北师大版九年级数学上册知识点总结

合集下载

北师大版数学九年级(上册)(全册)复习

北师大版数学九年级(上册)(全册)复习
本文详细梳理了师大版九年级上册数学的核心内容,从特殊的平行四边形出发,深入探讨了菱形的定义、性质、判定方法及面积计算,进而延伸到矩形、正方形的相关知识点。在阐述矩形性质时,不仅指出了其对边平行且相等、对角相等且互相平分等基本特性,还通过例题展示了如何利用这些性质解决实际问题。正方形作为矩形和菱形的特例,其性质得到了全面的剖析。此外,文档还介绍了中点四边形的概念,并通过不同四边形的中点连接情况,得出了一系列有趣的结论。这些知识点不仅有助于学生巩固基础,更能提升他们的解题能力和数学思维。

北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结
一.比例线段:
1两条线段的比是 的比。

将“形”的问题转化为“数”的问题。

2.成比例线段:四条线段a,b,c,d 中,如果 ,那么这四条线段a,b,c,d 叫做成比例线段。

比例线段是有顺序的,即a,b,c,d 是成比例线段,则是a:b=c:d
3.如果c
b b
a ,那么
b 叫做a 和
c 的比例中项; 4.比例的性质:
(1)基本性质:如果 ,那么 。

()等比性质:如果 ,那么 5.平行线分线段成比例定理:
如图,321////l l l ,则可得比例式: DE//AB,则所得比例式:
6.黄金分割: 黄金比 二.相似三角形:
1.相似三角形的判定方法:
(1)两角对应 的两个三角形相似。

(2)两边对应 且 相等的两个三角形相似。

(3)三边 的两个三角形相似
2.相似三角形的性质:
3.位似图形:
4.位似图形有同向和 两种。

在坐标系中,图形上点的坐标都乘以k 时,得到的图形与原图形关于原点位似,且位似比是|k|.
5.判定两个三角形相似的常用步骤:
先通过已知,平行、对顶角、公共角等,看能否找到两对相等的角; 若只能找到一对相等的角,再分析夹这个角的两边是否成比例; 若找不到相等的角,就分析三边是否成比例。

5.常见的基本模型有 :
D E F
1l 3
l 2
l m n
B A C。

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。

2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。

3.二次根式:二次根式的定义、运算法则。

4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。

5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。

6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。

第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。

2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。

3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。

4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。

5.海伦公式:海伦公式的概念、海伦公式的应用。

第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。

2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。

3.三角形的性质:三角形的角与边的关系、角边关系等。

4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。

5.高中数学预修知识:比例与相似、复数等。

第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。

2.几何体的计算:几何体的表面积、几何体的体积等。

3.空间几何基本定理:角的平分线、角的辅助线等。

4.三角恒等式:三角函数的反函数、三角函数的周期等。

第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。

2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。

3.数的四则运算:整数、有理数、无理数的四则运算等。

4.二次方程与不等式:二次方程的定义、解二次方程的方法等。

5.三角形的面积:三角形的名字、面积的计算公式等。

第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。

北师大版《数学》(九年级上册)知识点总结(打印版)

北师大版《数学》(九年级上册)知识点总结(打印版)

北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。

(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。

(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。

(4)全等三角形的对应边相等、对应角相等。

推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。

二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。

(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。

四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。

九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

当一个单项式的系数是1或—1时,“1”通常省略不写。

一个单项式中,全部字母的指数的和叫做这个单项式的次数。

假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。

1、多项式有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。

性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。

2020北师大版九年级数学上册 反比例函数知识点总结

2020北师大版九年级数学上册 反比例函数知识点总结

【文库独家】北师大版九年级上册第六章 反比例函数知识点总结知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

九年级数学上册第三章知识点总结(北师大版)

九年级数学上册第三章知识点总结(北师大版)

九年级数学上册第三章知识点总结(北师大版)一、有理数的概念与性质1. 有理数的定义有理数是整数和分数的统称,包括正整数、负整数、零和所有的正负分数。

2. 有理数的比较有理数的比较可以利用数轴进行,较大的数在数轴上对应的点靠右,较小的数在数轴上对应的点靠左。

3. 有理数的运算性质有理数的加法、减法、乘法、除法满足封闭性、结合律、交换律、分配律。

4. 有理数的约分与化简将有理数的分子和分母同时除以它们的最大公约数,可以得到最简形式的有理数。

二、实数的表示1. 实数的性质实数包括有理数和无理数,实数的运算满足封闭性、传递性、对称性等性质。

2. 实数的表示方法实数可以用有理数表示,也可以用无理数表示。

(1)有理数的表示有理数可以用分数的形式表示,也可以用小数表示。

(2)无理数的表示无理数无法用两个整数的比值表示,可以用无限不循环小数或根式表示。

3. 无理数的性质无理数包括无限不循环小数和无限循环小数两种。

4. 实数的区间表示法实数可以用区间表示法表示在数轴上的连续的一段。

三、实数的运算1. 实数的加法与减法实数的加法满足交换律、结合律、存在单位元、存在逆元等性质。

实数的减法即加法的逆运算。

2. 实数的乘法与除法实数的乘法满足交换律、结合律、存在单位元、存在逆元等性质。

实数的除法即乘法的逆运算。

3. 乘方运算实数的乘方运算即将一个实数连乘若干次。

4. 实数的分配律实数的乘法对于加法满足分配律。

四、实数的应用实数广泛应用于各个领域,包括自然科学、社会科学和工程技术等。

1. 数学建模实数在数学建模中起到了重要作用,通过实数的运算可以描述和解决实际问题。

2. 统计学与概率论实数在统计学和概率论中被广泛应用,例如描述数据的均值、方差以及概率的计算等。

3. 物理学与工程学实数在物理学和工程学中有着广泛的应用,例如描述物体的位置、速度、加速度等物理量。

4. 经济学与金融学实数在经济学和金融学中也有重要作用,例如描述价格、收益率、利率等。

北师大版九年级上册数学全册各章知识点汇总

北师大版九年级上册数学全册各章知识点汇总

最新新北师大版九年级数学(上册)知识点汇总
第一章特殊平行四边形
第二章一元二次方程
第三章概率的进一步认识
第四章图形的相似
第五章投影与视图
第六章反比例函数
第一章特殊平行四边形
1.1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形.
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.
菱形是轴对称图形,每条对角线所在的直线都是对称轴.
※菱形的判别方法:一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边都相等的四边形是菱形.
1.2 矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形
.矩形是特殊的平行四边形.
..
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称
图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).
对角线相等的平行四边形是矩形.
四个角都相等的四边形是矩形.
※推论:直角三角形斜边上的中线等于斜边的一半.
1.3 正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形.
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形.
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.


鹏翔教图3。

北师大版九年级上册数学复 习知识点及例题

北师大版九年级上册数学复    习知识点及例题

性角 质
对 角 线
四个角都是 直角
互相平分且 相等
对角相等
四个角都是直角
互相垂直平分, 且每条对角线平 分一组对角
互相垂直平分且相等,每 条对角线平分一组对角
判定
·有三个角 是直角; ·是平行四 边形且有一 个角是直角; ·是平行四
·四边相等的四 边形; ·是平行四边形 且有一组邻边相 等; ·是平行四边形
·是矩形,且有一组邻 边相等; ·是菱形,且有一个角 是直角。
边形且两条 且两条对角线互 对角线相等. 相垂直。
对称性
既是轴对称图形,又是中心对称图形
一.矩形 矩形定义:有一角是直角的平行四边形叫做矩形.
【强调】 矩形(1)是平行四边形;(2)一一个角是直角.
矩形的性质
性质1 矩形的四个角都是直角; 性质2 矩形的对角线相等,具有平行四边形的所以性质。;
①有一组邻边相等的平行四边形 (菱形) ②有一个角是直角的平行四边形 (矩形) 正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的
菱形. 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫
做正方形. 正方形是中心对称图形,对称中心是对角线的交点,正方形
又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有 四条对称轴;
因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们 性质的综合,正方形的性质总结如下:
边:对边平行,四边相等; 角:四个角都是直角; 对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角 形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等 的等腰直角三角形,这是正方形的特殊性质.

北师大版九年级数学(上册)重点知识点归纳整理

北师大版九年级数学(上册)重点知识点归纳整理

九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。

※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两条对角线互相平分的四边形是平行四边形。

※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。

这个距离称为平行线之间的距离。

第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。

矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。

北师大版初中数学九年级上册第一章知识点

北师大版初中数学九年级上册第一章知识点

九年级第一章特殊的平行四边形一、菱形知识点1:菱形的概念概念:有一组邻边相等的平行四边形叫菱形知识点2:菱形的性质1 面积:①底×高②对角线乘积的一半2 边:四条边相等;对边平行;对边相等3 角:对角相等;邻角互补4 对角线:对角线互相垂直平分,并且每一条对角线平分一组对角5 对称性:轴对称图形 + 中心对称图形知识点3:菱形的判定1 四边形+四条边相等2 平行四边形+一组邻边相等3 平行四边形+对角线互相垂直二、矩形知识点1:矩形的概念概念:有一个角是直角的平行四边形叫做矩形知识点2:矩形的性质1 面积:长×宽2 边:对边平行;对边相等3 角:四个角都是直角;对角相等;邻角互补4 对角线:对角线相等,对角线互相平分5 对称性:轴对称图形 + 中心对称图形6 斜边中线性质:直角三角形斜边上的中线等于斜边的一半知识点3:矩形的判定1 四边形+三个角是直角2 平行四边形+对角线相等三、正方形知识点1:正方形的概念概念:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形知识点2:正方形的性质1 面积:边长×边长2 边:四条边相等;对边平行;对边相等3 角:四个角都是直角;对角相等;邻角互补4 对角线:对角线相等且互相垂直平分,每一组对角线平分一组对角5 对称性:轴对称图形 + 中心对称图形知识点3:正方形的判定1 从平行四边形出发:平行四边形+一组邻边相等+一个直角2 从矩形出发:矩形+一组邻边相等矩形+对角线互相垂直3 从菱形出发:菱形+一个直角菱形+对角线相等四、中点四边形知识点1:中点四边形的概念概念:顺次链接任意四边形各边中点所组成的四边形叫中点四边形知识点2:常见的中点四边形1 任意四边形的中点四边形是平行四边形2 平行四边形的中点四边形是平行四边形3 矩形的中点四边形是菱形4 菱形得到中点四边形是矩形5 正方形的中点四边形是正方形。

北师大版-数学九年级上册知识点归纳总结

北师大版-数学九年级上册知识点归纳总结

北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质(1)平行四边形的对边平行且相等。

(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。

(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。

(边)(2)菱形的相邻的角互补,对角相等。

(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。

(边)(3)定理2:对角线互相垂直的平行四边形是菱形。

(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。

(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

北师大版数学九年级上册课本知识点

北师大版数学九年级上册课本知识点

北师大版数学九年级上册课本知识点第一章证明(二)1、(2页)公理三边对应相等的两个三角形全等。

(sss)公理两边及其夹角对应成正比的两个三角形全系列等。

(sas)公理两边及其夹角对应相等的两个三角形全等。

(asa)公理全系列等三角形的对应边成正比、对应角成正比。

推论两角及其中一角的对边对应相等的两个三角形全等。

(aas)2、(3页)定理等腰三角形的两个底角成正比。

3、(4页)推论等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。

随堂练习1.证明:等边三角形的三个角都相等,并且每个角都等于60。

4、(7页)定理存有两个角成正比的三角形就是等腰三角形。

(等角对等边)5、(8页)在证明时,先假设命题的结论不成立,然后推导出定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法。

6、(11页)定理存有一个角等同于60的等腰三角形就是等边三角形。

7、(12页)定理在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。

8、(13页)随堂练1.证明:三个角都成正比的三角形就是等边三角形。

9、(16页)定理直角三角形两条直角边的平方和等于斜边的一半。

10、(17页)定理如果三角形两边的平方和等同于第三边的平方,那么这个三角形就是直角三角形。

11、(18页)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

一个命题就是真命题,它的逆命题却不一定就是真命题。

如果一个定理的逆命题经过证明就是真命题,那么它也就是一个定理,这两个定理称作互逆定理。

12、(23页)定理斜边和一条直角边对应相等的两个直角三角形全等。

(“斜边、直角边”或“hl”)13、(26页)定理线段垂直平分线上的的边这条线段两个端点的距离成正比。

14、(27页)定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

北师大版九年级数学上册知识点归纳

北师大版九年级数学上册知识点归纳

九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章图形的相似第四章投影与视图第五章反比例函数第六章概率的进一步认识(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。

※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两条对角线互相平分的四边形是平行四边形。

※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。

这个距离称为平行线之间的距离。

第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。

矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。

九年级数学上册第三章知识点总结(北师大版)

九年级数学上册第三章知识点总结(北师大版)

九年级数学上册第三章知识点总结(北师大版)一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。

平行四边形的对角相等(邻角互补)。

平行四边形的对角线互相平分。

2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。

判定定理:两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两组对角分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

二、矩形1、矩形的性质定理:矩形的四个角都是直角。

矩形的对角线相等。

2、矩形的判定方法:定义:有一个角是直角的平行四边形是矩形。

判定定理:有三个角是直角的四边形是矩形。

对角线相等的平行四边形是矩形。

(对角线相等且互相平分的四边形是矩形。

)三、菱形1、菱形的性质定理:菱形的四条边都相等。

菱形的对角线相等,并且每条对角线平分一组对角。

2、菱形的判定方法:定义:有一组邻边相等的平行四边形是菱形。

判定定理:四条边都相等的四边形是菱形。

对角线互相垂直的平行四边形是菱形。

(对角线互相垂直且平分的四边形是菱形。

)四、正方形1、正方形的性质定理:正方形的四个角都是直角,四条边都相等。

正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

2、正方形的判定定理:l 有一个角是直角的菱形是正方形。

l 有一组邻边相等的矩形是正方形。

l 有一个角是直角且有一组邻边相等的平行四边形是正方形。

l 对角线相等的菱形是正方形。

l 对角线互相垂直的矩形是正方形。

l 对角线相等且互相垂直的平行四边形是正方形。

l 对角线相等且互相垂直、平分的四边形是正方形。

五、等腰梯形1、等腰梯形的性质定理:等腰梯形的两条对角线相等。

等腰梯形在同一底上的两个角相等。

2、等腰梯形的判定方法:定义:两腰相等的梯形是等腰梯形。

判定定理:在同一底上的两个角相等的梯形是等腰梯形。

六、三角形的中位线1、定义:连接三角形两边中点的线段叫做三角形的中位线。

2、性质定理:三角形的中位线平行于第三边,且等于第三边的一半。

北师大版《数学》(九年级上册)知识点总结

北师大版《数学》(九年级上册)知识点总结

北师大版《数学》(九年级上册)知识点总结第一章证明(二)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。

4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

九年级数学上册各章节考点归纳(最新北师大版)

九年级数学上册各章节考点归纳(最新北师大版)

特殊的平行四边形考点一:直角三角形斜边上的中线的性质1.如图1,在△ABC 中,∠ACB=90°,∠ABC=30°,BD 平分∠ABC ,P 是BD 的中点,若AD=6,则CP 的长为( ) A.3 B. 3.5 C.4 D. 4.52.如图2,平行四边形ABCD 中,AC ⊥BC ,E 为AB 的中点.若CE=2,则CD=( ) A.2 B.3 C.4 D.5总结:直角三角形斜边的中线等于斜边的一半.本次期中考试考到的可能性还是有的,一旦考了,我们可能就会手足无措,为什么呢,因为我们忘了这一性质,需引起重视.考点二:特殊的平行四边形1.如图3,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A.20B.15C.10D.5思考:为什么要出这样一道题,因为菱形中出现了120°(或60°),就会产生等边三角形2.如图4,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E ,若∠ADC=130°,则∠AOE 的大小为( ) A.75° B.65° C.55° D.50°3.如图5,在菱形ABCD 中,∠A=110°,E,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P,则∠FPC=( ) A.35° B.45° C.50° D.55°思考:有中点,应该想到倍长中线.【课堂练】4.如图6,在菱形ABCD 中,AB =5,对角线AC =6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为______.5.如图7,在菱形ABCD 中,∠ABC=60°,E 为AB 的中点,P 为对角线BD 上任意一点,AB=4,PA+PE 的最小值为( )A.4 B.2 C.32 D.336.如图8,在菱形ABCD 的边长是6,∠ABC=60°,点E 、F 、G 是BC 、CD 、BD 上的任意一点,则EG+FG 的最小值是( ) A.33 B.2 C.32 D.6思考:几何中的一个、两个或多个动点问题如何求解,关键在于通过对称将点转化到一条直线上再求.【课堂练】7.如图9,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连接CE ,则CE 的长为( )A.3.5 B.3 C.2.8 D.2.5思考:线段垂直平分线上的点到线段两个端点的距离相等,但是我们却常常将它忘掉.【课堂练】8.如图10,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( ). A.3 B.2.4 C.4 D.4.89.如图11,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为________.10.如图12,在矩形ABCD 中,AB=20,BC=10,若M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为______.【课堂练】11.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( ) A.7 B.4或10 C.5或9 D.6或8【课堂练】12.如图13,在矩形ABCD 中,AD=2AB,点M 、N 分别在AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MD AM 等于( ) A.83 B.32 C.53 D.54 13.如图14,边长分别为4和8的两个正方形ABCD 和CEFG 并排放在一起,连结BD 并延长交EG 于点T ,交FG 于点P ,则GT=( ) A.2 B.22 C.2 D.1【课堂练】14.如图15,边长为6的大正方形中有两个小正方形.若两个小正方形的面积分别为21S S ,,则1S +2S 的值为( ) A.16 B.17 C.18 D.19【课堂练】15.如图16,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值是( )A.B.C.D.※【难题】16.如图17,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_____.【课堂练】17.如图18,正方形ABCD中,∠DAC的平分线交DC于点E.若P、Q分别是AD和AE上的动点,则DQ+PQ能取到的最小值为42时,此正方形的边长为()A.2 B.4 C.6 D.8【必须做】18.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD,OC 上,且DE=CF,连接DF与AE的延长线交DF于点M.求证:AM⊥DF.考点三特殊的平行四边形的判定【课堂练】1.如图,在平行四边形ABCD中,AE、CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AFB.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线【必须做】2.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE,求证:四边形BCDE是矩形. 【必须做】3.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形; (2)若∠AED=2∠EAD,求证四边形ABCD是正方形.【必须做】4.如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的角平分线于点E,交∠BCA的外角∠ACD平分线于点F.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并说明理由.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.警示:解答题,考虑好再写,写的过程要思路清晰,有条理.考点四探究问题1.在正方形地块内修两条笔直的道路,把正方形分成形状相同且面积相等的四部分,道路宽度忽略不计.请设计三种不同的方案,在给出的三张正方形图纸上分别画出来,并简述绘图步骤.2.你能用手中的矩形纸片折出一个菱形吗?(1)聪明的你能够想出菱形应该怎样折出来吗?请你在下图中画出菱形的面积.(2)在矩形ABCD中,设AB=3,AD=4,请你用尺规在图中画出面积最大的菱形(保留作图痕迹,不用说明理由),标注上适当的字母,并求出这个菱形的面积.(3)已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).请你求出AB与BC的比值.3.(2013.河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),已知AD=6,求四边形AFDC的面积;(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).4.(2013.陕西)(1)请在图①中,作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由。

北师大版九年级上册数学 知识点复习课件(共46张PPT)

北师大版九年级上册数学 知识点复习课件(共46张PPT)

知识点八 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相 交于一点,那么这样的两个图形叫做位似图形,这 个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比;对应线段平行或者在 一条直 线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
墙壁等)上得到的影子叫做物体的投影. 投影所在的平面叫做投影面.
投影
投影面
2.中心投影指的是由同一点(知点识光源专)题发出的光线所形成的投影。
中心投影的投射线相交于一点,这 一点称为投影中心。
3.中心投影的特点:
知识专题
1).物体离光源越远,影子越长。
2).物体方向改变,影子方向随之改变。
3).光源离物体越近,影子越短。 4).光源方向改变,影子方向随之改变。
第一章 特殊的平行四边形
本章小结
一、菱形、矩形、正方形的性质
对边

平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
二、菱形、矩形、正方形的判定方法
(2) 反比例函数的性质
k>0
图象 y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九(上)数学知识点答案
第一章证明(一)
1、你能证明它吗?
(1)三角形全等的性质及判定
全等三角形的对应边相等,对应角也相等
判定:SSS、SAS、ASA、AAS、
(2)等腰三角形的判定、性质及推论
性质:等腰三角形的两个底角相等(等边对等角)
判定:有两个角相等的三角形是等腰三角形(等角对等边)
推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
3、线段的垂直平分线
(1)线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。

4、角平分线
(1)角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

(2)三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。

(3)如何用尺规作图法作出角平分线
第二章 一元二次方程
1、花边有多宽
(1)整式方程及一元二次方程的概念
整式方程:方程两边都是关于未知数的整式;
一元二次方程:只含有一个未知数x 的整式方程,并且都可以化作ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式。

(2)一元二次方程的一般式及各系数含义
一般式:ax 2+bx+c=0(a,b,c 为常数,a ≠0),其中,a 是二次项系数,b 是一次项系数,c 是常数项。

2、配方法
(1)直接开平方法的定义
利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。

(2)配方法的步骤和方法
一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m )2=n(n ≥0)的形式;三、直接用开平方法求出它的解。

3、公式法
(1)求根公式
b 2
-4ac ≥0时,x=a ac b b 242-±- (2)求一元二次方程的一般式及各系数的含义
一、将方程化为一元二次方程的一般ax 2+bx+c=0(a,b,c 为常数,a ≠0);二、计算b 2-4ac
的值,当b 2-4ac ≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程
的根;四、写出方程的两个根。

4、分解因式法
(1)分解因式的概念
当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a ·b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。

(2)分解因式法解一元二次方程的一般步骤
一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解。

5、为什么是0.618
(1)什么叫黄金比
线段AB 上一点C 分线段AB 成两条线段AC ,BC ,若
AB AC =AC BC ,则C 点叫线段AB 的黄金分割点,其中AB
AC 叫黄金比,其值为0.618。

(2)列一元二次方程解应用题的一般步骤
一、审题;二、设求知数;三、列代数式;四、列方程;五、解方程;六、检验;七、答
第三章 证明(三)
1、平行四边行
(1)平行四边形的定义、性质及判定
定义:两组对边分别平行的四边形叫平行四边形
性质:平行四边形的对边分别平行;平行四边形的对边分别相等;平行四边形的对角分别相等;平行四边形的对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边行。

(2)等腰梯形的性质及判定
性质:等腰梯形在同一底上的两个角相等;等腰梯形的两条对角线相等。

判定:同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。

(3)三角形中位线定义及性质
定义:连接三角形两边中点的线段叫做三角形的中位线。

性质:三角形的中位线平行于第三边,且等于第三边的一半。

2、特殊平行四边形
(1)矩形、菱形、正方形、直角三角形的性质及判定
第四章视图与投影
1、视图
(1)三视图的种类及三种视图之间的关系
三视图有主视图、左视图和俯视图;
三种视图间的关系:主、俯长对正;主、左高平齐;俯、左宽相等;
(2)会画圆柱、圆锥、球的三视图
2、太阳光与影子
(1)投影与平行投影的含义、平行投影的性质
一般地,用光线照射物体,在某个平面上得到的影子叫做投影;由平行光线形成的投影是平行投影。

平行投影的性质:物体上的点以及影子上的对应点的连线互相平行;当物体与投影面平行时,所形成的影子与物体全等;同一时刻,在平行光线下,互相平行的物体的高度与影子长度的比值相等。

(2)物体影长的变化规律,会将影长与相似结合起来进行计算
在太阳光的照射下,不同时刻,物体影子的长短也不一样,早晚影子长,中午影子短。

(3)平行投影与视图之间的关系
视图实际上就是该物体在某一平行光线下的投影。

3、灯光与影子
(1)中心投影的概念及应用,区别平行投影与中心投影
从一点发出的光线形成的投影称为中心投影。

(2)视点、视线与盲区的概念
眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。

第五章 反比例函数
1、反比例函数
(1)反比例函数的概念
一般地,如果两个变量x,y 之间的关系可以表示成y=
x
k 的形式,那么称y 是x 的反比例函数。

反比例函数的自变量x 不能为0。

(2)掌握求反比例函数的解析式的方法
将一组x,y 的值代入解析式中确定k 的值即可。

2、反比例函数的图象与性质
(1)反比例函数图象的画法
一般采用描点法:先列表,再描点,再连线。

(2)反比例函数的图象及性质,其表达式与图象的关系,函数值大小的比较(表5-1)
3、反比例函数的应用
(1)用反比例函数解决实际问题的一般思路
1、根据问题情境,设出所求的反比例函数表达式;
2、由问题中的已知数据,代入所求表达式,列出方程(或方程组),求出方程的解,确定出待定系数的值,从而确定函数表达式;
3、根据函数表达式,去解决实际问题。

(2)反比例函数与正比例函数的区别及综合应用(表5-1)
表5-1。

相关文档
最新文档