数的性质得出波函数在势阱内的形式是一个定态波函数。
其次,根据边界条件,我们可以得到波函数在势阱两侧的形式是分别由入射波和反射波组成。
因此,波函数在势阱内的形式可以表示为:Ψ(x) = Ae^{ikx} + Be^{-ikx},其中A和B分别表示入射波和反射波的振幅,k 为波矢。
接下来,我们来看一道稍微复杂一些的考研真题:2018年考研物理专业真题中的一道量子力学计算题。
题目如下:考虑一个束缚在一维势阱中的粒子,势阱宽度为a。
已知粒子的质量为m,势阱内的势能为V_0,势阱外的势能为0。
求粒子在势阱内的能级。
这道题目考查了量子力学中的束缚态问题。
解答这道题目需要运用定态薛定谔方程和边界条件来分析。
首先,我们可以根据定态薛定谔方程得到粒子在势阱内的波函数形式。
其次,根据边界条件,我们可以得到波函数在势阱两侧的形式是分别由入射波和反射波组成。
因此,波函数在势阱内的形式可以表示为:Ψ(x) = Ae^{ikx} + Be^{-ikx},其中A和B分别表示入射波和反射波的振幅,k 为波矢。
然后,我们需要将波函数在势阱两侧的形式进行匹配,并利用边界条件得到粒子在势阱内的能级。
通过求解定态薛定谔方程,我们可以得到粒子在势阱内的能级为:E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2},其中n为能级的量子数。
中科院量子力学真题
x <a 势场中运动 (V0 > 0 ) 。试求系统能级或能级方 x >a
-6-
putiansong 3@
试证明位力定理:
ψn
ˆ2 p 1 � � ψ n = ψ n r ⋅∇V (r ) ψ n 2m 2 ˆ2 1 p 4 ˆ ' = −λ p ˆx + mω 2 x 2 ,设受到微扰 H 的作 2m 2
-1-
putiansong 3@
(1)求其能级和本征函数;
⎧V1 , −α < ϕ < 0 ˆ ' = V (ϕ ) = ⎪ (2)加 H ⎨V2 , 0 < ϕ < α 微扰, ⎪ 0, 其他 ⎩
求对最低的两能级的一级微扰修正。 注:在坐标系中 ∇ 2 =
1 ∂ ∂ 1 ∂2 ∂2 。 (r ) + 2 + r ∂r ∂r r ∂ϕ 2 ∂z 2 ⎧ 0, 0 < x < a 中运动, t = 0 时刻处于基态, 此 ⎩∞, a < x, x < 0
ˆ = 五、一维谐振子系统哈密顿量为 H 0
用,试求对第 n 个谐振子能级的一级微扰修正。
ˆ n = (已知矩阵元 n ' x ℏ ( n + 1δ n ', n+1 + nδ n ', n−1 ) ) 2mω
� � 1⎛r � � r⎞ ˆ ˆ ˆ r = ⎜ ⋅ p + p ⋅ ⎟ ,则: 二、 (30') 在三维体系中粒子的径向动量算符 p 2⎝ r r⎠ ˆ r 是否为厄密算符,为什么? (1) p ˆ r 的表示; (2)写出在球坐标系中 p ˆr ] = ? (3)求 [ r, p
中科院量子力学历年详解(phileas)
v v vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17
1.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 详解 2.1 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
2.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 四川大学量子力学入学试题 A.1 2010 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 2009 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3 2010 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 2009 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2012-2013年中国科学院大学考研试题 量子力学
∞
∫ 数为
ψ
( x,0)
=
(α π
)1
4 eik0 x−αx2
2
( k0、α 为实常数;
dx e−ax2 =
π ,
a
a > 0 )。
−∞
(1)求 t > 0 时刻动量表象波函数 Ψ~ (k,t) 及粒子动量几率分布 Π(k,t) 。
(2)求 t > 0 时刻波函数 Ψ(x,t) 及粒子位置几率分布 Ρ(x,t) 。
四、(共 30 分) (1) 写出角动量算符的三个分量 J x 、 J y 、 J z 相互间满足的所有对易关系。
(2) 试利用这些对易关系,证明矩阵元 m J x n 仅当 m n 1 时不为零。其中
m 、 n 分别为 J z 的本征值为 m 、 n 的本征态。
(3) 设角动量量子数 j 1。 已知在 J z 的某一个本征态 m 中, J x 取值为 0 的概
科目名称:量子力学
第 2 页,共 2 页
为第一
Bohr
轨道半径。
设体系受到微扰 H e z 的作用(沿 z 方向加上均匀电场 ),哈密顿量变成
H H0 H。
(1)计算对易关系:[H0, H ] 及 [H ,[H0, H ]] 。
(2)计算 0 下的平均值:
H 0
及
H2 。 0
(3)取基态试探波函数为 () N(1 H) 0 ,其中 N 为归一化常数。试以 为
一、(共 30 分)质量为 µ 的粒子在一个无限深球方势阱
0, r ≤ a V (r) = ∞, r > a
中运动。
(1)写出径向波函数 Rl (r ) 满足的方程(已知:= ∇2
硕士学位研究生入学量子力学试卷
附件中国科学院-中国科技大学2000年招收攻读硕士学位研究生入学试卷 试卷名称:量子力学(理论型) 选做五题,毎题20分1、 一个质量为m 的粒子被限制在一维区域0x a ≤≤运动,0t =的波函数为(),012cos sin x x x t A a a ππψ⎡⎤⎛⎫⎛⎫==+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ A 为常数。
(1) 后来某一时刻0t t =时波函数是什么?(2) 体系在0t t =和0t =时平均能量是多少? (3) 在0t t =时于势阱右半部(即2ax a ≤≤)发现粒子的几率是多少? 2、3、设粒子处于(),lm Y θϕ状态,计算角动量的x 分量和y 分量的方均差22,x y l l ∆∆4、记123,,σσσ为Pauli 矩阵,定义12,i σσσ±=±(1) 计算[][][]()233,,,,,,σσσσσσσ+-+-+和()2σ-, (2) 证明(ξ为常数 )332e e e ξσξσξσσ±±±=,证:[]3,2σσσ±±=± ()33322σσσσσσσ±±±±∴=±=±()()2233333322σσσσσσσσσσ±±±±==±=±反复利用即得()332nn σσσσ±±=± 两边同乘实数nξ得 ()332nn n nξσσσξσ±±=± 即()33322e ee e ξσξσξσξσσσ±±±±±==(3) 化简下面二式331112,e e e e ξσξσξσξσσσ--。
5、设0H 为一量子系统的能量算符,其本征态为0,1,2,⋅⋅⋅若体系受到微扰作用,微扰算符为ˆˆˆ,(H i A B λλ⎡⎤'=⎣⎦为实数),ˆA为厄密算符,ˆˆ,B C 为另外的厄密算符,且ˆˆˆ,.C i A B ⎡⎤=⎣⎦如在微扰作用前的基态0中,ˆˆˆ,,A B C 的平均值已知为000,,A B C ,试对微扰后的基态(非简并)计算厄密算符ˆB的平均值B ,精确到量级λ。
华中科大量子力学考试题及解答
华中科大量子力学考试题及解答1(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--华中 一. 见华中98 T2 二. 见华中98 T3 三. 见华中98 T4四.质量为μ的粒子沿X 方向以能量E 向x=0处势阶运动。
势⎩⎨⎧>≤=0x ,E 0x ,0)x (U 43,问在x=0处被反射的粒子几率有多大?解:写出分区薛定谔方程为:⎪⎪⎩⎪⎪⎨⎧>=ψ-μ+ψ≤=ψμ+ψ0x ,0)E 43E (2dx d 0x ,0E 2dx d 22222121212 ⎪⎪⎩⎪⎪⎨⎧>=ψ+ψ≤=ψ+ψ⇒0x ,0)2k (dx d 0x ,0k dxd 22222121212其解为⎪⎩⎪⎨⎧>=ψ≤+=ψ-0x ,De 0x ,Re e xi 2ikxikx 12k由x=0处的连续性条件,可得到:D i )R 1(ik )0()0(D R 1)0()0(2k 2121=+⇒ψ'=ψ'=+⇒ψ=ψ 解得:D=3/4,R=1/3 从而几率流密度为x x 22k D x x 2R x e ˆ9k 8e ˆ|D |J ,e ˆ9k e ˆ|R |k J ,e ˆk J μ=μ=μ-=μ-=μ=所以,反射几率91|J ||J |R R == 透射几率:98|J ||J |D D ==满足 R+D=1五.两个质量为μ自旋为1/2的全同粒子处于一维无限深势阱(0<x<a)中,忽略自旋相关力,求:1.粒子间无相互作用,用单粒子态和自旋态给出三个最低能态。
2.粒子间有相互作用势能V (x 1-x 2),这可看成微扰,以一阶微扰理论计算第二、第三最低能态的能量,将你的结果保留在积分式。
解:1.(参见汪P274 ) 求粒子体系的能量本征值和本征函数: 忽略两粒子间的相互作用时,体系总能量)n n (a 2E E E 222122221+μπ=+=考虑到是全同费米子体系,体系的总波函数)s ,s ()x ,x (z 2z 121χψ=ψ必须是反对称的,第一最低能态:n 1=1,n 2=1,22211a 22E μπ=,则 )]s ()s ()s ()s ([a xsin a x sin a 2z 2z 1z 2z 1211121212121χχ-χχππ=ψ--由于空间运动波函数是对称的,故自旋运动的波函数必为反对称的,且基态为非简并态。
(NEW)中国科学技术大学《828量子力学》历年考研真题汇编(含部分答案)
(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
5.(30分)假设自由空间中有两个质量为m、自旋为 /2的粒子,它们 按如下自旋相关势
相互作用,其中r为两粒子之间的距离,g>0为常量,而 (i=l,2)为 分别作用于第1个粒子自旋的Pauli矩阵。
。算符 , 与升降算符之间的关系为:
其中
。对于体系基态,相关的平均值为:
所以,
,
最终得到:
。 4.(20分〉设有2维空间中的如下矩阵
(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
解:(a)矩阵A的转置共轭为:
因此,矩阵A为厄米矩阵。 (b)Pauli矩阵分别为:
令
,则 , 与哈密顿量对易。对于 ,此结果是显然的。对
于,
体系的角动量 显然也与哈密顿量及自旋对易。因此力学量组 即为体系的一组可对易力学量完全集。
(b)为考虑体系的束缚态,需要在质心系中考查,哈密顿量可改写 为:
其中 为质心动量。由于质心的运动相当于一自由粒子,体系的波函数 首先可分离为空间部分和自旋部分,空间部分可以进一步分解为质心部 分和与体系内部结构相关的部分。略去质心部分,将波函数写成力学量 完全集的本征函数:
目 录
2014年中国科学技术大学828量子力学 考研真题
2013年中国科学技术大学828量子力学 考研真题
2012年中国科学技术大学828量子力学 考研真题
2011年中国科学技术大学809量子力学 考研真题
[全]《量子力学》考研真题详解[下载全]
《量子力学》考研真题详解1、1924年,德布罗意提出物质波概念,认为任何实物粒子,如电子,质子,也具有波性,对于具有一定动量p的自由粒子,满足德布罗意关系:______;假设电子由静止被150伏电压加速,加速后电子的物质波波长为:______。
[北京大学2005研]【答案】,;8.9×10-41m2对宏观物体而言,其对应的物质波长极短,所以宏观物体波动性很难被我们观察到,但最近发现介观系统(纳米尺度下的大分子)在低温下会显示出波动性。
计算1K时,C60团簇(由60个C原子构成足球状分子)热运动对应的物质波波长为:______。
[北京大学2005研]【答案】2.9×10-10m二、判断题1量子力学中可观察力学量相应的算符为厄米算符。
[北京大学2006研]【答案】对查看答案【解析】在量子力学中,表示力学量的算符都是纳米算符。
2设体系处于定态,则不含时力学量的测量值的概率分布不随时间改变。
[北京大学2006研]【答案】错查看答案【解析】力学量F∧的平均值随时间的变化满足:若(即力学量F∧的平均值不随时间变化),则称F∧为守恒量。
力学量F∧为守恒量的条件为:∂F/∂t=0且[F,H]=0。
不含时力学量F∧的测量值随时间改变可以表示为:因此,力学量F∧的平均值是否变化不能确定,对于定态而言,任何一个波函数都可以用力学量F∧的本征函数表示,在各个本征函数中,力学量F∧所取值的大小是确定的。
因此可以推断,力学量F∧的测量值的概率分布也不能确定。
3一维粒子的本征态是不简并的。
[北京大学2006研]【答案】错查看答案【解析】对于一维粒子的本征态是否简并不能确定,可以举例说明。
比如,一维无限深方势阱,若势能满足:在阱内(),体系所满足的定态薛定谔方程为:在阱外(),定态薛定谔方程为:体系的能量本征值为:本征函数为:所以,显而易见,一维无限深方势阱的本征态是简并的。
复习笔记在十九世纪末、二十世纪初,经典物理取得了巨大的成功,牛顿定律、麦克斯韦方程、热力学和统计力学相继建立并成功应用于物理学研究和工程,但在物理大厦落成的同时,物理学家中的有识之士也意识到了天空中漂浮的乌云。
中国科技大学2001-2002年硕士研究生入学考试试题(量子力学)
中国科技大学2001-2002年硕士研究生入学考试试题(量子力学)中国科技大学2001-2002年硕士研究生入学考试试题(量子力学)中国科学院——中国科技大学2001年招收攻读硕士学位研究生入学试卷试题名称:量子力学(实验型)一、(10分)设质量为m 的粒子在一维无限深势阱中运动()()()?<<><∞=a x a x x x V 00,0 试用de Broglie 的驻波条件,求粒子能量的可能取值。
二、(10分)设一个质量为m 的粒子束沿正x 方向以能量E 向x=0处的势垒运动()()()>≤=04300x E x x V 试用量子力学的观点回答:在x=0处被反射的反射系数是多少?三、(20分)1、在坐标表名胜中写出一维量子体系的坐标算符q和动量算符p ?,并推导其间的对易关系。
2、在动量表象中做1所要求做的问题。
四、(20分)设一个微观粒子在球对称的中心势场()r V 中运动,且处于一个能量和轨道角动量的共同本征态。
1、在球坐标系中写出能量本征态波函数的基本形式,写出势能()r V 在此态中平均值〈V 〉的表达式,并最后表示成径向积分的形式。
2、设V(r)为r 的单调上升函数(即对任意r,0>drdV )。
试证明:对任意给定的r 0,均有 ()[]()022<-?dr r r R V r V ro o ,其中R(r)是径向波函五、(20分)设一个质量为m 的微观粒子的哈密顿量不显含时间,试证明:在能量表象中有 ()mh X E Enm n m n 222=-∑ ,其中E 为能量,x 为坐标。
六、(20分)设一微观体系的哈密顿H=H 0+H ‘,其中H ’为微扰。
在一个由正交归一函数作为基的表象中。
中科院量子力学题90-11
θ 2
θ 2
(4)求演化成 −ψ ( x, t ) 所需要的最短时间 tmin 。 三、设基态氢原子处于弱电场中,微扰哈密顿量是:
-2-
t ≤ 0; ⎧ 0, ˆ' =⎪ 其中 λ、T 为常数。 H t ⎨ − T ⎪ > λ ze , t 0. ⎩
(1) 求很长时间后 t ≫ T 电子跃迁到激发态的概率,已知基态中 a 为玻尔半 径,基态和激发态波函数为:
1 2 1 2
中国科学院研究生院 2007 年招收攻读硕士研究生学位研究生入学统一考试试题 试题名称:量子力学 B 卷
一、考虑一维阶梯势 V ( x) = ⎨
⎧V0 , ⎩ 0,
x > 0(V0 > 0) x<0
设粒子从右边向左边入射,试求反射系数和入射系数。 二、电子处于沿 + z 方向大小为 B 的均匀磁场中。设 t = 0 时刻电子自旋沿 + y 方 向。 (1)试求 t = 0 时电子自旋波函数; (2)试分别求出 t > 0 时电子自旋沿 + x, + y, + z 方向的概率。 三、粒子在 V ( 100 ( r ) = R10 ( r ) Y00 (θ , ϕ ) = e ; 3 4π 2 a 3 1 � cos θ ψ 210 ( r ) = R21 ( r ) Y10 (θ , ϕ ) = 3 4π (2a) 2
r − 2ra e . 3a
(2)基态电子跃迁到下列哪个激发态的概率等于零?简述理由。 (a)ψ 200 (b)ψ 211 (c)ψ 21−1 (d)ψ 210
一、在一维无限深方势阱 ( 0 < x < a ) 中运动的粒子受到微扰
a 2a ⎧ < x<a 0, 0 < x < , ⎪ ⎪ 3 3 ' ˆ H ( x) = ⎨ 作用。试求基态能量的一级修正。 a 2a ⎪ −V , < x< 1 ⎪ 3 3 ⎩
量子力学试题
量子力学试题(共21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--量子力学试题(一)及答案一. (20分)质量为m 的粒子,在一维无限深势阱中()⎩⎨⎧><∞≤≤=a x x a x x V ,0 ,0,0中运动,若0=t 时,粒子处于 ()()()()x x x x 3212131210,ϕϕϕψ+-=状态上,其中,()x n ϕ为粒子能量的第n 个本征态。
(1) 求0=t 时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为()xan a x n n m a E n n πϕπsin 2,3,2,1 ,22222===(1) 首先,将()0,x ψ归一化。
由12131212222=⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛c 可知,归一化常数为 1312=c 于是,归一化后的波函数为 ()()()()x x x x 3211331341360,ϕϕϕψ++-=能量的取值几率为 ()()()133;134;136321===E W E W E W 能量取其它值的几率皆为零。
(2) 因为哈密顿算符不显含时间,故0>t 时的波函数为()()()()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=t E x t E x t E x t x 332211i exp 133i exp 134i exp 136, ϕϕϕψ(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。
二. (20分)质量为m 的粒子在一维势阱()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x V x x V ,00,0.0 中运动()00>V ,若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1990年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(理论型),00分。
、在,氢原子波函数为说明:共五道大题无选择题,计分在题尾标出,满分10t =100210211211一(,0)2r ψψψ=+⎣⎦ 其中右方函数下标表示量子数。
忽略自旋和辐射跃迁。
投影-⎡⎤(1) 此系统的平均能量是多少?nlm 0z L =(2) 这系统在任意时刻处于角动量的几率是多少? 、利用坐标与动量算符之间的对易投影关系,证明二()2∞00n nE E n x -=∑常数这里是哈密顿量n E 2ˆˆ()2p H V m=+x 的本征能量,相应的本征态为n 。
求出该常数。
、设一质量为μ的粒子在球对称势()(0)V r kr k =>三中运动。
利用测不准关系估算其(束缚态)类似于氢原子,只是用一个正电子代替质子作为核,在非基态的能量。
四、电子偶素e e +-种接触型自旋交换作用相对论极限下,其能量和波函数与氢原子类似。
今设在电子偶素的基态里,存在一8e p ˆˆˆ3H M M π和ˆpM '=-⋅其中ˆe M 是电子和正电子的自旋磁矩ˆˆ(,q )MS q ==e mc±量差,决定哪一个能量更低。
对普通的氢原子,基态波函数: 。
利用一级微扰论,计算此基态中自旋单态与三重态之间的能221137e c 1002,,r a a me ψ-==一质量为= μ的粒子被势场00()(0)r aV r V e V a -=>>所散射,用一级玻恩近似计算微分散射截面。
五、1990年招收攻读硕士学位研究生入学试卷试题名称:量子力学(实验型)分。
光电效应实验指出:当光照射到金属上,说明:共五道大题,无选择题,计分在题尾标出,满分100一、(1) a) 只有当光频率大于一定值0ν时,才有光电子发射出;b) 光电子的能量只与光的频率有关,而与光的强度无关;c) 只要光的频率大于0ν,光子立即产生。
试述:a) 经典理论为何不能解释上述现象,或者说这些实验现象与经典理论矛盾何斯坦假说正确解释上述实验结果。
在?b) 用爱因(2) 电子是微观粒子,为什么在阴极射线实验中,电子运动轨迹可用牛顿定律描述?(3) 1ψ和2ψ为体系本征态,任一态为c c 1122ψψψ=+。
如果01ψ=,试问:a) 如1ψ和2ψ是经典波,在ψ态中1ψ和2ψ态的几率如何表示?b) 如1ψ和2ψ是几率波,在ψ态中1ψ和2ψ态的几率如何表示?(4) 如何知道电子存在自旋?222ˆ1ˆ22p H m m ω=+二、一维谐振子的哈密顿量x ,基态波函数222(),x x αψα-==。
设振子处于基态。
(1997年(实验型Ⅰ)第五题) (1) 求x <>和p <>;(2) 写出本征能量E ,并说明它反映微观粒子什么特征?(3)一维谐振子的维里定理是,试利用这个定理证明: T V <>=<>2x p ∆⋅∆=,其中x ∆=∆三、精确到微扰论的一级近似,试计算由于不把原子核当作点电荷,而作为是半径为p =R ,均匀带电荷Ze 的球体所引起的类氢原子基态能量的修正。
已知球内静电势223,类氢原子基态波函数()22Ze r R R ⎛⎫⎭r ϕ ⎪,球外电势为=-⎝Ze r 1,Zr a s a ψ-=玻尔半径。
用为四、,,j l s 写出ˆˆˆˆ,LS J S ⋅⋅的表达式。
对于 (1) (2) 2,12l s ==,计算确定(2)中和间夹角的可能值,并画出和的矢量模型图。
证明虚ˆˆ的可能值。
LS ⋅ (3) ˆˆLS ˆˆ,L S ˆJ 五、求在一维常虚势场()iV V E - 中运动粒子的波函数,计算几率流密度,并势代表粒子的吸收,用V 表示)。
求吸收系数(1991年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(理论型)分。
请推导相应的几率守恒定律。
求出几率密度与几率、当两个质量为的粒子通过球对称势说明:共五道大题,无选择题,计分在题尾标出,满分100一、一个带电粒子在电磁场中运动,流密度的表达式。
m ()0()ln V r A r r =二,(为常数)而束0缚0,0A r >>在一起,其第一激发态能量与基态能量之差为E ∆。
今有一个质量为m 的粒子与另一个质量为1840m 的粒子通过同一位势形成束缚态,则这一系统的第一激发态与基态能量之差是多少?说出理由,并证明之。
三、一束极化的波()电子通过一个不均匀的磁场后分裂为强度不同的两束,其、质量为s 0l =中自旋反平行于磁场的一束与自旋平行于磁场的一束之强度比为3:1,求入射电子自旋方向与磁场方向夹角的大小。
μ的粒子在一个三维球方势阱中运动,000()(0),V r V V r a ,r a>⎧=>⎨-<⎩ 四问:波束缚态的条件是什么?波相移(1) 存在s (2) 当粒子能量0E >时,求粒子的s 0δ; (3) 证明00lim ,E n n δπ=为整数。
→,0()(0),0z V z G Gz z ∞<⎧=>⎨>⎩五、质量为m 的粒子在一维势场中运动。
(1) 用变分法求基态能量,则在区域中的试探波函数应取下列函数中的哪一z 0z ≥个?为什么?22,,x z z e ze αα,sin x αα--+(2) 算出基态。
能量值。
1991年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(实验型)分。
1) 电子双缝实验中,什么结果完全不能用粒子性而必须用波动性来解释,为什原子光谱主线系的精细结构。
说明:共五道大题,无选择题,计分在题尾标出,满分100一、(么?(2) 解释钠()3np s →(3) 量子力学角动量用矢量图表示时,和经典角动量有什么不同,为什么?二、一个质量为μ的粒子,处于0x a ≤≤的无限深方势阱中,0t =时,其归一化波函数为(,0)1cos sinx xx t a aππψ⎫==+⎪⎭ 求(2000年(实验型)第二题):波函数; 为,四、质量为(1) 在后来某一时刻t t =时的0(2) 在0t =和t t =时的体系平均能量。
0三、精确到微扰的一级近似,试计算如图所示宽度OB a AO 为0V ,AOB 被切去的无限深方势阱(如图CABD )的最低三个态的能量。
μ的粒子在势场32()V r rλ=-常数(0λ>)中运动,试用测不准关系估算基态能量。
[]ˆ,x p五、如系统的哈密顿量不显含时间,用算符对易关系,证明能量表象中有()222nm nmnEE x μ∞其中-=∑ μ为系统质量,n E 与m E 是能量本征值,满足ˆˆ,n m H n m ,nE n H m E ==∞∑是对n 的完全求和。
1992年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(理论型)分。
、个质量都是的粒子可在一宽为的无限深方势阱中运动,忽略彼此间的相互作、1) 写出角动量算符说明:共五道大题,无选择题,计分在题尾标出,满分100一N m a 用,请求出最低的4条能级,并写下相应的简并度。
二ˆˆˆ,,x y L L L z(及算符之间的一切对易关系; (2) 设2ˆL lm ψ是与的本征态,本征值分别为和,证明2ˆˆ2z L (1)l l + m ()ˆˆx y l L iL L mϕψ=+亦为2ˆL 与ˆzL 的本征态,求出本征值; (3) 证明当时,态0l =lm ψ也是ˆx L 与的本征态。
、有一个定域电子(作为近似模型,可以不考虑轨道运动),受到均匀磁场的作用,磁场ˆL y三、请根据不确定关系估计氢原子基态的能量。
四ˆˆˆ2x x eB eB c μ H S cσμ==。
设0t B x = 指向正方向,相互作用势为时电子自旋朝上,即2zs = ,求时自旋的平均值。
、假定氢原子内的质子是一个半径为的均匀带电球壳,而不是点电荷,试用、一束中子射向氢分子而发生弹性碰撞。
忽略电子对中子的作用,而两个原子核与中0t >ˆS五1310cm -一级微扰论计算氢原子1s 态能量的改变。
六子的作用可用下面的简化势代替:()()(3)(3)0)V r a r a δδ(V r ⎡⎤=-++-⎣⎦ 矢量(a 与a 其中0V 是常数,a 是常,-分别是两核的位置矢量)。
试求高能下的中子散射微分截面,并指出散射截面的一个极大的方向。
1992年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(实验型)分。
实说明微观粒子具有波粒二象性。
说明:共五道大题,无选择题,计分在题尾标出,满分100一、简单回答下列问题:(1) 举出一个实验事(2) 量子力学的波函数与经典的波场有何本质的区别? (3) 如图所示,一个光子入射到半透半反镜面,12M P 和P P P 和为光电、若厄密算符探测器,试分别按照经典与量子的观点说明1是否能同时接收到光信号(12l l =)。
ˆˆA B 与具有共同本征态函数,即ˆˆ,na n nana n naA AB B ψψψψ==二,而且构成体系状。
三、在一维谐振子的哈密顿量态的完备函数组。
试证明ˆˆ,0AB ⎡⎤=⎣⎦222ˆ1ˆ22p H x μωμ=+中引进†ˆˆ,,a p a p ⎫=+=-⎪⎪⎫⎪⎭。
(1) 证明⎪⎭†,1a a ⎡⎤=⎣⎦; (2) 用写出哈密顿量; 设†,a a ˆH(3) n 为的本征矢,本征值为。
证明ˆH 为的本征矢,本征值为ˆH ()nE ω- n E a n 。
、在的对角表象(用泡利矩阵的形式表示)中,求出自旋算符ˆz S ˆˆˆ,,xy zS S S 四的本征值和本征矢五、在=时,氢原子的波函数量。
t 100210211211(,0)2r ψψψ-⎤=+++⎦(1) 该体系的能量期待值是多少式中波函数的下标分别是量子数的值,忽略自旋和辐射跃迁。
?的态的几率是多少?(1997年(实验型Ⅰ)第六题),,n l m (2) 在t 时刻体系处在1,1l m ==1993年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(理论型)说明:共六道大题,选作五题,每题20分。
一、质量为m 的粒子可在势()()(V x x αδα0)=>1122,0,0x x x x e A e x x A e A e x λλλλ--'+<'=+> 的作用下作一维运动。
设粒子能量(1) 计算矩阵0E <,它的波函数可写为()x A ϕ= ()ϕM :⎫。
(2) 求能量的值,解出波函数。
择基矢为2121A A M A A ⎛⎫⎛= ⎪ ''⎝⎭⎝⎪⎭E (3) 求动量的几率分布表达式。
{}1,2,3二、有一量子体系,其态空间三维,选,定义哈密顿量及另二个力学量ˆHˆˆ,AB 0ω 时,系统状态为为 设0t =100⎛100010ˆˆˆ020,001,100002010001H A a B b ⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11(0)12322ψ=++。