不锈钢的切削加工
分析不锈钢的机械加工方法
分析不锈钢的机械加工方法不锈钢是一种耐腐蚀的金属材料,广泛应用于制造行业中。
机械加工是对不锈钢进行形状加工和表面处理的重要方法之一,本文将分析常用的不锈钢机械加工方法。
1.铣削加工:铣削是将刀具在工件上旋转切削的一种加工方法。
不锈钢的硬度相对较高,因此在铣削过程中需要选用高硬度的刀具,并采用适当的切削速度和进给速度。
对于精密加工,还可采用数控铣床进行精确控制。
2.车削加工:车削是通过旋转车刀将工件宽度修整到设计尺寸的加工方法。
不锈钢的硬度高,具有很高的切削难度。
为了保证加工质量,需要选用刀具的刀片材料具有良好的切削性能,经常更换刀片,并且适当选择进给速度和切削速度。
3.钻削加工:钻削是通过旋转刀具在工件上切削孔洞的加工方法。
在不锈钢的钻削中,由于工件硬度高,钻头容易损坏。
因此,应选择硬质合金钻头,采用较低的切削转速,并进行冷却润滑剂的切削润滑。
4.磨削加工:磨削是通过磨料颗粒对工件进行磨削的一种加工方法。
不锈钢硬度高,适合采用砂轮进行磨削。
在磨削过程中,应选用适当的磨具和磨削磨粒,并保证切削液的良好冷却和润滑。
5.锻造加工:锻造是通过对不锈钢材料施加压力,使其发生塑性变形并改变形状的一种加工方法。
不锈钢具有较好的锻造性能,适合进行锻造加工。
通过锻造可以获得高强度和良好的耐腐蚀性能的零件。
6.激光切割:激光切割是通过高能激光束对不锈钢表面进行烧蚀,达到切割的目的。
激光切割具有高精度、高速度的特点,可用于制造复杂形状的零件。
7.电火花加工:电火花加工是通过电脉冲在工件表面产生高能量火花,使工件表面产生微小的氧化腐蚀,从而实现对不锈钢进行精细加工和切割的一种方法。
以上是常见的不锈钢机械加工方法,每种方法都具有适用的情况和要求。
在实际应用中,需要根据具体的加工需求和工件材料特性进行选择,以获得最佳的加工效果。
不锈钢加工 技术要求
不锈钢加工技术要求不锈钢加工技术要求不锈钢是一种耐腐蚀、美观、耐高温的金属材料,广泛应用于建筑、制造业、汽车、航空航天等领域。
为了保证不锈钢制品的质量和精度,需要进行精细的加工工艺。
本文将介绍不锈钢加工的技术要求。
1. 材料选择在不锈钢加工中,首先要选择合适的不锈钢材料。
常见的不锈钢材料有304、316、321等,它们具有不同的耐腐蚀性能和机械性能。
根据具体的使用环境和要求,选择适合的不锈钢材料非常重要。
2. 切削工艺不锈钢加工中常用的切削工艺包括铣削、车削、钻孔等。
切削工艺需要考虑刀具的选择、切削速度、进给速度等因素。
对于不锈钢材料,由于其硬度较高,切削时需要选择合适的刀具,并采用较低的切削速度和进给速度,以避免过热和损坏刀具。
3. 表面处理不锈钢加工后的表面往往需要进行处理,以提高其耐腐蚀性和美观度。
常见的表面处理方法包括抛光、研磨、喷砂和电镀等。
选择合适的表面处理方法,可以根据具体的需求来确定。
4. 焊接工艺不锈钢材料的焊接需要注意选择合适的焊接方法和焊接材料。
常见的焊接方法有TIG焊、MIG焊和电弧焊等。
在焊接过程中,需要注意保护焊接区域免受氧化和污染,以保证焊接接头的质量。
5. 尺寸精度控制不锈钢加工中,尺寸精度是非常重要的。
根据具体的产品要求,需要控制不同的尺寸公差。
在加工过程中,需要采用合适的测量工具和精度控制方法,确保产品的尺寸精度符合要求。
6. 表面质量控制不锈钢制品的表面质量对于美观度和耐腐蚀性非常重要。
在加工过程中,需要注意避免表面划伤、瑕疵和氧化。
对于表面质量要求较高的产品,可以采用抛光、喷砂等方法进行处理,以提高表面质量。
7. 清洁和防护不锈钢制品在加工完成后,需要进行清洁和防护工作。
清洁可以采用清洗剂和纯净水进行,以去除加工过程中产生的油污和颗粒。
防护可以采用防锈剂、包装膜等方法,避免不锈钢制品在储存和运输过程中受到腐蚀和损坏。
总结:不锈钢加工技术要求包括材料选择、切削工艺、表面处理、焊接工艺、尺寸精度控制、表面质量控制、清洁和防护等方面。
不锈钢车削参数
不锈钢车削参数不锈钢车削是一种重要的金属加工工艺,广泛应用于制造工业中的零部件生产。
车削是一种常见的金属切削加工方法,通过在车床上将工件固定在主轴上,然后使用刀具在工件上进行旋转切削来实现对工件的加工。
不锈钢是一种具有良好耐腐蚀性和耐热性的金属材料,因此在汽车制造、航空航天、化工设备等领域得到广泛应用。
不锈钢车削参数包括切削速度、进给速度、切削深度、切削力等多个方面,下面将对这些参数进行详细介绍。
一、切削速度切削速度是指车削刀具在切削时与工件接触的线速度,通常用米/分钟来表示。
对于不锈钢的车削,切削速度是一个至关重要的参数。
一般来说,对于不同种类的不锈钢,其切削速度也会有所不同。
常见的不锈钢材料有304不锈钢、316不锈钢等,它们的硬度和耐热性也会有所差异,因此需要根据具体的材料来确定切削速度。
二、进给速度进给速度是指刀具在切削时对工件的移动速度,通常以每分钟进给量来表示。
对于不锈钢车削来说,进给速度的选择对于加工质量和效率都有着重要影响。
一般来说,过大或过小的进给速度都会影响到车削的效果,因此需要根据不同的不锈钢材料来选择适当的进给速度。
三、切削深度切削深度是指刀具在进行车削时每次从工件上削下的距离。
对于不锈钢车削来说,切削深度的选择直接关系到车削的加工效率和加工质量。
一般来说,过大的切削深度容易导致刀具损坏,而过小的切削深度则容易影响车削的加工效率,因此需要根据具体的工件和车削刀具来选择适当的切削深度。
四、刀具选择不锈钢车削需要选择适合不锈钢加工的刀具。
常见的刀具材料有硬质合金、高速钢等,对于不同种类的不锈钢,需要选择硬度合适、耐磨损的刀具材料,并根据具体的工件形状和加工要求来选择合适的刀具类型。
五、切削润滑不锈钢材料的车削过程中,由于其硬度较高,容易产生高温,并且切屑也容易粘附在刀具上,因此切削时需要使用适当的切削润滑润滑,以降低切削温度,延长刀具的使用寿命,提高加工质量。
通过对不锈钢车削参数的合理选择,在保证车削加工效率的还能够得到尺寸精确、表面光滑的加工零件。
不锈钢车削加工特点及加工工艺
304 不锈钢车削加工特点及加工工艺304 不锈钢广泛应用与各行各业,你确定对其车削加工特点及相关的加工工艺很感兴趣。
下面就由我为你带来 304 不锈钢车削加工特点及加工工艺,期望你宠爱。
304 不锈钢车削加工特点(1)切削力大AISI 304 奥氏体不锈钢的硬度不高(硬度≤187HBS),由于其含大量的 Cr、Ni、Mn 等元素,塑性较好(断后伸长率δ5≥40%,断面收缩率ψ≥60%)。
切削加工时塑性变形大,尤其在较高温度时仍可保持较高的强度(一般钢在切削温度上升时强度下降明显),导致 AISI304 奥氏体不锈钢的切削力较大。
常规切削条件下,AISI 304 不锈钢的单位切削力达 2450MPa,比 45 钢高 25%以上。
(2)加工硬化严峻AISI 304 不锈钢在切削加工时伴有较为明显的塑性变形,材料晶格会产生严峻的歪扭;同时,由于奥氏体组织在稳定性方面的缺陷,一小局部奥氏体在此过程中变成了马氏体;此外,奥氏体中存在的杂质化合物会随着切削过程的进展因受热而分解,弥散分布的杂质在外表产生了硬化层,使加工硬化现象格外明显,硬化后的强度σb达1500MPa 以上,硬化层深度 0.1-0.3mm。
(3)切削区局部温度高由于AISI304 不锈钢所需切削力大,且切屑不易切离,使得分别切屑所消耗的功也较大。
常规条件下切削AISI 304 不锈钢比低碳钢高约50%,产生的切削热多。
奥氏体不锈钢的导热性差,AISI304 不锈钢的热导率为 16.3-21.5W/m·K,仅为 45 钢热导率的三分之一,因而使得切削区域的温度较高(通常切削加工时切屑所带走的热量应占切削热量的70%以上),大量切削热集中在切削区和“刀—屑”接触面上,传入刀具中的热量达20%(切削一般碳素钢时该数值仅为9%),使得在同等切削条件下,AISI304 不锈钢切削温度比 45 钢高约 200-300℃。
(4)刀具易产生粘附磨损由于奥氏体不锈钢的高温强度高,加工硬化倾向大,因此,切削负荷重,奥氏体不锈钢与刀具和切屑之间会由于切削过程中其与刀具之间的亲合趋势显著增加,从而不行避开地产生粘结、集中等现象,并生成“切屑瘤”,造成刀具粘附磨损。
浅谈不锈钢材料的车削加工
浅谈不锈钢材料的车削加工不锈钢是一种耐腐蚀、具有高强度的金属材料,广泛应用于制造业中。
车削是一种常见的金属加工方法,用于对工件进行精确的形状和尺寸加工。
不锈钢的车削加工具有一些特点和技巧,下面将从材料性质、车削工艺、工具选择以及表面质量等方面,对不锈钢材料的车削加工进行深入浅出的探讨。
首先要了解不锈钢材料的性质,以便进行合理的车削加工。
不锈钢的硬度较高,加工难度较大;同时,由于其中含有铬、镍等耐腐蚀元素,不锈钢具有较高的韧性和延展性。
因此,在车削加工过程中需要采取适当的加工参数和工具选择,以确保加工质量和工具寿命。
在车削加工中,切削速度、进给量和切削深度是影响加工效果的重要参数。
对于不锈钢材料,由于其硬度较高,一般需要采用较低的切削速度。
而对于进给量和切削深度,需要根据具体情况进行调整,以避免过度切削,导致工件表面质量下降、工具磨损加剧。
对于不锈钢材料的车削加工,工具选择也是非常重要的。
一般来说,硬质合金刀具具有较好的耐磨性和切削性能,适用于对不锈钢材料进行精细车削加工。
同时,鉴于不锈钢的高韧性和延展性,铺设刀具的刃角要求较小,刃口要光滑锋利,以保证切削力和刀具使用寿命。
此外,不锈钢材料的车削加工还需要注意切削润滑和冷却问题。
由于不锈钢的短切屑对切削过程有一定的干扰,切削润滑和冷却可以有效地减少切削热,防止刀具过热和磨损。
一般来说,可以通过植入切削剂、切削液和冷却剂等方式进行切削润滑和冷却。
最后,不锈钢材料的车削加工后还需要进行相应的表面处理,以提高工件的表面质量和防锈性能。
一般可以采用研磨、抛光等方式进行表面处理,以增加工件的光洁度和美观度。
总之,不锈钢材料的车削加工是一项综合性的任务,需要考虑材料性质、车削工艺、工具选择以及表面质量等多个方面的因素。
只有合理选择加工参数和工具,严格控制加工过程,才能获得满意的加工效果和产品质量。
同时,注重切削润滑和冷却、以及后续表面处理,也是保证不锈钢材料车削加工成功的关键。
不锈钢车削参数
不锈钢车削参数不锈钢车削参数是指在车削加工过程中,针对不锈钢材料的特性和要求所设定的一系列切削参数。
这些参数对于保证加工质量和提高生产效率具有重要意义。
以下是一些建议的不锈钢车削参数:1. 切削速度(Vc):切削速度是刀具在旋转时与工件接触点的速度。
对于不锈钢材料,切削速度应适当降低,以防止刀具过热和磨损。
一般推荐切削速度为20-60m/min。
2. 进给量(f):进给量是指刀具在每次切削行程中沿工件轴向移动的距离。
对于不锈钢材料,进给量应适当降低,以减小刀具磨损和切削力。
一般推荐进给量为0.1-0.3mm/r。
3. 切削深度(ap):切削深度是指刀具在每次切削行程中切入工件的深度。
对于不锈钢材料,切削深度应适当降低,以减小刀具磨损和切削力。
一般推荐切削深度为0.1-0.5mm。
4. 刀具前角(γo):刀具前角是指刀具主切削刃与工件表面的夹角。
对于不锈钢材料,刀具前角应适当增大,以提高切削性能和减少刀具磨损。
一般推荐前角为10-20°。
5. 刀具后角(αo):刀具后角是指刀具主切削刃与工件表面的夹角。
对于不锈钢材料,刀具后角应适当增大,以提高切削性能和减少刀具磨损。
一般推荐后角为8-12°。
6. 切削液:不锈钢车削过程中,应使用适当的切削液来冷却和润滑刀具和工件,以降低切削温度和减少刀具磨损。
常用的切削液有水溶性切削液、油溶性切削液和乳化液等。
7. 刀具材质:不锈钢车削过程中,应选择具有良好耐磨性和抗腐蚀性的刀具材质,如硬质合金、陶瓷和高速钢等。
8. 机床刚性:不锈钢车削过程中,应选择具有较高刚性的机床,以保证加工精度和表面质量。
9. 工艺路线:不锈钢车削过程中,应根据工件的形状和尺寸选择合适的工艺路线,以减少切削力和热量对加工质量的影响。
总之,不锈钢车削参数的选择应根据具体的工件材料、形状和尺寸以及加工要求进行综合考虑,以达到最佳的加工效果。
316l车床切削参数
316l车床切削参数
316L不锈钢是一种常见的不锈钢材料,常用于制造零件和构件。
在车床上对316L不锈钢进行切削加工时,需要考虑一些重要的切削
参数,以确保加工质量和工艺效率。
首先,切削速度是一个关键参数。
对于316L不锈钢,通常推荐
使用较低的切削速度,以避免过热和刀具磨损。
切削速度的选择应
该考虑到刀具材料、刀具类型和加工稳定性等因素。
其次,进给速度也是非常重要的参数。
适当的进给速度可以确
保切削过程中不会出现过度磨损或者切削力过大的情况。
进给速度
的选择需要结合刀具的类型、切削深度和加工表面的粗糙度要求等
因素来综合考虑。
另外,切削深度也需要合理控制。
对于316L不锈钢这样的材料,一般建议采用较小的切削深度,以确保切削过程中不会过度磨损刀
具或者引起加工表面的变形。
此外,切削润滑和冷却也是非常重要的参数。
由于316L不锈钢
具有较高的热导性和热膨胀系数,因此在切削过程中需要足够的润
滑和冷却,以确保切削过程稳定和加工表面质量。
最后,刀具的选择也是影响切削参数的重要因素。
针对316L不
锈钢的切削,一般推荐选择具有良好耐磨性和热稳定性的硬质合金
刀具,以确保切削效率和加工质量。
综上所述,316L不锈钢的车床切削参数需要综合考虑切削速度、进给速度、切削深度、切削润滑和冷却以及刀具选择等多个因素,
以确保加工质量和工艺效率。
在实际应用中,需要根据具体的加工
要求和设备条件进行合理的参数选择和调整。
不锈钢材料的车削加工
不锈钢材料的车削加工摘要:随着现代工业的日益发达,不锈钢材质也在生产加工中被广泛应用,因此合理选用不锈钢材质加工刀具,是确保正确高效切割不锈钢的关键条件。
针对不锈钢切削特点,一般要求刀具材质应具备耐热性好、耐磨性高、与不锈钢材质的亲和性影响小等优点。
关键词:不锈钢材料车削加工不锈钢,是在空气中或化学腐蚀介质中都可以抗侵蚀的一类高温合金钢,不锈钢是指拥有漂亮的表层和耐腐蚀性能良好,而且无须经过镀色等表层处理过程,而发挥了不锈钢所存在的表层特点,应用在多种多样的钢材的一类,也常简称为不锈耐酸钢材。
一:不锈钢车削加工的弊端1、加工硬化严重。
2、塑性变形大,热硬度高,切削抗力大,刀具卷曲折断难。
3、由于切屑和工作物之间的磨擦大,所形成的剪切热较多。
4、切削刀具表面容易粘附,易生成积屑瘤,使切削刀具表面出现粘附、扩大损坏,造成前刃面出现月牙洼,切削后刃生成较小的剥落和缺陷;不锈耐酸钢的碳化物微粒硬度很高,在切割时会直接和菜刀接触,从而损坏菜刀,使菜刀的磨损程度加大。
不锈耐酸钢材质的加热强度高、加工韧性大对数控车高速切削并不适用,相较而言,不锈钢材质在高温下的加工硬度下降较小,但实践已证明,在相同切削高温的作用下,不锈钢车削用量远较于一般的碳素钢更难以加工,其中加热强度高是个至关重要的原因。
加工质量硬化趋势强,对数控车削用量影响大在数字控制高速切削的过程中,由于刃刃对工件材料挤出的效果使车削用量区的金属材料形成了变化,晶内出现滑移,晶体畸变,组织致密,加工力学性能也随之改变,而一般的车削用量硬度也可提高2~3倍。
数控切割后的机械加工生硬层深入可能从数十微米至数百微米之间,所以前一次性走刀所形成的机械加工生硬状态,也阻碍了下一次性走刀时的切割,同时加工生硬层的高硬度也使得刀具非常易于损坏,而且岩屑的粘着性强、导热差对数控技术切割也有一定危害。
此外,刀由于受剥肋断面宽度形状的影响,再加上本身硬度不够,加工中易形成振动,刃刃也易在切削过程中因为内部温度过高而烧坏或由于其震动太大而崩裂。
不锈钢加工参数表
不锈钢加工参数表1. 切削速度:切削速度是指在切削过程中,刀具与工件接触点处的线速度。
不锈钢的切削速度通常在20-60m/min之间,具体数值取决于刀具材料、刀具几何形状、工件材料和加工要求等因素。
切削速度过高可能导致刀具磨损加快,切削力增大,加工精度降低;切削速度过低则可能导致刀具寿命降低,加工效率降低。
2. 进给速度:进给速度是指刀具在切削过程中沿工件进给方向的移动速度。
不锈钢的进给速度通常在0.1-0.5mm/r之间,具体数值取决于刀具材料、刀具几何形状、工件材料和加工要求等因素。
进给速度过高可能导致刀具磨损加快,切削力增大,加工精度降低;进给速度过低则可能导致刀具寿命降低,加工效率降低。
3. 切削深度:切削深度是指刀具在一次切削过程中切入工件的深度。
不锈钢的切削深度通常在0.1-0.5mm之间,具体数值取决于刀具材料、刀具几何形状、工件材料和加工要求等因素。
切削深度过大可能导致刀具磨损加快,切削力增大,加工精度降低;切削深度过小则可能导致刀具寿命降低,加工效率降低。
4. 切削宽度:切削宽度是指刀具在一次切削过程中切入工件的宽度。
不锈钢的切削宽度通常在2-10mm之间,具体数值取决于刀具材料、刀具几何形状、工件材料和加工要求等因素。
切削宽度过大可能导致刀具磨损加快,切削力增大,加工精度降低;切削宽度过小则可能导致刀具寿命降低,加工效率降低。
5. 切削油或冷却液:不锈钢加工过程中,为了降低切削温度,减少刀具磨损,提高加工精度和表面质量,通常需要使用切削油或冷却液。
切削油或冷却液的选择应根据不锈钢材料、刀具材料、加工条件等因素进行。
常用的切削油或冷却液有矿物油、乳化液、水溶性切削液等。
6. 刀具材料:不锈钢加工过程中,常用的刀具材料有高速钢、硬质合金、陶瓷、金刚石等。
不同材料的刀具对不锈钢的加工性能和加工效果有很大影响。
选择合适的刀具材料可以提高加工效率,延长刀具寿命,提高加工精度和表面质量。
不锈钢工件加工工艺简介
不锈钢工件加工工艺简介不锈钢是一种耐腐蚀、耐高温、耐磨损的金属材料,因其具有优良的物理和化学性能,在工程领域中得到广泛应用。
不锈钢工件的加工是指对不锈钢材料进行切削、成形、焊接等加工工艺,以满足工程应用的需要。
不锈钢工件加工工艺包括车削、铣削、磨削、钻孔、焊接、抛光等工艺步骤,下面将对不锈钢工件加工工艺进行简要介绍。
一、车削加工工艺车削是一种常用的加工不锈钢工件的方法,通过车床对工件进行旋转切削,使工件表面得到精密加工。
在车削加工中,不锈钢工件通常采用硬质合金刀具,利用切削原理对工件表面进行切削,以得到所需尺寸和形状。
车削加工不锈钢工件需要注意刀具的选择、切削速度和进给量的控制,以确保工件表面光洁度和尺寸精度。
对于不锈钢工件,由于其硬度和韧性较高,车削过程中需要保持合理的切削参数,避免刀具损坏和工件变形。
铣削是一种使用铣刀进行切削的加工方法,适用于不锈钢工件的平面加工、凹槽加工和轮廓加工等。
在不锈钢工件的铣削加工中,需要选择合适的刀具类型、切削参数和切削方式,以保证工件加工表面粗糙度和尺寸精度。
铣削加工可以采用立式铣床、卧式铣床、数控铣床等设备进行加工,根据不同的工件形状和要求选择合适的设备和工艺路线。
磨削是一种利用磨具对不锈钢工件进行加工的方法,能够获得精密的表面质量和尺寸精度。
磨削加工常用于不锈钢工件的表面精加工、内外圆孔加工和平面磨削等。
在磨削加工中,需要选择合适的磨具类型、磨削参数和冷却润滑方式,以避免工件表面产生热裂纹和变形。
焊接是将金属材料通过加热熔化和冷却凝固的方式连接在一起的加工方法,适用于不锈钢工件的连接和结构加工。
在焊接加工中,需要选择合适的焊接方法、焊接材料和焊接参数,以确保焊缝质量和连接强度。
不锈钢材料具有一定的焊接难度,焊接过程中需要控制温度和避免氧化,以减少焊接变形和气孔等缺陷。
抛光是一种通过摩擦和磨擦使不锈钢工件表面得到光滑和亮度的加工方法。
抛光加工可以采用机械抛光、化学抛光和电化学抛光等方式进行,以获得不同表面粗糙度和光洁度的要求。
不锈钢车削参数
不锈钢车削参数不锈钢车削参数是指在进行不锈钢材料车削加工时,需要考虑的关键参数。
这些参数包括切削速度、进给速度、切削深度、刀具几何参数等。
合理选择和控制这些参数可以提高车削效率,保证加工质量,延长刀具寿命。
下面将从这些方面详细介绍不锈钢车削参数。
首先是切削速度。
切削速度是指在单位时间内,刀具相对于工件的线速度。
不锈钢是一种硬度较高的材料,所以在车削时,需要选择相对较慢的切削速度以保证刀具的使用寿命和表面质量。
一般来说,不锈钢的切削速度要比碳钢慢2倍左右,通常在50-150米/分钟之间。
其次是进给速度。
进给速度是指刀具在单位时间内,在轴向方向上对工件的进给长度。
合理的进给速度可以保证切削过程中不锈钢的去屑能力和表面粗糙度。
进给速度过慢会导致切削过程中金属塑性变形量过大,进而产生较大的切削力和摩擦热量,使刀具极易磨损;进给速度过快则会减少加工表面质量。
因此,在选择进给速度时,需要根据具体不锈钢材料和刀具情况,以及加工要求来确定。
一般来说,不锈钢的进给速度一般较碳钢要慢2-3倍。
第三是切削深度。
切削深度是指刀具在一次车削过程中与工件接触的长度。
合理的切削深度可以控制不锈钢的切削力和切削温度,避免损耗过大和材料表面的过热变焦。
切削深度要根据不锈钢的强度、硬度和材料加工性能来确定。
通常情况下,不锈钢的切削深度要较小,以保证刀具的使用寿命和加工表面质量。
最后是刀具几何参数。
刀具几何参数主要包括刀具刃磨角度、前角、主偏角和刀具尺寸等。
合理选择刀具几何参数可以减小切削力和摩擦热量,从而延长刀具寿命,并提高加工质量。
对于不锈钢材料,刀具刃磨角度一般要小于碳钢,以减小热应力和摩擦热量;前角适当增大可以增强刀具的切削能力和排屑能力;主偏角的选择要结合不锈钢材料的切削性能和加工要求来确定。
此外,刀具的尺寸也要根据工件的尺寸和切削要求进行选择,通常要保证切削力和切削厚度的均衡。
综上所述,不锈钢车削参数是进行不锈钢加工时需要考虑的关键参数,包括切削速度、进给速度、切削深度和刀具几何参数等。
不锈钢的铣削加工参数
不锈钢的铣削加工参数不锈钢是一种常用的金属材料,广泛应用于工业制造和建筑领域。
铣削加工是一种常见的金属加工方法,通过切削工具在工件表面进行旋转切削,从而得到所需形状和尺寸的工件。
在不锈钢的铣削加工过程中,需要考虑多个参数,以确保加工质量和效率。
以下将介绍一些常见的不锈钢铣削加工参数。
1. 铣削切削速度(Cutting Speed)铣削切削速度是指刀具在工件表面的切削速度。
对于不锈钢材料,由于其硬度较高,切削速度应相对较低。
通常,不锈钢的切削速度范围为30-60m/min,具体数值需要根据具体材料和刀具来确定。
2. 进给速度(Feed Rate)进给速度是指刀具在横向方向上的移动速度,即每刀齿每转所移动的距离。
对于不锈钢材料,进给速度应适中,过低容易造成切削过热,过高则会降低切削效率。
通常,不锈钢材料的进给速度范围为0.1-0.3mm/tooth。
3. 刀具转速(Spindle Speed)刀具转速是指刀具在加工过程中的旋转速度。
对于不锈钢材料,刀具转速应较低,避免因过高的转速导致切削过热。
通常,不锈钢材料的刀具转速范围为500-3000rpm。
4. 切削深度(Cutting Depth)切削深度是指每次切削时刀具进入工件的深度。
对于不锈钢材料,切削深度应适中,过深容易导致切削过热和刀具磨损加剧。
通常,不锈钢材料的切削深度范围为0.5-3mm,具体数值需要根据具体材料和刀具来确定。
5. 切削润滑方式(Coolant)切削润滑是指在铣削加工过程中使用润滑剂来降低切削温度和减少切削力。
对于不锈钢材料,由于其导热性较低,应使用润滑剂来改善切削状况。
常见的切削润滑方式包括湿式切削和干式切削。
湿式切削可以通过冷却剂或润滑油来降低切削温度,减少刀具磨损;干式切削则需要通过空气或其他方式来冷却切削区域。
6.刀具材料和刀具形状选择合适的刀具材料和刀具形状也是不锈钢铣削加工的关键。
不锈钢材料的硬度高,切削性能差,因此需要采用高硬度和高耐磨抗热的刀具材料,如硬质合金刀具。
不锈钢316铣削加工参数
不锈钢316铣削加工参数一、介绍不锈钢316是一种具有良好耐腐蚀性能的不锈钢材料。
它含有2-3%的钼,相比其他不锈钢材料,钼的加入能够提升钢材的耐腐蚀性能。
316不锈钢广泛应用于化工、制药、食品加工等领域。
为了实现对不锈钢316的高质量加工,掌握适当的铣削加工参数是必要的。
二、铣削加工参数的选择1. 切削速度切削速度是铣削加工中最重要的参数之一。
对于不锈钢316材料,合理的切削速度能够保证加工的效率和质量。
一般而言,不锈钢316的切削速度在50-80米/分钟之间是较为合适的选择。
如果切削速度过高,容易导致刀具快速磨损;如果切削速度过低,可能造成切削效率低下。
2. 进给速度进给速度是指刀具在单位时间内移动的距离。
合理的进给速度能够保证加工效率和工件的表面质量。
对于不锈钢316材料,一般的进给速度在0.1-0.2毫米/刀齿是比较合适的选择。
考虑到不锈钢316的良好硬度,较小的进给速度可以提供更好的加工质量。
3. 切削深度切削深度是指刀具每次切削移动的深度。
对于不锈钢316材料,较小的切削深度可以减小切削力和减少刀具的磨损。
一般而言,选择较小的切削深度可以提高加工质量和延长刀具寿命。
4. 切削角度切削角度是指刀具与工件表面的夹角。
对于不锈钢316材料,一般选择较小的切削角度,如5-10度。
较小的切削角度能够减小切削力,降低刀具磨损,提高加工质量。
三、其他影响加工参数的因素除了切削速度、进给速度、切削深度和切削角度,还有其他一些因素也会影响铣削加工参数的选择。
例如,刀具材料、刀具形状、冷却液的使用等都会对加工效果产生影响。
在选择加工参数时,还需要根据具体情况综合考虑这些因素。
四、合理选择铣削加工参数的重要性合理选择铣削加工参数对于保证不锈钢316的加工质量至关重要。
如果选择不当,可能会导致加工效果差、刀具磨损严重或工件表面质量差等问题。
因此,在进行不锈钢316的铣削加工时,务必要认真考虑每个加工参数,并根据实际情况进行调整。
不锈钢nc加工参数
不锈钢nc加工参数
不锈钢(如304不锈钢、316不锈钢等)的数控(NC)加工参数会受到具体的工件要求、机床型号、刀具选择等因素的影响。
以下是一般情况下可能涉及到的一些常见数控加工参数:
1.切削速度(Cutting Speed,V):不锈钢通常具有较高的硬度,因此切削速度的选择需要适度。
通常情况下,不锈钢的切削速度较低,以确保刀具寿命和切削质量。
2.进给速度(Feed Rate,F):进给速度影响着每刀具每分钟的切削量,对于不锈钢,由于其硬度较高,进给速度通常选择适中,以保证切削效果。
3.主轴转速(Spindle Speed,N):主轴转速的选择取决于材料的硬度、刀具类型和直径等因素。
对于不锈钢,一般而言主轴转速较低,以确保切削质量和刀具寿命。
4.刀具半径补偿:针对不锈钢的加工,可能需要进行刀具半径补偿,以保证加工轮廓的精度。
5.冷却液使用:不锈钢的加工通常会产生较高的温度,使用适当的冷却液有助于降低温度、延长刀具寿命和提高加工质量。
6.切屑清理:不锈钢加工时,由于其容易产生粘性切屑,切屑清理工作也显得尤为重要。
这只是一些常见的数控加工参数,具体的参数设置还需要根据具体工件、机床设备、刀具等多方面因素进行综合考虑。
在进行实际数控加工时,最好根据设备的数控系统和刀具制造商提供的建议进行参数设置。
不锈钢的加工方法
不锈钢的加工方法不锈钢是一种常用的金属材料,具有耐腐蚀、高强度、耐高温等优点,在很多领域得到广泛的应用,如制造汽车零部件、厨具、建筑材料等。
在对不锈钢进行加工时,通常会采用多种方法。
下面是一些常见的不锈钢加工方法。
1. 切割切割是将不锈钢板材或管材切割成所需形状和尺寸的方法之一。
常用的切割方法有剪切、割断、激光切割等。
其中,剪切是将板材用剪刀直接切断,适用于较薄的不锈钢板材;割断则是使用切割机或氧炔焊等工具将不锈钢切割成所需尺寸;激光切割则是利用高能量激光束对不锈钢进行切割,可以实现精确的切割。
2. 折弯折弯是将不锈钢板材或管材折成所需的形状的方法。
常用的折弯方法有压力折弯和冷弯。
压力折弯是在机械折弯机上使用压力将不锈钢板材压弯成所需形状,适用于较薄的不锈钢板材;而冷弯则是通过对不锈钢板材进行逐渐弯曲,使其达到所需形状,适用于较厚的不锈钢板材。
3. 铣削铣削是利用铣刀将不锈钢工件表面切削成所需形状和尺寸的方法。
铣削可以在不同的方向上进行,包括平面铣削、立铣等。
通过选择合适的铣刀和刀具参数,可以实现精确的切削,并获得所需的表面质量。
4. 焊接不锈钢的焊接是将两个或多个不锈钢工件通过加热熔化和填充材料连接在一起的方法。
常用的焊接方法有电弧焊、氩弧焊、激光焊等。
电弧焊是利用电弧加热将不锈钢熔化,并使用焊条或焊丝填充材料连接,适用于较厚的不锈钢工件;氩弧焊是利用惰性气体保护焊接区域,形成稳定的焊接接头;激光焊则是利用高能量激光束对不锈钢进行局部熔化,实现高精度焊接。
5. 打磨和抛光打磨和抛光是将不锈钢表面加工成光滑、亮丽的方法。
通过使用不同颗粒度的砂纸、砂轮等工具,可以将不锈钢表面的毛刺、划痕等去除,并获得光滑的表面。
在抛光过程中,可以使用不同的抛光剂和抛光工具,如抛光膏、抛光机等,进一步提高不锈钢表面的光亮度。
以上是一些常见的不锈钢加工方法。
根据不同的加工需求和工件形状,可以选择合适的加工方法。
同时,在加工不锈钢时,需注意保持合适的切削速度、切削深度和刀具选择,以保证加工质量和提高工作效率。
切削不锈钢时怎样选择切削用量
切削不锈钢时怎样选择切削用量切削用量对加工不锈钢时的加工硬化、切削力、切削热等有很大影响,特别是对刀具耐用度的影响较大。
选择的切削用量合理与否,将直接影响切削效果。
切削速度Vc:加工不锈钢时切削速度稍微提高一点,切削温度就会高出许多,刀具磨损加剧,耐用度则大幅度下降。
为了保证合理的刀具耐用度,就要降低切削速度,一般按车削普通碳钢的40%~60%选取。
镗孔和切断时,由于刀具刚性、散热条件、冷却润滑效果及排屑情况都比车外圆差,切削速度还要适当降低。
不同种类的不锈钢的切削加工性各不相同,切削速度也需相应调整。
一般1Cr18Ni9Ti等奥氏体不锈钢的切削速度校正系数Kv为1. 0,硬度在HRC28以下的2cr13等马氏体不锈钢的Kv为1.3~1.5,硬度为HRC28~35的2Cr13等马氏体不锈钢的Kv为0.9~1.1,硬度在HRC35以上的2Cr13等马氏体不锈钢的Kv为0.7~0.8,耐浓硝酸不锈钢的Kv为0.6~0.7。
切削深度ap:粗加工时余量较大,应选用较大的切深,可减少走刀次数,同时可避免刀尖与毛坯表皮接触,减轻刀具磨损。
但加大切深应注意不要因切削力过大而引起振动,可选ap=2~5 mm。
精加工时可选较小的切削深度,还要避开硬化层,一般采用ap=0.2~0.
5 mm。
进给量f:进给量的增大不仅受到机床动力的限制,而且切削残留高度和积屑瘤高度都随进给量的增加而加大,因此进给量不能过大。
为提高加工表面质量,精加工时应采用较小的进给量。
同时,应注意f不得小于0.1 mm/r,避免微量进给,以免在加工硬化区进行切削,并且应注意切削刃不要在切削表面停留。
加工不锈钢的切削用量见表6和表7。
1Cr18Ni9Ti不锈钢的切削加工
实例。
关键词: 1Cr18Ni9T i 不锈钢; 切削加工; 刀具 材料; 几何参数; 切削用量; 切削液
中图分类号:TG506. 7+ 1
文献标识码: A
Cutting Process of 1Cr18Ni9Ti Stainless Steel
Wang Tingjun, Zhou Jianhua
Abstract: The material characteristics and cutting features of 1Cr18Ni9Ti austenite stainless steel are analyzed Starting with the determinations of tool material and tool geometric parameters as well as selections of cutting condition and cutting fluid, some common processes and key technologies for cutting such stainless steel materials are introduced, and some machining examples are presented
不锈钢可分为马氏体不锈钢、铁素体不锈钢、奥 氏体不锈钢、奥氏体 铁素体不锈钢、沉淀硬化不锈 钢等品种。1Cr18Ni9Ti 属于奥氏体不 锈钢, 该 钢种 具有优良的力学性能, 在大气或腐蚀性介质中具有 良好的耐蚀能力, 并具有较突出的冷变形能力和无 磁性等特性。一般来说, 不锈钢被认为是切削加工 性能较差的金属材料, 1Cr18Ni9T i 不锈钢尤为突出, 与 45 钢相比, 其相对可切削性仅为 0 3- 0 5, 属于 典型的难加工材料。
不锈钢316铣削加工参数
不锈钢316铣削加工参数1.铣削加工基本参数铣削是一种通过切削工具旋转进行金属加工的方法。
对于316不锈钢的铣削加工,可以采用以下基本参数:-切削速度:通常情况下,316不锈钢的切削速度为60-70米/分钟。
需要根据具体情况进行调整,以达到最佳的加工效果。
-进给速度:进给速度主要是指切削工具在单位时间内进给的距离。
对于316不锈钢的铣削加工,通常进给速度为0.05-0.15毫米/刀齿。
需要根据具体情况进行调整,以确保加工过程的稳定性和加工质量。
-切削深度:切削深度一般为刀具直径的1/2-1倍。
在316不锈钢的铣削加工中,可以适当增加切削深度,以提高加工效率和加工质量。
2.切削工具选择切削工具的选择对于铣削加工的质量和效率有很大的影响。
对于316不锈钢的铣削加工,应选择高硬度、耐磨损的切削工具,如硬质合金铣刀。
同时,切削刃的刃角也要适当,一般为15-25度,以确保切削过程的顺利进行。
3.冷却润滑剂的使用316不锈钢在铣削加工过程中容易产生高温,且切削过程中会产生大量的切屑。
为了保证加工质量和刀具寿命,应在加工过程中使用适量的冷却润滑剂,以降低温度、润滑切削面和清除切屑。
常用的冷却润滑剂有切削油和切削液。
4.表面粗糙度的控制在316不锈钢的铣削加工中,控制表面粗糙度是非常重要的。
表面粗糙度的大小与加工参数有关,切削速度和进给速度的增大会使表面粗糙度增加,而切削深度的增大会使表面粗糙度减小。
因此,需要根据具体要求,调整加工参数,以获得满足要求的表面粗糙度。
总结:316不锈钢的铣削加工需要选择合适的加工参数,如切削速度、进给速度和切削深度等,同时选择合适的切削工具和使用适量的冷却润滑剂。
通过合理设置加工参数和控制加工过程中的温度等因素,可以获得最佳的加工效果和加工质量。
不锈钢数控车削加工工艺
不锈钢数控车削加工工艺1. 引言不锈钢是一种具有耐腐蚀性能的金属材料,在工业制造过程中得到了广泛的应用。
不锈钢数控车削加工是一种高精度、高效率的加工方法,通过数控设备实现对不锈钢材料的精确切削,可以用于制造许多产品,例如机械零件、管道和构件等。
本文将介绍不锈钢数控车削加工的工艺过程、工艺参数以及其在实际应用中的注意事项。
2. 工艺过程不锈钢数控车削加工的工艺过程包括以下几个步骤:2.1 零件准备在进行车削加工之前,首先需要准备好要加工的不锈钢零件。
清洁表面,并确保其表面没有明显的凹陷和磨损。
2.2 工艺规划在进行数控车削加工之前,需要进行工艺规划。
工艺规划包括确定零件的加工顺序、选择合适的刀具和切削参数等。
2.3 加工装夹将不锈钢零件安装在数控车床上,进行加工装夹。
确保零件固定牢固且位置准确。
使用合适的夹具和固定装置,以避免零件在加工过程中发生移动或变形。
2.4 加工参数设置根据零件的要求和刀具的特性,设置合适的加工参数。
包括切削速度、进给速度和切削深度等。
合理的加工参数可以提高加工效率和加工质量。
2.5 车削加工根据工艺规划和加工参数,使用数控设备进行车削加工。
通过控制刀具的运动轨迹和加工参数,将不锈钢材料逐渐切削,得到所需形状和尺寸的零件。
2.6 质量检验在完成车削加工后,进行质量检验。
检查零件的尺寸、表面质量和精度等。
确保加工的零件符合要求。
3. 工艺参数不锈钢数控车削加工的工艺参数对加工质量和效率有着重要影响。
以下是一些常用的工艺参数:•切削速度:通常以米/分钟为单位。
根据不锈钢材料的硬度和刀具的材质来确定合适的切削速度。
•进给速度:刀具在单位时间内在工件上的移动速度。
根据不同的切削工况和加工精度要求,选择合适的进给速度。
•切削深度:刀具每次切削所去除的材料层厚度。
根据零件的要求和刀具的稳定性,选择合适的切削深度。
•刀具半径补偿:在车削过程中,考虑到刀具的几何特性和零件的轮廓,需要进行刀补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 什么是不锈钢?通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。
这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。
含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。
钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。
为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。
这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。
由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。
所含的合金元素对切削加工性影响很大,有的甚至很难切削。
2 不锈钢可分为哪几类?不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。
工业上常用的不锈钢一般按金相组织分类,可分为以下五大类:1.马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo等。
2.铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。
3.奥氏体不锈钢:含络量12%~25%,含镍量7%~20%(或20%以上),最典型的代表是1Cr18Ni9Ti,常见的还有00Cr18Ni10、00Cr18Ni14Mo2Cu2、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、0Cr23Ni28M03Cu3Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4、1Cr18Mn8Ni5N等。
4.奥氏体+铁素体不锈钢:与奥氏体不锈钢相似,仅在组织中含有一定量的铁素体,常见的有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5M03N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3M03Cu2N、Cr2bNi17M03CuSiN、1Cr18Ni11Si4AlTi等。
5.沉淀硬化不锈钢:含有较高的铬、镍和很低的碳,常见的有0Cr17Ni4Cu4Nb、0Cr17Ni7Al、0Cr15Ni7M02Al等。
前两类为铬不锈钢,后三类为铬镍不锈钢。
3 不锈钢有哪些物理、力学性能?1.马氏体不锈钢:能进行淬火,淬火后具有较高的硬度、强度和耐磨性及良好的抗氧化性,有的有磁性,但内应力大且脆。
经低温回火后可消除其应力,提高塑性,切削加工较困难,有切屑擦伤或粘结的明显趋向,刀具易磨损。
当钢中含碳量低于0.3%时,组织不均匀,粘附性强,切削时容易产生积屑瘤,且断屑困难,工件已加工表面质量低。
含碳量达0.4%~0.5%时,切削加工性较好。
马氏体不锈钢经调质处理后,可获得优良的综合力学性能,其切削加工性比退火状态有很大改善。
2.铁素体不锈钢:加热冷却时组织稳定,不发生相变,故热处理不能使其强化,只能靠变形强化,性能较脆,切削加工性一般较好。
切屑呈带状,切屑容易擦伤或粘结于切削刃上,从而增大切削力,切削温度升高,同时可能使工件表面产生撕裂现象。
3.奥氏体不锈钢:由于含有较多的镍(或锰),加热时组织不变,故淬火不能使其强化,可略改善其加工性。
通过冷加工硬化可大幅度提高强度,如果再经时效处理,抗拉强度可达2550~2740 MPa。
奥氏体不锈钢切削时的带状切屑连绵不断,断屑困难,极易产生加工硬化,硬化层给下一次切削带来很大难度,使刀具急剧磨损,刀具耐用度大幅度下降。
奥氏体不锈钢具有优良的力学性能,良好的耐蚀能力,较突出的是冷变形能力,无磁性。
4.奥氏体+铁素体不锈钢:有硬度极高的金属间化合物析出,强度比奥氏体不锈钢高,其切削加工性更差。
5.沉淀硬化不锈钢:含有能起沉淀硬化的铊、铝、钼、钛等合金元素,它们在回火时时效析出,产生沉淀硬化,使钢具有很高的强度和硬度。
由于含碳量低保证了足够的含铬量,因此具有良好的耐腐蚀性能。
4 不锈钢有哪些切削特点?不锈钢的切削加工性比中碳钢差得多。
以普通45号钢的切削加工性作为100%,奥氏体不锈钢1Cr18Ni9Ti的相对切削加工性为40%;铁素体不锈钢1Cr28为48%;马氏体不锈钢2Cr13为55%。
其中,以奥氏体和奥氏体+铁素体不锈钢的切削加工性最差。
不锈钢在切削过程中有如下几方面特点:1.加工硬化严重:在不锈钢中,以奥氏体和奥氏体+铁素体不锈钢的加工硬化现象最为突出。
如奥氏体不锈钢硬化后的强度σb达1470~1960MPa,而且随σb的提高,屈服极限σs升高;退火状态的奥氏体不锈钢σs不超过的σb30%~45%,而加工硬化后达85%~95%。
加工硬化层的深度可达切削深度的1/3或更大;硬化层的硬度比原来的提高1.4~2.2倍。
因为不锈钢的塑性大,塑性变形时品格歪扭,强化系数很大;且奥氏体不够稳定,在切削应力的作用下,部分奥氏体会转变为马氏体;再加上化合物杂质在切削热的作用下,易于分解呈弥散分布,使切削加工时产生硬化层。
前一次进给或前一道工序所产生的加工硬化现象严重影响后续工序的顺利进行。
2.切削力大:不锈钢在切削过程中塑性变形大,尤其是奥氏体不锈钢(其伸长率超过45号钢的1.5倍以上),使切削力增加。
同时,不锈钢的加工硬化严重,热强度高,进一步增大了切削抗力,切屑的卷曲折断也比较困难。
因此加工不锈钢的切削力大,如车削1Cr18Ni9Ti的单位切削力为2450MPa,比45号钢高25%。
3.切削温度高:切削时塑性变形及与刀具间的摩擦都很大,产生的切削热多;加上不锈钢的导热系数约为45号钢的½~¼,大量切削热都集中在切削区和刀—屑接触的界面上,散热条件差。
在相同的条件下,1Cr18Ni9Ti的切削温度比45号钢高200℃左右。
4.切屑不易折断、易粘结:不锈钢的塑性、韧性都很大,车加工时切屑连绵不断,不仅影响操作的顺利进行,切屑还会挤伤已加工表面。
在高温、高压下,不锈钢与其他金属的亲和性强,易产生粘附现象,并形成积屑瘤,既加剧刀具磨损,又会出现撕扯现象而使已加工表面恶化。
含碳量较低的马氏体不锈钢的这一特点更为明显。
5.刀具易磨损:切削不锈钢过程中的亲和作用,使刀—屑间产生粘结、扩散,从而使刀具产生粘结磨损、扩散磨损,致使刀具前刀面产生月牙洼,切削刃还会形成微小的剥落和缺口;加上不锈钢中的碳化物(如TiC)微粒硬度很高,切削时直接与刀具接触、摩擦,擦伤刀具,还有加工硬化现象,均会使刀具磨损加剧。
6.线膨胀系数大:不锈钢的线膨胀系数约为碳素钢的1.5倍,在切削温度作用下,工件容易产生热变形,尺寸精度较难控制。
5 切削不锈钢时怎样选择刀具材料?合理选择刀具材料是保证高效率切削加工不锈钢的重要条件。
根据不锈钢的切削特点,要求刀具材料应具有耐热性好、耐磨性高、与不锈钢的亲和作用小等特点。
目前常用的刀具材料有高速钢和硬质合金。
1.高速钢的选择:高速钢主要用来制造铣刀、钻头、丝锥、拉刀等复杂多刃刀具。
普通高速钢W18Cr4V使用时刀具耐用度很低已不符合需要,采用新型高速钢刀具切削不锈钢可获得较好的效果。
在相同的车削条件下,用W18Cr4V和95w18Cr4V两种材料的刀具加工1Cr17Ni2工件,刀具刃磨一次加工的件数分别为2~3件和12件,用95w18Cr4V的刀具耐用度提高了几倍。
这是由于提高了钢的含碳量,从而增加了钢中碳化物含量,常温硬度提高2HRC红硬性更好,600℃时由W18Cr4V的HRC48.5上升到HRC51~52,耐磨性比W18Cr4V提高2~3倍。
应用高钒高速钢W12Cr4V4Mo制作型面铣刀加工1Cr17Ni2可以获得较高的刀具耐用度。
因为含钒量增加,可在钢中形成硬度很高的VC,细小的VC存在于晶介,可以阻止晶粒长大,提高钢的耐磨性;W12Cr4V4Mo的红硬性很好,600℃时硬度可达HRC51.7,因此适合于制作切削不锈钢的各种复杂刀具。
但其强度(σb=3140 MPa)及冲击韧性(a k=2.5 J/cm3)略低于W18Cr4V,使用时要稍加注意。
随着刀具制作技术的不断发展,对于批量大的工件,采用硬质合金多刃、复杂刀具进行切削加工效果会更好。
2.硬质合金的选择:YG类硬质合金的韧性较好,可采用较大的前角,刀刃也可以磨得锋利些,使切削轻快,且切屑与刀具不易产生粘结,较适于加工不锈钢。
特别是在振动的粗车和断续切削时,YG类合金的这一优点更为重要。
另外,YG类合金的导热性较好,其导热系数比高速钢高将近两倍,比YT类合金高一倍。
因此YG类合金在不锈钢切削中应用较多,特别是在粗车刀、切断刀、扩孔钻及铰刀等制造中应用更为广泛。
较长时期以来,一般都采用YG6、YG8、YG8N、YW1、YW2等普通牌号的硬质合金作为切削不锈钢的刀具材料,但均不能获得较理想的效果;采用新牌号硬质合金如813、758、767、640、712、798、YM051、YM052、YM10、YS2T、YD15等,切削不锈钢可获得较好的效果。
而用813牌号硬质合金刀具切削奥氏体不锈钢效果很好,因为813合金既具有较高的硬度(≥HRA91)、强度(σb=1570MPa),又具有良好的高温韧性、抗氧化性、抗粘结性,其组织致密耐磨性好。
6 切削不锈钢时怎样选择刀具几何参数?1.前角γ0:不锈钢的硬度、强度并不高,但其塑性、韧性都较好,热强性高,切削时切屑不易被切离。
在保证刀具有足够强度的前提下,应选用较大的前角,这样不仅能够减小被切削金属的塑性变形,而且可以降低切削力和切削温度,同时使硬化层深度减小。
车削各种不锈钢的前角大致为12°~30°。
对马氏体不锈钢(如2Cr13),前角可取较大值;对奥氏体和奥氏体+铁素体不锈钢,前角应取较小值;对未经调质处理或调质后硬度较低的不锈钢,可取较大前角;直径较小或薄壁工件,宜采用较大的前角。
高速钢铣刀取γn=10°~20°,硬质合金铣刀取γn=5°~10°;铰刀一般取γ0=8°~12°;丝锥一般取γ0=15°~20°(机用)或γ0=20°(手用)。
2.后角α0:加大后角能减小后刀面与加工表面的摩擦,但会使切削刃的强度和散热能力降低。